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In this paper, we present a method for action categorization with a modified hidden conditional random
field (HCRF). Specifically, effective silhouette-based action features are extracted using motion moments
and spectrum of chain code. We formulate a modified HCRF (mHCRF) to have a guaranteed global opti-
mum in the modelling of the temporal action dependencies after the HMM pathing stage. Experimental
results on action categorization using this model are compared favorably against several existing model-
based methods including GMM, SVM, Logistic Regression, HMM, CRF and HCRF.
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1. Introduction

Human action recognition is an important and challenging task. In
general, there are two key elements in modelling human actions [13]:
local appearance and temporal dependencies. To date, silhouette-
based action recognition has been popular [13,23,20,3], i.e. an action
is represented by a series of human body shapes. A silhouette is
usually extracted by the estimation of the background, or given a
known fixed background [3]. Other feature representations of action
include space-time interest points [19,14], optical flow [7], motion
template [4], and space-time volumes [25], shape context from still
images [2,24], etc.

For learning the temporal dependencies between consecutive
frames, numerous methods have been proposed with the vast ma-
jority based on graph models. Among them, hidden Markov model
(HMM) is a baseline approach for modelling temporal dependen-
cies. Its model parameters are estimated based on the optimization
of the joint probability between the observations and sequence la-
bels, which is marginalized over the hidden variables. Hence, it is
a generative method, and not optimized based on the conditional
Bayesian information. Though HMM has been shown good perfor-
mance in many applications, for the purpose of pattern discrimina-
tion, an existing common consensus is that an ideal model should be
derived and optimized based on maximizing the discrimination func-
tion [10]. Thus, to this point, HMM is not optimal. To overcome this
limitation, conditional random field (CRF) was recently introduced
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[22,20]. However, CRF cannot incorporate the need for labelling a
whole sequence as an action, and also cannot capture the intermedi-
ate structures using hidden state variables [15]. To overcome these
problems, hidden conditional random fields (HCRF) was proposed by
[11,24,15]. Compared to CRF, HCRF is capable of incorporating a se-
quence label into the optimization of observation conditional prob-
abilities. However, due to the non-convexity nature of the objective
function of HCREF, its performance depends heavily on its param-
eter initialization, thus not guaranteeing to give good results in a
real application. To address these issues, in this work we formulate
a modified HCRF (mHCRF) based on HMM pathing, and prove that
the objective function of mHCRF is convex which a global optimum
after the hidden variables become observable. This is the first con-
tribution of our paper. We further develop an effective approach to
silhouette-based action recognition using mHCRF. More specifically,
we extract both a set of spectrum features using Fourier transform
applied to the chain code of silhouettes and a set of motion moment
features. The relationship between the whole sequence label and the
temporal dependencies is then learnt using mHCRF. This is the sec-
ond contribution of this paper. Thirdly, We compare this approach to
other techniques including HMM, Gaussian mixture model, logistic
regression, SVM, CRF and HCRF for action categorization.

2. Action features

Describing the silhouette of objects by their chain code has
been widely adopted for shape retrieval/recognition or matching
[9]. However, the chain code itself is not invariant to shape ori-
entation change caused by possible 3D pose changes from human
body actions. Specifically, if a human body shape is rotated by 0,
the corresponding chain code C(p) will be shifted by an offset, say,
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Fig. 1. Comparisons of action features extracted over time from: (a) a jumping sequence and (b) a waving sequence.

Ap(0). Let C(p + Ap(0)) be the resulting chain code after rotation. To
obtain rotation invariance, we perform as Fourier transform on C(p),
resulting abs(F(C(p))) = abs(F(C(p + Ap(0)))). The first n components
of Fourier spectrum are selected as our action features, which we
refer to as spectrum features in this paper.

Although these spectrum features are good for capturing actions
that cause body shape change, e.g. in a bending or walking sequence,
human body actions are not always necessarily associated with sig-
nificant body shape change, e.g. jumping. In a jumping sequence,
the human silhouette does not change a great deal over time re-
sulting in its spectrum features less discriminative. To overcome
this problem, we utilize motion moment features computed based
on human silhouettes. Those silhouettes are extracted from an al-
ready known background. This simple procedure follows exactly the
same way as [3]. Note there are more robust methods which can
be used for silhouettes extraction of video sequences, e.g. the adap-
tive background detection [21]. Investigation of those methods be-
yonds the scope of this paper. Instead, we used the binary sequences
directly available from [3].! We found that for binary images se-
quences, simple inter-frame differencing method performs well in
our task. Here, for simplicity and computational proficiency, inter-
frame differencing is used to detect motion changes resulting in a
binary image, i.e. at time t, a binary image AB; is obtained by the
difference of two consecutive frames AB; = B¢;1 — B. A set of mo-
ment features are then extracted from each binary image AB; as
follows:

I |
Ac=Y ABxyl, %= i > " XAB[x,y]
Xy Xy

E, = £max (1)

min

1
Ye= 2 D YABxyl,
t Xy

" Those binary sequences are extracted from a known background in prior.

