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Abstract. This paper presents a side-channel analysis of the bitstream encryp-
tion mechanism provided by Xilinx Virtex FPGAs. This work covers our results
analyzing the Virtex-4 and Virtex-5 family showing that the encryption mecha-
nism can be completely broken with moderate effort. The presented results pro-
vide an overview of a practical real-world analysis and should help practitioners
to judge the necessity to implement side-channel countermeasures. We demon-
strate sophisticated attacks on off-the-shelf FPGAs that go far beyond school-
book attacks on 8-bit AES S-boxes. We were able to perform the key extraction
by using only the measurements of a single power-up. Access to the key enables
cloning and manipulating a design, which has been encrypted to protect the intel-
lectual property and to prevent fraud. As a consequence, the target product faces
serious threats like IP theft and more advanced attacks such as reverse engineer-
ing or the introduction of hardware Trojans. To the best of our knowledge, this is
the first successful attack against the bitstream encryption of Xilinx Virtex-4 and
Virtex-5 reported in open literature.

1 Introduction

The market for digital electronics is highly competitive. Thus, a new product has to pro-
vide a unique selling point to be successful. It can be technologically superior to other
products, or convince with a better design, better quality, or appealing price. But hav-
ing invested a lot of efforts and money into the development of a new product, which
options does a company have to prevent competitors from stealing or even cloning the
product? On the legal side, patents offer a handle to stem against many kinds of product
piracy threats. However, patent registration and monitoring is an expensive task that
comes with many pitfalls. Furthermore, patents expose know-how to competitors, and
patent disputes often imply a high financial risk. Besides that, not all technology qual-
ifies for patent registration. In this case a manufacturer only receives legal protection
within the scope of copyrights. At the end of the day the throughout protection of in-
tellectual property (IP) remains a task that needs to be considered at a technological
level.

In our work we analyze the provided IP protection mechanism of Xilinx’s Virtex-4
and Virtex-5 Field Programmable Gate Array (FPGA) families called bitstream encryp-



tion. We provide a detailed description of this real-world side-channel analysis, illus-
trating the steps required to perform a black-box analysis of a mostly undocumented
target, i.e., the embedded decryption module. Our results provide many practical in-
sights that are of avail for practitioners in industry and academia. They will learn to
judge the feasibility of possible side-channel analyses and to evaluate the black-box
side-channel security of electronic devices in a realistic attack scenario.

1.1 Content of this Paper

The paper is organized as follows. Next, we give a short overview of FPGAs and their
security features. Here we mainly focus on Xilinx’s bitstream encryption solution em-
ployed in the analyzed Virtex FPGAs and the consequences of a successful bitstream
extraction. In Section 4 we provide an introduction to the employed attack method and
detail the practical issues we encountered to mount our attack. Then, in Section 5 we
have a short glance on the computing architecture followed by our experimental results
and the final conclusion.

2 Introduction to FPGAs

Designers of digital embedded systems have three different technology options to choose
from. These are application specific integrated circuits (ASICs), microcontrollers and
FPGAs. ASICs are specially-tailored pieces of silicon that realize exactly the desired
functionality. They provide the highest performance and are very cost efficient when
produced in large quantities. On the other hand, ASICs implement a static function-
ality that can not be modified or updated once produced. Microcontrollers are a class
of silicon devices that implement a fixed instruction set allowing the designer to write
pure software programs. This offers a good flexibility and allows for updates of de-
vices in the field. On the other hand, a microcontroller’s performance is limited by its
nature of sequential instruction processing. The third option available to designers, the
FPGAs, close the gap between powerful but inflexible ASICs and highly flexible but
performance-limited microcontroller-based solutions. An FPGA is an integrated circuit
that consists of many configurable logic blocks (CLBs), which can be configured to rep-
resent basic digital design elements as, e.g., logic gates and registers. In addition, the
connections inside an FPGA are configurable such that inputs and outputs of several
building blocks can be connected to each other.

Similar to an ASIC, a designer of a digital system provides a hardware description
language (HDL) representation of the digital design that the FPGA should implement.
Modern FPGAs come with additional built-in functionality, such as RAMs, adders and
multipliers or even complete microcontroller cores that can be included into the de-
sign. Instead of mapping the design to transistors in silicon to manufacture ASICs, the
development tools for FPGAs will map the HDL representation to CLBs and routed
connections. Developing for an FPGA is in fact very similar to the development of a
microcontroller software. The difference is that the software will be executed by the
microcontroller in a sequential fashion while the configuration of an FPGA allows for



highly parallel designs. The software equivalent for FPGAs is called bitstream or con-
figuration. There are multiple ways to store the configuration for an FPGA. Since their
first generation, FPGAs use SRAM (Static Random Access Memory) to store the con-
figuration. This requires that the FPGA has to be reconfigured after each power loss. In
this setup, the configuration data is stored in an external non-volatile ROM (Read Only
Memory) and is loaded on each power-up. Although today there are also devices that
provide an internal Flash, EPROM, EEPROM or even one-time programmable memory
(fuses), the market is still dominated by FPGAs using an external configuration ROM.

