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Abstract

This paper addresses a neural network guidance based on pursuit-evasion games, and performance enhancing methods for it.

Two-dimensional pursuit-evasion games solved by the gradient-based method are considered. The neural network guidance law

employs the range, range rate, line-of-sight rate, and heading error as its input variables. Additional pattern selection methods and a

hybrid guidance method are proposed for the sake of the interception performance enhancement. Numerical simulations are

accompanied for the verification of the neural network approximation, and of the improved interception performance by the

proposed methods. Moreover, all proposed guidance laws are compared with proportional navigation.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

This study deals with missile guidance based on
pursuit-evasion games. Pursuit-evasion game, which was
introduced by Isaacs (1967) in the first place, has
become an attractive concept in missile guidance, as the
need for a guidance law guaranteeing good interception
performance against a smart target increased. (Ehtamo
& Raivio, 2001; Faber & Shinar, 1980; Shima & Shinar,
2002) Since pursuit-evasion game considers the worst-
case design, it is expected to warrant acceptable
interception performance even when a target aircraft
maneuvers in a very intelligent way. Pursuit-evasion
game considers a minimax optimization problem
between the missile and the target. In other words, the
missile makes an effort to minimize a specified payoff
e front matter r 2005 Elsevier Ltd. All rights reserved.
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function, while the target maximizes it. Interception
time and miss distance are frequently chosen as the
payoff of the game. (Breitner, Pesch, & Grimm, 1993;
Shima & Shinar, 2002; Tahk, Ryu, & Kim, 1998;
Ehtamo & Raivio, 2001) Intercept time has been
preferred as the payoff if the model dynamics are
complicated, since it entails easier mathematical
formulation.

It is needed to obtain a feedback guidance law for
real-time implementation of pursuit-evasion game. No
one can expect good interception performance when
using pre-programmed open-loop guidance, since real
engagement situations are not exactly same as those one
considered before. Unfortunately, many solvers for
pursuit-evasion game merely give open-loop solutions.
Some researches have been conducted for obtaining
feedback type game solutions. (Ben-Asher, 1996; Faber
& Shinar, 1980; Menon, 1989) However, all these works
led to complicated problem formulations, which inevi-
tably limited the extension of each idea to very simple
cases. A neural network can be a good help, since it
is a universal approximator (Hornik, Stinchcombe, &
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Fig. 1. Two-dimensional pursuit-evasion situation.
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White, 1989). It can yield an approximate functional
relation between the state variables and the game-
optimal control inputs. In addition, Song and Tahk
(1998, 1999, 2001, 2002) have substantiated the feasi-
bility of this concept in missile midcourse guidance,
although they considered one-sided optimal problems
rather than game-optimal problems. For this reason, in
this work, a neural network is employed to synthesize a
feedback guidance law from open-loop solutions.

The authors have studied neural network guidance
law based on the pursuit-evasion game solutions
obtained by using the gradient-based method for both
two-dimensional and three-dimensional situations.
(Choi, Park, Lee, & Tahk, 2001; Choi, Tahk, Bang, &
Lee, 2001; Lee, Choi, Tahk, & Bang, 2001). While
investigating the outcomes, however, it is observed that
to select neural network input variable plays a key role
in determining the performance of the guidance law, and
it is also observed that the performance of the neural
network guidance law degrades too much, when the
target does not maneuver along the game-optimal
trajectory obtained in advance. Based on these two
observations, this paper focuses on the selection of the
network input variables and on the ways of overcoming
the undesirable feature above.

This paper derives a neural network guidance law
from two-dimensional pursuit-evasion games. This
study focuses on only two-dimensional situations, since
they are more appropriate for elucidating the qualitative
features of the pursuit-evasion game and the neural
network guidance. Four variables, i.e. the range, range
rate, heading error, and line-of-sight (LOS) rate are
selected as neural network input variables. Two methods
are also proposed for the sake of improving the
interception performance against not game-optimally
maneuvering targets: additional pattern scenario selec-
tion, and hybrid guidance. In addition, performance of
the neural network guidance laws is compared with
proportional navigation.
2. Two-dimensional pursuit-evasion game

Two-dimensional pursuit-evasion situation is consid-
ered as described in the Fig. 1. The equations of motion
of the missile and the target are expressed as follows.

