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Abstract— This paper addresses relay design for a wireless
multiple-input-multiple-output (MIMO) switching scheme that
enables data exchange among multiple users. Here, a multi-
antenna relay linearly precodes the received (uplink) signals from
multiple users before forwarding the signal in the downlink,
where the purpose of precoding is to let each user receive its
desired signal with interference from other users suppressed.
The problem of optimizing the precoder based on sum-rate max-
imization criteria is typically non-convex and difficult to solve.
The main contribution of this paper is that we show the sum-
rate maximization problem can be converted to an equivalent
weighted sum-MSE minimization problem and can therefore be
solved using an iterative algorithm proposed in our previous
work. Asymptotic analysis reveals that, with properly chosen ini-
tial values, the proposed iterative algorithms are asymptotically
optimal in both high and low signal-to-noise-ratio (SNR) regimes
for MIMO switching, either with or without self-interference
cancellation (a.k.a., physical-layer network coding). Numerical
results show that the optimized MIMO switching scheme based
on the proposed algorithms significantly outperforms existing
approaches in the literature.

Index Terms—Beamforming, linear precoding, MIMO switch-
ing, minimum mean square error (MMSE), physical-layer net-
work coding, relay.

I. INTRODUCTION

Physical-layer network coding (PNC) has received much
attention in recent years [1]. The simplest communication
model for PNC is a two-way relay channel, in which two
users accomplish bidirectional data exchange in two phases
of transmission with the help of a relay. Significant progress
has been made in approaching the ultimate capacity limit of
two-way relay channel (see [1]–[6], [24] and the references
therein).

More recently, multi-way relaying, in which multiple users
exchange data via a single relay, has been studied [7]–[13].
In [7], the authors studied such a system where the relay is
equipped with a single antenna. The use of multiple antennas
at the relay provides extra spatial degrees of freedom that
can boost throughput significantly. A multi-antenna relay that
performs one-to-one mapping from the inputs to the outputs
(i.e., that switches traffic in a one-to-one manner among
the end users) is called a MIMO switch [8], [9]. Various
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traffic patterns have been studied in MIMO relaying, including
pairwise data exchange [9], [10], [14], [15], where the users
form pairs and data exchange is within each pair, and full
data exchange, where each user broadcasts to all other users
[11], [12], [16]. The authors in [8] further generalized pairwise
data exchange to arbitrary unicast, in which each user sends
data to one other user and could receive data from a different
user. Arbitrary unicast is interesting because we can realize
any traffic pattern, including unicast, multicast, broadcast, or
any mixture of them, by scheduling a sequence of such unicast
flows.

This paper is concerned with relay design for MIMO
switching with arbitrary simutaneous unicast. Several pio-
neering works in this direction have been reported in the
literature [8], [10], [11], [13], [14]. Zero-forcing relaying was
first proposed in [10] to realize pairwise data exchange. In
[13], the authors showed that zero-forcing relay with PNC,
which employs self-interference cancellation, can improve sys-
tem throughput considerably. However, zero-forcing involves
channel inverse operations that could incur significant power
penalties when the channel gain matrix is ill-conditioned. To
alleviate power penalties, the authors of [10] and [11] pro-
posed minimum-mean-square-error (MMSE) relaying, which
achieves better performance in the practical signal-to-noise
ratio (SNR) regime. In [17], an MMSE relaying scheme
exploiting PNC was proposed to further improve the MSE
performance. However, as a performance metric, throughput is
arguably more directly related to user experience than MSE.
Unfortunately, throughput maximization problems are often
non-convex and difficult to solve. In this paper, we investigate
a system throughput maximization problem and propose an
efficient iterative algorithm to solve the problem.

In this work, the sum-rate maximization problem is con-
verted to an equivalent weighted sum-MSE minimization
problem, which admits an iterative solution. In the low and
high SNR regimes, analytical results are provided for the
properties of the asymptotically optimal solutions and the
convergence conditions of the proposed iterative algorithms.
Numerical results show that the proposed algorithms signif-
icantly outperform existing approaches in the literature [8],
[10], [11], [13].