Being in general re-programmable, FPGAs offer the same flexibility as microcon-
trollers. On the other hand, they can achieve a much higher performance enabling many
new applications that otherwise would require the power of an ASIC. FPGAs allow a
fast time to market and many design iterations within a few hours. Therefore, FPGAs
are often also used to test the digital functionality of ASIC designs in form of FPGA
prototypes. Overall, FPGAs are more expensive than ASICs in medium to high vol-
umes.

3 FPGA Security

Coming back to the initial question of IP protection we now introduce the general vul-
nerabilities arising from the existence of machine readable configuration files of FPGA
designs.

3.1 Bitstream Vulnerabilities

During power-up, an SRAM-based FPGA reads its configuration from an external non-
volatile memory. The configuration includes the functional design as well as the I/O
configuration for the pins and the exact placement and routing of all used components.
The whole design of an FPGA application is encoded within the configuration file, the
role of which can be considered similar to the role of software for microcontrollers. As
introduced before, this nature provides a means to update the configuration file of an
FPGA to adapt its behavior to new system requirements or to fix early design flaws.

On the other hand, it also gives rise to the fact that the bitstream needs to be consid-
ered as the key element of an FPGA design and thus requires protection. In this section
we discuss the impact of attacks on an unprotected bitstream and provide a glance at
the broad scope of possible consequences.

Consider a company that just released a new product. An adversary will have easy
and anonymous access to hardware, once the product is released. Thus, it seems reason-
able to assume that a determined adversary will be able to find a way to access the plain
configuration file, unless it has been protected by means of IP protection mechanisms.
For now we ignore any possible protection and restrict our discussion to unprotected
bitstreams. The bitstream extraction could be performed by eavesdropping the configu-
ration process, unsoldering the configuration ROM or downloading a firmware update
that includes a new FPGA bitstream. An adversary who stole a bitstream file can copy it
and thus steal IP (Intellectual Property). This opens doors for product cloning and prod-
uct piracy. The pirated products could be brought to the black-markets to earn money,



without the need for the adversary to invest in product development. This causes dam-
age in several ways. The IP-owning company would suffer from the lost sales directly
due to the loss of income. But furthermore, the pirated products may be of weak quality
and thus pose the additional threat to cause image loss. Even more, the cloned products
might also come with additional functionality (e.g., offering a remote control) or a fancy
optical design, such that there could even be seriously competing products originating
from pirated hardware. In this case it might be hard to prove or even find that IP has
been stolen and cloned.

Cloning FPGAs has even more serious implications in security sensitive scenarios,
e.g., military technology like nuclear warheads or surveillance satellites. Adversaries
that are able to extract the FPGA configuration would get access to highly sensitive
technology. The possibility of bitstream reversal and manipulation that are discussed
next, makes these scenarios even worse.

For many years people challenged the bitstream’s security with respect to bitstream
reversal. The motivations to do this are manifold. Some want to develop their cus-
tomized toolchain for FPGAs and thus need to be able to compile an HDL design to
a valid configuration file. Others are security researchers that search to extract secret
algorithms or keys from the bitstream, and other parties might be interested in steal-
ing a competitors technology. A good judgment of the difficulty to reverse engineer
a bitstream is also essential for security evaluators and system designers that aim at
increasing product security by selecting a suitable combination of secure devices and
anti-tamper technologies to minimize the risk of vulnerabilities. Bitstream reversal can
be used for proving infringement as well. These examples illustrate that both criminals
and designers have a decent motivation to reverse engineer bitstreams.