72 =1a+c)+ J(a—c)cos20 + 1sin20

a=>(x—x)’AB[xy]
Xy

b=>"(x =Xy — 9)AB[x,y]
Xy

c=Y (y -7V ABxy]

Xy

sin 20 =+
b2 + (a—c)?

cos20=+——2-¢ (2)
b2 + (a —c)?

Ymax and ymi, are selected among four possible values based on the
sign of sin 260 and cos 20. To obtain shift invariance, we use ur=x;,1—
X and v; = J¢,1 — Yt. To make these moment features more robust
to noise, we reject those features extracted from regions with small
value A¢. A new value A} =A;_; is associated to the rejected features
and propagated from the previous frame. The rejection/propagation
rule is defined as

A1 if Ar <tol
Af= ) (3)
At otherwise

In our experiments, we set the value of tol to 3. The correspond-
ing values of other feature components are accordingly propagated.
These moment features at time ¢ are represented as {A}, ugx, vex, Ef}.
Fig. 1(a) shows an example where the moment features are more
distinctive than the spectrum features in a jumping sequence, while
Fig. 1(b) gives an example where the spectrum features are more
distinctive than the moment features in a waving sequence. This
indicates that these two types of features are complimentary. Our
experimental results shown later further demonstrate this.
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3. Hidden conditional random field

Hidden conditional random field was first introduced by
Gunawardana et al. [11] for phone-conversation/speech classifica-
tion and has then been applied to gesture and object recognition
[24,15]. Given a sequence composed of a set of n local observations
{X1,X2,X3, ...,Xy} denoted by X, and its class labels y € Y, we want to
find a mapping p(y|X) between them, where y is conditioned on X.
An HCREF is defined as

_py.X;0) _ > up(y,HX; 0)
pX;0) >, up(v.H X; 0)

p(yIX; ©)

Y et HX0)
- >y pefVHX;0)

(4)

where @ is the set of parameters of the model, and H={h, hy, ..., hn}.
Each h; e H captures certain underlying structure of each class and
A is the set of hidden states in the model. ¢(y,H,X; O) is the po-
tential function which measures the compatibility between a label,
a set of observations and a configuration of hidden variables. Based
on maximum likelihood (ML) estimation, the regularized version of
the objective function of HCRF (here, we minimize the equivalent
negative log likelihood) is
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where s is the total number of training sequences with known class
labels. The first term and the second term are the log-likelihood of
the data. The third term is the log of a Gaussian prior with variance
a2, p(©) ~ exp(||©|1%/2¢2), similar to regularization of a conditional
random field [22]. The best parameters, ©®* = arg mingL(®), can
be found by a gradient descent using Quasi-Newton optimization.
Note that the objective function (Eq. (5)) and its gradient can be
written in terms of marginal distributions over the hidden vari-
ables. These distributions can be computed exactly using inference
methods such as belief propagation [22] when the graph model
is a chain. From Eq. (5), we can see that the objective function of
HCRF is not convex (non-negative sum of a concave function (term
(1)) and two convex (terms (2) and (3)) functions does not guar-
antee convexity). Thus its global convergence heavily depends on
the initialization. We shall address this problem in Section 5. More-
over, it is also very important to normalize each data first. Since
the sum of potential could result in infinite values in the inference
process for the gradient calculation, which could cause numerical
instability.

4. Potential definition

In the context of action categorization, the potential function can
be defined in terms of the following forms where observations in-
teract with the hidden states and the sequence class labels interact
with both the individual hidden node and the edges between hidden

hy ho hs hy hy

T ) T3 Ta Tt

Fig. 2. The graph model of HCRF.

nodes:

P HX; 0)= D f(x))- OChy) + Y f(hy) - Oy, by)
J

J

+ 3 f(en)- 0y.e) (6)

exeE

where ey is an edge between a pair of nodes j and j'. In action recog-
nition, the HCRF graph model is defined as a chain where each node
corresponds to a hidden state variable at time t. f(x;) is a feature vec-
tor of node j. f(h;) is the feature vector corresponding to the hidden
node j. f(e,) is the feature vector corresponding to the edge between
node j and j'. Fig. 2 shows the graph model of HCRF as an undirected
graph.

