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Abstract

This paper specifies and estimates a dynamic model of consumer preferences for new durable goods
with persistent heterogeneous consumer tastes, rational expectations about future products and
repeat purchases over time. Most new consumer durable goods, particularly consumer electronics,
are characterized by relatively high initial prices followed by rapid declines in prices and improvements
in quality. The evolving nature of product attributes suggests the importance of modeling dynamics
in estimating consumer preferences. We estimate the model on the digital camcorder industry using
a panel data set on prices, sales and characteristics. We find that dynamics are a very important
determinant of consumer preferences and that estimated coefficients are more plausible than with
traditional static models. We use the estimates to evaluate cost-of-living indices for new consumer
goods and dynamic demand elasticities.
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1 Introduction

This paper specifies a structural dynamic model of consumer preferences for new durable goods and esti-

mates the model using aggregate data on the digital camcorder industry. A dynamic model is necessary

to capture the fact that consumers choose not only what to buy but when to buy. Rapidly falling prices

and improving features have been among the most visible phenomena in a large number of new consumer

durable goods markets, such as computers, digital camcorders and DVD players. For instance, between

2000 and 2006, average digital camcorder prices dropped from $930 to $380 while average pixel counts

rose from 580,000 to 1.08 million. The rapidly evolving nature of these industries suggests that modeling

dynamics might be empirically very important in estimating consumer preferences.

Our model allows for product differentiation, persistent consumer heterogeneity, endogeneity of prices

and endogenous repeat purchases over time. Berry, Levinsohn & Pakes (1995), henceforth BLP, and the

literature that follows have shown that incorporating consumer heterogeneity into differentiated product

demand systems is important in obtaining realistic predictions. Much of our model is essentially the

same as BLP: our model is designed for aggregate data (but can incorporate consumer-level data when

available); there is an unobserved product characteristic that affects equilibrium prices; consumers make

a discrete choice from a set of products in a multinomial logit framework; and consumers have random

coefficients over observable product characteristics. Our model departs from BLP in that products are

durable and consumers are rational forward-looking agents who have the option to purchase a product in

the future instead of, or in addition to, purchasing one now. As our model is dynamic, we need to specify

consumer perceptions over future states of the world. We focus on a major simplifying assumption:

that consumers perceive that the evolution of the value of purchase will follow a simple one-dimensional

Markov process. In this sense, consumers use a reduced-form approximation of the supply side evolution

to make predictions about the value of future purchases. We also examine a number of alternative

specifications for perceptions, including multi-dimensional processes and perfect foresight.

Over the last 15 years, a substantial literature has used static BLP-style models to investigate ques-

tions of policy interest. This literature has analyzed questions that include (but are by no means limited

to) horizontal merger policy (see Nevo, 2000a), trade policy (see Berry, Levinsohn & Pakes, 1999) and

the value of new goods (see Petrin, 2002). Many of these papers investigate industries, such as au-

tomobiles, for which goods are durable. Our paper provides a framework to incorporate dynamics in

BLP-style models and hence may be useful in deriving better estimates for these and related questions.

Indeed, recent work is using and extending our methods to examine scrapping subsidies for automobiles

(Schiraldi, 2007), markups for digital cameras (Zhao, 2008), switching costs between cable and satel-
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lite television (Shcherbakov, 2008) and switching costs in consumer banking (Ho, 2008), among other

research questions.

We use our results to examine the evolution of consumer value from the digital camcorder industry

by calculating a cost of living index (COLI) for this sector. COLIs measure compensating variations,

the dollar taxes or transfers necessary to hold welfare constant at the base level over time. Government-

computed COLIs have important implications for wage growth at many firms, government transfer

programs and a variety of other government policies. The BLS is particularly concerned about the

development of accurate COLIs for consumer electronics and camcorders in particular (see Shepler,

2001). Systematic entry and exit of camcorders based on their characteristics may create biases, (see

Pakes, 2003, and cites therein). Further biases occur when consumers act dynamically. If consumers act

as rational dynamic agents and we instead assume myopic behavior, we may overstate the welfare gains

later on, by assuming more high-value consumers than actually exist (see Aizcorbe, 2005).

Because we use primarily aggregate data, we develop a relatively parsimonious specification which

results in the parameters that we estimate being essentially the same as in static BLP-style models:

the mean and variance of consumer preferences for product characteristics. As in these models, our

identification of key parameters such as price elasticities and random coefficients comes from the impact

of different choice sets on purchase probabilities using the assumption that the choice sets are exogenous.

Our dynamic model adds to identification by making use of substitution patterns across time periods as

well as within time periods and by capturing the endogenous changes in demand over time as consumer

holdings evolve.

To estimate our model, we develop new methods of inference that draw on the techniques of BLP for

modeling consumer heterogeneity in a discrete choice model and on Rust (1987) for modeling optimal

stopping decisions. As in BLP, we solve for the vector of unobserved product characteristics by using

an iterative process to find the value that makes predicted shares equal observed shares. The iterative

process requires repeatedly solving for the predicted market shares. In our case, predicted market shares

depend on a dynamic optimal-stopping (or purchase) problem, which we also solve with an iterative

Bellman equation method. Overall, we compute a Rust-style optimal stopping problem jointly with the

BLP unobserved product characteristic solution. Our methodological advance is in developing a feasible

specification that allows us to combine these two separate methods.

