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Abstract: Slotted resampling transforms an irregularly sampled process into an equidistant missing-data problem. Equi-

distant resampling inevitably causes bias, due to aliasing and the shift of the irregular observation times to an equidistant 

grid. Taking a slot width smaller than the resampling time can diminish the shift bias. A dedicated estimator for time se-

ries models of multiple slotted data sets with missing observations has been developed for the estimation of the power 

spectral density and of the autocorrelation function. The algorithm estimates time series models and selects the order and 

type from a number of candidates. It is tested with benchmark data. Spectra can be estimated until frequencies higher than 

100 times the mean data rate. 

1. INTRODUCTION 

 Continuous-time processes are sometimes observed at 
irregular observation times. Irregular intervals may be 
caused by wireless sensor networks of various applications, 
from astronomy to remote weather stations that are triggered 
by atmospheric events. Irregular sampling may arise natu-
rally in geophysics, heart rate analysis [1], astronomy [2], 
and climate research [3]. LDA (laser Doppler anemometry) 
is an important application in measurement science, where 
the velocity can only be measured if a seeding particle passes 
through the measurement volume [4]. 

 The continuous spectral density of irregular data can be 
computed at an arbitrary number of frequencies with the 
method of Lomb-Scargle [5, 6]. That method fits sine waves 
of selected frequencies to the data by minimizing the sum of 
squared errors. Applying this method to equidistant data 
would give the same result as the periodogram, if equidistant 
frequencies are chosen. However, various examples show a 
significant bias in the spectral estimates if the method is used 
for irregular data [4].  

 The true spectral density of continuous-time irregular 
data is infinitely wide in the frequency domain. A maximum 
likelihood (ML) approach has been described for the estima-
tion of continuous-time AR models [7]. However, inspection 
of the surface of the likelihood, computed with that algo-
rithm, as a function of the AR parameters showed that it was 
very rough [8], with many local maxima. Numerical prob-
lems prevented the convergence of the continuous-time ML 
estimates to a useful model for irregular data. No general 
applicable and reliable continuous-time spectral estimator is 
available yet for practical data. 

 Slotted autocorrelation estimation discretizes the distance 
between two observations to slots of width . The product of 
two irregular observations contributes to the slotted autocor-
relation at a certain lag k  if their distance is between (k – 
0.5)  and (k + 0.5)  [9]. Unfortunately, slotted correlation  
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estimates are not positive semi-definite and they do not ful-
fill the theoretical requirements for being a true autocorrela-
tion function. Improvements have been introduced: local 
normalization [9] and fuzzy slotting. The spectral variance 
has been reduced further with variable windows [9]. How-
ever, no known variant of the estimated slotted autocorrela-
tion functions is positive semi-definite. All methods fail to 
consistently produce a spectrum that is positive for all fre-
quencies. The autocorrelation fit of slotting or its spectral 
quality is a matter of taste, not of any objective quality 
measure.  

 A large group of estimators uses resampling of the ir-
regular data at equal time intervals. Equidistant resampling 
techniques replace an irregularly sampled continuous-time 
signal by an equidistant discrete-time signal, with only ob-
servations on a grid. After resampling, the discrete-time 
equidistant data can be analyzed with the conventional spec-
tral analysis techniques [4] or with modern time series mod-
els [8]. Sample and Hold (S+H) reconstruction uses the true 
measured values of the irregular observations at shifted 
equidistant times. Intuitively, it seems to be preferable to 
interpolate the irregular observations and to substitute the 
value of the reconstructed signal on the grid times. This idea 
has been tested with simple linear interpolation and with 
more sophisticated methods like fractal reconstruction or the 
projection onto convex sets [10]. The conclusion was that the 
visual appearance of the reconstructed signal looked promis-
ing, but the bias of spectral estimates could not be improved 
in comparison with S+H resampling [4, 10]. 

 S+H reconstruction is equivalent to low-pass filtering 
followed by adding white noise [11]. Spectral estimates are 
severely biased at frequencies higher than f0 /2  where f0 
denotes the mean data rate. The filter error at that frequency 
is already 50 % [11]. These effects can in theory be elimi-
nated by using a refined S+H estimator and subtracting the 
reconstruction noise from the spectral estimate [4]. This re-
finement explicitly uses a Poisson distribution for the obser-
vation instants to improve the estimate. It is not applicable to 
arbitrary distributions of arrival times. Refinement and noise 
suppression can take place in the time [4] or in the frequency 
domain [12]. If applicable, it can enlarge the useful fre-
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quency range of the spectral estimates somewhat, from f0 /2  
to a maximum of perhaps about f0 [12].  