_xi ¼ vi cos gi,

_yi ¼ vi sin gi,

_gi ¼
vi

Ri

ui ¼
1

vi

v2i
Ri

ui

� �
¼

ai

vi

; juijp1,

_vi ¼ �
v2i
Ri

ðai þ biu
2
i Þ,

ði ¼M ;TÞ, ð1Þ
where x, y are the missile’s or the target’s position, v is
the speed and g is the flight path angle, respectively. u is
the normalized control input, and R is the minimum
turn radius. In addition, a is the lateral acceleration
command. a and b are related to aerodynamic
coefficients. The values of R; a, and b for each player
are given as follows: aM ¼ 0:0875, bM ¼ 0:40,
RM ¼ 1515:15m, aT ¼ 0, bT ¼ 0:40, and RT ¼ 600m.
The subscript ‘M’ denotes the missile, and ‘T’ the target.

With these dynamic models of both players, the
authors take into account a time-optimal differential
game, which can be expressed as

max
uT ðtÞ

min
uM ðtÞ

J ¼ tf ,

where

tf 9 infft 2 ½0;1Þ : rðtÞ ¼ 0g (2)

uM(t) or uT(t) implies the time history of the missile’s or
target’s normalized control input described in Eq. (1),
and r(t) is the range between the missile and the target at
time t.

This kind of differential game can be solved by some
numerical algorithms, such as indirect methods, the
gradient-based method (Tahk et al., 1998), the bilevel
programming (Ehtamo & Raivio, 2001), and co-evolu-
tionary methods (Kim & Tahk, 2001; Choi, Ryu, Tahk,
& Bang, 2004). This work employs the gradient-based
method devised by Tahk et al. (1998), which is a
direct optimization method based on control input
parameterization. The control inputs of the missile and
the target are discretize with time step dtð¼ tf =NÞ as the
following:

uM ¼ ½uM;1; uM ;2; � � � ; uM;N �
T

uT ¼ ½uT ;1; uT ;2; � � � ; uT ;N �
T ð3Þ
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ui;kði ¼M;TÞ is the control input during the kth
interval, which is assumed constant during the corre-
sponding time interval. Hence, the gradient-based
method offers game-optimal parameterized control
inputs. In other words, the open-loop solutions for
game-optimal control are available by using the
gradient-based method. Moreover, optimal trajectories
obtained by numerical methods for finding open-loop
represented solutions are equivalent to those con-
structed by optimal feedback game strategies, if the
dynamics of each player is decoupled and the payoff
function is terminal. (Basar & Olsder, 1999) Thus, it is
theoretically possible to obtain both open-loop and
feedback game solutions that result in exactly same
trajectories.
3. Structure of neural network guidance law

The neural network (NN) feedback guidance law
implies an approximate functional relation between the
state variables and the game-optimal control inputs. The
‘‘guidance NN’’ takes current state information as its
input and provides a sub-optimal guidance command to
the missile. If it is possible to gather all the state
information, the best choice for the NN inputs of the
guidance NN is to select all the state variables both of
the missile and of the target. However, unfortunately,
this choice is impossible in real implementation, since all
the state values cannot be measured. Instead, just a few
variables are measured and the other variables are
estimated based on the measurement. Therefore, it is
reasonable to select variables that can be measured or at
least can easily be estimated. It is also important not to
sacrifice the approximation accuracy, though. The basic
architecture of the NN feedback guidance loop is given
in Fig. 2. For a designer of the guidance law, selection of
the neural network input vector, or XNN, is the most
important issue.
Missile
Dynamics

Variable
Conversion

Target
Information

NN Guidance

XNN YNN

Fig. 2. Basic architecture of neural network feedback guidance.
In this paper, it is assumed that the game-optimal
guidance law mainly depends on relative motion
between the missile and the target. The key variables
to represent the relative motion are the range, rate of
change of the range, LOS angle, and LOS angular rate.