The remainder of the paper is organized as follows: Section
II introduces the background of wireless MIMO switching.
Sum-rate maximization is discussed in Section III. In Section
IV, asymptotically optimal solutions are derived. Section V

978-1-4673-5939-9/13/$31.00 ©2013 IEEE978-1-4673-5939-9/13/$31.00 ©2013 IEEE

2013 IEEE Wireless Communications and Networking Conference (WCNC): PHY2013 IEEE Wireless Communications and Networking Conference (WCNC): PHY

3512



Relay

12

3 K

N

Uplink phase

Downlink phase

Fig. 1. Wireless MIMO switching.

presents simulation results. Section VI concludes this paper.
We adopt the following notational convention: boldface

lower-case letters denote vectors and boldface upper-case let-
ters denote matrices; diag{x} denotes a diagonal square matrix
X whose diagonal consists of the elements of x; diag{X}
denotes a column vector x formed by the diagonal elements
of X . [X]diag represents a diagonal matrix with the same
diagonal elements as X . Denote by Ca,b the covariance of two
zero-mean random variables a and b, i.e., Ca,b = E[ab∗]. The
operation (·)† denotes Moore-Penrose pseudo inverse [18]; and
⊗ denotes the Kronecker product.

II. SYSTEM DESCRIPTION

The overall system is illustrated in Fig. 1. There are K users,
numbered from 1 to K, each equipped with a single antenna.
These users communicate via a relay with N antennas and
there is no direct link between any two users. Throughout
the paper, we focus on the pure unicast case, in which each
user transmits to one other user only. Let π(·) specify a
switching pattern, which can be represented as follows: user
i transmits to j = π(i) for every i ∈ {1, · · · ,K}. The pure
unicast switching pattern can be equivalently represented by
a permutation matrix P .1 Let ej denote the jth column of an
identity matrix. Then the ith column of P is equal to ej if
π(i) = j, i.e., pi = eπ(i) = ej . If the diagonal elements of
permutation P are all zero, it is also called a derangement.
In particular, a symmetric derangement (P = P T ) realizes
a pairwise data exchange. In general, any traffic flow pattern
among the users can be realized by scheduling a set of different
unicast traffic flows [8].

Each round of data exchange consists of one uplink phase
and one downlink phase. The uplink phase sees simultaneous

1A square matrix P is a permutation matrix if it has one and only one
nonzero element on each row and each column, which is equal to 1.

transmissions from the users to the relay; the downlink phase
sees one transmission from the relay to the users. We assume
that the two phases are of equal duration.

In the uplink phase, let x = [x1, · · · , xK ]T be the vector
representing the signals transmitted by the users. Let y =
[y1, · · · , yN ]T be the received signals at the relay’s antennas,
and u = [u1, · · · , uN ]T be the noise vector with indepen-
dent and identically distributed (i.i.d.) samples following the
circularly-symmetric complex Gaussian (CSCG) distribution,
denoted by CN (0, γ2), where γ2 is the noise variance at the
relay. Then

y = Hx+ u, (1)

where H ∈ CN×K is the uplink channel matrix. We assume
that all uplink signals are independent Gaussian with zero
mean and unit average power, i.e., xi ∼ CN (0, 1) and
E{xixj} = 0, ∀i, j, i 6= j.

Upon receiving y, the relay precodes y with matrix G and
forward Gy in the downlink phase, where the transmit power
of the relay is upper-bounded by Pr, i.e.

Tr
[
G
(
HHH + γ2I

)
GH

]
≤ Pr. (2)

The signals received by all users are collectively represented
in the vector form as

r = FGy +w = FGHx+ FGu+ v, (3)

where F is the downlink channel matrix, and v is the noise
vector at the receivers, with i.i.d. samples following the CSCG
distribution, i.e., vk ∼ CN (0, σ2), where σ2 is the noise
variance. The signal rπ(i) received by user π(i) is used to
recover the message from user i. It is not difficult to see that
interference-free switching can be achieved in the absence
of noise by designing G to ensure P TFGH is diagonal.
In the presence of noise, the MIMO precoder G shall be
chosen to manage interference based on the knowledge of
the uplink and downlink channels H and F . Furthermore,
physical-layer network coding techniques can be used if the
users can cancel self-interference in the received signal. We
refer to the precoding schemes without network coding as non-
PNC schemes, and subsequent ones with network coding as
PNC schemes.

III. SUM-RATE MAXIMIZATION

In this section, we study sum-rate maximization, which
is widely used in optimizing the performance of wireless
networks. We show that the sum-rate maximization problem
can be converted to an equivalent weighted sum-MSE min-
imization problem, and therefore, the results in [17] can be
easily adopted here.