The most studied bitstream format is that of the FPGA world market leader Xilinx,
Inc. The Ph.D. thesis of Saar Drimer provides a good overview on FPGA security [4].
For lack of space, we only sum up some small parts of his discussion on bitstream rever-
sal, and refer the interested reader to his work for all details. The general description of
the structure of the bitstream can be found in Xilinx publicly available documents [18,
20-22]. Ziener et al. have shown [23] that the configuration of look-up tables (LUT)
and RAM contents can be extracted from bitstreams with moderate efforts. According
to Drimer, methods translating a bitstream to a netlist are not technically mature, yet.
In open literature there are two works documenting notably successful reversals of bit-
streams. The first is the free software project “Ulogic” by Note and Rannaud described
in a report by the developers [12]. This work relates Xilinx Design Language (XDL)
plaintext representations of placelists to bitstream bits, with a result that, as stated by
the authors, is still a step away from a true netlist. The related “FPGA analysis tool” by
Kepa er al. [7] adds a graphical representation to the decoded bitstreams and provides
another step towards true reverse engineering. As the encoding of bitstreams is undoc-
umented but not confidential by means of cryptography, it is a strong belief in industry
and academia that bitstream reversal of FPGAs may be a difficult and time consuming,
but nevertheless a technically-feasible task.

The possibility to reverse engineer a bitstream lets arise even further threats. Besides
cloning and stealing IP, the reverse engineering of a bitstream also allows modifying the
designs. This way Trojan Hardware could be added to a security-sensitive system. This



malicious circuitry may, e.g., implement a hidden backdoor or some kind of kill-switch
functionality to an FPGA that implements a sensitive application (e.g., nuclear power
plant, military- or satellite technology or a banking application). Besides this, the option
to modify a design also allows hobbyists to customize commercially available hardware
to add functionality or improve performance. Beyond the discussion of the bitstream
security, the interested reader is referred to [4] for a throughout evaluation of many
aspects of FPGA security and to [2] where invasive attacks on FPGAs are discussed.

3.2 IP Protection for FPGAs!

As of 2001 [16], Xilinx implemented an encryption mechanism in many of its recent
FPGA series released within the last decade to counter these threats. This mechanism is
called bitstream encryption and works in the following way: instead of storing a plain
bitstream file within the configuration ROM, the designer encrypts the bitstream config-
uration beforehand. The encryption — using AES-256 in CBC (Cipher Block Chaining)
mode for the Virtex-4 and Virtex-5 FPGAs — is performed in software by the Xilinx
ISE development tools. The used key is chosen by the designing engineer and is pro-
grammed into the Virtex FPGA. The part of the FGPA memory storing this secret key
is battery-powered so that the key will immediately be erased on power loss of the bat-
tery support. This feature is designed to hinder invasive attacks to recover or reverse
engineer a device configuration.

With the known encryption key inside the FPGA and the encrypted bitstream stored
within a ROM, products can securely configure the FPGAs as only AES-256 encrypted
data passes the channel between ROM and FPGA. The FPGA has a dedicated AES
hardware to decrypt the bitstream. This hardware is not accessible for other purposes
within the FPGA due to export regulations of cryptography.

3.3 Real-World Attacks

With this mostly theoretical discussion on several threats and countermeasures for FPGA
applications, the remaining question is whether the manufacturer’s countermeasures are
able to provide the advertised protection in the real world, i.e., successfully prevent
attacks. Unfortunately decisions on implemented countermeasures are in most cases
driven by economical reasons. Thus, products in industry will only be guarded against
risks and threats when customers are expected to be willing to pay for the additional
security. Thus, often well-known security risks from academic literature are not con-
sidered when designing commercial products, as long as there is no evidence for real-
world implications. One class of these attacks often underestimated in industry are the
side-channel attacks introduced in the next section. In our contribution we analyze the
IP protection mechanisms of recent FPGAs with respect to side-channel security. We
show that the implemented features of the studied products can be broken with moder-
ate efforts and thus fail to protect the implemented configuration file.

! Due to page restriction we limit this discussion to only the scheme provided by Xilinx FPGAs.



4 Side-Channel Analysis Attacks

4.1 Introduction to Side-Channel Analysis Attacks

Today Side-Channel Analysis (SCA) is a mature field in applied security research. Dif-
ferential side-channel analysis methods have been introduced first by Kocher et al.
around 10 years ago [8]. Since then the field has grown rapidly and many new tools
and distinguishers for side-channel analysis have been evaluated. In reply to the new
threat developed in the scientific literature many countermeasures have been proposed,
implemented and broken. Also, experts from the field of theoretical cryptography rec-
ognized side-channel attacks as an important topic seeding a community of researchers
working on general leakage resilience and provable security bounds for side-channel
countermeasures. Beyond purely academic studies, side-channel attacks and reverse
engineering have been shown to also have real-world impact. Examples are the attacks
on NXP’s Mifare Classic devices [11], a bouquet of attacks on Microchip’s KeelLoq
remote keyless entry systems (primary article [5]), and recently also SCA attacks on
Mifare DESFire contactless smartcards [15]. Lately a successful side-channel key re-
covery attack on the bitstream encryption feature of the older Xilinx Virtex-1I pro FP-
GAs, which employ 3DES as the decryption engine, has been reported in [10]. In this
paper we describe a practical side-channel analysis attack on the bitstream decryption
engines of the more recent Virtex-4 and Virtex-5 FPGAs. These attacks demonstrate
that industrial products in fact require to implement side-channel countermeasures and
that side-channel attacks are not a pure academic playground but have a real-world
impact on the security of embedded systems.