 Equidistant resampling will sometimes substitute the 
same irregular observation at more grid nodes. This occurs if 
the maximum distance between the irregular observations is 
greater than the resampling distance Tr. This multiple use of 
the same irregular observation creates a very large bias in 
correlation function and spectrum. That specific bias term 
can be avoided with the slotting principle. The slotting prin-
ciple can be applied to the nearest neighbor (NN) resampling 
of irregular data on a regular time grid [8]. Slotting gives an 
equidistant signal, with data missing at those grid nodes that 
are further than half the slot width w away from an actual 
irregular observation. An observation is only accepted at a 
node if its distance is less than w/2. Bias is caused by the 
spectral aliasing of high frequencies and by the shifting the 
observation instants. The bias can be reduced by taking a 
higher resampling frequency 1/Tr or by making the slot 
width w smaller than Tr in multi-shift slotted NN resampling 
[8]. For w = Tr /M, M different discrete time series are ob-
tained by shifting over the distance w. Those M signals can 
be used simultaneously to estimate time series models [8]. 
The highest spectral frequency 1/2Tr and the aliasing bias 
can remain the same while the smaller w reduces the shift 
bias. 

 Spectral estimation is much simpler for equidistant sig-
nals with data missing for than irregular data. The discrete-
time spectral density has a finite frequency interval, until 
half the resampling frequency. Equidistant missing-data 
problems have been investigated recently [13]. For missing 
data, Jones described an efficient method to calculate the 
true likelihood for autoregressive (AR) processes [14]. In 
practical computations, that has much more favorable prop-
erties than his continuous algorithm [7]. An automatic time 
series algorithm with AR, moving average (MA) and com-
bined ARMA models outperformed all other methods that 
have been described for missing-data problems [13]. This 
best performing method for missing data, with AR, MA and 
ARMA models as candidates for selection, can be applied to 
irregular data, if they are resampled with the multi-shift slot-
ting principle [8]. Due to the bias caused by aliasing and by 
shifting the irregular times to a grid, order selection has only 
biased models as candidates. The ARMAsel-irreg algorithm 
[8] has been developed with simulated data as an automatic 
spectral estimator for irregular data. The acronym ARMAsel-
irreg denotes the automatic selection of the best fitting order 
and type from AR, MA or ARMA candidate models. The suf-
fix irreg denotes irregularly spaced data. The algorithm is 
available at the internet [15]. Sometimes, a correction 
method can reduce the bias of the selected time series model. 

 A comparison of ARMAsel-irreg and the slotted correla-
tion method has been reported [16]. This paper studies the 
quality of automatically selected time series models for the 
resampled irregular data. Benchmark data from a website 
with LDA examples [17] have been used as a test signal. 
This facilitates a future comparison with the accuracy of 
existing or new spectral estimators that can be applied to the 
same irregular benchmark data. The selected and corrected 
spectra are not based on any assumption about the sampling 
scheme or the distribution of the irregular intervals between 
data. Important questions are the minimum required sample 

size to obtain accurate spectral estimates and the highest 
frequency that can be estimated from given irregular data. It 
will be verified whether a bias correction that removes AR 
poles in the high frequency range can be used automatically, 
without adverse effects for true spectral details. 

2. TIME SERIES MODELS  

 A discrete-time ARMA( p, q) model for equidistant dis-
crete-time observations xn can be written as [18, 19] 

1 1 1 1 ,n n p n p n n q n qx a x a x b b+ + + = + + +         (1) 

where n is a purely random process of independent identi-
cally distributed stochastic variables with zero mean and the 
innovation variance 

2
. It is assumed that the data xn are a 

stationary stochastic signal. For resampled continuous-time 
data with resampling distance Tr, the signal xn is the observa-
tion at time nTr. Other values for Tr would give different 
parameters and 

2
 in (1) for the same continuous-time sig-

nal. Theoretically, every stationary stochastic discrete-time 
process can be described with an AR, MA or ARMA model 
[19]. AR( p) models have q = 0 and p = 0 gives MA(q). The 
parameters themselves are not important, but they act as a 
parametric description of spectrum and autocorrelation func-
tion. The only requirement to apply this discrete-time model 
(1) to continuous-time irregular data is that the power spec-
tral density in the discrete-time model is given by a station-
ary process. 