A. Problem Formulation
We now use a diagonal matrix ∆ to represent the weights

of self-interference to be canceled. Note that letting ∆ = 0
yields the conventional non-PNC problem. Then, after self-
interference cancellation, the signal becomes r − ∆x. To
simplify the index mapping of the received signal vector, let

z = P T (r −∆x). (4)
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Using (3), the ith element of z is given by

zi =

pTi FGhixi +
∑
` 6=i

pTi FGh`x` + pTi FGu+ pTi v − pTi ∆x,

(5)

where hi is the ith column ofH . In this way, zi is the received
signal of user π(i) for the recovery of the message from user
i. Thus, the achievable rate of user i is given by

Ri =
1

2
log

(
1+

|pTi FGhi|2

‖pTi (FGH −∆)‖2 − |pTi FGhi|2 + γ2‖pTi FG‖2 + σ2

)
,

(6)

where the factor 1/2 is due to the two-phase transmission. Our
purpose is to maximize the sum rate under the power constraint
of the relay. This optimization problem is formulated as

maximize
G,∆

K∑
i=1

Ri (7a)

subject to Tr
[
G
(
HHH + γ2I

)
GH

]
≤ Pr. (7b)

The problem (7) is non-convex w.r.t. (G,∆) and thus is
difficult to solve directly.

B. Conversion to Weighted Sum-MSE Minimization

Recall that xi ∼ CN (0, 1), i = 1, · · · ,K, i.e.,

p(xi) =
1

π
e−|xi|

2

, i = 1, · · · ,K. (8)

From the equivalent transmission (5), the conditional distribu-
tion can be readily obtained as

p(zi|xi) =
1

πΣ′i
e
− |xi−pTi FGhizi|

2

Σ′
i , i = 1, · · · ,K, (9)

where

Σ′i =pTi FG(HHH − hihHi )GHFHpi

+ pTi ∆∆Hpi + γ2pTi FGG
HFHpi + σ2pTi pi. (10)

With Bayes’ rule, we can obtain a posteriori distribution
p(xi|zi), which is also Gaussian and is given by

p(xi|zi) =
1

πΣi
e
− |xi−ωizi|

2

Σi , i = 1, · · · ,K. (11)

where wi is a scaling coefficient to be determined, ωizi repre-
sents the conditional mean, and Σi represents the conditional
variance. According to the definition of mutual information
[19], the rate in (6) can be written as

Ri =
1

2
E
[
log

p(xi|zi)
p(xi)

]
, i = 1, · · · ,K, (12)

where the expectation is take over the joint distribution of
x and z, i.e., p(xi)p(zi|xi). With (11) and (8), we can
express the sum-rate (7a) as a function of G, {ωi} and {Σi}.
Similar conversions have been previously used in [20], [21] for

optimizing beamforming vectors in broadcast channels. Based
on this conversion, we next establish a relation between the
sum-rate maximization problem (7) and the weighted sum-
MSE minimization problem in [17].

Substituting (11) and (8) into (12), we express the sum rate
(7a) as a function of G, Ω and Σ as

K∑
i=1

Ri =
1

2

K∑
i=1

E
(

log
1

Σi
− |xi − ωizi|

2

Σi
+ |xi|2

)
. (13)

Plugging (4) into (13), the sum rate is rewritten in matrix form
as
K∑
i=1

Ri =

− 1

2

{
E
∥∥∥Σ− 1

2 [(P + Ω∆)x−Ωr]
∥∥∥2 +

K∑
i=1

logΣi −K

}
,

(14)

where

Σ = diag{Σπ−1(1), · · · , Σπ−1(K)}, (15a)
Ω = diag{ωπ−1(1), · · · , ωπ−1(K)}. (15b)

The expectation taken over p(xi)p(zi|xi) is equivalent
to that taken over p(xi)p(uπ−1(i))p(vπ−1(i)) since
the signal and noise terms are independent. In (14),
E‖Σ−

1
2 ((P + Ω∆)x−Ωr) ‖2 is the same as the weighted

sum-MSE in [17] by letting

W = Σ−1, B = Ω∆, and C = Ω, (16)

where W , B and C are well defined in [17], i.e., W is
the weights of the sum-MSE minimization problem in [17],
B is the diagonal weights of the self-interferences, C is the
combination of the scaling factors of the receivers. For fixed
scaled Ω and Σ, the optimization of G is exactly the same as
that in [17]. For fixed scaled G, the optimal Ω and Σ can be
determined by the MMSE estimator of the transmission in (5),
which will be presented explicitly in the following subsection.

