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Abstract—We consider the fast Rayleigh fading wiretap chan-
nel, over which a legitimate transmitter wishes to have secure
communication with a legitimate receiver in the presence of an
eavesdropper. We consider an average power constraint on the
input, and assume that no channel state information (CSI) is
available to any user. We show that the input distribution that
achieves the secrecy capacity for this wiretap channel is discrete
with a finite number of mass points.

I. INTRODUCTION

We consider the wiretap channel where a legitimate trans-

mitter wishes to have information-theoretically secure com-

munication with a legitimate receiver in the presence of an

eavesdropper. The wiretap channel was introduced by Shannon

[1] for the case of noiseless channels, where it was shown that

secure keys and one-time-pad encryption was necessary for

secure communications. The noisy wiretap channel was intro-

duced by Wyner, who determined the capacity equivocation

region for the degraded case [2]. Csiszar and Korner general-

ized his result to arbitrary, not necessarily degraded, wiretap

channels [3]. Leung-Yan-Cheong and Hellman determined the

capacity-equivocation region of the Gaussian wiretap channel

[4], and showed that the optimal channel input was Gaussian.

In this paper, we consider the Gaussian wiretap channel

under Rayleigh fading, where the channel gains of both the

legitimate link and the eavesdropper link fade in an indepen-

dent identically distributed (i.i.d.) fashion from one symbol

to the next with a Rayleigh distribution. This models a fast

fading wireless communication channel with coherence time

of one symbol duration. The fading wiretap channel was

considered under several different channel state information

(CSI) availability conditions. References [5]–[8] considered

the fading wiretap channel where all parties had complete

and perfect CSI of both links. Modeling the fading wiretap

under full CSI as a bank of independent parallel channels,

these references showed that the capacity achieving channel

inputs were independent Gaussian random variables in all

parallel channels, and the variances of these random variables

were found via water-filling. Reference [9] considered the

case where the transmitter had the legitimate channel’s CSI

but no eavesdropper CSI under the assumption of infinite

coherence times for channel fading, where the channel state

of the eavesdropper, although unknown at the transmitter,

remained constant for an infinite duration, and showed the

optimality of Gaussian channel inputs in this model. Reference
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[10] considered the same model under a fast fading condition,

i.e., when the eavesdropper channel gain is unknown at the

transmitter and also varies at the order of symbol duration,

and showed that MQAM signaling or Gaussian signaling

with added Gaussian artificial noise, may outperform plain

Gaussian signaling.

In this paper, we consider a fast fading Rayleigh wiretap

channel where neither the transmitter nor the receivers have

any CSI. Typically, the way CSI becomes available at the

terminals is via the receivers measuring it and feeding it back

to the transmitters. Under a fast fading condition, the channel

may change too quickly for receivers to estimate it. In addition,

the eavesdropper will not feed her CSI estimate back even if

she measures it. For this system model, we determine the exact

secrecy capacity. In particular we show that discrete channel

inputs are optimum. We use the proof technique that was

originally developed by Smith [11] to evaluate the channel

capacity of an amplitude constrained Gaussian channel. This

technique was further used and extended by Abou-Faycal et

al. [12] to determine the channel capacity of a fast fading

Rayleigh channel under an average power constraint. Our

paper may be viewed as a wiretap version of Abou-Faycal

et al.’s paper, which considered only reliable communication

between two terminals, whereas we consider both reliability

and secrecy. Our work is also closely related to [13] which

considers secret key generation for a similar channel model.

We first show that this channel is equivalent to a degraded

wiretap channel. This implies that no channel prefixing is

needed [2]. We then consider the secrecy rate, which is the

difference of mutual informations, as the objective function,

which is concave, and determine the optimal input distribution

as the result of a functional optimization problem. We obtain

the KKT optimality conditions, and extend these conditions to

the complex plane and reach a contradiction using the identity

theorem to conclude that the optimum input distribution cannot

have an infinite support over any finite interval. We then show

that the optimal distribution has a finite support.