 The power spectral density h(  ) of the model (1) as well 
as its the frequency range depend on the resampling distance 
Tr. The spectrum of the ARMA( p, q) process is fully deter-
mined by the parameters in (1) together with the variance 

2
 

and Tr 

2
1

1

2

1 e

( ) ,
22

1 e

q
j i

i

ir

p r r
j i

i

i

b
T

h
T T

a

=

=

+

= <

+

.         (2) 

 In addition, formulas have been given to compute the 
autocorrelation function at lags kTr directly from the parame-
ters of (1) [18]. For a given signal xn, the parameters in (1) 
can in principle be estimated by minimizing the sum of 
squares of the residuals ˆ

n
, which replace the innovations n 

in (1) if that equation is used for estimation. In practice, 
other estimation algorithms than least squares are often pre-
ferred [18]. The Matlab program ARMAsel has been devel-
oped for the automatic estimation of the AR and MA pa-
rameters and is available [15]. The automatic, approximate 
maximum likelihood program ARMAsel-mis estimates the 
AR and MA parameters of equidistant missing-data prob-
lems [15]. Some modifications of that program to ARMAsel-
irreg for irregular data have been given [8].  

 The Generalized information criterion GIC(p) is a miss-
ing-data AR order selection criterion [8]: 

GIC( ) .p LH p= +            (3) 

 It uses twice the minimized negative log likelihood, de-
noted LH, with a penalty factor  that depends on the miss-
ing fraction: 3 for less than 25 % missing, 5 for more than 75 
% missing and 4 in the range between. The missing fraction 
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is the percentage of empty grid points after slotted resam-
pling. The fraction of non-empty grid points after resampling 
with the period Tr is approximately given by Tr / T0 where T0 
is the average distance between samples. T0 is equal to 1/f0 
and f0 is known as the mean data rate.  

 The same criterion (3) with the fixed penalty 3 can be 
used for MA(q) or ARMA( p, q) models 

GIC( ) 3( ).p q LH p q+ = + +            (4) 

 For MA models, the number of estimated parameters is q, 
with p = 0. 

 The accuracy of equidistant time series models can be 
evaluated with the prediction error or with the spectral dis-
tortion. That is the integral of the squared difference of the 
logarithms of the true and estimated spectra. Those and still 
several other measures are equivalent in practice [18]. The 
prediction error PE( p+q) of an ARMA( p, q) model is de-
fined then as the squared error of the one step ahead predic-
tion with the model in new fresh data. The normalized scaled 
version of the expectation PEs( p+q) can be computed for 
benchmark signals without the generation of new data, by 
using only the known parameters and variance 

2
 of the true 

generating process [18]:  

[ ]
s 2

E PE( )
PE ( ) .

y p q
p q

+
+ =            (5) 

 The expectation Ey in (5) denotes the expectation if an 
infinite length of fresh data would be used for the computa-
tion of PEs( p+q). The minimum of the expectation of the 
normalized PEs( p+q) with respect to the estimated parame-
ters of an efficiently estimated unbiased ARMA( p, q) 
model, with p + q parameters from equidistant data, is given 
by 

[ ] ( )sE PE ( ) 1 / .p q p q N+ = + +           (6) 

 Unbiased models have at least all truly non-zero parame-
ters included, and furthermore they do not have any other 
bias source. The expectation for biased models will be 
greater than (6) and generally not depend on the sample size 
N. However, the PEs( p+q) can be used as an objective accu-
racy measure for all time series models of irregular data, 
biased as well as non-biased [18]. For an efficient computa-
tion of (5), the true process parameters should be known for 
the frequency range of interest that is determined by the 
highest frequency 1/2Tr. That information is available for the 
benchmark data that will be used in this paper [17]. 

3. ARMASEL-IRREG 

 In a first application of the ARMAsel-irreg algorithm to 
simulated irregular data, good results have been obtained for 
AR models where the order was known and less than five 
[8]. It has been demonstrated that using very high resampling 
rates is not a problem for the ARMAsel-irreg algorithm. The 
spectra of bubbly flow data [20] have been analyzed until 
frequencies that are more than 250 times higher than the 
mean data rate f0. Good results could be found for low order 
AR orders for bubbly flow data. This showed that the algo-
rithm can perform well until very high frequencies, even if 
the time instants of the observations are not Poisson distrib-
uted. The equidistant S+H resampling with refinement can 

only yield accurate spectra until about f0 for Poisson distrib-
uted sampling [12]. The rough S+H spectra without refine-
ment are only reliable until about f0 /2  [11].  