However, when the lateral acceleration normal to the
velocity vector not to the LOS vector is considered as
the missile’s guidance command, the absolute value of
LOS angle (l in Fig. 1) matters less in determining the
guidance command. Instead, the heading error,
sM ¼ gM2l, is much more important, since it contains
the information of the velocity direction. Therefore, the
heading error replaces the LOS angle in this paper.
Thus, the neural network input vector consists of the
range, range rate, heading error, and LOS angular rate.

In addition, the lateral acceleration aM is chosen as
the NN output variable instead of uM, since the former
contains more physical meaning.
4. Synthesis of neural network guidance

4.1. Neural network training

Pursuit-evasion games are solved by the gradient-
based method for 20 engagement scenarios, in which the
initial gM varies 4 times, 01–301� 101, and the initial
gT varies 5 times, 301–1501� 301, while the initial
positions and the speeds are fixed as ðxM ; yM ; vM Þ ¼

ð0m; 0m; 600m=sÞ, and ðxT ; yT ; vT Þ ¼ ð5000m; 0m;
200m=sÞ (Fig. 3).

Afterwards, a neural network with 2 hidden layers is
developed for training; the number of neurons is 10 and
6 for the first and second hidden layer, respectively. The
activation function of each neuron is hyperbolic tangent
function: f out ¼ C1 tanhðC2f inÞ, where C1 ¼ 1:0,
C2 ¼ 0:5. Learning continues until the normalized
output MSE (mean squared error) decreases to
6� 10�7 by using the Levenberg–Marquardt algorithm
(Hagan & Menhaj, 1994).
Missile

Y

X0°

30°
30°150°

5km Target O

200m/s

600m/s

Fig. 3. Training scenarios.
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4.2. Verification of neural network approximation

Since the low value of MSE cannot guarantee the
approximation performance of the NN guidance law, it
is needed to simulate the trajectories by the NN
feedback guidance law in order to examine the
approximation performance of it. The authors calculate
the trajectories for 52 scenarios: 20 pattern scenarios
and 32 off-trained scenarios. The off-trained scenarios
are selected by changing the target’s initial path angle 8
times—401, 501, 701, 801, 1001, 1101, 1301, and 1401—
with the same configuration of the initial position,
speed, and the missile’s path angle as those of the
pattern scenarios.

Fig. 4 shows the trajectories for representative four
scenarios described in Table 1; Fig. 5 depicts the
acceleration histories for the same scenarios. It is found
that the trajectories constructed by using the NN
guidance law are very similar to the original pursuit-
evasion game trajectories. With respect to the control
history, two histories are about the same for three
scenarios. For scenario 4, slight difference in the
acceleration command is found near the final time;
nevertheless, this amount is not so much that determines
the success or failure in the interception. For all 52
testing scenarios, the miss distance is less than 0.2m, and
the final time error is less than 2� 10�3 s. In the
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Fig. 4. Trajectories for the verification of neural network approxima-

tion.

Table 1

Path angles for illustrated scenarios

Scenario gM1 gT 1

1 0 40

2 10 80

3 20 100

4 30 140
consequence, the guidance NN approximates the
game-optimal solutions to a satisfactory extent.
5. Performance enhancement of the guidance law

Although the NN guidance law described in the
previous sections copies the game-optimal solutions
well, it does not guarantee good interception perfor-
mance for all the engagement situations. Since the NN is
trained using the trajectory data for the situations in
which both the missile and the target adopt the game-
optimal strategies, the missile often fails to generate
appropriate guidance command if the target maneuvers
in a different way from the game-optimal law. When the
target maneuvers slightly differently from the game-
optimal law, the feedback structure of the NN guidance
law satisfactorily compensates the guidance error,
thereby leading to the success in the interception.
However, this is not the case, when the target maneuvers
in a disparate way; the interception performance greatly
degrades in this situation. For example, sometimes the
missile using NN guidance law even fails to capture a
dumb target.