C. Iterative Algorithm

For fixed ∆ and Σ, the optimization problem with respect to
G is convex, and it can be solved numerically with softwares.
We define

Ḡ , α−1G, ∆̄ = α−1∆, and Ω̄ , αΩ, (17)

where α represents the scaling factor to meet the relay power
constraint, which will be further discussed at the end of this
section. With (17) and the received signal vector at the users
r in (3), the sum rate in (14) is expanded as

R(Ḡ, α, ∆̄, Ω̄,Σ) = −1

2
Tr
[
Σ−1

(
I + Ω̄∆̄∆̄

H
Ω̄
H

− 2<{Ω̄FḠH(P + Ω̄∆̄)H}+ Ω̄FḠ(HHH (18)

+ γ2I)Ḡ
H
FHΩ̄

H
+ σ2α−2Ω̄Ω̄

H
)]
− 1

2

K∑
i=1

Σi +K.
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Then the problem (7) can be equivalently expressed as

maximize
Ḡ,α,∆̄,Ω̄,Σ

R(Ḡ, α, ∆̄, Ω̄,Σ) (19a)

subject to α2 Tr
[
Ḡ
(
HHH + γ2I

)
Ḡ
H
]
≤ Pr. (19b)

Noting the similarity to the sum-MSE minimization problem,
we develop an iterative algorithm to solve problem (19) as
follows.

1) Optimizing (Ḡ, α) for fixed (∆̄, Ω̄,Σ): For fixed
(∆̄, Ω̄,Σ), the problem in (19) is the same as the one in
[17] by letting W = Σ−1, B = Ω̄∆̄ and C̄ = Ω̄ except for
some additive constants. Thus, from results in [17], the optimal
precoder can be immediately written as Gopt = αḠ

opt with

Ḡ
opt

=

(
σ2

Pr
Tr[Σ−1Ω̄Ω̄

H
]I + FHΩ̄

H
Σ−1Ω̄F

)−1
×

×FHΩ̄
H
Σ−1(P+Ω̄∆̄)HH

(
HHH+γ2I

)−1
(20a)

αopt = P
1
2
r

(
Tr
[
Ḡ
opt
(
HHH + γ2I

)
(Ḡ

opt
)H
]) 1

2

. (20b)

2) Optimizing (∆̄, Ω̄,Σ) for fixed (Ḡ, α): For fixed
(Ḡ, α), we aim to find the optimal 3-tuple (∆̄, Ω̄,Σ) that
maximizes R(∆̄, Ω̄,Σ). We first determine the optimal ∆̄.
From (16) and (17), we see that (18) is equivalent to the sum-
MSE minimizaion problem in [17] by replacing W with Σ−1,
B with Ω̄∆̄ and C̄ with Ω̄. Together with the fact that the
optimal B in [17] is Bopt = [C̄

opt
FḠH]diag, the optimal ∆̄

is given by

∆̄
opt

= [FḠH]diag. (21)

With (21), we obtain ∆opt = α∆̄
opt

= [FGH]diag which
consists of the self-interference weights in the received signal
r. This means that the self-interference is perfectly canceled at
the receiver ends. (Since self-interference is known precisely,
it is rather obvious it should be completely canceled before
detection.)

We next determine the optimal Ω̄ and Σ. Recall that Ω̄
and Σ specify the means and variances of the Gaussian
distributions p(xi|zi) in (11). Given (Ḡ, α, ∆̄), zi and xi are
linearly related by noting z = P T (r−∆x). Thus, from [22],
the a posteriori mean and variance are respectively given by

E[xi|zi] = CxiziC−1zizizi, (22a)

Cxixi|zi = Cxixi − CxiziC−1ziziCzixi , (22b)

where the involved covariances are given by

Cxixi = 1, (23a)
Czixi = αpTi FḠhi, (23b)

Czizi = α2pTi FḠ
(
HHH + γ2I

)
Ḡ
H
FHpi

−α2pTi ∆̄∆Hpi + σ2. (23c)

Therefore, for fixed (Ḡ, α, ∆̄), the optimal Ω̄ and Σ can be
written as

ω̄opti = αCxiziC−1zizi , Σopti = Cxixi|zi , i = 1, · · · ,K (24)

3) The iterative algorithm: The sum-rate optimization
problem (7) can be solved by iteratively solving the above
two subproblems. The procedure is outlined in the following
algorithm.