5. Modified HCRF

As stated in Section 3, due to non-convexity of the objective
function (Eq. (5)), the initial parameters of HCRF must be carefully
selected. This limits its usefulness. To overcome this problem, we
seek an alternative approach. The idea is to make those hidden vari-
ables observable under the condition of learning HMM. Once the
hidden variables become ‘observable’ to HCRF, the objective func-
tion can be shown to be convex. We describe our approach in two
steps.

5.1. Automatic HMM pathing

First, we learn an HMM for each action class. The number of
hidden states is automatically selected by a Gaussian mixture model
using minimum description length (MDL) [17]. We then compute the
Viterbi path for each training sequence. Here we refer to this step as
HMM pathing. Thus the node of each training sequence is labelled by
the learnt class specific HMM and this procedure makes the hidden
states ‘observable’. Our observed feature vector is continuous in RY,
and we choose a Gaussian Mixture based HMM for the pathing stage.
So a class specific HMM can be learnt by maximizing the following
criteria:

s(c)
O*(c) = Xily=c; ®
(© argmgxgp( iy=c0)
s(c)

arg max log) > p(XiHy=c;0) (7)
i=1 H
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and the observation model is
p(Xe = xlhe = 1) = N(x; 1y, 2;)
. 1
(2m)?) 212
1 /
xexp (5 x - w) 20— w) (®)
the Viterbi path is inferred by hj., = arg maxy, p(hy:¢|X1:¢), which

makes the hidden states of each training sequence observable so we
can use directly in the next learning step.

5.2. Discriminative learning with global optimum

After the HMM pathing stage, the model function of HCRF in
Eq. (4) becomes

_ PO X 0)ag p(y.H(X); O)
pX;0)  ¥,p(v.H(X); )

eV H(X);0)

= 9
3, e HX):0) ®)

p(yIX; ©)

and the objective function (Eq. (5)) of HCRF becomes
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We see that the effect of the HMM pathing stage is to change the
relation between H, X in Eq. (4) into a function form in Eq. (9), that is
the hidden variable becomes direct function of observation via H(X).
It is evident that the objective function L(®) is now convex.

Proof. From Eq. (10), we can have L =1Ly + Ly + Ls.

o Itis evident that L; is a linear function,when the potential function
takes the form as in Eq. (11) and it can be viewed as a convex
function.

e L, is a log-sum-exp term and it is a convex function.

e L3 is quadratic function, and it is convex.

o Since the sum of the convex functions is convex, thus we have
L(O®)=Ly + L, + L3 convex.

Specifically, the first term is a linear function, can be viewed either
concave or convex, the second and third term are convex. Because
non-negative sum of two convex function guarantees convexity, L(®)
becomes convex, which ensures that there is a global optimum. [

Accordingly, local potential of Eq. (6) is redefined as follows:

P HX: 0)Y S f(h) - 0,0 y)
j

+) fler) - Oy, ex) (11)

Discriminative

Learing

HMM Pathing

Fig. 3. The graph model of the proposed approach.

Fig. 4. The graph model of CRF.

Thus in our modified version of HCRF, parameter 6 contains two
components: @ =[0y, 0]. We use 04y, h;] to refer to the parameter
that measures the compatibility between a state h; and an action la-
bel y. Similarly, 0.[y, e;] corresponds the parameter for compatibility
between action label y and the edge between nodes j and j'.

We can see that the proposed approach still retains the advantage
of a general HCRF, i.e. discriminative learning the parameters of the
edge potentials (temporal dependencies) interacted with action se-
quence label. Moreover, Eq. (10) guarantees a global optimum. One
may argue that the learning of HMM itself in the HMM pathing stage
is not globally optimal. However, given the clear evidence that HMM
has been successfully used in many applications, it could provide a
better initialization for the convex objective function of mHCRF. The
complexity of our approach is also reduced by making the hidden
variables observable. It is obvious that for HCRF, when optimized us-
ing gradient descendant, the gradient has to be computed based on
inference [24], whose complexity is usually exponential in the num-
ber of hidden variables. While in our approach, such inference is not
necessary and the summation over the hidden variables is avoided.

The graph model of our proposed model is shown in Fig. 3. As
a comparison, we also show the graph model of CRF in Fig. 4. Note
that the objective function of CRF is log 3";_;p(H|X;) (H is the ob-
served node label instead of the whole sequence class label), which
is different from ours as in Eq. (10).