II. SYSTEM MODEL, DEFINITIONS AND PRELIMINARIES

The fast Rayleigh fading wiretap channel is given by:

Vi = AiUi +N1i (1)

Wi = BiUi +N2i (2)

where Ui is the channel input, Vi and Wi are the chan-

nel outputs of the legitimate receiver and the eavesdrop-

per, respectively, and Ai and Bi are identically distributed



complex circular Gaussian random variables with zero-mean

and variance σ2
h, representing fading. The realizations of Ai

and Bi are unknown to all users, though their statistics are

known. The noise terms N1i and N2i are zero-mean complex

circular Gaussian random variables with variances σ2
1 and σ2

2 ,

respectively, with σ2
2 > σ2

1 . The random variables Ai, Bi,

N1i, N2i are i.i.d. in time. The channel input is average power

constrained: E
[

|Ui|2
]

≤ P .

As in [12], since the channel is stationary and memoryless,

we can drop the time index i without any loss of generality.

Also, since the phases of the fading parameters A and B are

uniform, |V |2 and |W |2 are sufficient statistics to characterize

the conditional distributions of V and W respectively, given

the input U . Conditioned on |U |, |V |2 and |W |2 are exponen-

tially distributed with parameters 1

σ2
h
|u|2+σ2

1

and 1

σ2
h
|u|2+σ2

2

. We

let Y = |V |2, Z = |W |2 and X = |U |, then

pY |X(y|x) =
1

σ2
hx

2 + σ2
1

exp

[

−
y

σ2
hx

2 + σ2
1

]

(3)

pZ|X(z|x) =
1

σ2
hx

2 + σ2
2

exp

[

−
z

σ2
hx

2 + σ2
2

]

(4)

The transmitter sends a message M , uniformly chosen from

M, by encoding it to an n-length codeword Un = ϕ(M)
using a stochastic encoding function ϕ. The legitimate re-

ceiver detects the message M̂ = ψ(V n) using a decoding

function ψ. The rate of communication is R = 1

n
log |M|,

and the probability of error is Pe = P[M̂ 6= M ]. The

secrecy is measured by the equivocation of the message at the

eavesdropper 1

n
H(M |Wn). The secrecy capacity is defined

as the supremum of all rates R where Pe ≤ ǫ, and the

message is transmitted information-theoretically securely, i.e.,
1

n
H(M |Wn) ≥ 1

n
H(M)− ǫ, in the limit as ǫ→ 0.

We note that encoding and decoding depend only on the

input distribution and the conditional marginals of the legit-

imate and eavesdropper channels. Thus, the secrecy capacity

of the channel given in (1)-(2) is equal to the secrecy capacity

of the following channel:

Vi = AiUi +N1i (5)

Wi = AiUi +N1i + Ñi (6)

where Ñi ∼ CN (0, σ2
2 −σ

2
1) and Ñi is independent of N1i. It

is clear that in the channel model of (5)-(6) the eavesdropper’s

output is a degraded version of the legitimate receiver’s output,

and U → V →W . In addition, since I(U ;V ) = I(X ;Y ) and

I(U ;W ) = I(X ;Z), the secrecy capacity is [2]

Cs = sup
F∈F

I(U ;V )− I(U ;W ) (7)

= sup
F∈F

I(X ;Y )− I(X ;Z) (8)

where F denotes the input distribution drawn from the class

of distributions F which satisfy the given power constraint.

Furthermore, the Markov chain X → Y → Z holds, because

Z is independent of X given V , which follows from the

Markov chain U → V → W , and that the phase of V is

independent of X given Y , since the phase of the fading

parameter A is uniform and independent of X . As shown

by van Dijk [14] for the discrete case, for this continuous

case also, we can show that I(X ;Y )− I(X ;Z) is a concave

function of the input distribution, when X → Y → Z . Thus,

to find the secrecy capacity of the channel in (5)-(6), it suffices

to solve the convex optimization problem in (8).