The method employed in this work is a sophisticated type of Correlation Power
Analysis (CPA) as first introduced in [3]. In this method the power consumption or
electro-magnetic radiation (EM) of a device is measured while executing a crypto-
graphic algorithm. In addition to the physical power consumption of the analyzed de-
vice, also the communication of the device is eavesdropped to get access to the cipher-
texts (or plaintexts) that will be (or have been) processed. In our case the ciphertexts,
i.e., blocks of the encrypted bitstream, are available by eavesdropping the configuration
process and the analyzed cryptographic primitive is an AES-256 decryption module.

During the analysis itself the known ciphertexts are used to predict an intermediate
value processed by the AES algorithm. A hypothetical intermediate value for each trace
is calculated assuming a fixed subkey?. In the next step these hypothetical values are
used in a hypothesis test, which allows distinguishing the key used by the device from
wrong key hypotheses. In a CPA attack the used distinguisher is Pearson’s correlation
coefficient estimated by the sample correlation.

Side-channel analysis attacks follow a divide-and-conquer strategy. That is, the key
is recovered in small pieces. Typical attacks use subkeys of 8 (AES) or 6 (DES) bits and
target S-box outputs.

In our attack we can use a full bitstream as a set of multiple ciphertexts. In order to
apply the correlation distinguisher, the predicted intermediate values have to be mapped
to hypothetical power consumptions, which will then be compared with the measured

2 By subkey we denote the part of a key that has an effect on the predicted intermediate value.



power consumption. For hardware designs a reasonable choice to do so is the Hamming
distance (HD) model, which counts the number of bits of an intermediate value that are
toggled within a clock cycle.

4.2 Measurement Setup

We have started our analysis by examining a Virtex-4 FPGA. We have used a “Virtex-4
FF668 Evaluation Board” [19], which provides a ZIF socket to host Virtex-4 devices
with FF668 packaging. Since the board has not been designed for side-channel analysis,
we have placed a resistor in the Vconr path and removed the blocking capacitors?.
There are three different V¢ paths in Virtex-4 FPGAs: Vceeinr (1.2V) as the power pin
for internal core circuits, Vccaux (2.5V) as the power pin for auxiliary modules, and
Veco (1.2~3.3V) as the power pins for the output pin drivers. We analyzed all power
pins, but similar to the results reported in [10], the successful results were obtained
when considering the power traces measured in the Ve path.

Our target Virtex-4 FPGA model was an XC4VLX25, and the power traces were
captured using a LeCroy WP715Zi digital oscilloscope at a sampling rate of 2.5 GS/s
and a LeCroy APO033 active differential probe. We have also designed a microcontroller
based module which configures the FPGA in slave serial mode (see [20] for more details
on Virtex-4 configuration modes). It communicates with a PC and passes the bitstream
chunks* to the FPGA. The same board also provides a trigger pin to start the oscillo-
scope each time right before sending a bitstream chunk to the FPGA. The acquisition
of power traces started after sending the header part of the bitstream. Each measured
trace belongs to the previously sent bitstream chunk.

4.3 Introductory Experiments

In a real world attack, it is of major importance to work very accurately and carefully
to make sure the chosen method and all employed models are suited for the analysis.
Thus, some preliminary work is required to eliminate uncertainties wherever possi-
ble. The first step in side-channel analysis is to find the correct instance in time when
the targeted security primitive (here the AES-256 decryption) is processed. We cre-
ated a very simple design using the Xilinx ISE development tools and generated both,
the corresponding bitstream and its encrypted counterpart. The 128-bit IV (Initializa-
tion Vector)® and the 256-bit key used to generate the later one were loaded into the
FPGA®, whose Vccpar pin was continuously battery powered at 3.0V. Using the public
documentation by Xilinx ([18,21]) we verified the order of the bits and bytes of the
ciphertexts within the encrypted bitstream.

3 This task is essential and common when performing power analysis attacks on real-world
devices, as the capacitors would filter the analyzed signal.