There might be two approaches to overcome this
defect above: one is to train the NN using additional
pattern scenarios, and the other is to compensate or aid
the NN guidance law in a certain way. As for the first
approach, this paper proposes two ways of selection of
additional training patterns. For the second approach, a
hybrid guidance scheme is proposed.

5.1. Additional network training

It is obvious that an almost perfect neural network
guidance law would be obtained, if the network training
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could cover all the possible engagement situations.
Unfortunately, this is impossible in the real design
process. Instead, a designer selects some scenarios
standing for the engagement situations that he/she
wants to deal with. Actually, the pattern scenarios in
the previous section were selected in this manner.
However, the performance of the NN guidance law
constructed from those scenarios is only guaranteed
when the target maneuvers similarly to the game
solutions; otherwise, the interception performance is
not desirable. This means that the scenarios selected
before does not contain all the information that the
authors wanted to consider. To supplement the lack of
information, additional scenarios are required in the
NN training. This section proposes two ways of
replenishing the pattern scenarios.

5.1.1. Game solutions along the fictitious trajectories

First of all, let us assume that the authors are
interested in improving the interception performance
of the NN guidance law for a specific engagement: the
target maneuvers with constant uT; initial gM and gT are
01 and 901, respectively. Since the target’s game solution
for that initial engagement is not a constant input
maneuver, it is impossible to obtain the exact trajec-
tories expressing what happens when the game-opti-
mally guided missile chases the target. Instead, the
trajectories can be computed if the missile is assumed to
take sampled-feedback guidance with a finite sampling
step.
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Fig. 6. Additional training scenarios for intercep
Five cases of target’s control commands—1.0, 0.5, 0,
�0.5, and �1.0—are considered, and the missile is
assumed to update its strategy every 2 s. In other words,
the missile is open-loop guided using the game solution
for 2 s, and then the game solution with a new initial
condition is solved; this solution is used for guiding the
missile during the next 2 s.

In this way, the authors can obtain 22 more game
solutions. Started at the marked positions (J: missile, D:
target) in Fig. 6, the pursuit-evasion game solutions are
evaluated using the gradient-based method. These 22
scenarios—3 for uT is 1.0, 3 for uT is 0.5, 5 for uT is 0.0, 6
for uT is �0.5, and 5 for uT is �1.0—are added to the
training patterns; therefore, total 42 pattern scenarios
are trained. The network training proceeds until the
MSE converges to 2� 10�5. Let denote this NN as
NNB, while denote the original NN constructed in the
previous section as NNA.

5.1.2. General geometries for shorter-range engagements

Although selecting the additional pattern scenarios
along the fictitious trajectory for intercepting a specific
target is reasonable approach, it requires some tedious
labors: solve the game solution, propagate it for one
guidance step, and solve a new game solution at
that position, and so on. Instead of this, just choosing
more scenarios in shorter-range engagements can be
helpful. For the shorter-range cases, the guidance
commands vary more rapidly than for the longer-
range ones. Thus, it is expected for the NN guidance
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ting the target with constant control input.
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Table 2

Interception performance improvement by additional network training

uT Performance criteria NNA NNB NNC

1.0 tf (s) 8.313 8.279 8.274

rf (m) 17.159 4.377 0.176

0.5 tf (s) 8.542 8.503 8.486

rf (m) 11.037 9.825 0.923

0.0 tf (s) 12.186 12.269 12.536

rf (m) 52.537 4.4901 0.230

�0.5 tf (s) 13.952 13.965 14.042

rf (m) 8.024 0.263 0.599

�1.0 tf (s) 12.333 12.373 12.324

rf (m) 1.749 0.132 15.140

Note: The underlined bold figures imply the worst case for each neural

network guidance law.
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law to compensate the guidance errors more promptly, if
it contains the information of shorter-range engage-
ments.

