98 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 58, NO. 1, JANUARY 2011

Memory System Optimization for FPGA-
Based Implementation of Quasi-Cyclic
LDPC Codes Decoders

Xiaoheng Chen, Jingyu Kang, Shu Lin, Life Fellow, IEEE, and Venkatesh Akella

Abstract—Designers are increasingly relying on field-pro-
grammable gate array (FPGA)-based emulation to evaluate the
performance of low-density parity-check (LDPC) codes empiri-
cally down to bit-error rates of 10~'2 and below. This requires
decoding architectures that can take advantage of the unique
characteristics of a modern FPGA to maximize the decoding
throughput. This paper presents two specific optimizations called
vectorization and folding to take advantage of the configurable
data-width and depth of embedded memory in an FPGA to im-
prove the throughput of a decoder for quasi-cyclic LDPC codes.
With folding it is shown that quasi-cyclic LDPC codes with a very
large number of circulants can be implemented on FPGAs with a
small number of embedded memory blocks. A synthesis tool called
QCSyn is described, which takes the H matrix of a quasi-cyclic
LDPC code and the resource characteristics of an FPGA and
automatically synthesizes a vector or folded architecture that
maximizes the decoding throughput for the code on the given
FPGA by selecting the appropriate degree of folding and/or vec-
torization. This helps not only in reducing the design time to create
a decoder but also in quickly retargeting the implementation to a
different (perhaps new) FPGA or a different emulation board.

Index Terms—Alignment, field programmable logic array
(FPGA), folding, low-density parity-check (LDPC) decoder,
memory system optimization, normalized min-sum algorithm,
quasi-cyclic low-density parity-check (QC-LDPC) codes, very
large scale integration (VLSI) implementation.

1. INTRODUCTION

OW-DENSITY parity-check (LDPC) codes, discovered

by Gallager in 1962 [1], were rediscovered and shown
to approach Shannon capacity in the late 1990s. Today LDPC
codes are being considered for a wide variety of emerging
applications such as high-density flash memory, satellite
broadcasting, WiFi and mobile WiMAX. Rapid performance
evaluation of LDPC codes is very desirable to design better
codes for these applications. LDPC codes are decoded it-
eratively using the sum-product algorithm [1], [2] and its
variations such as the normalized min-sum algorithm (NMSA)
[3]. Memory bandwidth is the key performance limiting factor

Manuscript received September 14, 2009; revised February 17, 2010; ac-
cepted June 11, 2010. Date of publication August 03, 2010; date of current
version December 30, 2010. This work was supported in part by the National
Science Foundation under Grant CCF-0727478, in part by NASA under Grants
NNX07AK50G and NNXO09AI21G, and in part by gift grants from Intel and
Northrop Grumman Space Technology. This paper was recommended by As-
sociate Editor L. He.

The authors are with the Department of Electrical and Computer Engineering,
University of California, Davis, CA 95616 USA (e-mail: xhchen@ucdavis.edu;
jykang@ucdavis.edu; shulin@ucdavis.edu; akella@ucdavis.edu).

Digital Object Identifier 10.1109/TCS1.2010.2055250

in the hardware realization of a LDPC decoder. For example,
consider the implementation of the (8176,7156) LDPC code
[4], [5] used in NASA LANDSAT and cruise exploration shuttle
missions. The underlying Tanner graph of this code has 32 704
edges, which means approximately (32704 x 4 = 131086)
messages have to be read and written per iteration to decode a
codeword (the factor 4 is needed because each iteration consists
of two phases called check node and variable node processing,
and each phase requires reading and writing messages corre-
sponding to each edge). Clearly, the decoding throughput of a
LDPC decoder is limited by this memory bandwidth require-
ment. Modern field-programmable gate arrays (FPGAs) from
Xilinx and Altera have a large number of embedded memory
blocks, typically in the range of a few hundreds. In a Xilinx
FPGA, these embedded memory blocks are known as block
RAMs and in Altera FPGA they are called embedded array
blocks. We will focus on a Xilinx FPGA in the rest of the paper,
though the ideas described in this paper can easily be migrated
to an Altera FPGA. Block RAMs are dual-ported and can be
accessed independently in a single cycle (typically 400 to 500
MHz in a Xilinx Virtex FPGA), that results in an enormous
internal memory bandwidth, which if exploited properly can
result in very high decoding throughput. Consequently, in the
past several years, there has been a great deal of interest in
developing FPGA-based architectures for decoding LDPC
codes [6]-[11].

However, most of the FPGA-oriented implementations re-
ported in literature fail to take full advantage of the fact that the
aspect ratio of the block RAMs is configurable—i.e., both the
word size and the number of locations in the memory or depth
of the memory can be selected by the designer. For example,
each 18 Kb block RAM in a Virtex-4 FPGA can be configured
to operate as a 512x36, 1Kx18, 2Kx9, 4Kx4, 8Kx2, or 16Kx1
memory block (in a 512x36 configuration, 36 bits can be read
or written simultaneously, whereas in a 1Kx18 configuration
18 bits can be read or written simultaneously). In fixed-point
implementation of LDPC codes, the messages are typically 6 to
8 bits [11]. Most FPGA implementations store one message per
block RAM word. So, typically they utilize 8/36 or roughly 22%
of the available memory bandwidth, or in other words, roughly
78% of the available memory bandwidth is not being used.

We propose two architectural techniques to increase the
throughput of an FPGA-based implementation of a LDPC
decoder. The first technique, called vectorization, exploits the
configurable width of the block RAM; and the second, called
folding, takes advantage of the configurable depth of the block
RAM. Vectorization allows the packing of multiple messages

1549-8328/$26.00 © 2010 IEEE

CHEN et al.: MEMORY SYSTEM OPTIMIZATION FOR FPGA-BASED IMPLEMENTATION 99

into the same physical word by exploiting the wider word con-
figuration of a block RAM. However, it introduces some key
challenges. Given that each memory access delivers multiple
messages, duplication of the functional units to process the
messages concurrently, and data alignment hardware to route
the messages to the appropriate functional unit is required.
In an FPGA the total number of resources (flip-flops, lookup
tables, and interconnect) are fixed. So vectorization could
result in an implementation that either might not fit on a given
FPGA or could result in a lower clock frequency due to the
alignment logic and interconnect complexity. As a result,
careless vectorization might result in performance that is worse
than a scalar implementation. The resource utilization and the
resultant clock frequency depend on the structure of the code
being implemented. To address this challenge, we developed a
semiautomated tool called QCSyn that automatically synthe-
sizes a vector architecture for a given quasi-cyclic code. This
allows the designer to pick the correct degree of vectorization
and pipeline depth for functional units, for a target FPGA and
throughput requirements.

Though the idea of packing multiple messages in a single
memory word has been reported in literature [12], [13], the key
contribution of this paper is a configurable vector decoder archi-
tecture for quasi-cyclic LDPC codes that can be customized to a
given code and a given FPGA (which represents a set of resource
constraints) by choosing the appropriate degree of pipelining
of the functional units and automating the generation of the
data-alignment logic. As a result, the proposed approach re-
duces the time to design a custom vector architecture for a given
code and given FPGA platform. We also extend the overlapped
message passing algorithm [8] to a vector architecture to further
improve the performance of an FPGA-based vector decoder,
which has not been addressed by prior research.

Folding is an optimization that allows implementing large
(complex) LDPC codes on FPGAs with limited number of block
RAMs. Even the largest FPGA that is commercially available
(a Virtex-5) has only around hundreds of block RAMs, so ap-
proaches such as the partially parallel implementation described
in [9]-[11] that maps each circulant to a separate block RAM
will not work for codes with a very large number of circulants.
In other words, existing approaches such as [9]-[11] implicitly
assume that the number of block RAMs is always greater than
the number of submatrices (circulants) in the LDPC code, which
is not always possible, especially with new applications such as
DVB-S2 etc which require codes with a very large number of cir-
culants. Folding is essentially a memory virtualization technique
that maps messages corresponding to multiple submatrices in the
same physical block RAM. This allows us to implement codes
withavery large number of edgesin theirunderlying Tanner graph
on an FPGA using the partially parallel architectural template.

In summary, the specific contributions of this paper are three-
fold.

1) We propose an extension to the partially parallel decoder
architecture to incorporate vector processing to take ad-
vantage of the configurable width of the block RAMs.
The words in the block RAM are treated as short vec-
tors and suitable functional units and data alignment
structures are created to implement a customized vector

processor for a given quasi-cyclic code. The overlapped
message passing algorithm [8], [9] is extended to handle
vector processing.

2) A memory virtualization technique called folding is de-
veloped that allows messages from different submatrices
of quasi-cyclic code to share the physical block RAM.
This allows us to implement very large codes, i.e., codes
with a very large number of submatrices (and hence
edges) efficiently on a given FPGA.

3) A semiautomated tool called QCSyn is developed to ex-
plore the design space of vectorization and folding to
meet the resource and throughput targets for a given
code and application on a given FPGA. An emulation
platform has been realized using the DN80OOOK10PSX
board from Dini Group and implementation results from
the actual hardware are reported.

The rest of the paper is organized as follows. Section II pro-
vides the necessary background on LDPC codes and the message
passing algorithm to decode LDPC codes. Section III describes
the vector decoder architecture and the vector overlapped mes-
sage passing algorithm. Section IV presents the folding technique
and examples. The results and discussion for each method are
presented in the corresponding section. Section V describes the
QCSyntool and the FPGA emulation platform that was developed
and Section VI presents the comparison of the proposed methods
with related approaches in literature.