4 Since the Virtex-4 bitstream encryption uses AES-256, we define each block of 128 bits as a
chunk.

5 The IV is used as initial value in CBC mode.

% Note that the only way to load the encryption key is through the JTAG interface [20] and by
means of a standard configuration device.
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Comparing the power traces corresponding to the plain and the encrypted bitstreams
let us to identify the interesting time instances. Two exemplary power traces are shown
in Fig. 1(b) and Fig. 1(c). Due to the high level of noise present in the measurements
we employed mean traces instead of raw measurement data in this step, i.e., each mean
trace has been obtained by calculating the average of 10000 traces. The mean traces,
plotted in Fig. 1(d) and Fig. 1(e), show clear differences between the configuration with
an active decryption module and the unencrypted configuration. We identified 26 clock
cycles that show significant differences.

We should emphasize that in contrary to the Virtex-II case [10] (in which the full
3DES decryption is executed after a certain positive edge of the configuration clock
signal’), the computations of the AES decryption rounds are spread and activated by
consecutive positive edges of the corresponding configuration clock signal. Thus, in
the case of the Virtex-4 the performance of the decryption module has much less im-
pact on the maximum frequency of the configuration clock signal, as just single rounds
need to be processed within a configuration clock cycle. According to the public docu-
mentation [17], when a Virtex-II is configured in SelectMAP mode using an encrypted
bitstream, the BUSY signal has to be monitored® to ensure that the decryption module
is ready for next data. The Virtex-4 FPGAs do not need to drive the BUSY signal during
configuration, even when configuring using the maximum frequency and an encrypted
bitstream [20]. In summary, our first experiment allowed us to find the most valuable
instances in time for our SCA and gave us a hint towards a most likely round-based
architecture.

A close look at a power trace (Fig. 1(f)) reveals that the measurements include HF-
modulated waveforms. Therefore, we used a Chebyshev low-pass filter to reduce the
effect of the high frequency components. The configuration of the used filter and the
result of the filtering of a sample trace are shown in Fig. 1(g) and Fig. 1(h) respectively.

With this initial analysis and preprocessing of our measurements a remaining task
was to find and verify a model for the internal architecture of the AES-256 decryption
module, that allows us to relate the measured power consumption to the processing of
the decryption primitive. The method that we used is to correlate the filtered power
traces to predictions based on a hypothetical power model of the architecture. Thus, by
trial and error, we guessed several possible architectures and modeled their power con-
sumption. Using the known key we applied the models to the encrypted bitstream and
correlated the resulting hypothetical power values to our measurements. In this experi-
ment a significant correlation indicates a valid power model that might be a candidate
to be used in the following cryptanalysis. Having examined several architectures and a
couple of hypothetical power models, the only working model we found was the combi-
nation of the architecture shown by Fig. 2 and a HD model targeting the 128-bit register
R.

Figure 3 shows the results of correlating the bit flips of the intermediate register
between the first and second decryption rounds. More precisely, Fig. 3(a) has been
obtained computing Pearson’s correlation coefficient between each time instance of the

7 TCK in the case of JTAG and CCLK in the other configuration modes
8 The SelectMAP mode enables sending 8 bits of the bitstream at each clock cycle, and BUSY
is one of relevant handshaking signals.
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filtered power traces and HD of register R in the first and second decryption rounds, i.e.,
Hamming weight (HW) of

ARy = [%] ® [MC' (SB~' (SR (R1) @Kn)}

Ry

Ry

where C, K14 and K3 represent ciphertext, round key 14 and round key 13 respectively.
Also, MC~!, SB~! and SR™! are abbreviations for InvMixColumns, InvSubBytes and
InvShiftRows transformations. The high peak at around 52us indicates a very high
dependency between the measured power traces and the intermediate values in our con-
sidered internal architecture. This time instance corresponds to the positive edge of the
configuration clock signal at the sixth clock cycle (see Fig. 1(a)). In order to find which
bit flips in register R causes the most significant correlation, we repeated the same com-
putation considering each bit of AR > independently. This led to the 128 curves shown
in Fig. 3(b). For some yet unknown reasons, additional high peaks also appear in 13
other time instances. The results of applying a similar procedure in the next decryption
round, i.e., using

AR3 =Ry @ [MC' (SB" (SR™'(Ry)) @Ku) } ;

R3

are depicted in Fig. 3(c). Notably here the high peaks only appear at one single time
instance, i.e., 90us corresponding to the start of the 9th configuration clock cycle. The
curves in Fig. 3 have been derived using the power traces of the 60000 decryptions per-
formed during a single power-up of the FPGA. We should emphasize that no significant
peak appeared when we continued this procedure for the next decryption rounds. In
fact, it seems that our guess about the architecture does not completely match with the
target internals. Nevertheless, according to the results these assumptions are adequate
to successfully perform the attacks as shown later.