 Slotted resampling replaces irregular sampling by equi-
distant sampling on a grid, with data missing. The missing 
fraction is determined by the number of empty grid points. It 
is approximately inversely proportional to the resampling 
distance Tr which determines the total number of grid nodes. 
Shifting the irregular observation times to a grid introduces 
shift bias and smaller shifts give less bias. The shift bias has 
been reduced by making w smaller than Tr [8] with multi-
shift slotted NN resampling. The highest spectral frequency 
1/2Tr with its aliasing bias can remain the same while the 
smaller w still reduces the shift bias. Making Tr a factor M 
times smaller gives a M times larger frequency range. 
Roughly, the AR model order should become about M times 
higher for the larger range to describe the same level of de-
tails in the smaller original frequency range belonging to Tr. 
However, the computational time and non-linear conver-
gence problems of the likelihood calculation increase 
strongly with a greater missing fraction that belongs to a 
smaller Tr. A smaller slot width for a constant value of Tr 
reduces the shift bias without influence on the missing frac-
tion. Taking w = Tr /M, with integer M, gives disjunct inter-
vals where some irregular times ti are not within any slot. 
Therefore, multi-shift slotted NN resampling (MSSNNR) 
has been developed, where M different equidistant missing 
data signals are extracted from one irregular data set. The 
equidistant sampling instants nTr+ mw with non empty 
places for the M signals are given by 

nTr+ mw–0.5 w< ti  nTr+ mw+ 0.5 w, m = 0, 1,..., M-1,  (7) 

where ti denotes an irregular sampling instant. All slots of 
width w are connected in time. This MSSNNR signal is the 
input signal for ARMAsel-irreg, for M  1. Those M signals 
from a single resampled irregular data set can be used simul-
taneously as if they are independent [8].  

 The first source of bias is due to aliasing. That bias is a 
contribution of frequencies above 1/2Tr to the discrete time 
frequency range below 1/2Tr [19]. The shift of irregular 
times to a grid introduces a second source of bias. A formula 
for the shift bias of MSSNNR has been given for Poisson 
distributed sampling instants [8, 21]. The bias in the fre-
quency domain is similar to adding discrete-time white noise 
to the data. It has not much influence on the strong parts of 
the spectrum but it eliminates all weak parts below the noise 
level. It can be negligible for smooth spectra, but it will be 
influential for spectra with steep spectral slopes and deep 
valleys. 

 The smallest distances that are actually found between 
the irregular data give an upper limit to the frequency range 
and the smallest resampling distance that can be used. At 
least a few close observations with distance about Tr are re-
quired to estimate spectra up to the frequency 1/2Tr. This is a 
hard limit for the highest resampling rate that can be used. 

 A comparison of the estimated spectra of time series 
models and of slotted autocorrelations has been made [16]. 
The slotted correlation never produced a spectrum that was 
positive over the whole frequency range. No positive semi-
definite estimator with slotted correlations is available in the 
literature. Next to the negative spectral parts, always local 
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spectral peaks were found. That hampers the interpretation of 
the slotted autocorrelation spectra. However, in some exam-
ples and in a small part of the frequency range where the 
spectrum is strong, the spectra may look well for large sam-
ple sizes [9]. This is a subjective quality measure. Objective 
accuracy measures like PEs of (5) are based on or equivalent 
to the logarithm of the spectrum and they cannot be applied 
to spectra with negative parts. This paper concentrates on the 
objective quality in the whole frequency range, with the PEs 
of (5). 

 Theoretically, the ARMAsel-irreg time series algorithm 
can be used for all irregularly sampled stationary stochastic 
continuous-time signals, independent of the sampling distri-
bution. The sampling instants must preferably be independ-
ent of the values of the measured signal itself. Irregularities 
in the arrival times will not distort the spectral estimates of 
ARMAsel-irreg. However, velocity bias is an example in 
LDA analysis where the probability of an observation de-
pends on the amplitude of the signal. It has been observed 
that this type of bias may sometimes distort the estimated 
ARMAsel-irreg spectra [21]. Also examples without any 
distortion have been seen and no general rule can be given 
yet for amplitude-dependent sampling. 