II. Low-DENSITY PARITY-CHECK CODES

In this section we provide the background to understand the
techniques proposed in this paper. We start with an overview
of LDPC codes and the definition of quasi-cyclic LDPC codes.
Next, we describe an iterative message passing algorithm called
normalized min-sum algorithm (NMSA) [3], which is the al-
gorithm realized by the various architectures proposed in this
paper. We will end the section with a brief overview of the par-
tially parallel decoder architecture that serves as the baseline for
the implementations reported in this paper.

A. Classification of LDPC Codes

A binary LDPC code C of length n is given by the null space
of an J x n sparse parity-check matrix H = [h; ;] over GF(2).
If each column has constant weight v (the number of 1-entries
in a column) and each row has constant weight p (the number
of 1-entries in a row), then the LDPC code C is referred to
as a (y, p)-regular LDPC code. If the columns and/or rows of
the parity-check matrix H have multiple weights, then the null
space of H gives an irregular LDPC code. If H is an array of
sparse circulants of the same size over GF(2), then the null space
of H gives a quasi-cyclic (QC)-LDPC codes. If H consists of a
single sparse circulant or a column of sparse circulants, then the
null space of H gives a cyclic LDPC code.

A binary n-tuple v. = (vg,v1,...,Up—1) i a code-
word in C if and only if vHHT = 0. For 0 < i < J, let
h; = (hio,hi1,...,hin—1) be the ith row of H. Then the
condition vHT = 0 gives the following set of m constraints on
the n code bits of a codeword v in C:

vohio +vihi1+ -+ v 1hipn_1 =0 (D

100 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 58, NO. 1, JANUARY 2011

0 1536 ‘: L‘IL
1 2 4 - 32 B . :
"3\. X 6 Ji X Y 1 3" ,96 Tndex 252 E
768 5 10 20 160 qu—‘
(a) (b)

Fig. 1. Parity check Matrix for a (3,6)-regular QC-LDPC code. There are
18 circulant permutation matrices (or CPMs) marked 1, 2, 4, 8, 16, 32, 3, 6,
12...80, 160. The number denotes the offset for the CPM. For example, the
circulant marked labeled 3 is shown in more detail in (b). Each circulant is a
256 x 256 matrix. The offset is the position of the nonzero entry in the first
row of the circulant. (a) A (3,6)-regular QC-LDPC code (m = 256). (b) A
CPM with m = 256, offset A = 3.

for 0 < ¢ < m, where the operations in the sum are modulo-2
operations. Each sum is called a check-sum (check constraint).

Often an LDPC code C is represented graphically by a bipar-
tite graph which consists of two disjoint sets of nodes. Nodes
in one set represent the code bits and are called variable nodes
(VNs), and the nodes in the other set represent the check-sums
that the code bits must satisfy and are called check nodes (CNs).
Label the VNs from 0 to n—1 and the CNs from O to J—1. The
ith CN is connected to the jth VN by an edge if and only if
h;; = 1. The VNs connected to the ith CN simply correspond
to the code bits that are contained in the ith check-sum. The CNs
connected to the jth VN simply correspond to the check sums
that contain the jth VN.

In terms of encoding and decoding implementation, the most
advantageous structure of an LDPC code is the QC structure.
Commonly, in most of the proposed constructions of QC-LDPC
codes, the parity-check matrix of a QC-LDPC code is given as
a vy X p array (or block) of circulants or circulant permutation
matrices (CPMs) and/or zero matrices of the same size, say m x
m, as follows:

Agpo Ao Ag 1
Ao A Ay,
H= . . . 2
A, 10 Ay 0 A,

Then H is a ym x pm matrix over GF(2). The QC-LDPC
code given by the null space of the H matrix has length pm and
rate at least 1 — (y/p). Many standard codes for communication
systems are QC-LDPC codes.

Fig. 1(a) shows the code structure of a (3,6) regular
QC-LDPC codes. We denote this code as C;. The H ma-
trix has 3 block rows and 6 block columns for a total of 18
circulant permutation matrices. Each circulant permutation
matrix (CPM) is 256 x 256 with a certain offset, which denotes
the position of the nonzero entry in the first row of the matrix.
Details of a CPM with offset equal to 3 is shown in Fig. 1(b).

B. Normalized Min-Sum Algorithm

The NMSA [3] is a reduced-complexity approximation of the
SPA. With carefully chosen normalization factor, the NMSA
performs as good as SPA. Let v be transmitted over the binary-
input AWGN channel with two-sided power spectral density

I0 1 12 13 14 I5
1 1 1 1 1 1
VNUO« [VNU1f (VNU2[« [VNU3[[VNU4 (VNU5«,
CNUO| | E0,0 -~ | EO,1 |~ | E0,2 = | E03 [~ | E04 = | EO5 [
i i i H i] H
CNU1| | E1,0 = | E1,1 = | EL2 = | E1,3 |~ | E14 [~ | E1L5 [~
I i] T i I H
CNU2| | E20 » | E21 ' | E22 v | E23 ' | E24 | | E2,5 |©

I H 1 1 i] H

Fig.2. Partially parallel decoder architecture for (3,6)-regular QC-LDPC codes
with m = 256, adapted from [9], I;(0 < j < 6) denotes the jth IMEM,
E; ;(0 <i<3,0<j< 6)denotes the EMEM on the ith row and on the jth
column.

No/2. Assume transmission using BPSK signaling with unit en-
ergy per signal. Then the codeword v is mapped into a sequence
of BPSK signals (1 —2vg,1—2vy,...,1—2v,_1) for transmis-
sion. Suppose v is transmitted. Let L = (Lo, L1, ..., L,_1) be
the received soft-decision sequence, where L; = (1 —2v;)+z;
is the intrinsic channel reliability value of the jth code bit, x; is
a Gaussian random variable with zero-mean and variance Ny /2.

For0 < i< Jand0 < j < n,wedefine N; = {j : 0 <
Jj<mnh; = 1}, and J; = {i:0<i< Johi; = 1}. Let
K ax be the maximum number of iterations to be performed.
For 0 < k < K., let z(F) = (zék),z§k), . zﬁlk_)l) be the
hard decision vector generated in the kth decoding iteration,
L,(k) . be extrinsic message passed from the ¢th CN to the jth

1—]
VN, Lfi) ; be the extrinsic message passed from the jth VN to

the ith CN, and L{*) be the reliability value of the jth code bit.
The NMSA can be formulated as follows:

1) Initialization: Set k = 0, z(®) = z and the maximum

number of iterations to K,.x. For all j, set LE-O) = Lj, set

LEO_)M = Lj when }Lij =1.
Step 1): Parity check: Compute the syndrome z(*)H” of
z) 1f z®WHT = 0, stop decoding and output z(*)
as the decoded codeword; otherwise go to Step 2).
Step 2): If & = Kax, stop decoding and declare a decoding
failure; otherwise, go to Step 3).
Step 3): CNs update: Compute the message
(k) _ : (k) : (k)
Lij=al 11 sien (22) (w?&?\j ‘L’i‘—"’) @
J'EN;\J
where 0 < a < 1 is the normalization factor. Pass
messages from CNs to VNs.
Step 4): VNsupdate: k < k + 1. Compute the message
k k—1
L =r;+ Y LY)

i'eJ;\j
and update the reliability of each received bit by

L =1+ 3 LY. (5)

1/ —j
i €J;

CHEN et al.: MEMORY SYSTEM OPTIMIZATION FOR FPGA-BASED IMPLEMENTATION

10 11) | B | 14 | 15

VNUO VNU2 VNU4 VNU6 jﬁ VNUS iﬁ VNU10

VNU1 VNU3 VNUS VNU7 VNU9 VNU11
|CNUO| |CNU1| | E0,0 | E0,1 | E0,2 | E0,3 | E0,4 | E0,5

YVYY Y YV *
|I Ll
1

1

A

|CNU2| |CNU3| | EL0 |<— | EL1 |<—

[0z

| ELS |<—

s f

H1 5

1

A

|CNU4| |CNU5| | E2,0 |<—| E2,1 |<—

| E22 |<—

| E2,5 |<—

=
111>

H 4 1

|

A

101

Fig. 3. A vector decoder for code C; when K = 2,1;(0 < j < 6) denotes the jth IMEM, E; ;(0 < i < 3,0 < j < 6) denotes the EMEM on the ith row and

on the jth column.

For 0 < j < n, make the following hard-decision: 1) zj(.k) =
0, if L;k) > 0;2) z](-k) =1,if Rj(»k) < 0. Form a new received
vector z(*) = (z(()k), zgk), . 27(1—)1) Go to Step 1).

The partially parallel architecture proposed by Chen and
Parhi in [9] is an elegant method to realize quasi-cyclic LDPC
codes. For (v, p)-regular QC-LDPC code, this approach uses
~ p-input CNUs (check node units), v p-input VNUSs (variable
node units), p intrinsic message memories (IMEM) with each
storing m intrinsic messages, and ~yp extrinsic message mem-
ories (EMEM) with each storing 7 extrinsic messages and
m hard decision bits. The partially parallel decoder for C; is
shown in Fig. 2.