4.4 TImplemented Attack

Using the extracted information about the leaking points and the architecture the straight-
forward way to perform an attack is to guess parts of two consecutive round keys Ki4
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and K3, and then use the single-bit power model to predict the key dependent leakage
of the subsequent rounds. Due to the structure of InvMixColumns, at least one col-
umn (32 bits) of each round key has to be guessed at each step of the attack, which
means searching the large key space of 2%*. However, because of the linear property of
InvMixColumns one can write R, as

MC™! (B! (SR™(R))) ) oMC ! (Kis ).

Ry Kis

Moreover, since K;3 and consequently K| are fixed and independent of the ciphertexts
and decryption intermediate values, they can only change the polarity of our considered
single-bit power model, i.e., bit flips of AR . Therefore, guessing a column of Kj4,
i.e., searching a space of 232, is adequate when the single-bit power model is used. Note
that in this case, one cannot take a power model using more bit flips, e.g., HD of whole
32 bits, in a CPA attack. However, a Mutual Information Analysis [6] or a multi-bit
DPA [9] may be feasible.

We should highlight that one can decrease the search space of the attacks to the
space of 28 by a chosen ciphertext scenario. For this, parts of R), will be fixed as long
as the corresponding ciphertext bytes are fixed. However, configuring the FPGA using
a wrong encrypted bitstream (caused by the chosen ciphertexts) results in forbidden
interconnections of internal wires, e.g., connecting two output pins to each other. Thus,
each configured invalid bitstream block causes additional leakage currents, which lead
to additional interferences with the measured side-channel signal. More importantly,



these currents also heat up the FPGA and may even damage it. For this reason we did
not pursue this approach and stuck to the approach using a valid encrypted bitstream.
Nevertheless, when following the chosen ciphertext approach, the destructive effect
of invalid bitstream chunks can be limited by resetting the configuration process after
measuring a certain number of power traces, e.g., after each eighth chunk.

As a result, a full 128-bit K4 can be recovered by performing four attacks, each of
which independently recovers a 32-bit part of the key. Note that in order to recover the
full 256-bit key of AES-256, one needs to extract two consecutive 128-bit round keys,
e.g., here Kj4 and K;3. We therefore need to extend the attack on the next decryption
round. R) can be computed for every ciphertext knowing K4, and one can write

ARy =Ry @ Kj;@MC ™' (SB™! (SR (R2)) ) @MC ! (Kio)

/ !
R3 Kl2

As before, linear contributions of key bits, i.e., K 12 and K’ 13 can be omitted in our single-
bit power model (here single bit flips of AR» 3). The attack described above can be run to
recover the round key K3 which influences the hypotheses due to its contribution to R;.
Note that each part of this attack again recovers only a 32-bit column of K},. Knowing
all bits of K|, allows computing K;3 by applying the MixColumns transformation. The
result of the key extracting attacks and more details about their efficiency are given in
Section 5.2.

4.5 Countermeasures

Today there exists a set of countermeasures that is believed to provide enough protection
against side-channel attacks, that they can be considered secure for most practical pur-
poses. More precisely, the reached level of security is boosted to a certain level which
makes practical attacks not impossible, but infeasible in practice. Unfortunately most
of these methods are patent-protected and thus often avoided in industry due to the
involved royalties. Furthermore, many people in industry still recognize side-channel
attacks as academic playground without any real-world impact and thus do not see the
necessity of side-channel countermeasures for their products.

S Implementing the Attack

5.1 Employing nVidia’s CUDA

Our attack needs to perform an overall of eight analyses each statistically evaluating
a set of 2°2 key candidates. For each key candidate a hypothetical intermediate needs
to be calculated for each used power trace. Fortunately, the locations of the occurring
leakage we found earlier allowed us to limit the attack to a single time instance per de-
cryption round. To cope with the large amounts of computations we employed NVidia’s
CUDA architecture® [14], to speed up our attack using the parallel computing capabil-
ities of modern GPUs (Graphic Processing Unit). The used server was equipped with

9 In the following we employ NVidias terminology of threads, blocks and grids as introduced in
[14].
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four NVidia Tesla C2070 cards [13], each having around 6 GB of memory and 448
thread processors arranged as 14 streaming multiprocessors. The implemented kernel
processed one key per thread and was launched using a granularity of 256 threads per
block and a (64,256,256) grid. The resulting 23° 32-bit floating point correlation coef-
ficients per card were then stored to the machine’s hard drive for visualisation in, e.g.,
MATLAB. Using CUDA allowed us to perform our analysis on a single point of 60000
filtered power traces at a speed of one column each 33 minutes, i.e., an overall runtime
of the computations of 264 minutes for attacking all 8 columns of the first two round
keys K14 and K. The corresponding correlation coefficients for the full attack require
128 GiB of hard disk space.