Algorithm 1.
1: Init: ∆̄ = ∆0, Ω̄ = Ω0, Σ = Σ0;
2: while the sum rate can be improved by more than δ do
3: Compute Ḡ and α using (20);
4: Compute ∆̄, Ω̄ and Σ using (21) and (24);
5: end while
Algorithm 1 converges, as the sum rate is bounded and

monotonically increases in the iterative process. The conver-
gence point depends on the initial point (Ω̄0,Σ0, ∆̄0). We
will discuss the initialization in Section IV.

With Algorithm 1, we could obtain one local optimal
solution with given initial values. If α is not introduced, we
could also iteratively optimize G and (∆,Ω,Σ) and achieve a
different local optimal solution. Which of the two local optimal
solutions is better highly depends on the initial values. In
Section IV, we discuss the initial setup of the proposed iterative
algorithm. In addition, by introducing the auxiliary variable
α, closed-form solutions are available in each iterative step.
In contrast, if α is not introduced, numerical calculations are
needed when solving convex subproblems.

IV. ASYMPTOTIC ANALYSIS

Algorithm 1 only guarantee local optima of the sum-rate
maximization problem. In this section, we carry out asymptotic
analysis and show that, with proper initialization, the proposed
iterative algorithm is asymptotically optimal in the low and
high SNR regimes.

A. Low-SNR Analysis

We start with the low-SNR case. For convenience, we focus
on the limit where the noise levels σ2 and γ2 tend to infinity,
i.e., σ2, γ2 → +∞. The main result is summarized as follows:
the proof is given in our technical report [23] and is omitted
here due to space limit.

Proposition 1. In the limit of σ2, γ2 → +∞, the asymptoti-
cally optimal precoders for sum-rate maximization in (7), with
and without PNC, are identical and can be expressed as

G0 = αḠ
0
, (25)

where Ḡ0 is such that vec(Ḡ0
) is an eigenvector correspond-

ing to the maximum eigenvalue of

Ψ =

K∑
`=1

(h`h
H
` )T ⊗ (FHp`p

T
` F ), (26)

and scalar α is such that the precoder G0 satisfies the power
constraint with equality at the relay.

At low SNR, the optimal precoder is identical with and
without PNC in the limit. This is not surprising because when
the noise dominates the received signal, the benefit of self
interference cancellation is marginal.
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Fig. 2. Throughput comparison of different relaying schemes in the cases
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Lemma 1. As σ2, γ2 → +∞, Algorithms 1 converges to the
same global optimum G0 given in (25).

According to Lemma 1, the point of convergence of Algo-
rithms 1 and is not sensitive to the initial condition in the low
SNR regime.

B. High-SNR Analysis

In the high SNR regime, we are interested in the limit
of σ2, γ2 → 0. The asymptotically optimal precoders are
described as follows, where the proof is given in [23].

Proposition 2. Suppose N ≥ K. In the limit σ2, γ2 → 0, the
asymptotically optimal precoders for sum-rate maximization,
with and without PNC, are identical and can be expressed as

G∞ = F †C−1(P +B)H†, (27)

where C ∈ CK×K is diagonal, and B ∈ CK×K is an all-zero
matrix in the non-PNC case and is a diagonal matrix in the
PNC case.

It is obvious that the precoder in (27) forces all the inter-
ference to zero, and hence is referred to as the zero-forcing
precoder. Proposition 2 reveals that zero-forcing precoding is
asymptotically optimal when the relay has no fewer antennas
than the number of users (N ≥ K). Otherwise, the relay does
not have enough degree of freedom to force interference seen
by all users to be zero. In this case, we may schedule fewer
users to allow zero forcing. Then, Proposition 2 can be applied
to yield the optimal precoder.

Lemma 2. Suppose N ≥ K. As σ2, γ2 → 0, Algorithms 1
converges to G = F †C−10 (P +B0)H† for any initial values
B = B0 and C = C0.

Lemma 2 suggests that, in the high SNR regime, the
convergence point of Algorithms 1 highly depends on the
initial conditions. Therefore, it is necessary to carefully choose
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Fig. 3. Throughput comparison of network-coded relaying schemes and their
non-PNC relaying schemes in the cases of four users.

B0 and C0 in the high SNR regime. At high SNR, the
sum-rate maximization problem reduces to a convex problem,
which can be easily solved. The details are in [23].