Functional unit CNU;, 0 < ¢ < + performs the CN update
and tentative decoding [Step 1)-3) in NMSA] for the sth block
row, while functional unit VNU;, 0 < j < p performs the
VN update [Step 4) in NMSA]. I;(0 < j < p) denotes the
IMEM of the jth block column, which stores the received in-
trinsic message. E; ;(0 < i < v,0 < j < p) denotes the
EMEM which stores the messages passed between the ¢th CNs
and the jth VNs and the hard decision bits corresponded to the
jth VNs. The hard decision bit is computed by VNUs and ap-
pended at the head of the variable-to-check messages. There are
p IMEMs for a (v, p)-regular QC-LDPC codes. Every message
is stored in one memory word of the block RAM. Thus we de-
note the conventional partially parallel decoder architecture as
a scalar decoder to contrast it with the vector decoder proposed
in Section III. In [9], the authors propose a simple method to
take advantage the quasi-cyclic nature of the codes to improve
the decoding throughput by overlapping Step 1)-3) and Step 4)
in the NMSA (called overlapped message passing) as shown in
Fig. 6(c). This requires the computation of a critical parameter
called the waiting time (see [8] for a detailed explanation and
algorithm), which determines the exact time when the overlap-
ping message passing can begin. In the limit, overlapped mes-
sage passing can increase the throughput of the decoder over the
baseline approach by a factor of 2.

III. VECTOR DECODER ARCHITECTURE FOR QC-LDPC CODES

Vector decoder architecture overcomes the limitation of the
scalar decoder (described in the previous section) by packing
multiple messages in the same memory word. As noted before,
this is possible because, block RAMs can be configured into
different aspect rations. For the NMSA, the intrinsic and the
extrinsic messages are usually 6—8 bit wide, thus up to six 6-bit
messages can be packed in one memory word in the 512x36
block RAM configuration. We define the number of messages
packed into one memory word as K. The vector decoder for a
(v, p)-regular code requires Ky CNUs, Kp VNUs, and (v +
1) x p block RAMs for intrinsic and extrinsic memories. Fig. 3
shows a vector decoder for the code C; when K = 2.

Potentially, the throughput of a vector decoder can be K times
that of a scalar decoder, given that there are K times more func-
tional units operating simultaneously. However, without proper
data packing scheme, memory access conflicts will be caused
since multiple messages are accesses per cycle. Besides, effi-
cient message alignment units are required so that the additional
logic incurred would be reduced. The techniques to overcome
these challenges is described next.

A. Message Packing and Alignment

In a scalar decoder, one full block RAM memory word is
used to store a message. Messages are packed in column major
order, i.e., the message in the sth CPM column is packed in L[],
where L[0...m — 1] is a one-dimensional array that represents
the storage of the CPM in the block RAM. LJ[i] stores CN up-
date message during Step 3) of the execution and VN update
message during Step 4), i.e., the extrinsic messages are updated
in place. For example, in the scalar implementation of the par-
tially parallel decoder proposed in [9] (and shown in Fig. 2),
the CNU starts from the cth CPM row, i.e., in the order of
L{(c+A) mod m], L[(¢c+ A+1) mod m],...,Lim—1],...,
L{(¢ + A — 1) mod m]. The VNU starts from the vth CPM
column, i.e., in the order of L[v], L[(v+1) mod m], ..., L[m—

102 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 58, NO. 1, JANUARY 2011

A=6 N
0 |L4|L5|L6|L7
1 |L8|L9L10L11
] 2 L1ZL3L4Lo| 0 |Lo|L1|L2|L3
D 3 |L1|L2|L3 MEM. 1 |L4|L5
0 L14/L0|L1 L2
2 ([L6|/L7|L8|L9
1 |L3|L4|L5|L6
2 (1718 Lo IL10 oNu 3 L10L11]L12[L13
3 L2y | mem. 4 L14

() ©

Fig. 4. Tllustration of message packing for a CPM with m = 15 and A = 6 when vector size K = 4. (a) Example CPM (b) Packing scheme proposed in this

paper (c) Wang’s [12] Packing Scheme.

1], ..., L[(v—1) mod m]. In overlapped message passing, c and
v could be non zero, as the processing could start at any arbi-
trary message.

In a vector decoder, each block RAM location holds multiple
messages. Memory conflicts could arise if the CNU and VNU
try to access the same location simultaneously. The key chal-
lenges with vector decoding is to reduce the potential for such
conflicts and to ensure that the overhead of resolving these con-
flicts through alignment units does not increase the complexity
of the decoder and limit scalability and clock frequency. We ad-
dress this challenge with a combination of three techniques that
are described next. First, we use double buffering, i.e., the mes-
sages are replicated for CNU and VNU access, so that they are
stored in different ways to match the access pattern of the CNU
and VNU processing. Though it doubles the amount of memory
needed for the storage, it does not increase the number of block
RAMs necessary, because we use the same block RAM to store
both CNU and VNU memory. This works because typically the
CPM sizes are much smaller than the depth of the block RAMs
in an FPGA. Second, we develop a new packing strategy that not
only uses the block RAMs efficiently but also reduces the poten-
tial for conflicts. Third we propose a sequential alignment unit
and its implementation to demonstrate that the alignment task
can be achieved with relatively low complexity, which makes
the scheme scalable.

1) Proposed Packing Scheme: The CNU and VNU
memory can be modeled as two dimensional arrays, de-
noted by L. and L,. The variable-to-check messages are
stored in the CNU memory by the CNU access order, i.e.,
the message L[(¢ + A) mod m] is packed as L.[0][0]. The
check-to-variable messages are packed in the VNU memory
by the VNU access order, i.e., the message L[v] is packed as
L,[0][0]. In general, message L[k] is packed to the location
L[| ((k=c—A) mod m)/K |][((k—c—A) mod m) mod K]
in the CNU memory and to L[| ((k — v) mod m)/K |][((k —
v) mod m) mod K] in the VNU memory. We will illustrate
this with an example. Fig. 4(a) shows a circulant permutation
matrix with size m = 15 and offset A = 6. The starting row
for CNU processing, ¢ = 8 and the starting column for VNU
processing is v = 4. Fig. 4(b) shows how the messages L[0],
L[1],..., L[15] corresponding to the nonzero entries in the

CPM are stored in the block RAM. Note, that each message ap-
pears in two different locations, because of the double buffering
described above. Each block RAM is partitioned logically into
a VNU memory and CNU memory and the messages are stored
in different order to facilitate conflict free access by CN and
VN processing units. We compare our method with the scheme
presented in Wang [12], which is shown in Fig. 4(c). There
are two advantages of our scheme over the scheme proposed
in [12]. First, our scheme does not require any read alignment
units (due to double buffering), where as the packing shown
in Fig. 4(c) requires two read alignment units in addition to
two write alignment units (which we also require). Second, our
method works for any value of ¢ and v which is essential to
support overlapped message passing, whereas the method in
[12] works well for nonoverlapped message passing, i.e., ¢ and
v are implicity assumed to be 0. When ¢ and v are nonzero as in
this example, the packing scheme in [12] becomes inefficient.
For example, consider the updating of the messages in the
third word in the VNU memory, L[12], L[13], L[14], L[0]. In
Fig. 4(c), one can see that these messages are spread across
three different memory words, which would entail three reads
and a very complex alignment circuitry with the concomitant
increase in latency.

2) Sequential Write Alignment Unit: Given that a given
message L[k] is mapped to different locations in the CNU and
VNU memory, except when A = 0, the messages need to be
aligned before they are written to the memory. Given the double
buffered efficient packing scheme described above, the align-
ment task is greatly simplified. We need just the current word
and the previous word to reconstruct the input order for the
CN and VN processing units. Table I shows the state transition
table for the example shown in Fig. 4(b), which represents the
case when vector length K = 4. The alignment unit takes four
inputs 10, I1, 12, I3 and produces four outputs O1, 02, O3,
04 every cycle using the hardware circuitry shown in Fig. 5.
The messages are assumed to be quantized to ¢ bits.

The hardware requirements are relatively modest. Let s =
(v — ¢ — A) mod m for VNU alignment and s = (¢ + A —
v) mod m for CNU alignment. For vector length K and CPM
size m, 1) when s = 0, or when m mod K = 0, s mod K =0,
no alignment unit circuitry is needed; 2) when m mod K = 0,

CHEN et al.: MEMORY SYSTEM OPTIMIZATION FOR FPGA-BASED IMPLEMENTATION 103

TABLE 1
TRANSITION TABLE FOR THE ALIGNMENT UNIT IN FIG. 5
write addr. input @ cycle t — 1 input @ cycle ¢ output @ cycle ¢
10 I1 12 13 10 I1 12 13 00 Ol 02 03
- - - - - 4 L[5 16 L7 |- - - -
2 L4 L5 L6 L7 L8 L9 L10 LI11 || L7 L8 L9 L10
3 L8 L9 L10 L11 | L12 LI13 LI14 LO L1l L12 L13 LI14
0 L12 L13 L14 LO L1 L2 L3 - L14 1O L1 L2
1 L1 L2 L3 - L4 L5 L6 L7 L3 L4 L5 L6
10 11 12 13 addr. of the partially parallel decoder. Fig. 6(a) shows the timing di-
q q q q 2 agram of the baseline message passing algorithm and Fig. 6(c)
Y shows the benefits of overlapped message passing. Fig. 6(b)
D p| [>1 shows how vector processing (described in the previous section)
helps in improving the performance by reducing the CNU and
VNU processing time. Vector processing can be combined with
overlapped message passing to further improve the throughput
as shown by the timing diagram in Fig. 6(d). We call this VOMP
or vector overlapped message passing which is described next.
U U Let w denote the number of waiting clock cycles between
q q q q CNU update and VNU update of the same iteration. The optimal
value of w is computed as follows.
00 o1 02 03 Step 1): Letc = {cg,c1,...,cy—1} denote the starting CPM

Fig. 5. Hardware implementation of the sequential alignment unit for the ex-
ample in Fig. 4(b).