Twenty scenarios are selected in the engagements with
initial range of 3 km, while the missile’s and the target’s
path angles change in the same manner as the
engagements with initial range of 5 km. Hence, total
40 pattern scenarios are trained until the MSE reaches
2� 10�5. Let denote this network as NNC.

5.1.3. Performance comparison

Table 2 shows the interception results— final time and
miss distance—of the three NNs against constant-radius
turning targets. The capture radius of the missile’s
warhead is assumed to be 10.0m. It is found that NNB

provides good interception performance as a whole,
while NNA does not give good performance except when
uT is negative. Although NNC fails to intercept the
target when uT is �1.0, it is, taken altogether, much
better than NNA. The bold number implies the worst-
case for each NN in the manner of the miss distance.

5.2. Hybrid guidance

This section introduces another algorithm, called
as a hybrid guidance method, for enhancing the
interception performance of the NN guidance law.
Hybrid guidance means a combination of the NN
guidance law and an existing guidance law, such as PN
(proportional navigation) and APN (augmented PN).
The reason why the NN guidance fails to intercept
is that the target moves very differently from what
the missile expects. Therefore, it is reasonable to adapt
the missile’s guidance algorithm to the target’s maneu-
vering technique: if the target seems to behave
game-optimally, then use the NN guidance; if not, use
PN guidance. This paper proposes the following
adaptation scheme:

Gð0Þ ¼ NN

t :¼ 1

while ðcðtÞatrueÞ do

if Gðt� 1Þ ¼¼ NN,

if jDaT ðt� iÞj4� 8 i ¼ 1; 2; � � � ; n

GðtÞ ¼ PN

endif

else

if jDaT ðt� iÞjo� 8i ¼ 1; 2; � � � ; n

GðtÞ ¼ NN

endif

t ¼ tþ 1

endif

enddo

where t is the current guidance step, G(t) is the current
guidance scheme that is initially set as NN, c(t) is the
termination criteria of an engagement, DaT is the
difference in target acceleration between the game-
optimal command and the actual command (DaT ¼

aT � āT ), � is the allowable threshold of DaT , and n is a
specified integer. In other words, if the missile succes-
sively observes the target command differs from (or is
similar to) the game-optimal one for n guidance steps,
then it changes the guidance scheme from NN to PN (or
from PN to NN). Here, to select � and n is a critical
issue. � can be chosen after testing the NN guidance law,
and n has to be selected to accomplish the interception
not causing a chattering problem. In this work, � is 0.5 g
and n is 3.

In addition, in order to evaluate DaT , target’s actual
and game-optimal acceleration should be prepared in
advance. It can be assumed that the missile uses a
target tracking filter; therefore, it can estimate the
target’s actual acceleration. In actual situations, the
tracking filter would suffer from the estimation noise;
nevertheless, this work ignores it in order to analyze
the feasibility and validity of the idea rather concep-
tually and qualitatively. The missile can estimate
target’s game-optimal acceleration, if adopting one
more NN. The authors assume the game-optimal
target acceleration to be a function of the range,
range rate, LOS, and LOS rate. Namely, āT �

āT ;NNðr; _r; l; _lÞ.
With the same pattern scenarios for NNA, the authors

train target acceleration estimating NN; a two-hidden-
layered NN with 10 and 6 neurons is trained until the
training error decreases to 3� 10�6. Numerical simula-
tion shows that this NN approximates the target’s game-
optimal maneuver to a sufficient extent.
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6. Comparison with proportional navigation

Neural network guidance laws described heretofore
are compared with PN guidance. For the initial
condition of ðxM ; yM ; gM ; vM Þ ¼ ð0m; 0m; 01; 600m=sÞ,
and ðxT ; yT ; gT ; vT Þ ¼ ð5 k; 0m; 901; 200m=sÞ, six gui-
dance laws (NNA, NNB, NNC, Hybrid, PN3, PN4) are
compared with each other. PN3 and PN4 denote PN
guidance with gain 3 and 4, respectively. In other words,
aM ¼ NPN