5.2 Attack Results

Amongst the available 32 bits of the register R that are suited to attack a column of
the analyzed round key, we have selected the one which shows the highest absolute
correlation at the datapoint at 52us (see Fig. 3(b)). More precisely, the seventh LSB of
the second byte of each column was selected in our attacks on the first decryption round.
The result of the attack on the first column of the first round is shown in Fig. 4. Using
60000 measurements, the highest correlation of 0.081 for the correct key candidate
can already be clearly distinguished from the wrong key candidates. The next highest
correlation value is already as low as 0.025. The attack on the second decryption round
was performed in exactly the same way; even the same target bit was selected for the
power model. As the results of the analysis of the second round closely reflect the results
provided for the first decryption round, we refrain from providing extra figures at this
point.

As mentioned before, we have used the measurements corresponding to only one
power-up of the FPGA. The amount of possible measurements of each power-up de-
pends on the size of the FPGA fabric (not to the used-defined design). The “Configu-
ration Array Size” of the FPGA [20] defines how many 32-bit words have to be con-
figured by a bitstream. Since 243048 configurable words are available in our target,
60762 traces can be measured using a single power-up. From the smallest Virtex-4
FPGA, XC4VLX15, 36900 traces can be acquired during one power-up. Note that in
the case of a high noise level the measurement process can be repeated with the same
encrypted bitstream, i.e., with the same ciphertext values, and therefore provide more
traces if required.



5.3 Differences to Virtex-5

We have examined the decryption module of a Virtex-5 FPGA re-employing the intro-
duced analysis developed for the Virtex-4 device. The targeted FPGA model was an
XC5VLX50 embedded on a SASEBO-GII [1]. We were able to reuse the measurement
setup introduced before with minor modifications: Since the serial configuration pins
used for the Virtex-4 were not present on the SASEBO-GII board, our microcontroller
module was adapted to support configuration via JTAG interface, which is the only
available configuration port on the used platform.

Compared to Virtex-4, the main difference was that the attack on the Virtex-5 FPGA
required more power traces to be successful, which is mostly due to a worse signal-to-
noise ratio due to a newer process technology (i.e., 65nm instead of 90nm). In our
attacks we have used 90000 traces'? acquired during a single power-up of the FPGA,
but using more traces of multiple power-ups can still improve discriminability of the
correct key hypothesis. To deal with the worse measurement conditions, we have ac-
quired power traces with a sampling rate of 20 GS/s and low-pass filtered the data as
before. Approximately the same results as Fig. 1 were obtained, i.e., comparing the
mean traces of the plain and encrypted bitstreams showed differences in the same pos-
itive edges of the configuration clock signal. Also, correlating the filtered power traces
with the single-bit power model considering the same internal architecture led to the
similar results shown in Fig. 3 but with lower correlation value, i.e., 0.05 and 0.03 for
the first and second decryption rounds respectively. The analysis runtime increased due
to the higher number of power traces to around 49 minutes per column or around 6.5
hours for the overall computing time. We should emphasize that analyzing the pure
Virtex-5 without having the knowledge obtained during the analysis of Virtex-4, would
have been a much more challenging task with more uncertainties.

6 Conclusion

Today, industrial spying and technology theft are a major threat for both companies and
government-run facilities. Companies are mostly concerned about IP theft and product
piracy and the inflicted losses. Government institutions, on the other hand, need to pro-
tect military secrets as well. Our attacks show that the IP protection mechanism of the
FPGA world market Xilinx, Inc. can be circumvented using moderate efforts.

Our presented approach allows us to read out the configuration data of Virtex-4 and
Virtex-5 devices in the field, leading to the consequences elaborately discussed in Sec-
tion 3.1. Manufacturers of high-security products and security evaluation labs are well
aware of the side-channel vulnerabilities. Therefore, they ensure that additional secu-
rity countermeasures to protect devices are implemented where necessary. Techniques
include for example shielding and molding the electronic circuit to provide additional
tamper resistance and therefore deny power or EM measurements. Unfortunately this
awareness does not cover all manufacturers of security sensitive devices yet.