«—1st iter.——»<—2nd iter.——» ¢——n-th iter.——»

CNU CNU CNU
VNU VNU VNU
(a)
t«—1st iter.—»<-2nd iter. n-th iter.
CNU CNU ..| |CNU
VNU VNU VNU
(b)
re—T1st iter. w,
CNU | CNU | CNU
VNU | VNU VNU
< - r«—2nd iter.—» [«—n-th iter.—»
(©)
rlst iter.» AN
CNU|[CNU | [CNU
[VNU | VNU | [VNU
“« 2nd iter. n-th iter.»
W
(G}

Fig. 6. Timing diagrams of different scheduling algorithms. (a) Original mes-
sage passing. (b) Vector message passing. (c) Overlapped message passing. (d)
Vector overlapped message passing.

smod K # 0, s mod K g-bit registers are required; 3) when
m mod K # 0 (the worst case), our implementation requires
K + (smod K) — (m mod K) g-bit registers and K two to
one multiplexors and two comparators. The latency is one cycle
for any value of ¢ and v.

B. Vector Overlapped Message Passing

As described in Section II, overlapped message passing
(OMP) method was proposed by [9] to improve the throughput

rows for CNUs. Let v. = {vg,v1,...,v,_1} de-
note the starting CPM columns for VNUs. Let w
denote the waiting time between intraiteration CNU
and VNU computations. Apply the OMP method de-
scribed in [8] to get ¢, v, and w.

Compute the starting read and write word address
at the lIst iteration. The starting CNU or VNU
read address is 0. The starting write message for
CNU is L{(¢; + A) mod m], which is packed in
Ly[x(4, 7)][ye(4,)] in the VNU memory, where

o= |t |
ye(%,7) = ((¢i —vj + A) mod m) mod K.

Step 2):

Likewise, the starting write message for VNU is
L[v,], whichis packed in L[z (%, j)][y» (7, 7)] in the
CNU memory, where
. | ((vj = ¢ = A) mod m)
x”(?’:.]) - \‘ K ’
Yo (%,7) =((v; — ¢; — A) mod m) mod K.

Step 3): Compute the minimum waiting time for VOMP by

W= ogi<nv1,%)§j<p { [%1 — et 4); {%1 - x”(i’j)} +1.

Step 4): Compute the number of clock cycles for subiteration

time by
1D D)+ 9 =0

[%] + 1 otherwise.

m =

The starting read and write address for CNUs and VNUs in-
creases cyclically with the increment of 7 — 1 for every new iter-
ation for data dependency. In VOMP scheduling scheme, CNUs
and VNUs may read and write the extrinsic memory at the same

104

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 58, NO. 1, JANUARY 2011

TABLE II
IMPLEMENTATION RESULTS FOR C
K
Dai [8] 1 2 3 4
Slices 1616 (4%) | 1472 (4%) | 2792 (8%) | 5711 (16%) | 6102 (18%)
Slice Flip Flops | 1073 (2%) | 2178 (3%) | 4261 (6%) | 8496 (12%) | 9263 (13%)
4 input LUTs 2887 (3%) | 2449 (3%) | 4554 (6%) | 8565 (12%) | 9698 (14%)
block RAMs 36 (26%) 24 (17%) 24 (17%) 24 (17%) 24 (17%)
fox (MHz) 148.7 162 161.9 150.5 149.8
Niger at 4.5 dB 3 3 3 3 3
w 63 63 33 22 17
M 256 256 129 87 65
Ty (Mbps) 99.1 228.9 453 624.8 830.6
T's Speedup 1 2.3 4.6 6.3 8.4

time, thus memory modules with four ports are needed. We emu-
late quad-ported memory by clocking the block RAMs at twice
the clock frequency and time-multiplexing the read and write
ports. This is possible because the critical path in the vector de-
coder architecture, is in the check-node functional units, and is
more than twice the access time for the block RAMs.

Using the method described in [8], we derive a general for-
mula for computing the throughput of the vector decoder as fol-
lows:

nfoLk

: M
MA(MXNirer +W) if W< |5,
M
2

it W > |4

v { :
NJCLK
MA(WX(2Niter—1)+M)

where fcpk is the clock frequency, N, is the average iter-
ation number, W is the number of clock cycles for intraiter-
ation wait, and M is the number of clock cycles for loading
or updating messages. The denominator denotes the number of
clock cycles to decode a codeword, and contains two parts: over-
lapped load/store time M, and iteration time. Note that this for-
mula can predict the throughput for all the four cases shown in
Fig. 6. For example, for the baseline scalar decoder [Fig. 6(a)]
W = M = m, while for scalar decoder with OMP sched-
uling [Fig. 6(c)], W = w, M = m. For a basic vector decoder
[Fig. 6(b)] W = M = m and for vector decoder with OMP
scheduling [Fig. 6(d)], W = w, M = m.

C. Performance, Results and Discussion

First, we compare our implementation with the best known
partially parallel decoder architecture implementation [8]. We
use the same experimental conditions as in [8]—the same code
C; [shown in Fig. 1(a)], the same Xilinx Virtex 2 XC2V6000-5
FPGA with 8-bit quantization scheme and min-sum algorithm.
For CNU and VNU implementation, we use the method intro-
duced in [14]. Table II shows the results of the comparison with
various values of K. The proposed vector architecture with K =
4 results in 8.4X improvement in throughput (99.1 Mbps versus
830.6 Mbps). Furthermore, our implementation uses only 24
block RAMs instead of 36. This is because of our optimization
of embedding hard decision bit in the extrinsic messages. Note
that, when K = 1 which is same as scalar decoder, our imple-
mentation still outperforms the implementation in [8] because
of the double buffering and effective emulation of quad-ported
memory, which the implementation in [8] method does not em-

ploy.

Next we evaluate the performance of our implementation
on two large QC-LDPC codes. The first code is a (8176,7156)
(4,32)-regular QC-LDPC code [4], [5] which has been adopted
for NASA’s LANDSAT (near-earth high-speed satellite com-
munications) and other missions including TDRSS high-rate
1.0 and 1.5 Gbps return link service. The other code is a
(3969,3213) irregular code [15].

The (8176,7156) QC-LDPC code is constructed based on the
3-dimensional Euclidean geometry EG(3,2)3 over the finite
field GF(2)%. Based on the lines of EG(3,2)? not passing
through the origin, nine circulants of size 511 x 511 over GF(2)
can be constructed, each circulant having both column and row
weights 8. To construct the (8176,7156) code, 8 circulants are
taken and arranged in a row G = [Gy, Gy,...,G7]. Then,
each circulant G;, 0 < ¢ < 8, is decomposed into a 2 x 2
array M; of 511 x 511 constituent circulants by column and
row decompositions. The decomposition of each circulant of
G; results in a 2 X 16 array of constituent circulants of size
511 x 511. This array is a 2044 x 8176 matrix H over GF(2)
with column and row weights 4 and 32, respectively. The null
space of H gives the (8176,7156) QC-LDPC code with rate
0.8752. The bit-error performance down to 10~% simulated by
computer is shown in Fig. 7.

A VLSI decoder for this code has been built by NASA. Using
this decoder, bit-error rate (BER) down to 10~ '* has been com-
puted, which is shown by the curve labeled “NASA” in Fig. 7.
Above BER of 1078, the performance computed with the VLSI
decoder agrees with the one simulated by computer [16]. From
Fig. 7, we also see that there is no error floor down to the BER of
10, An FPGA decoder for this code is also reported in [12],
which packs two messages per memory word. The performance
of the code simulated by the FPGA decoder in [12] is 0.1 dB
worse than the performance shown in Fig. 7 and furthermore, it
has an error-floor at the BER of 10710,

FPGA implementation of (8176, 7156) code on a Xilinx
Virtex 4 XC4VLX-160 FPGA is shown in Table III. We use
NMSA (a = 0.75) and 6-bit uniform quantization scheme to
design the decoder for different values of the vectorization, i.e.,
K = 1,2,3,4. For comparison we also report the results from
[12] on the same code, though it uses fixed-point SPA algorithm
as opposed to the min-sum algorithm. Our implementation uses
fewer resources and produces a higher decoding throughput.
Also, we can see that the throughput does not decrease dra-
matically, so that the alignment and vector factor up to 4 does
not reduce routing efficiency. The logical power increase in a

CHEN et al.: MEMORY SYSTEM OPTIMIZATION FOR FPGA-BASED IMPLEMENTATION 105

1E-1 " o : —a— (8176,7156), BER, FPGA
g b} -=m-(8176,7156), FER, FPGA
B2 —»— (8176,7156), BER, NASA
s : e v —A— (8176,7156), BER, SPA
-=A-(8176,7156), FER, SPA
1E-a —e—(8176,7156), BER, Wang
.=0-(8176,7156), FER, Wang
1E-5
1E-6
©oE-7
®
B 1E-8
1E-9
1E-10
1E-11
1E-12
1E-13
1E-15
25 3 3.5 4 45 5 55
Eb/No(dB)

Fig. 7. Performance of the (8176,7156) Code. The curve labeled FPGA denotes the performance measured from our FPGA implementation. The curve labeled
NASA is the performance reported from the VLSI chip designed by NASA and the curve labeled Wang is from [12].