_lvM ðNPN ¼ 3 or 4Þ for there cases. ‘Hybrid’
guidance law is a combination of NNA and PN4. In
order to test the performance, six target maneuvers are
considered: differential game maneuver (DG), a dumb
target (Dumb), maximum turn maneuver (Max), time-
optimal maneuver against PN3 (Opt3), time-optimal
maneuver against PN4 (Opt4), and anti-PN maneuver
with gain 5 (Anti5). For ‘Dumb,’ uT ¼ 0, while for
‘Max,’ uT ¼ �1. ‘Opt3’ and ‘Opt4’ are optimal target
trajectories for the following problem:

max
uT ðtÞ

J ¼ tf

when aM ¼ NPN
_lvM ðNPN ¼ 3 or 4Þ. ð4Þ

These optimization problems are solved by using co-
evolutionary augmented Lagrangian method (CEALM)
(Tahk & Sun, 2000; Choi, Bang, & Tahk, 2001). For
‘Anti5,’ aT ¼ �NAPN

_lvT where aT is the target’s lateral
acceleration, and the value of NAPN is 5.

Table 3 shows the final time for each engagement. The
bold character denotes the worst case of the correspond-
ing guidance law; the underline means that the missile
fails to intercept the target. Obviously, failure of
interception is worse situation for the missile than any
other situation resulting in success of interception. The
miss distance for ‘NNA vs. Dumb’ is 52.539m, and that
for ‘NNC vs. Max’ is 15.140m, while for all other cases
miss distances are less than 10.0m. Among the NN
guidance laws, NNB provides the best performance,
succeeding in interception all the targets. It is noticeable
that the NNB provides the best worst-case performance
among all the guidance laws. Moreover, the fact that the
worst case of NNB occurred in the engagement versus
DG means that NNB approximates the differential game
Table 3

Final times for engagement between each guidance law and each maneuver

Missile/Target NNA NNB NN

DG 14.391 14.391 14.

Dumb 12.186 12.269 12.

Max 12.333 12.373 12.

Opt3 14.295 14.300 14.

Opt4 14.270 14.273 14.

Anti5 14.289 14.291 14.

Note: The bold figures correspond to the worst cases for each guidance law o
strategy very well. It is also found that NN guidance
laws excel PN guidance laws, when the target maneuvers
time-optimally against PN. In addition, it should not be
overlooked that the hybrid guidance guarantees good
performance as a whole, providing better worst-case
performance than PN guidance. This shows the feasi-
bility of application of hybrid guidance scheme in real
situations. Figs. 7 and 8 demonstrate the simulation
results—trajectories and control histories, respec-
tively,—of 3 engagements: ‘NNB, Hybrid, PN3 vs.
Opt3’. It is observed that ‘Hybrid’ guided missile
switches its guidance scheme halfway, and that ‘PN3’
guided missile goes a long way round until it intercepts
the target.
7. Conclusions

A neural network guidance law adopting the range,
range rate, LOS rate, and heading error as its input
variables is established based on the two-dimensional
game solutions solved by the gradient-based method. In
order to enhance the interception performance of the
neural network guidance law, two techniques for
selecting additional training scenarios and a hybrid
law

C Hybrid PN3 PN4

391 14.391 14.634 14.846

536 11.641 11.621 11.587

324 12.630 12.581 12.725

298 14.423 14.946 14.924

274 14.521 14.658 15.353

241 14.526 14.157 13.947

f the missile; moreover, the underline means the failure of interception.
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guidance scheme are proposed. Numerical simulations
shows that the neural network approximation is
desirable and two proposed pattern selection methods
are effective. All proposed guidance methods are
compared with proportional guidance in the respect of
worst-case performance. The neural network guidance
law reinforced by additional fictitious scenarios and the
hybrid guidance law provide outstanding performance.
This study only focuses on the two-dimensional
problem, and many important features of neural
network guidance based on pursuit-evasion games are
enlightened. However, for practical application, similar
research considering more complicated three-dimen-
sional problems should be followed.
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