 The bias due to aliasing and to the shifting of the irregu-
lar times to a grid can have a peculiar effect in order selec-
tion. Order selection has been developed to reduce the trun-
cation bias [21] that is caused by incomplete lower order 
models without statistically significant parameters. Roughly 
speaking, the selected model order includes all significant 
parameters that give a reduction of the likelihood that is 
greater than the statistical inaccuracy of estimating those 
parameters. Sometimes, models are selected that look appar-
ently worse than other candidate models that are not se-
lected. It has been verified that no errors have been made in 
the computation of the likelihood function that is minimized 
in the estimation of the parameters of AR models [8]. An 
explanation can be given. For spectra with strong peaks in 
the lower frequency range, low order AR models describe 
the strongest spectral details that are found at low frequen-
cies. The estimated spectra at higher frequencies are just an 
extrapolation of the strong low order model parameters esti-
mated for primarily the low frequency range. The extrapola-
tion has steep slopes at high frequencies. Higher order esti-
mated models will correct that by introducing additional 
peaks in the high frequency range. Therefore, higher order 
models can give a closer approximation to the spectrum with 
shift and aliasing bias included. Order selection has only 
biased models as candidates, with the observations shifted to 
a grid node. It has been found already that the removal of 
peaks of the selected model in the highest part of the dis-
crete-time frequency range could be beneficial to reduce the 
shift bias. This removal will be tested here as an additional 
feature of the automatic ARMAsel-irreg algorithm. One 
would like to select the estimate that is closest to the true 
spectrum, without the resampling bias of aliasing and time 
shifting, but that is not possible. Order selection has only 
candidates with bias available. 

4. BENCHMARK DATA, TYPE 5 

 Several test signals can be generated with a benchmark 
generator; the generating program and its description are 

available online [17]. Spectral type 5 of the benchmark gives 
an excellent example to demonstrate the possibilities of 
ARMAsel-irreg, because low order AR models give the best 
fit to those simulation data, until high frequencies. A strong 
peak dominates the spectrum. No significant details are pre-
sent in the high frequencies of the true spectrum, just a steep 
constant slope in the log-log representation of the spectrum. 
Therefore, the effect of aliasing is very small here and all 
details that are found in estimated spectra at higher frequen-
cies are wrong. They are probably caused by the bias due to 
the shifting of observation times. 

 Fig. (1) shows the true and two estimated spectra of 100 
irregular observations. The not corrected spectrum cannot 
belong to a sampled continuous-time spectrum, unless it is 
very strongly aliased. Continuous spectra are infinitely wide 
and should decrease at higher frequencies. Otherwise, the 
integrated power over the whole frequency range cannot 
remain finite. Therefore, the selected AR(3) spectrum has a 
spurious peak at the end of the discrete-time frequency 
range, which is caused by the shifting bias [21]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). True benchmark spectrum of type 5 until 1925.6 Hz, the 

automatically selected AR(3) estimate for Tr = T0 /4 and w = Tr /2, 

with PEs(3) = 1.834 and the correction to the ARMAsel-irreg AR(2) 

estimate with PEs(2) = 1.072. The estimated AR(2) model had 

PEs(2) = 1.094. 

 

 The correction to lower order models is based on elimi-
nation of specified poles of the selected AR polynomial 
Ap(z). That is defined as 

1

1( ) 1 .p

p pA z a z a z= + + +            (8) 

 Poles of Ap(z) = 0 with a positive real part belong to 
peaks in the first half of the frequency domain from 0 to 
1/(4Tr) Hz and poles with negative real parts belong to fre-
quencies from 1/(4Tr) until 1/(2Tr). The selected AR(3) 
model has a pole on the negative real axis. That pole causes 
the peak in Fig. (1) at the end of the frequency domain. The 
correction consists of giving all poles with a negative real 
part the value zero. Afterward, the AR parameters are com-
puted from the remaining poles, which are all in the first half 
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of the discrete-time frequency range. In this way, the order 
of the selected model is reduced, but only if there are esti-
mated poles with negative real parts. In all simulation runs of 
the benchmark spectrum in Fig. (1) where AR(3) has been 
selected, the PEs value improved very much by removal of 
the negative pole and became better than the estimated 
AR(2) model. The explanation is simple. In equidistant AR 
estimation, reflection coefficients for increasing model or-
ders are estimated successively, where all previous reflection 
coefficients remain the same [18]. In missing-data or irregu-
lar sampling problems, all reflection coefficients are esti-
mated simultaneously and vary for increasing orders [13]. 
The AR(2) model has been estimated for the whole fre-
quency range. The AR(3) model, selected in Fig. (1), has an 
additional pole at the highest frequency. That pole has 
mainly influence on the last part of the frequency range. That 
gives the opportunity for the first two parameters to estimate 
a better description for the first part of the frequency range. 
That follows from the fact that the corrected lower order 
AR(2) model almost always gives a smaller PEs(2) than the 
AR(2) model that has been estimated directly from the data. 
This has been observed in simulations with many different 
examples: the best lower order models are found from cor-
rected higher order models [16].  