TABLE III
FPGA IMPLEMENTATION RESULTS FOR (8176,7156) CODE

K
Wang [12] (K=2) 1 2 3 4
Slices 23052 4021 (4%) | 9085 (13%) | 14769 (21%) | 17857 (26%)
Slice Flip Flops 26926 5907 3%) | 13911 (10%) | 21786 (16%) | 27210 (20%)
4 input LUTs 28229 7385 (4%) | 13720 (10%) | 21943 (16%) | 27046 (20%)
block RAMs 128 80 (28%) 80 (28%) 80 (28%) 80 (28%)
fax (MHz) 193.4 228.7 227.6 214.8 212.2
Niter 15 15 15 15 15
M 256 511 256 171 128
w 256 295 149 100 75
Ty (Mbps) 199.2 195.2 385 541.7 713.8
Ty Speedup 1 1 1.9 2.7 3.6
Logic Power (mW) 199 402 601 736
BRAM Power (mW) 370 381 371 367
Total Power (mW) 2003 2436 2794 3033
Energy per bit (nJ) 10.26 6.33 5.1 4.25
linearly way. The BRAM width influence the power a little bit, TABLE 1V

and looks similar. COLUMN AND WEIGHT DISTRIBUTIONS OF THE (3969,3213) CODE

The (3969,3213) irregular QC-LDPC code was constructed

Col CPM Distributi Row CPM Distributi
using method 1 in [15] as follows. First, a 63 x 63 array B of Colur(:lr]:ng;M N;St:f zzﬁll;ns RO;WCPM ;IS:]OL:;Z:VS
CPMs of size 63 x 63 is constructed based on the finite field 3 . T n : N
GF(2)8. Take a 12 x 63 subarray B(12,63) of CPMs from B. A ’s o)
Then replace some of the CPMs in B(12,63) with zero ma-

. 7 8 22 2
trices of size 63 x 63. This replacement is called masking. The 8 93 7
masking is designed based on the degree distributions of VNs 9

and CNs derived using density evolution. After masking, an
array H of CPMs and zero matrices is obtained. The distribu-
tions of CPMs in columns and rows of H are given in Table IV. The null space of H gives the (3969,3213) irregular QC-LDPC
Hisa756 x 3969 matrix with varying column and row weights. code with rate 0.81.

106

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 58, NO. 1, JANUARY 2011

TABLE V

VECTOR DECODER IMPLEMENTATION FOR IRREGULAR (3969,3213) CODE
K 1 2 3 4
Slices 14636 (16%) | 36708 (41%) | 43514 (48%) | 62362 (70%)
Flip Flops 21509 (12%) | 56507 (31%) | 66964 (37%) | 98003 (55%)
4 input LUTs 25836 (14%) | 55968 (31%) | 68485 (38%) | 111035 (62%)
block RAMs 330 (98%) 330 (98%) 330 (98%) 330 (98%)
feLk (MHz) 226.4 204 199.7 195.7
Niter 15 15 15 15
M 63 33 22 17
w 63 33 22 17
Ty (Mbps) 460.1 791 1162.2 1474
Ty Speedup 1 1.7 2.5 32
Logic Power (mW) 698 1466 1733 2649
BRAM Power (mW) 1510 1409 1424 1395
Total Power (mW) 4336 5772 6166 7632
Energy per bit (nJ) 9.42 7.3 5.3 5.18

We use the NMSA (o = 0.75) and 6-bit uniform quanti-
zation scheme to implement the decoder when K = 1,2, 3,4.
The implementation results of the (3369,3213) code on a Xilinx
Virtex 4 XC4VLX-200 FPGA is listed in Table V. The results
indicate that the decoding performance increases almost linearly
with vector length (K). The logic resources increase propor-
tionally to support the additional functional units and alignment
logic. However, with each successive generation of FPGAs, the
number of resources in terms of slices, flip-flops, and LUTs is
increased significantly, so the proposed technique can be used
to scale the decoding performance as bigger FPGAs become
available.

D. Scalability and Power Analysis of Vector Decoders

Table I1I and Table V show the impact of increasing the vector
length on the power, performance, and resource requirements.
It is clear that the proposed implementation is scalable to K =
4—the clock frequency drops slightly but the overall throughput
increase almost linearly. As expected the number of resources in
terms of flip-flops and LUTs increases because of the alignment
units but the overall utilization of the slices, flip-flops and LUTs
is less than 70%, which is very reasonable. For the (8176,7156)
code the resource utilization is under 26%. We believe that scal-
ability beyond vector length of 4 is not necessary for this par-
ticular application because of the following reasons. First, the
typical word length of the messages is around 8 bits, so it is
not possible to pack more than 4 messages in each block RAM
word which is around 36 bits. Second, for complex codes, the
limitation is the number of block RAMs available in a given
FPGA—as high-end FPGAs typically have a very large number
of flip-flops and LUTs. So, one is likely to run out block RAMs
before flip-flops or LUTs, as results from the (3969,3213) seem
to indicate.

The power analysis of the vector decoder shows that the
vector decoders improve the energy efficiency of LDPC de-
coding due to enhanced parallelism and pipelining. For the
(8176,7156) code the energy efficiency increases from 10.26
nJ/bit to 4.25 nJ/bit as we increasing the vector length from 1
to 4 and for the more complex code, the energy efficiency in-
creases from 9.42 nJ/bit to 5.18 nJ/bit. The reason being vector
decoding makes better use of the FPGA interconnect and block
RAM resources through enhanced parallelism and pipelining.
Whether you store one message per word or 4 messages per

word, the power consumption due to block RAM access is
about the same, so vectorization can increase the throughput
without increasing the power consumption.

IV. FOLDING: A TECHNIQUE TO VIRTUALIZE BLOCK RAMS
FOR QC-LDPC DECODER IMPLEMENTATION

A. Motivation

Many practical codes are large. For example, the H matrix of
the (64800,32400) LDPC code for the DVB-S2 standard can be
expressed as quasi-cyclic code with 630 circulants, where each
circulant is 360 x 360 matrix. Even the largest FPGA commer-
cially available (a Virtex-5) has only around hundreds of block
RAMs, so a partially parallel implementation show in Fig. 2 that
maps each circulant to a separate block RAM will not work.
We need to map messages corresponding to multiple circulants
to the same physical block RAM. Irregular codes make this
problem a little bit more challenging, as instead of circulant per-
mutation matrices we have zero matrices in some places.

We propose a simple (greedy) heuristic to fold multiple cir-
culant permutation matrices to the same block RAM. The goal
of our heuristic is to reduce the hardware complexity, which in-
cludes resources required to route the data from the memory
to the CNUs and VNUs and the complexity of the VNUs and
CNUs themselves, especially in the case of an irregular code.
For a irregular code all the VNUs and CNU will not have the
same number of input ports, so mapping CPMs with the same
number of inputs to the same block RAM will be advantageous.
For simplicity, we make the following additional assumptions.
Each message will occupy a single memory word, i.e., we will
not attempt to vectorize the decoder in the current exposition;
vectorization is orthogonal to folding, so a folded architecture
can always be vectorized by using the techniques proposed in
Section III. We also assume that CNU and VNU processing is
not overlapped. Given that multiple CPMs will be mapped to
the same block RAM, and the number of ports to the memory
are fixed, VNU and CNU processing will require multiple clock
cycles.

B. Folding Transformation for Decoding of QC-LDPC Codes

Let F' be an integer that denotes the folding factor, i.e., the
number of CPMs mapped to a single block RAM. For example,
F = 2, means two CPMs will be mapped to the same block

CHEN et al.: MEMORY SYSTEM OPTIMIZATION FOR FPGA-BASED IMPLEMENTATION

107

v [3 [3 ¥ [3
10 | |E0,0|(|E3,0| (ES,0((E0,2| (E2,2| | 12
11 | |[E1,1|(|ES5,5| |[E3,1| [EB,3| (E4,3| | I3
IS | [E2,5|||E0,5| |[E4,5| ([El.4| [E04| | 14
o
| |
|
SRR L 7t
;:0 ;:1 I;:Z n3];:0 Il:l
> Init. VNUO VNU1 | Init. [«
Qut0 OQutl Out2 Qut3 Qut0 Outl
' n——--- 1 L
' [D] [D] [D |
| |
|
: ﬁ[UX :
I ey) D |__ LR

Fig. 8. Variable node reorder unit (VRU) for the (6, 6)-irregular QC-LDPC code decoder: routes messages from/to the EMEMs to/from the VNUs.

RAM. Let B be the number of block RAMs available in the
targeted FPGA. For example, in a Virtex-4 LX160 that is used
in this paper, B is 288. Let D be the depth of the block RAM
such that the word size is sufficient to fit one message.