Before we determine the secrecy capacity, we note an upper

bound on it as:

Cs ≤ log

(

1 +
σ2
hP

σ2
1

)

− log

(

1 +
σ2
hP

σ2
2

)

(9)

This upper bound can be derived as follows:

I(U ;V )− I(U ;W ) = (h(V )− h(W ))

− (h(V |U)− h(W |U)) (10)

The first term on the right side of (10) can be upper bounded

by using the entropy power inequality:

h(V )− h(W ) ≤ log

(

σ2
hP + σ2

2

σ2
hP + σ2

1

)

(11)

and the second term can be lower bounded by noting

h(V |U)− h(W |U) ≥ h(V |A,U)− h(W |A,U) = log
σ2
1

σ2
2

(12)

giving the desired upper bound in (9). The inequality in (12)

can be derived by noting that I(V ;A|U) ≥ I(W ;A|U). The

significance of the upper bound in (9) is that it shows that the

secrecy capacity is always finite, even when the power goes

to infinity, and also that the secure degrees of freedom of this

system is zero as in the cases of non-fading Gaussian wiretap

channel and fading Gaussian wiretap channel with perfect CSI.

III. KKT OPTIMALITY CONDITIONS

For a channel with continuous alphabet, the supremum

in (8) need not be achievable. A sufficient condition for

the achievability of the supremum is that there exists a

topology on which mutual information is continuous in the

input distribution, implying that the difference of two mutual

information quantities induced by the same input distribution

is also continuous, and the set of allowable input distributions

F is compact. Both of these criteria hold in our case, as

was shown in [12, Appendix I]. We solve the maximization

in (8) using convex optimization techniques following Smith

[11] and Abou-Faycal et al. [12]. The channel input X∗ with

distribution F ∗ that achieves the secrecy capacity must satisfy

the KKT optimality condition:

γ(x2 − P ) + Cs −

∫

pY |X(y|x) ln

[

pY |X(y|x)

pY (y;F ∗)

]

dy

+

∫

pZ|X(z|x) ln

[

pZ|X(z|x)

pZ(z;F ∗)

]

dz ≥ 0, ∀x ∈ R (13)

for some γ ≥ 0, which is the Lagrange multiplier due to the

average power constraint on the channel input. Furthermore,

(13) is satisfied with equality if x lies in the support of X∗.
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Note that, in (13), pY (y;F ) and pZ(z;F ) are the probability

distributions of Y and Z , respectively, which are induced by

the probability distribution F , of X , i.e.,

pY (y;F ) =

∫

pY |X(y|x) dF (x) (14)

pZ(z;F ) =

∫

pZ|X(z|x) dF (x) (15)

In the next section, we will examine the implications of the

KKT conditions in (13) on the optimum probability distribu-

tion for the channel input X .

IV. CHARACTERIZATION OF X∗

Theorem 1 The optimal X∗ is discrete with only a finite

number of points in any bounded interval.

Proof: To prove the theorem, we need to rule out the following

two cases:

1) The support of X∗ contains an interval.

2) X∗ is discrete but there exists a bounded interval con-

taining infinitely many points belonging to the support

of X∗.

We proceed by contradiction. Therefore, let us assume that

either of the two cases 1) or 2) holds. Let E be the support

set of X∗. Noting that
∫

pY |X(y|x) ln pY |X(y|x) dy = ln

(

1

σ2
hx

2 + σ2
1

)

− 1 (16)

one can simplify (13) as:

f(x) ≥ 0, ∀x ∈ R (17)

with equality if x ∈ E, where f(x) is given by

f(x) =γ(x2 − P ) + Cs + ln

(

σ2
hx

2 + σ2
1

σ2
hx

2 + σ2
2

)

+

∫

pY |X(y|x) ln (pY (y;F
∗)) dy

−

∫

pZ|X(z|x) ln (pZ(z;F
∗)) dz (18)

Now, E contains a bounded set S with an infinite number of

distinct points. Let Sc be a compact neighbourhood containing

S. By the Bolzano-Weierstrass theorem, the set S must have

an accumulation point in Sc. We extend f(x) to the complex

domain, and by letting lnx be the principal branch of the

logarithm, f is well defined and analytic on the complex plane.