 The estimated PEs value of the corrected model, with 
reduced shift bias, is very close to the PEs(2) = 1.065 that 
can be computed from the parameters of the truncated true 
aliased AR(2) process. That means that the best possible 
AR(2) model could already be estimated from only 100 ir-
regular observations. It would not become better if more data 
would be available, because of the bias. The true order of the 
generating process is AR( ), with small and very small pa-
rameters for all orders greater than 5. The estimated AR(3) 
model that was selected here was much less accurate for 
those 100 observations due to the variance of estimation 
from very small samples, with PEs(3) = 1.834. For very large 
data sets, with N > 100000, AR(3) would become selected 
more often, with as lower limit PEs(3) = 1.004 for the trun-
cated true AR(3) process parameters. The influence of alias-
ing is very small in this example. The PEs between the con-
tinuous spectrum and the aliased spectrum is only 1.015 for 
the frequency range of Fig. (1). 

 The simulation of Fig. (1) presents only one possible 
realization from many runs. For other realizations of 100 
irregular observations with the given mean data rate, the 
AR(2) model was selected in about 90% of all runs, some-
times ARMA(2,1) was selected and AR(3) was selected in 
about 10% of the runs. There was always a spectral peak at 
the end of the frequency range if AR(3) was selected. The 
value for PEs(2) was always lower than 2 for the selected 
AR(2) model; it was often about 1.20 and only occasionally 
a value greater than 1.5 has been found. However, it was 
never less than 1.065, because the value for the AR(2) model 
is always greater than the value 1.065 that belongs to the 
truncated true aliased AR(2) process. Only higher order 
models can have a smaller value for PEs. 

 PEs(0) is 92.8 for this example and PEs(1) is about 10.9. 
Therefore, those low model orders with very poor quality are 
never selected for 100 observations or more. The estimation 
and order selection are easy in this example because the like-
lihood LH and the prediction error are so much reduced by 

the estimated parameters of orders 1 and 2. For N > 8, the 
AR(2) model was selected for a particular run, with PEs(2) 
less than 2 for all sample sizes. For N  8, order 0 was al-
ways selected. In other simulation runs with the same proc-
ess, the AR(0) was sometimes selected for N about 20. For N 
> 50, always models with a spectral peak near 220 Hz have 
been selected. It should be noticed that 50 irregular observa-
tions is a very small sample size for irregular data, particu-
larly if resampling at a frequency higher than the mean data 
rate is used. The variability of spectral estimates for small 
irregular samples is much greater than for the same sample 
size in equidistant observations. That is mainly caused by the 
actual shift of the most influential irregular observations, 
which are those at inter-arrival distances of only a few times 
Tr. The actual distribution of the irregular sampling times has 
a strong impact in very small samples. 

 It seems to be a limitation that poles with a negative real 
part are always eliminated by the correction of ARMAsel-
irreg. However, the highest spectral frequency becomes 
twice larger by taking a double resampling rate. Details in 
the second half of the frequency domain are moving to the 
first half for the higher resampling rate. In practice, they can 
always be included by using a higher resampling rate. In 
simulations, like in this paper, it is known where spectral 
details can be expected. If the range of interesting frequen-
cies is unknown, as happens in practical data, the frequency 
range can be extended by repeatedly doubling the resampling 
rate. Unfortunately, higher order models are required for the 
more densely resampled data. The best compromise is still 
an open question. 

5. BENCHMARK DATA, TYPE 2 

 Spectral type 2 of the benchmark is a more challenging 
example. It gives a spectrum with a constant negative slopes 
in the logarithm of the spectrum, that is given by ~2 

– f / 300 

[17]. Extra difficulties in the sampling scheme have been 
applied in the generated data to verify that ARMAsel-irreg is 
not sensitive to the (not Poisson) sampling distribution. The 
chosen options are [17] 

• drop outs, where some periods in the time have much 
less observations, which occurs in LDA practice in 
bubbly flow 

• varying data rate, which is common in practice 

• processor delay, to simulate that only one particle at a 
time can be observed in the finite measurement vol-
ume of LDA 

• low data rate 

• much less than 100 000 data, which is the default 
value 

 It is always possible to estimate 10 AR parameters, often 
20 can be estimated and occasionally 50 from irregular data. 
However, the computing time increases dramatically and a 
more efficient computer program would be required to esti-
mate so many parameters. However, the non-linear search of 
50 parameters simultaneously will always remain time con-
suming. Models for irregular observations cannot be esti-
mated recursively, in contrast with equidistant observations 
with efficient recursive algorithms [18]. The estimated pa-
rameters of the lower order models have an extra missing-
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data bias as long as the current model order is lower than the 
true order and can only serve as non-linear starting values for 
higher order models [13]. 