Once we estimated the model parameters, the test of a new se-
quence is straightforward by maximizing the posterior probability of
the learnt model with parameters @*. Thus the final decision rule is

y* =arg maxp(y|X; 6") (12)

6. Experiments

We tested the effectiveness of the proposed method for action
categorization. We compare the results from our model against those
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Fig. 5. Examples of misclassified sequences by the CRF approach: (a) a skip sequence and (b) a run sequence. All the two sequences are correctly classified by our approach.
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Fig. 6. Representative samples of each state in the HMM pathing stage, respectively.

of other existing action models including GMM [8], HMM [12,1],
logistic regression (LR) [5], SVM [6] and CRF [20].

6.1. Data set

For this experiment, we use the data set from [3]. This data
set contains 10 action classes with a total of 93 low resolution
(180 x 144, 25fps) video sequences showing nine different people,
each performing 10 natural actions: ‘running’, ‘walking’, ‘jumping-
jack’, ‘jumping-forward-on-two-legs’, ‘jumping-in-place-on-two-
legs’, ‘galloping-sideways’, ‘waving-two-hands’, ‘waving-one-hand’,
‘bending’ and ‘skipping’. We use all of the 10 action classes in our
experiment.2 Similar to [3], the silhouette of each frame is extracted
based on subtraction of the median background from each of the
sequences and a thresholding in color-space. The resulting silhou-
ettes contained ‘leaks’ and ‘intrusions’ due to imperfect subtraction,
shadows and color similarities with the background. The shape
chain code is extracted for each silhouette, and Fourier transform is
performed on the chain code data. The first 10 magnitudes of the
Fourier response are used as the spectrum features. The motion mo-
ment features are extracted as described in Section 2. For the HMM
pathing stage, we use the expectation maximization (EM) algorithm
to optimize the model parameters. Fig. 6 shows some representative
samples of each hidden state automatically discovered by HMM.

6.1.1. Action models

In our test, we compare several model-based approaches for ac-
tion recognition. The models we compared include:

GMM: It is a generative model. We learn each class a Gaussian
mixture model (GMM), i.e. p(x; ©.) for action class c. For a frame x;
at time t, we assign its class label based on the maximization of pos-
terior probability, ¢; =arg max. p(@¢|x;). For a sequence within time
T, the class label of the whole sequence is determined by a majority
voting strategy, c* = arg max(p(c)) with p(c) = (1/T)}_;_1.r6(cf =c).

2 This is different from the settings of [3], where they only used nine action
classes.

In our experiments, the number of mixture components is automati-
cally determined by using the MDL criteria. Note that GMM assumes
the independency between local observations, thus it has no ca-
pability to model the temporal dependencies between consecutive
frames.

Logistic regression (LR): Compared to GMM, Logistic regression is
a simple but effective discriminative method in the family of graph
models. Similar to GMM, it also assumes that there is no interaction
between nodes. The difference to GMM is that it is optimized based
on the conditional probability given its labels. The final class label of
the whole sequence is determined in a similar way to that of GMM.

SVM: A widely used classifier and similar to logistic regression, it
is a discriminative method without the consideration of the depen-
dencies between frames, but optimized based on maximum separa-
tion margin between classes. We learn a multiclass SVM with RBF
kernel, and then label each frame by the output of SVM. The optimal
kernel parameters are found by cross validation over the training
set. For a whole action sequence, the sequence label is determined
in a similar way to that of GMM.

HMM: This model is capable of modelling the temporal depen-
dence between hidden variables and it is a generative model. In our
experiments, the number of hidden states and the transition matrix
are automatically initialized using the MDL criteria over the whole
training set. We then learn a HMM for each class respectively, de-
noted as M,. Thus for a given sequence within time T, the class label
is assigned via c* = arg max, p(M.|X).

CRF: Conditional random field (CRF) is a discriminative model
with ability to learn the temporal dependencies between node la-
bels. It is optimized based on the joint probability of node labels
conditioned on the observations. We learn a single CRF for all the
action classes, and then infer the Viterbi path for each test sequence.
The label of the whole sequence is computed as the most frequently
happened frame labels in the Viterbi path.

Table 3 shows the classification results by two fold cross valida-
tion on the data set. HMM gives better results than GMM due to the
ability of modelling temporal dependencies. SVM performs better
than LR since it is a non linear classifier while LR is a linear classi-
fier in our case. Both LR and SVM perform better than GMM. Note
the discriminative methods such as SVM and LR perform better than
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Table 1

Confusion matrix of action classification results with CRF.

Action Bend Jack Jump Pjump Side Walk Wavel Wave2 Skip
Bend 9

Jack 9

Jump 7 2
Pjump 7 1 1
Run 1

Side 9

Walk 1 9

Wavel 1 1 4 2
Wave2 1 7

Skip 3 6
The term ‘jack’ represents ‘jumping-jack’, ‘pjump’ for ‘jumping-in-place-on-two-legs’, ‘side’ for ‘galloping-sideways’, ‘wavel’ for ‘waving-one-hand’ and ‘wave2’ for ‘waving-
two-hands’.