The KKT conditions in (17) tell us that, f which is an analytic

function on a domain D, is identically zero on a set with an

accumulation point in D. The identity theorem tells us that f

must be identically zero everywhere on D. More specifically,

f must be zero on the entire real line. Thus, the equality in

(17) holds, i.e., f(x) = 0, for all x ∈ R. Since X → Y → Z ,

pZ|X(z|x) =

∫

pY,Z|X(y, z|x)dy (19)

=

∫

pY |X(y|x)pZ|Y (z|y)dy (20)

We use (20) in (18) and exchange the order of integrals using

Fubini’s theorem, which is permissible since | ln pZ(z;F ∗)| is

bounded by α + βz for some constants α and β, as will be

shown in (31) and (43). This enables us to rewrite the equation

f(x) = 0, for all x ∈ R, equivalently as
∫

pY |X(y|x)g(y) dy =γ(P − x2)− Cs

− ln

(

σ2
hx

2 + σ2
1

σ2
hx

2 + σ2
2

)

, ∀x ∈ R (21)

where

g(y) = ln pY (y;F
∗)−

∫

pZ|Y (z|y) ln(pZ(z;F
∗)) dz (22)

Next, we define

s =
1

σ2
hx

2 + σ2
1

and ∆ =
1

σ2
2 − σ2

1

(23)

and get, after some simplification,
∫

e−syg(y) dy =−
1

s

γ

σ2
h

(

1

s
− σ2

1 − σ2
hP

)

−
1

s
Cs

−
1

s
ln∆ +

1

s
ln(s+∆) (24)

Now, we recognize the left hand side of (24) as the Laplace

transform of g(y), and by taking an inverse Laplace transform

of both sides, we get

g(y) = −
γ

σ2
h

y − e−∆y ln y −∆

∫ y

0

e−∆t ln t dt−K (25)

where K = −γ
σ2
1

σ2
h

− γP +Cs + ln∆+CE is a constant, and

CE is Euler’s constant. Thus, we have

ln pY (y;F
∗) =

∫

pZ|Y (z|y) ln pZ(z;F
∗) dz −

γ

σ2
h

y

− e−∆y ln y −∆

∫ y

0

e−∆t ln t dt−K (26)

Now, we bound each term on the right hand side of (26) to

obtain a lower bound on pY (y). First, we note

∆

∫ y

0

e−∆t ln t dt ≤ ∆

∫ y

0

e−∆t ln y dt = (1− e−∆y) ln y

(27)

and thus,

e−∆y ln y +∆

∫ y

0

e−∆t ln t dt ≤ ln y (28)

To bound the first term on the right hand side of (26), we first

bound pZ(z) as,

pZ(z) =

∫

1

σ2
hx

2 + σ2
2

e
− z

σ2
h
x2+σ2

2 dF (x) (29)

≥

∫

1

σ2
hx

2 + σ2
2

e
− z

σ2
2 dF (x) (30)

≥
1

σ2
hP + σ2

2

e
− z

σ2
2 (31)
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where we used the fact that 1

σ2
h
x2+σ2

2

is convex in x2, Jensen’s

inequality and the power constraint. Thus, the first term on the

right hand side of (26) can be bounded as:
∫

pZ|Y (z|y) ln pZ(z;F
∗) dz ≥ lnK1 −K2E[Z|Y = y]

(32)

where K1 = 1

σ2
h
P+σ2

2

and K2 = 1

σ2
2

.

From (6), W = V + Ñ . Denoting the real and imaginary

parts of a complex number by subscripts R and I , respectively,

we note that,

Z = |W |2 = Y + |Ñ |2 + 2VRÑR + 2VIÑI (33)

and therefore,

E[Z|Y = y] = y + (σ2
2 − σ2

1) (34)

Using (32), (34) and (28) along with (26), we get,

ln pY (y;F
∗) ≥ lnK1 −K2y −K2(σ

2
2 − σ2

1)

−
γ

σ2
h

y − ln y −K (35)

which implies that

pY (y) ≥
c1

y
e−c2y, y ≥ 0 (36)

for some constants c1 and c2. We note that
∫ 1

0

c1

y
e−c2ydy = ∞ (37)

for any value of c1 and c2, and hence pY (y) cannot be a

valid probability density function and thus we have reached

a contradiction. This contradiction implies that the two cases

stated at the beginning cannot occur, i.e., the optimum proba-

bility distribution cannot contain a continuous interval, or an

infinite number of discrete points in a finite interval. Therefore,

the optimum probability distribution contains at most a finite

number of discrete points in any given finite interval. �

In the following theorem, we show that, in fact, X∗ has a

finite number of mass points.

Theorem 2 The support of X∗ has a finite number of points.