To summarize, our asymptotic analysis reveals that the pro-
posed iteratives in Section III converge to the asymptotically
optimal solution in (25) at low SNR, and that this convergence
is insensitive to the initial conditions. At high SNR, Algo-
rithms 1 converges to the asymptotically optimal zero-forcing
form in (27), but could perform poorly depending on the
initial conditions of B and C. Therefore, in implementation,
we set the initial value of Algorithms 1 to the high-SNR
optimal/suboptimal solutions of B and C (cf. Propositions
5 − 8 in [23]). The performance of these algorithms are
presented in the next section.

V. NUMERICAL RESULTS

We evaluate the sum MSE and the sum rate of the proposed
MIMO switching schemes. In our simulations, we assume unit
transmit power for each user and the relay, i.e., Pr = 1, and the
noise levels at the relay and at the users are the same, i.e., σ2 =
γ2. The channel SNR is then defined as SNR = 1/σ2 = 1/γ2.
Numerical results not presented here indicate that the system
performance is not sensitive to the switching pattern. Thus, we
only present the numerical results for a specific permutation
P = [e2, e1, e4, e3]. We assume Rayleigh fading, i.e., the
elements ofH and F are independently drawn from CN (0, 1).
Each simulation point in the presented figures is obtained by
averaging over 105 random channel realizations.

The key findings are summarized as two observations below.

Observation 1: The iterative sum-rate maximization (It-Rate-
Max) algorithm achieves significant throughput gains over the
existing relaying schemes, such as ZF/MMSE relaying [10],
[11] and the network-coded relaying [11], [14].

Fig. 2 illustrates the throughput performance of various
approaches including the proposed iterative sum-rate max-
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imization scheme with PNC (It-Max-Rate PNC), the zero-
forcing scheme without PNC (ZF non-PNC) in [10], [11],
the MMSE scheme without PNC (MMSE non-PNC) in [10],
[11], the balanced PNC scheme proposed in [11],2 and the
zero-forcing scheme with PNC (ZF PNC) in [13]. From
Fig. 2, the proposed It-Rate-Max PNC algorithm significantly
outperforms the other schemes throughout the SNR range
of interest. Specifically, the proposed algorithm outperforms
the MMSE non-PNC scheme, especially in the high SNR
regime, since the former utilizes the PNC technique and jointly
optimizes the precoder and the receive filter. The proposed
algorithm also outperforms the zero-forcing schemes in [10],
[11], [13], since the latters suffer from noise enhancement.
Furthermore, we also see that the proposed iterative max-
rate scheme has roughly 1.5 dB gain over the balanced PNC
scheme in [11] throughout the whole SNR range of interest.

Observation 2: The PNC schemes achieve considerably higher
throughputs than their corresponding non-PNC schemes, es-
pecially at medium and high SNR.

Fig. 3 illustrates the PNC gain for the proposed It-Rate-
Max approaches, as well as for the zero-forcing relaying
schemes in [8], [13] and the iterative sum-MSE minimization
scheme (It-Min-MSE) in [17]. At low SNR, the proposed It-
Rate-Max algorithms with and without PNC, exhibit roughly
the same throughput performance, which numerically verifies
Proposition 1. At high SNR, the proposed schemes with PNC
achieve about 6 dB gain over the best non-PNC schemes (i.e.,
the It-Rate-Max scheme without PNC) at the sum rate of 8
bits per symbol period.

VI. CONCLUSION

In this paper, we have proposed an approach to iteratively
solve the sum-rate maximization problem for the wireless
MIMO switching networks with and without PNC. We proved
that although the proposed algorithms are suboptimal (local
optimal) in general, they can converge to asymptotically
optimal solution in the low SNR regime regardless of the initial
conditions, and near optimal solution in the high SNR regime
with properly setting initial conditions. Numerical results show
that the proposed iterative algorithms significantly outperform
the existing ZF and MMSE relaying schemes for MIMO
switching for all SNR.

This paper makes several assumptions to simplify the design
and analysis of the MIMO switching schemes. For example,
we assume that each user has a single antenna, and full
channel state information is available to the relay. It will be
of theoretical and practical interest to investigate the impact
of relaxing there assumptions on the MIMO switching design.
We will look into these issues in future work.

2A PNC scheme was proposed in [14] as well, which used the same block-
diagonalization technique as that in [11]. However, the scheme in [11] induced
an extra step to balance the channel gain of each user, which outperformed
the scheme in [14]. Thus, we show the result of [11] in Fig. 2 only.
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