Consider a (v, p) H-matrix which has « block rows and p
block columns, for total of v x p CPMs where each CPM is a
m X m circulant permutation matrix. Let u be the number of
nonzero CPMs in H. For a regular code u will be v X p, while
in a irregular code u will be less than v X p because some CPMs
are replaced by all-zero matrices.

Step 1): Find the smallest F' and D such that [(p/F)] +
[(u/F)] < Band F x m < D. For the scalar de-
coder, p and u block RAMs are needed for IMEMSs
and EMEMs respectively. Thus, the memory usage
are reduced to almost 1/F.

The partially parallel architecture shown Fig. 2 is
modified as follows. Use [~/F] CNUs and [p/F’]
VNUs instead of p CNUs and v VNUs.

Partition the p block columns into [p/F'| groups
such that number of total number of inputs ports of
the VNUs is minimized. We use a simple heuristic
to do this. Sort the block columns of H matrix in
descending order of the block column weight. Group
each successive F' block columns together starting
with the smallest.

Partition the block rows into [/ F'] sets in the same
way as Step 3).

Step 2):

Step 3):

Step 4):

C. Example: Folding on a Irregular QC-LDPC Code

Consider the H matrix of an
QC-LDPC code shown below. The H matrix of the
(6,6)-irregular QC-LDPC code has six block columns
{Cy,C1,C,,C3,Cy,C5}, whose weights are 4, 2, 2, 3, 2,
and 2, respectively. We illustrate the implementation of the

arbitrary irregular

code on an FPGA with only 7 block RAMs using the folding
transformation described above

Ago O Agp O Aps Ays
(0) A O (0) A, (@)
H_| O 0 Ay O O Ay
| Asp A3; O A3z O o
O O O A, O A
Asy O O O O Ass

Using Step 1), the optimum folding factor F' is found to 3.
Following Step 3), the block columns are sorted in descending
order, {C;, Cy, C1, Cy, C3, Cy} and partitioned into two sets:
{C1,C3,Cp} and {Cy, C3,C,4}. We need a 4-input VNU to
process the first set and a 2-input VNU to process the second
set, thus a total number of six ports are required for incoming
extrinsic messages. On the other hand, if we had not sorted the
columns but just grouped the columns in the order in which they
appear in the H matrix, i.e., choose {Cy, C1,C2} as one set
and {C3, Cy, C5} as another, we would need a VNU with 4
inputs for the first set and a VNU with 3 inputs for the second
set, and thus a total number of seven ports are used. Similarly,
the block rows are also partitioned into two sets {Ro, R4, R5}
and {Ro, R1,R3} along the lines of Step 4). Without folding,
extrinsic messages of block columns C;, i € {0,1,2,3,4,5}
are updated in one clock cycle; with folding, extrinsic messages
are updated in F' = 3 clock cycles as follows—messages of Cy
and C, are updated in the first cycle, messages of C; and Cj
are updated in the next cycle and messages of C; and Cy are
updated in the last cycle.

Fig. 8 shows the routing of the memory modules to/from the
VNUs of the folded partially parallel decoder architecture for
the example irregular QC-LDPC code. The majority of the in-
puts of the VNUs are directly connected to the outputs of the

108

¥ [V I’ [[V
E0,0(|EB,0| (ES0| [|E0,2| [ER2,2
El,1| |E5,5| |E3,1| ||E3,3| |E4,3
E E

Fig. 9. Check node reorder unit (CRU) for the (6,6)-irregular QC-LDPC code
decoder: routes messages from the EMEMs to the CNUs.

block RAMs, while others are generated via a simple reordering
network. The logical memory I; and E; ; are packed in nonover-
lapped segments of physical memory based on the partition re-
sults in Step 3) of the folding transformation. In this way, the
probability that two logical memory of the same columns will
reside in the same physical memory will be lowered. For ex-
ample, the messages of {C;, C3, C, } are mapped to three phys-
ical block RAMs. Also, we make sure that the messages of the
same rows do not map to the same block RAMs. In this way, we
can reduce the latency of the processing VNU reorder units and
CNU reorder units. As the memory is packed for the preference
of VNU update, we need a reorder unit for CNU to read (labeled
CRU-R in Fig. 9) that routes the messages from the EMEMs to
the CNUs, and also routes the messages from the CNUs back
(labeled CRU-W) to the EMEMSs, as shown in Fig. 9. Also, there
is a reorder unit (labeled VRU in Fig. 8) that routes the residue
messages between EMEMs and VNUs.

It should be noted that due to the differences in the block row
weight or block column weight, in certain clock cycles, some
inputs might not be useful. For example, for VNU update, C4
and Cj share the same 4-input VNU. Cy4 has a weight of 2.
Thus, we should set the corresponding input to 0 since it does
not influence the result. Similarly, for CNU update, R and R
share the same 4-input CNU, so with min-sum algorithm the
unused inputs are set to the maximum allowable positive value
and when sum-product algorithm is used the unused inputs are
set to 0. This ensures that the computation does not change when
a VNU or CNU with a larger number of inputs are used.

TABLE VI

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 58, NO. 1, JANUARY 2011

IMPLEMENTATION RESULTS FOR FOLDED DECODER FOR (8176,7156) CODE,
NON-OMP SCHEDULING IS USED

| k=1 | F=2 | F=3 | F=4
Slices 3347 (4%) | 2938 (4%) | 2196 (3%) | 1579 (2%)
Flip Flops 4563 3%) | 3691 %) | 2778 2%) | 1938 (1%)
4-input LUTs | 6041 (4%) | 5421 (4%) | 4065 3%) | 2908 (2%)
block RAMs | 80 (24%) | 40 (12%) | 30 (9%) 20 (6%)
fox (MHz) 220.5 200.7 200.5 196.2
Niger 15 15 15 15
M 511 1022 1533 2044
w 511 1022 1533 2044
Ts (Mbps) 113.8 51.8 345 25.3

TABLE VII

IMPLEMENTATION RESULTS FOR FOLDED DECODER FOR (3969,3213) CODE
K = 1 CASE IS ON A XILINX XC4VLX-200 FPGA

| K=1 F=2 | F=3 | F=4
Slices 14636 (16%) | 12604 (18%) | 9830 (14%) | 6679 (1%)
Flip Flops | 21509 (12%) | 18392 (13%) | 14016 (10%) | 10029 (5%)
4-input LUTs | 25836 (14%) | 18208 (13%) | 13147 (9%) | 9303 (6%)
block RAMs | 330 (98%) | 166 (49%) | 110 (33%) | 83 (25%)
foik (MHz) 2264 203.8 200.5 200.4
Nier 15 15 15 15
M 63 126 189 252
w 63 126 189 252
T (Mbps) 460 207 135.8 101.8

D. Results and Discussion

In this section we will present the results for the folded
FPGA implementation for the same two codes discussed in
Section III. We use NMSA with @ = 0.75 and 6-bit uniform
quantization scheme and Xilinx Virtex 4 XC4VLX-160 FPGA.
Table VI shows the results for the (8176,7156) code while
Table VII shows the results for the (3969,3213) code. To
show the impact of folding we present the results for different
folding factors, i.e., F' = 2,3,4. We also show results for
K = 1 which is our baseline partially parallel decoder with
degree of vectorization equal to 1 (a scalar decoder). To make
a fair comparison, nonoverlapped message passing is used for
K = 1. The key point to note is that even complex codes
such as the (8176,7156) code can be realized with as few as
20 block RAMs (with F' = 4), of course, with a significantly
lower performance because the memory is effectively shared
by different functional units. It should be noted that the OMP
scheduling is not applied to the folded decoder.

Fig. 10 shows how folding can be combined with vectoriza-
tion described in the previous section. Both folding and vector-
ization exploit the unused depth of the block RAMs—given that
most CPMs are much smaller than the number of locations in a
block RAM. Vectorization uses the block RAM depth for double
buffering as explained in the previous section, while folding
uses the block RAM depth to map multiple CPMs into the same
block RAM. So, the folding factor F’ will be constrained by the
available depth of the block RAM. For example, when vector
decoding and folded decoding are applied to the (8176,7156)
code, F' can only be 2, since 2 x 511 x 2 messages will be used.

CHEN et al.: MEMORY SYSTEM OPTIMIZATION FOR FPGA-BASED IMPLEMENTATION

109

CNU Align. (0
> oNU Align. © [T NG
CRU-W |— U > DIA Mem. (1) | DOA —» CRU-R
L »[CNU Align. (1) > } CNU
Mem. (1) E——
VNU S
—>{ vNU align. @ 1\ Mem. (0)
VRU-W |— U |- DIB CNU DOB —» VRU-R
Mem. (0
—>| VNU Align. (1) I—»} em. (0)
Block RAM
Fig. 10. Vectorized folded decoder.
PC
| Main Bus (MB) Software
¥ F ‘
v v
AWGN
Generator IMEM
l Address A
FIFO |}—> | CNU | | VNU | Generator | [| D?ta N PEN PCI/MB N PCI
T Sink Bridge Interface
| EMEM | Controller |
Decoder
FPGA
—— DN8000K10PSX

Fig. 11. FPGA-based simulation platform for QC-LDPC codes decoder.

V. QCSYN AND EMULATION PLATFORM

The goal of this project is to create an FPGA-based emu-
lation platform to accelerate the design space exploration of
quasi-cyclic LDPC codes. The design environment consists of
the DN80OOOK10PSX board from the Dini Group and an archi-
tectural synthesis tool called QCSyn. The implementation re-
sults reported in this paper were generated using the design en-
vironment described here.