Proof: Again, we proceed by contradiction. Assume that the

support of X∗ has infinitely many points. Let us denote the

mass points by the increasing sequence {xi}
∞
i=1

and their

corresponding probabilities by the sequence {pi}
∞
i=1

. Since,

by Theorem 1, there are only finitely many points in any

bounded interval, we must have limi→∞ xi = ∞. Then, the

output probability is bounded as

pY (y) =
∞
∑

i=1

pipY |X(y|xi) (38)

≥ pipY |X(y|xi) (39)

=
pi

σ2
hx

2
i + σ2

1

e
− y

σ2
h
x2
i
+σ2

1 (40)

A similar bound clearly holds for pZ(z) as well. Also, pY (y)
can be upper-bounded as,

pY (y) =

∫

1

σ2
hx

2 + σ2
1

e
− y

σ2
h
x2+σ2

1 dF (x) (41)

≤

∫

1

σ2
1

e
− y

σ2
h
x2+σ2

1 dF (x) (42)

≤
1

σ2
1

e
− y

σ2
h
P+σ2

1 (43)

where we have used the fact that e
− y

σ2
h
x2+σ2

1 is concave in x2,

Jensen’s inequality and the power constraint.

Now we observe that f(x) in (18) is a continuously differ-

entiable function in x. Also, KKT conditions in (17) imply

that f(xi) = 0, ∀i ∈ N and f(x) ≥ 0, ∀x ∈ R. Denoting the

derivative of f(x) by f ′(x), we must have f ′(xi) = 0, ∀i. If

not, f(x) will change sign in the neighbourhood of xi, which

is not possible. To compute the derivative of f(x), we note

dpY |X(y|x)

dx
=

2σ2
hx

(σ2
hx

2 + σ2
1)

2

[

y − (σ2
hx

2 + σ2
1)
]

pY |X(y|x)

(44)

and obtain,

f ′(x) =2γx+
2σ2

hx

σ2
hx

2 + σ2
1

−
2σ2

hx

σ2
hx

2 + σ2
2

+
2σ2

hx

(σ2
hx

2 + σ2
1)

2

∫

ypY |X(y|x) ln (pY (y)) dy

−
2σ2

hx

(σ2
hx

2 + σ2
1)

∫

pY |X(y|x) ln (pY (y)) dy

−
2σ2

hx

(σ2
hx

2 + σ2
2)

2

∫

zpZ|X(z|x) ln (pZ(z))dz

+
2σ2

hx

(σ2
hx

2 + σ2
2)

∫

pZ|X(z|x) ln (pZ(z)) dz (45)

Using the bounds in (40) and (43) to bound the different terms

in (45), we obtain

f ′(x) ≥2γx+
2σ2

hx

σ2
hx

2 + σ2
1

−
2σ2

hx

σ2
hx

2 + σ2
2

−
2σ2

hx

σ2
hx

2
i + σ2

2

+
2σ2

hx

σ2
hx

2 + σ2
1

ln

(

pi

σ2
hx

2
i + σ2

1

)

−
4σ2

hx

σ2
hx

2
i + σ2

1

−
2σ2

hx

σ2
hx

2 + σ2
1

ln
1

σ2
1

+
2σ2

hx

σ2
hx

2 + σ2
2

ln

(

1

σ2
hx

2
i + σ2

2

)

−
2σ2

hx

σ2
hx

2 + σ2
2

ln
1

σ2
2

+
2σ2

hx

σ2
hP + σ2

1

+
4σ2

hx

σ2
hP + σ2

2

(46)

Therefore, we have

f ′(xi) ≥

(

2γ +
2σ2

h

σ2
hP + σ2

1

+
4σ2

h

σ2
hP + σ2

2

)

xi + o(xi) (47)

where o(x) denotes a function such that o(x) → 0 as x→ ∞.

By our assumption, xi → ∞ as i → ∞. Thus, (47) implies

that f ′(xi) → ∞ as i → ∞ which is a contradiction, since,

f ′(xi) = 0, for every i. We conclude, therefore, that the

4
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Fig. 1. An optimal distribution satisfying the KKT conditions with P = 0.1,
σh = σ1 = 1, σ2 = 2, γ = 0.2461, Cs = 0.03 and F (x) = 0.9668δ(x)+
0.0332δ(x − 1.7348).

support of the optimal input distribution has a finite number

of points. �

V. NUMERICAL RESULTS

In this section, we present simple numerical examples to

verify and illustrate the results of this paper. Fig. 1 shows

an example of how the KKT conditions are satisfied for a

particular value of power P . The plot shows that there are two

mass points, one at 0 and the other at 1.7348, with probabilities

0.9668 and 0.0332, respectively. The secrecy capacity for this

case is 0.03 bits per channel use.