We want to underline that this attack targets Xilinx’s bitstream encryption engine,
and not a third party crypto-implementation inside an FPGA. Although reading out and

10 Our Virtex-5 target FPGA allows for measuring 98031 traces during a single power-up.



interpreting the bitstream might also annihilate the security targets of an FPGA design,
there is an important difference between a vulnerability in the bitstream encryption and
a vulnerability in an implemented primitive. An engineer developing an FPGA design
has no influence on the security of the bitstream encryption and thus also no option to
improve it. In other words, up to now it is the FPGA manufacturer’s responsibility to
provide secure IP protection methods. This is slightly different to the microcontroller
scenario. Designers using microcontrollers often have the freedom to implement cus-
tomized bootloaders, that might, e.g., add encryption functionality to the programming.
Nevertheless, the microcontroller’s manufacturer also has to ensure that the memory
including the bootloader and all its secrets cannot be read out.

There are many new insights from this attack. This is the first case to our knowledge,
where it was possible to probe and compare the security of subsequent technology gen-
erations of an embedded system in a real-world environment. In this attack we were able
to practically verify that an attack on more recent technology nodes still scales within
feasible bounds. Furthermore, we were able to show that developing an attack tailored
to one product can threaten the security of another product, when a security design is
being reused. In our case the analysis of the Virtex-4 allowed us to study the architec-
ture with much less efforts than having to perform the same analysis on the Virtex-5
device. In consequence, we suggest to limit the reuse of security designs, such that the
security of a newer product is not lowered by an easier attack on an older product.

Another argument we practically disproved is that attacks on intermediate values
that require large key hypotheses are infeasible in practice. We have shown that with
todays available computing power an analysis on 60000 power traces using 32-bit key
hypotheses can be performed in less than 4.5 hours. We also explained the different
steps that needed to be done to execute a black-box analysis. These differ from purely
academic studies, as they include many additional steps as identifying and filtering
unknown additional noise sources, the identification of the time instances that need to
be considered in the attack and the deduction of a valid model of the implemented
architecture. To our knowledge there is no published real-world side-channel attack
with a similar attack complexity. Therefore, this work provides an update on the lower
bound of attacks that should be considered a realistic threat to real-world systems.

The presented approach practically illustrates that side-channel attacks on real-
world systems do not require any detailed knowledge of the implemented architecture.
Thus, the extend to which confidential details on the implemented architecture can raise
the difficulty of black-box side-channel analyses should not be overestimated. Never-
theless, it remains an open research problem to evaluate the security gain achieved by
applying additional confidential obscurity measures as transformations of the plaintexts
prior to encryption.

Finally, the most exciting question is to ask why this attack was possible at all.
Side-channel analyses are known for more than ten years, and the same holds for bit-
stream encryption protection mechanisms. Why did Xilinx not implement the available
countermeasures? As stated before, it is most likely due to an economic reason. In this
case the FPGA configuration has been protected by means of an encryption mecha-
nism. Customers accepted the solution without having the expertise to recognize the
obvious possibility of side-channel attacks, and thus did not give rise to a market de-



mand for a side-channel resistant configuration solution. The fact that Xilinx’s bitstream
encryption has not been broken in public literature for around a decade shows that side-
channel attacks on real-world targets, i.e., black-box attacks, just became mature within
the last years. From our point of view a prominent problem in security technology is
that both, customers and manufacturers, are not aware of the security risks that come
with unprotected implementations of cryptographic primitives in embedded systems.
On the other hand, those that are aware of the existence of side-channel attacks, often
consider them as a purely academic threat without any real-world counterpart. We see
an urgent need to change this wrong perception and to recognize the rapid advances in
the minatory field of black-box side-channel analysis. A general guideline should be
that cryptographic routines in embedded systems without SCA countermeasures should
be considered insecure for all applications where a successful attack can give rise to
financial benefits.

To assist hardware manufacturers, scientific research should in the future aim at
developing mechanisms beyond mere SCA resistance to face the increasing threat of
physical attacks. This could be, e.g., protocols and measures that limit the effect of suc-
cessful side-channel attacks. In the case of the bitstream encryption a solution avoiding
repetitive use of the same key in CBC mode, e.g., by means of some obscure key trans-
formation, would have significantly hardened the analysis. In this context researchers
should also reconsider to add obscurity measures in combination with the well-proven
crypto primitives to raise the SCA protection of their systems. This would require an
attacker to first overcome an additional reverse-engineering step, before being able to
analyze the system.
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