QCSyn is a tool written in Python that takes the description
of the QC-LDPC code and the target FPGA and generates the
Verilog code a folded or vector architecture. The Verilog code
can be simulated with Modelsim and synthesized using Xilinx
synthesis tools. The goal of QCSyn is to reduce the time required
to generate a customized folded or vectorized architecture for a
given LDPC code from months to days. The first step involves
reading the FPGA block RAM resource specification file (which
describes the number of block RAMs (block RAM budget) and
the aspect ratios) and the QC-LDPC code structure along with
the design parameters listed such as data quantization format
for message representation, number of pipeline stages for CNU,
number of pipeline stages for VNU, CPM offsets, CPM size m,
distribution of CN degree and distribution of VN degree. One of
the major parameters for choosing architectures is the number of
block RAMs. When it is smaller than the requirement of scalar
decoder, fold decoder is used.

Next, depending on whether the designer wants a vector de-
coder or a folded decoder, the architecture specific parameters
are determined. This includes resource allocation (number and
types of CNUs and VNUs) and scheduling. This is followed by

generation of all the logic required for alignment, message re-
ordering, and interconnection. The last steps involves instanti-
ating the CNU and VNU components from the prebuilt library
and integration with the testbench. The generated Verilog can be
automatically verified with the bit-accurate C model and synthe-
sized by the Xilinx tools. The tasks that have to be performed
manually include generating the CNU or VNU of a specific
number of inputs (if it is not already in the library) and some
logic to interface to the FIFO and noise generator on the FPGA
board.

Our FPGA-based simulation platform shown in Fig. 11 is
based on the DN80OOK10PSX board from Dini Group, which
has two Xilinx Virtex-4 LX160-10’s and is hosted in a 64-bit
PCI slot (66MHz). The Main Bus, PCI/Main Bus Bridge, PCI
Interface are provided by the vendor, the rest of the modules
were developed by us. The main components include the
AWGN generator, based on the Wallace method [17] that
generates the erroneous all-zero codeword for the decoder, a
FIFO to synchronize data across different clock boundaries, the
data sink which gathers the decoder statistics such as iteration
count, status of the codeword, etc., and the PC software that
initializes the AWGN generator and interfaces with the user.

VI. RELATED WORK

Fully parallel decoder architectures such as [18] that employ
a separate processing unit for each node of the Tanner graph
can exhibit the highest performance but are impractical for an
FPGA-based implementation because FPGAs have limited re-
sources. Thus, partially parallel decoders are more preferable

110 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 58, NO. 1, JANUARY 2011

[19]-[23]. The details of a partially parallel decoder and its op-
timization using overlapped message passing were described in
Section II illustrated in Figs. 2 and 6. In [12], Wang and Cui
propose an enhanced partially parallel decoder architecture for
QC-LDPC codes, which is somewhat similar to the vector de-
coding architecture described in Section III. However, there are
some key differences. First, the memory packing method de-
scribed in [12] is not amenable to overlapped message passing
and the data alignment scheme is inefficient. As a result, the de-
coding throughput is significantly lower than what is achieved
by our approach, as shown in Fig. 3. With K = 4 we outperform
them by a factor of 3.6. Furthermore, the bit error performance
on the (8176,7156) code reported in the paper has some dis-
crepancy from NASA and our implementation, as shown by the
error-floor in Fig. 7. Preliminary results from the vector pro-
cessing aspects of this work were reported in [24]. However,
[24] does not present bit-error performance curves and does
not show how the proposed vector implementation compares
in terms of resource utilization and decoding throughput with
other architectures that use message packing. Furthermore, [24]
does not address the folding transformation to take advantage of
configurable depth of the block RAMs and the QCSyn tool that
facilitates design space exploration of FPGA implementation of
decoders for quasi-cyclic LDPC codes.

In [25], Liu proposes a register-based decoder for structured
LDPC codes which is composed of circulants (not necessarily
circulant permutation matrices). For an LDPC code whose
parity check matrix is J X n, the variable-to-check messages
are grouped by equal size of p. For the (v, p)-regular code,
the decoder has J p/p-input CNUs and n/p y-input VNUs.
The decoder breaks the sequential tie between CNU update
and VNU update. The two half-iteration can be overlapped
with the waiting clock cycle of 1. The decoder is a tradeoff
between memory-shared partially parallel decoder and fully
parallel decoder. The proposed ASIC implementation of a
(2048,1723) (6,32)-regular structured LDPC code (10GBaseT
ethernet standard) achieved a maximum decoding throughput
of 5.3 Gb/s at 16 iterations.

The idea of mapping messages from multiple CPMs to the the
same physical memory has been explored by some researchers
including [6], [13], [26]-[28]. The common theme underlying
these approaches is to pack messages of the same CPM into
one long word (realized by a concatenation of several block
RAMs) or several consecutive (say 4) memory words and use
a long barrel shifter to reorder the message so that they can be
aligned to be processed. Typically, one-input one-output pro-
cessing units are used to process the messages serially. The
barrel shifter [29] is quite expensive and researchers [29], [30]
have explored efficient implementations of the barrel shifter
using Benes network structure. By mapping messages in this
way, it is very efficient to implement highly flexible decoder for
multiple standards [31], [32].

VII. CONCLUSIONS AND FUTURE WORK

We described two specific optimizations called vectorization
and folding to take advantage of the configurable data-width
and depth of embedded memory in an FPGA to improve

the throughput of a decoder for quasi-cyclic LDPC codes. We
demonstrate a decoding throughput of 1.162 gigabits per second
for the (3969,3213) code on a Xilinx Virtex4 XC4VLX-200
FPGA and 713.8 Mbps for the (8176,7156) code on a Xilinx
Virtex4 XC4VLX-160 FPGA using the vectorization tech-
niques, which is significantly better than the best known FPGA
implementation for the same code in research literature [12].
With folding we showed that quasi-cyclic LDPC codes with
a very large number of circulants can be implemented on
FPGAs with a small number of embedded memory blocks.
This is useful for developing decoders for the codes used in
DVB-S2 for example. We also described a synthesis tool called
QCSyn that takes the H matrix of a quasi-cyclic LDPC code
and the resource characteristics of an FPGA and automatically
synthesizes a folded or vector architecture that maximizes
the decoding throughput for the code on the given FPGA by
selecting the appropriate degree folding and/or vectorization.
We plan to extend the methods described in this paper and
the QCSyn tool to develop an universal decoder architecture
for quasi-cyclic LDPC codes, basically, a single decoder that
works for a family of quasi-cyclic codes.

REFERENCES

[1] R. Gallager, “Low-density parity-check codes,” IEEE Trans. Inf.
Theory, vol. IT-8, no. 1, pp. 21-28, Jan. 1962.

[2] D. MacKay, “Good error-correcting codes based on very sparse ma-
trices,” IEEE Trans. Inf. Theory, vol. 45, no. 2, pp. 399—431, Mar. 1999.

[3] M. Fossorier, M. Mihaljevic, and H. Imai, “Reduced complexity itera-
tive decoding of low-density parity check codes based on belief propa-
gation,” IEEE Trans. Commun., vol. 47, no. 5, pp. 673—680, May 1999.

[4] L. Chen, J. Xu, I. Djurdjevic, and S. Lin, “Near-Shannon-limit quasi-
cyclic low-density parity-check codes,” IEEE Trans. Commun., vol. 52,
no. 7, pp. 1038-1042, Jul. 2004.

[5] Z. Li, L. Chen, L. Zeng, S. Lin, and W. Fong, “Efficient encoding of
quasi-cyclic low-density parity-check codes,” IEEE Trans. Commun.,
vol. 53, no. 11, p. 1973, Nov. 2005.

[6] Z.Zhang, L. Dolecek, B. Nikolic, V. Anantharam, and M. Wainwright,
“Investigation of error floors of structured low-density parity-check
codes by hardware emulation,” in Proc. IEEE Global Telecommun.
Conf., Dec. 2006, pp. 1-6.

[7] E. Yeo, P. Pakzad, B. Nikolic, and V. Anantharam, “High throughput
low-density parity-check decoder architectures,” in Proc. IEEE Global
Telecommun. Conf., 2001, vol. 5, pp. 3019-3024.

[8] Y. Dai, Z. Yan, and N. Chen, “Optimal overlapped message passing
decoding of quasi-cyclic LDPC codes,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 16, no. 5, pp. 565-578, May 2008.

[9] Y. Chen and K. Parhi, “Overlapped message passing for quasi-cyclic
low-density parity check codes,” IEEE Trans. Circuits Syst. I, Reg. Pa-
pers, vol. 51, no. 6, pp. 1106-1113, Jun. 2004.

[10] T. Zhang and K. Parhi, “A 54 Mbps (3,6)-regular FPGA LDPC de-
coder,” in Proc. IEEE Workshop Signal Process. Syst., Oct. 2002, pp.
127-132.

[11] T.Zhang, “Efficient VLSI Architectures for Error-Correcting Coding,”
Ph.D., Univ. Minnesota, Minneapolis, 2002.

[12] Z. Wang and Z. Cui, “Low-complexity high-speed decoder design
for quasi-cyclic LDPC codes,” IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 15, no. 1, pp. 104114, Jan. 2007.