Fig. 2 shows how the positions of the optimum probability

mass points change with power. Note that there is always

a mass point at zero. As the power increases, the optimum

probability distribution has more and more mass points. At

the transitions, where a new mass point is introduced, the

numerical algorithm becomes unstable, nevertheless, it seems

that the mass points originate far from the origin with very

low probabilities (as seen in Fig. 3), then come closer towards

the origin before receding away again with increasing power.

Fig. 3 shows the probabilities of the corresponding mass

points. As expected, at very low power, the probability of the

point at zero is high, and it decreases as power is increased.

The probabilities stabilize asymptotically.

VI. CONCLUSION

We considered the fast Rayleigh fading wiretap channel with

coherence time of one symbol duration. We proved that the

optimal input distribution that achieves the secrecy capacity is

discrete with finite number of mass points.

REFERENCES

[1] C. E. Shannon. Communication theory of secrecy systems. The Bell

System Technical Journal, 28(4):656–715, October 1949.
[2] A. D. Wyner. The wire-tap channel. The Bell System Technical Journal,

54(8):1355–1387, October 1975.
[3] I. Csiszar and J. Korner. Broadcast channels with confidential messages.

IEEE Transactions on Information Theory, 24(3):339–348, May 1978.
[4] S. Leung-Yan-Cheong and M. Hellman. The Gaussian wire-tap channel.

IEEE Transactions on Information Theory, 24(4):451–456, July 1978.

0 1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

9

10

Power

P
o

s
it
io

n
s
 o

f 
m

a
s
s
 p

o
in

ts

2
points

3
points

4
points

5
points

Fig. 2. The position of the mass points versus power.

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Power

P
ro

b
a

b
ili

ti
e

s
 o

f 
m

a
s
s
 p

o
in

ts 4
points

3
points

2
points

5
points

Fig. 3. The probabilities of the mass points versus power.

[5] Y. Liang and H. V. Poor. Secure communication over fading channels.
In the 44th annual Allerton Conference on Communication, Control, and

Computing, September 2006.
[6] Z. Li, R. D. Yates, and W. Trappe. Secrecy capacity of independent

parallel channels. In the 44th annual Allerton Conference on Commu-

nication, Control, and Computing, September 2006.
[7] Y. Liang, H. V. Poor, and S. Shamai. Secure communication over fading

channels. IEEE Transactions on Information Theory, 54(6):2470–2492,
June 2008.

[8] Z. Li, R. D. Yates, and W. Trappe. Secrecy capacity of independent
parallel channels. In R. Liu and W. Trappe, editors, Securing Wireless

Communications at the Physical Layer, pages 1–18. Springer US, 2010.
[9] P. K. Gopala, L. Lai, and H. El Gamal. On the secrecy capacity of fading

channels. IEEE Transactions on Information Theory, 54(10):4687–4698,
October 2008.

[10] Z. Li, R. D. Yates, and W. Trappe. Achieving secret communication
for fast Rayleigh fading channels. IEEE Transactions on Wireless

Communications, 9(9):2792–2799, September 2010.
[11] J. G. Smith. The information capacity of amplitude and variance-

constrained scalar Gaussian channels. Information and Control,
18(3):203–219, April 1971.

[12] I. C. Abou-Faycal, M. D. Trott, and S. Shamai. The capacity of
discrete-time memoryless Rayleigh-fading channels. IEEE Transactions

on Information Theory, 47(4):1290–1301, May 2001.
[13] A. Agrawal, Z. Rezki, A. J. Khisti, and M. Alouini. Noncoherent capac-

ity of secret-key agreement with public discussion. IEEE Transactions

on Information Forensics and Security, 6(3):565–574, September 2011.
[14] M. van Dijk. On a special class of broadcast channels with confidential

messages. IEEE Transactions on Information Theory, 43(2):712–714,
March 1997.

5