 It has been verified that drop outs, processing delay and 
varying low data rates have hardly any influence on the ac-
curacy of the spectral estimates of ARMAsel-irreg because 
the true process is stationary stochastic. No other positive 
semi-definite algorithms have this property to the author’s 
knowledge. Furthermore, other algorithms cannot reliably 
estimate spectra at frequencies much higher than the mean 
data rate and they require many more data [4]. 

 Fig. (2) gives the true continuous spectrum in the chosen 
frequency range, the aliased true spectrum that belongs to 
that range and the selected AR(1) spectrum. The AR(1) pole 
is positive and no correction takes place. The spectrum has 
no strong details and is rather flat. The values for the trun-
cated true aliased spectrum are PEs(0) = 1.1441, PEs(1) = 
1.0007 and PEs(2) = 1.0006. It would require much more 
than 10000 equidistant observations to let the AR(2) model 
be statistically significant in (6). PEs values are computed 
with the aliased true process as reference. That is done be-
cause the aliasing effect cannot be reduced by filtering in 
irregularly sampled data. It will always be present in esti-
mated spectra if equidistant resampling is used. The PEs of 
the true continuous spectrum from 0-1000 Hz is 1.0183 in 
Fig. (2). In almost all simulation runs, the estimated spec-
trum of the selected model is much closer to the aliased 
spectrum than to the true continuous-time spectrum. 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). True benchmark spectrum of type 2 until 1000 Hz, the 

automatically selected AR(1) estimate for Tr = T0/20 and w = Tr, 

with PEs(1) = 1.0007 and the correction that is identical with 

AR(1). 

 

 From 1000 irregular observations, AR(1) is selected in 
the majority of the simulation runs, with PEs(1) values be-
tween 1.0007 and 1.03. In about 10 % an MA(1) model was 
selected, with PEs(1) about 1.05. Sometimes AR(0) was se-
lected, although the accuracy of the AR(1) estimate was bet-
ter. In those cases, the likelihood had a peculiar behavior due 
to the deviation from the Poisson scheme, the drop outs and 
other irregularities. However, taking N = 900 or N = 1100 
observations from the same simulation runs would generally 
select the AR(1) model with (3). This demonstrates the sen-

sitivity of the likelihood function to the precise irregular ob-
servation times in those examples. If N is less than 500, 
AR(0) is more often selected and for still smaller sample 
sizes, AR(0) is almost always selected for this benchmark 
example. N > 1000 will generally select the AR(1) model. 
The accuracy of the AR(1) model is very good and the shape 
of the AR(1) spectrum is similar to the shape of the aliased 
spectrum. Therefore, higher order models are no close com-
petitors in order selection in this example. 

 The missing fraction is 95 % for w = Tr, with resampling 
at 20 times the mean data rate. Taking w = Tr/2 or smaller for 
the same 1000 data would give the white noise AR(0) model 
as the result of order selection. A smaller w gives a larger 
missing fraction and that is not necessary in this example 
because the shifting bias is very small here. Shift bias is only 
important in spectra with a greater dynamic range, with large 
differences between strong and weak parts of the spectrum, 
e.g. greater than a factor 1000. In most simulation runs with 
N = 1000, the spectra of AR models of orders 1 and 2 were 
smooth, AR(3) had sometimes a spurious peak at the end of 
the frequency range and higher order models were full of 
spurious details. However, the high order models were al-
most never selected. Fig. (3) gives an example of the esti-
mated spectra until the AR order 7. The spectra of orders one 
and two are very accurate. AR(1) was selected. Spectra of 
AR orders three and higher are irregular, with peaks in the 
second half of the frequency range. The fit of estimated 
models of orders five and higher is worse than the fit of the 
white noise AR(0) model.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). True benchmark spectrum of type 2 until 962 Hz and the 

estimated AR spectra for the orders 1 to 7, Tr = T0/20 and w = Tr, 

The spectra are shifted with a factor 2 to enhance visibility of de-

tails. AR(1) was selected. The PEs was 1.0015, 1.0020, 1.1046, 

1.1115, 1.1559, 1.3920 and 1.7510 for orders 1 to 7, respectively. 