[13] M. Gomes, G. Falcao, V. Silva, V. Ferreira, A. Sengo, and M. Falcao,
“Flexible parallel architecture for DVB-S2 LDPC decoders,” in Proc.
IEEE Global Telecommun. Conf., Nov. 2007, pp. 3265-3269.

[14] C. Wey, M. Shieh, and S. Lin, “Algorithms of finding the first two min-
imum values and their hardware implementation,” IEEE Trans. Circuits
Syst. I, Reg. Papers, vol. 55, no. 11, pp. 3430-3437, Dec. 2008.

[15] L.Lan, L. Zeng, Y. Tai, L. Chen, S. Lin, and K. Abdel-Ghaffar, “Con-
struction of quasi-cyclic LDPC codes for AWGN and binary erasure
channels: A finite field approach,” IEEE Trans. Inf. Theory, vol. 53,
no. 7, pp. 2429-2458, Jul. 2007.

[16] W. Ryan and S. Lin, Channel Codes: Classical and Modern.
bridge, U.K.: Cambridge Univ. Press, 2009.

Cam-

CHEN et al.: MEMORY SYSTEM OPTIMIZATION FOR FPGA-BASED IMPLEMENTATION 111

[17] D.-U. Lee, W. Luk, J. Villasenor, G. Zhang, and P. Leong, “A hardware
Gaussian noise generator using the Wallace method,” IEEE Trans. Very
Large Scale Integr. (VLSI) Syst., vol. 13, no. 8, pp. 911-920, Aug. 2005.

[18] A. Blanksby and C. Howland, “A 690-mW 1-Gb/s 1024-b, rate-1/2
low-density parity-check code decoder,” IEEE J. Solid-State Circuits,
vol. 37, no. 3, pp. 404—412, Mar. 2002.

[19] S.-H. Kang and L.-C. Park, “Loosely coupled memory-based decoding
architecture for low density parity check codes,” IEEE Trans. Circuits
Syst. I, Reg. Papers, vol. 53, no. 5, pp. 1045-1056, May 2006.

[20] L. Yang, H. Liu, and C.-J. Shi, “Code construction and FPGA imple-
mentation of a low-error-floor multi-rate low-density parity-check code
decoder,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 53, no. 4, pp.
892-904, Apr. 2006.

[21] G. Masera, F. Quaglio, and F. Vacca, “Implementation of a flexible
LDPC decoder,” IEEE Trans. Circuits Syst. 1I, Exp. Briefs, vol. 54, no.
6, pp. 542-546, Jun. 2007.

[22] T. Zhang and K. Parhi, “Joint (3,k)-Regular LDPC code and de-
coder/encoder design,” IEEE Trans. Signal Process., vol. 52, no. 4,
pp. 1065-1079, Apr. 2004.

[23] H. Zhong and T. Zhang, “Block-LDPC: A practical LDPC coding
system design approach,” IEEE Trans. Circuits Syst. I, Reg. Papers,
vol. 52, no. 4, pp. 766775, Apr. 2005.

[24] X. Chen, J. Kang, S. Lin, and V. Akella, “Accelerating FPGA-based

emulation of quasi-cyclic LDPC codes with vector processing,” pre-

sented at the Des., Autom. Test Eur., Nice, France, Apr. 2009.

L. Liu and C.-J. Shi, “Sliced message passing: High throughput over-

lapped decoding of high-rate low-density parity-check codes,” IEEE

Trans. Circuits Syst. I, Reg. Papers, vol. 55, no. 11, pp. 3697-3710,

Dec. 2008.

[26] F.Kienle, T.Brack, and N. Wehn, “A synthesizable IP core for DVB-S2
LDPC code decoding,” in Design, Automation and Test in Europe, Mar.
2005, vol. 3, pp. 100-105.

[27] J. Dielissen, A. Hekstra, and V. Berg, “Low cost LDPC decoder for
DVB-S2,” in Proc. Des., Autom. Test Eur., Mar. 2006, vol. 2, pp. 1-6.

[28] T. Brack, M. Alles, T. Lehnigk-Emden, F. Kienle, N. Wehn, N. L'In-
salata, F. Rossi, M. Rovini, and L. Fanucci, “Low complexity LDPC
code decoders for next generation standards,” in Proc. Des., Autom.
Test Eur., Apr. 2007, pp. 1-6.

[29] J.Lin,Z. Wang, L. Li, J. Sha, and M. Gao, “Efficient shuffle network ar-
chitecture and application for WiMAX LDPC decoders,” IEEE Trans.
Circuits Syst. II, Exp. Briefs, vol. 56, no. 3, pp. 215-219, Mar. 2009.

[30] Z. Wang and Z. Cui, “A memory efficient partially parallel decoder
architecture for quasi-cyclic LDPC codes,” IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 15, no. 4, pp. 483-488, Apr. 2007.

[31] D. Bao, B. Xiang, R. Shen, A. Pan, Y. Chen, and X. Zeng, “Pro-
grammable architecture for flexi-mode QC-LDPC decoder supporting
wireless LAN/MAN applications and beyond,” IEEE Trans. Circuits
Syst. I, Reg. Papers, to be published.

[32] C.Zhang, Z. Wang, J. Sha, L. Li, and J. Lin, “Flexible LDPC decoder
design for multi-Gb/s applications,” IEEE Trans. Circuits Syst. I, Reg.
Papers, to be published.

[25

Xiaoheng Chen received the B.S. and M.S. degrees
from the Zhejiang University, Hangzhou, China,
in 2005 and 2007, respectively. He is currently
working toward the Ph.D. degree in the Department
of Electrical and Computer Engineering, University
of California, Davis. He has done a lot of work on
field-programmable gate arrays and digital applica-
tion-specific integrated circuit designs. His general
interests include channel coding theory, very large
scale integration (VLSI) design, communication
theory, multimedia coding theory, VLSI system
design, and VLSI design methodology. Main current interests include VLSI
design for low-power and high-performance communication system, VLSI
design for ultrahigh-throughput channel coding system, and VLSI design for
video and audio technology.

Jingyu Kang received the B.S. and M.S. degrees
in electronic engineering from Tsinghua University,
Beijing, China, in 2002 and 2005, respectively,
and the Ph.D. degree in electrical and computer
engineering from the University of California, Davis
in 2009.

He is currently with Augusta Technology USA,
Inc., Santa Clara, CA, as a System Engineer. His
research interests include error control coding and
signal processing for data storage and communica-
tion systems.

Shu Lin (5’62-M’65-SM’78-F’80-LF’00) received
the B.S.E.E. degree from the National Taiwan
University, Taipei, Taiwan, in 1959, and the M.S.
and Ph.D. degrees in electrical engineering from
Rice University, Houston, TX, in 1964 and 1965,
respectively.

In 1965, he joined the Faculty of the University
of Hawaii, Honolulu, as an Assistant Professor of

‘r“j(")\
1Y -t
——
Electrical Engineering. He became an Associate
Professor in 1969 and a Professor in 1973. In 1986,

—
he joined Texas A&M University, College Station,

as the Irma Runyon Chair Professor of Electrical Engineering. In 1987, he
returned to the University of Hawaii. From 1978 to 1979, he was a Visiting
Scientist at the IBM Thomas J. Watson Research Center, Yorktown Heights,
NY, where he worked on error control protocols for data communication
systems. He spent the academic year of 1996-1997 as a Visiting Professor
at the Technical University of Munich, Munich, Germany. He retired from
University of Hawaii in 1999 and he is currently an Adjunct Professor at
University of California, Davis. He has published numerous technical papers in
IEEE Transactions and other refereed journals. He is the author of the book An
Introduction to Error-Correcting Codes (Englewood Cliffs, NJ: Prentice-Hall,
1970). He also coauthored (with D. J. Costello) the book Error Control Coding:
Fundamentals and Applications (Upper Saddle River, NJ: Prentice-Hall, 1st
ed., 1982, 2nd ed., 2004), and (with T. Kasami, T. Fujiwara, and M. Fossorier)
the book Trellises and Trellis-Based Decoding Algorithms, (Boston, MA:
Kluwer Academic, 1998). He has served as the Principal Investigator on 36
research grants. His current research areas include algebraic coding theory,
coded modulation, error control systems, and satellite communications.

Dr. Lin is a Member of the IEEE Information Theory Society and the Com-
munication Society. He served as the Associate Editor for Algebraic Coding
Theory for the IEEE TRANSACTIONS ON INFORMATION THEORY from 1976 to
1978, the Program Cochair of the IEEE International Symposium of Informa-
tion Theory held in Kobe, Japan, in June 1988, and a Cochair of the IEEE Infor-
mation Theory Workshop held in Chengdu, China, October 2006. He was the
President of the IEEE Information Theory Society in 1991. In 1996, he was a
recipient of the Alexander von Humboldt Research Prize for U.S. Senior Scien-
tists, a recipient of the IEEE Third-Millennium Medal, 2000, and a recipient of
the IEEE Communications Society 2007 Stephen O. Rice Prize in the Field of
Communication Theory.

Venkatesh Akella received the Ph.D. degree in com-
puter science from the University of Utah, Salt Lake
City.

He is a Professor of Electrical and Computer En-
gineering at University of California, Davis. His cur-
rent research encompasses computer architecture and
embedded systems.

Prof. Akella is a Member of ACM.

3)