Table 2

Confusion matrix of action classification results with mHCRF.

Action Bend Jack Jump Pjump Side Walk Wavel Wave2 Skip
Bend 9

Jack 8 1

Jump 9

Pjump 1 8

Run

Side 9

Walk 10

Wavel 1 1 5 2

Wave2 1 8

Skip 3 7

The term notations are the same as in Table 1.

Table 3
Classification accuracy of action categories with different methods and different
features.

Spectrum Moments Combination
GMM 0.628 0.651 0.604
HMM 0.791 0.605 0.744
LR 0.628 0.767 0.814
SVM 0.721 0.698 0.767
CRF 0.721 0.791 0.850
HCRF 0.781 0.847 0.880
mHCRF 0.800 0.865 0.893

HMM even though with the latter modelling temporal dependencies.
CRF gives slightly better results than SVM. HCRF outperforms CRF
due to its ability of discriminative learning of hidden states struc-
tures. Among all of the models, our method mHCRF performs the
best. As to the features, we can see that the performance of moment
features is usually better or comparable (in the case of SVM) than
the spectrum features indicating that moment features have greater
discrimination potential than spectrum features, with an exception
in the case of HMM. This maybe caused by the over-fitting problem
when learning HMM. The combination of the moment features with
the spectrum features gives better results than using them alone.
One point needs to be clear that the HMM ‘pathing’ stage in the
mHCRF approach only outputs the optimal path (i.e. the optimal hid-
den states sequence) of the observation sequence based on Viterbi
inference. It does not output the action label of the whole sequence.
This is the main difference between HMM ‘pathing’ and HMM clas-
sifier used in the experiments. The common part is that training us-
ing the same MDL criteria. Thus the superior performance of mHCRF
over HMM shown in Table 3 can also be considered as the addi-
tional gain of our approach with respect to the HMM pathing stage.
Tables 1 and 2 shows CRF with all features and the confusion ma-
trix of the results of using mHCRF, respectively. We can see the
major errors are caused by the wavel action and skipping action.

Fig. 5 shows a run sequence and a skip sequence that are misclassi-
fied by the CRF approach. However, they are correctly classified by
our approach despite of their similar visual appearance. Note that
the results reported in [3] are not directly comparable to us. One rea-
son is that in their paper, they use leave-one-out procedure which is
much easier than two fold cross validation used in our experiments.
Another reason is that we increased the difficulty of the task by in-
cluding additional skipping sequence which is a more difficult class
shown by the confusion matrix in Table 1. Using similar settings as
in [3], we obtained the classification error rate of 1.1%, which is com-
parable to the results in [3] using advanced 3D space-time shape
features.

7. Discussions and conclusions

In this work, we presented an action recognition model using a
modified HCRF for a guaranteed global optimal solution after the
HMM pathing stage. We showed that our model is effective and
performs well against other existing techniques for action cate-
gorization.

In this paper, we focus on classification of action images as a
whole, rather than identifying the detailed body configurations. It is
worth noting that another line of research in motion action recogni-
tion is based on human parts [16]. In these approaches, the task of
motion recognition can also be performed by firstly identifying the
body configurations and then inferring the relationships between
candidate body parts.

Our current approach focuses on the learning algorithm of ac-
tion recognition. The robust silhouettes are extracted from a directly
available background in the same way as in [3]. Note that there
are some factors needed to be taken into account in the silhouettes
extraction process when the background is unknown, e.g., shadow,
illumination changes, camouflage. There is plenty of work done re-
garding those aspects in the silhouettes extraction process, e.g., long-
term illumination changes can be modelled as a separate component
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in the adaptive background modelling [21]. Furthermore, shadow
can be removed by the method proposed by [18]. By addressing
those issues, Zhuang et al. [26] further propose a method that could
efficiently extract robust silhouettes of humans.

We still believe that developing good training algorithms for tra-
ditional HCRF will be another valuable direction. However, in this
paper, we presented an alternative formulation of HCRF which at
least have convex objective function at the second stage. The good
initialization can be provided by the HMM pathing in practical. As
to the action features, note that beside the motion moment features
and spectrum features, there exists other features, e.g., shape con-
text features [2]. Investigating their performance in the context of
our framework will be an interesting direction. It is worth pointing
out that actions could be better recognized across different scales,
developing a multi-scale mHCRF as an extension of the proposed
method is our future work.
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