PEs(0) = 1.144. 

 

 The behavior in Fig. (3) of estimated models as a func-
tion of the model order is also more or less representative for 
other examples. The first parameters are quite accurate if 
strong details are present in the true spectrum, like in Fig. 
(1). The spectra of Fig. (2) require more observations to give 
accurate parameter estimates. If all significant details are 

 
 



Spectral Analysis of Irregularly Sampled Data The Open Signal Processing Journal, 2008, Volume 1    13 

included, the parameter estimates for higher orders are quite 
unpredictable. This occurs for orders greater than 3 in Fig. 
(1) and for orders greater than 2 in Fig. (2).  

 Only for a few simulation runs, MA or ARMA models 
have been selected in the two examples. However, if data are 
generated with true MA or ARMA processes, those model 
types are better than AR and they are often selected. The MA 
and ARMA models are estimated from the parameters of AR 
models as an intermediate model in ARMAsel-irreg [8], 
[18]. They are computed very fast in comparison with the 
AR parameters that are found by computing the likelihood 
for the given data. Therefore, ARMAsel-irreg will automati-
cally compute as many MA and ARMA models as can be 
done with the estimated AR parameters [18].  

 The two examples show that ARMAsel-irreg automati-
cally selects the correct spectral shape for very small data 
sets at high resampling rates. The estimated spectra always 
look like the biased true aliased spectra. The influence of the 
aliasing bias is generally much greater than that of the esti-
mation variance. The variance diminishes if more observa-
tions are available, but the bias remains the same. Therefore, 
the quality of estimated spectra of ARMAsel-irreg does not 
improve much if at least a minimum number of observations 
is available. 

 A known lower limitation for the sample size N for a 
certain resampling rate is that at least about 5 or 10 pairs of 
observations with distance Tr or smaller should be available. 
Otherwise, N is too small, or the resampling time has been 
chosen too small or the processor delay is too large. For the 
resampling distance  times the average distance T0 between 
irregular observations, the effective number of observations 
is about N if the observation times have a Poisson distribu-
tion. The effective number of observations is a measure for 
the number of pairs at distances Tr, 2Tr, … and so on. 

 A simulation sample of N = 5000 observations have been 
generated from the benchmark true spectrum of Fig. (2), 
with the mean data rate f0 = 10 Hz. The irregular sampling 
had a Poisson distribution. Those data have been resampled 
with 200f0 to have the same frequency range until 1000 Hz 
as in Fig. (2). The missing fraction was now 99.5% and the 
effective number of observations at distance Tr was 28. 
ARMAsel-irreg selected the AR(1) model with PEs(1) = 
1.0078.  

 A still less densely sampled example with N = 50000 
observations with mean data rate f0 = 1 Hz, resampled with 
2000f0 have the missing fraction 99.95% and the effective 
number of observations at distance Tr was 25. ARMAsel-
irreg selected the AR(1) model with PEs(1) = 1.012 for those 
sparse data. In this example, AR(1) is almost always selected 
as long as the effective number of observations is greater 
than 50. Even for smaller effective numbers, AR(1) has often 
been selected. For a resampling rate Lf0, the number of Pois-
son distributed observations should be greater than 50L for a 
guaranteed successful evaluation with ARMAsel-irreg for 
this example. The benchmark with the peak in section IV 
requires still less data. 

6. CONCLUSIONS 

 Irregular data are transformed into an equidistant missing 
data problem by multi-shift slotted nearest neighbor resam-

pling. The ARMAsel-irreg estimator fits AR, MA and 
ARMA models and automatically selects the best model or-
der and model type. Especially in simulations with few ir-
regular data, the results of ARMAsel-irreg are better than 
what can be obtained with other known spectral estimation 
techniques. In addition, good results are obtained for data 
with strong deviations from the Poisson distribution for the 
sampling instants. ARMAsel-irreg has only a problem if 
very high order AR models, with orders higher than about 
20, are required to give a satisfactory spectral model.  

 Spectra can be estimated until frequencies higher than 
100 times the mean data rate, as long as they can be repre-
sented well by a low order AR model in the discrete-time 
frequency range. The highest possible frequency 1/(2Tr) in 
the discrete-time spectrum is determined by the smallest Tr 
with at least 5 or 10 irregular data pairs at about that dis-
tance. 

 Elimination of spurious poles from impossible spectral 
estimates can be included in an automatic algorithm. By 
eliminating all poles in the second half of the resampled fre-
quency range, order selection will select one of the best AR 
models from the computed candidates.  
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