An important feature of our model is that it is designed to be applied to aggregate data on models and

market shares by month (although in some specifications, we supplement these with limited data from a

survey) rather than individual household purchase data, which means we must incorporate the iterative

process associated with BLP. Perhaps not surprisingly, models for household level data are substantially
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more sophisticated than those for aggregate data, incorporating not only dynamics, heterogeneity and

upgrading but also such features as learning, product loyalty, inventory behavior and surveys of price

expectations (see Ackerberg, 2003; Hendel & Nevo, 2006; Erdem & Keane, 1996; Erdem, Keane, Oncu

& Strebel, 2005; Prince, 2007; Keane & Wolpin, 1997).1 Extending these types of models to aggregate

data is important for two reasons. First, in many cases, aggregate data are all that is available. Second,

aggregate data are typically necessary for studying many important issues, such as oligopoly interactions.

This is because household-level data sets rarely contain enough observations to measure product shares

accurately.2 Accurate market shares are important for estimating supply side. For instance, BLP and

Goldberg (1995) use aggregate market share data to estimate pricing first-order conditions.

A number of recent papers (Gandal, Kende & Rob, 2000; Esteban & Shum, 2007; Melnikov, 2001;

Song & Chintagunta, 2003; Gordon, 2006; Nair, 2007; Carranza, 2006; Park, 2008) propose dynamic

consumer choice models for aggregate data. Most similar to our work is Melnikov (2001), which was the

first to model dynamics in a logit-based discrete choice model with endogenous prices and a reduced-form

approximation of the supply side. Our model builds on Melnikov (2001) by adding a full set of persistent

random coefficients and repeat purchases over time, all modeled in an explicitly dynamic framework.

The remainder of the paper is divided as follows. Section 2 discusses the model and method of

inference, Section 3 the data, Section 4 the results, and Section 5 concludes.

2 Model and Inference

In this section, we specify our dynamic model of consumer preferences, explain our method of inference

and discuss the instruments and identification of the parameters.

2.1 Model

Our model starts with the introduction of a new consumer durable good at time t = 0. The unit of

observation is a month and there is a continuum of heterogeneous potential consumers indexed by i.
1An important comparison is to Hendel & Nevo (2006) which is also a logit-based model with endogenous repurchases

and a similar approximation to the formation of expectations. By using disaggregate data, Hendel & Nevo (2006) are able

to identify the parameters underlying consumer stockpiling. However, their model cannot be used with random coefficients

on variables that vary within sizes.
2Our data contain 343 distinct camcorder models and 4,436 distinct model-months (a figure that is typical for new

durable goods industries) implying that a survey would have to have over 100,000 purchases to measure shares accurately.

The ICR-CENTRIS survey that we use for household level information interviews 4,000 individuals. By the end of our

sample period, less than 15% of people had ever bought a digital camcorder, implying less than 600 total purchases.
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Consumers have infinite horizons and discount the future with a common factor β. We assume that

products are infinitely durable. However, if a consumer who owns one product purchases a new one,

she obtains no additional utility from the old product, or equivalently, she discards the old product at

no cost.3 We also do not consider resale markets because we believe that they are small for the new

consumer durable goods that we examine given the speed of technological progress.

Consider the decision problem for consumer i at time t. The consumer chooses one of among Jt

products in period t or chooses to purchase no product in the current period. In either case, she is

faced with a similar (though not identical) decision problem at time t+ 1. From these Jt+1 choices, the

consumer chooses the option that maximizes the sum of the expected discounted value of future expected

utilities conditional on her information at time t.

Product j at time t is characterized by observed characteristics xjt, price pjt and an unobserved

(to the econometrician) characteristic ξjt. For digital camcorders, observed characteristics include size,

zoom, and the ability to take still photographs (among others), while the unobserved characteristic

would encapsulate product design, ergonomics and unreported recording quality. We assume that a

product’s characteristics is an element of a compact set. Consumer preferences over xjt and pjt are

defined respectively by the consumer-specific random coefficients αx
i and αp

i which we group together as

αi. The characteristics of a product j purchased at time t, xjt and ξjt, stay constant over the infinite life

of the product. We do not restrict the unobserved characteristics of the same model offered for sale at

different times to be the same. We assume that consumers and firms know all time t information when

making their time t decisions.

Every period, each consumer obtains a flow utility based on the product that she purchases or on the

product that she already owns if she chooses not to purchase. The functional form for the flow utility

fits within the random coefficients discrete choice framework of BLP. Specifically, we let

δf
ijt = xjtα

x
i + ξjt j = 1, . . . , Jt

denote the gross flow utility from product j purchased at time t. We assume that a consumer purchasing

product j at time t would receive a net flow utility at time t of

uijt = δf
ijt − αp

i ln(pjt) + εijt,

where pjt is the price of good j in period t and εijt is an idiosyncratic unobservable meant to capture

random variations in the purchase experience that do not persist across month, due to sales personnel,
3We consider the data and modeling necessary to loosen this restriction and others in Section 2.4 below.
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weather, etc.4 We assume that εijt is distributed type 1 extreme value, independent across consumers,

products and time, and as such has mean γ, Euler’s constant. We let αi be constant over time and

distributed normally with mean α ≡ (αx, αp) and variance matrix Σ, where α and Σ are parameters to

estimate. Our empirical implementation uses a diagonal Σ matrix, although correlations can be easily

added.

We also define the population mean flow utility

δ̄f
jt = xjtα

x + ξjt, j = 1, . . . , Jt,

which we use to explain our method of inference in Subsection 2.2.

In our model, a consumer who does not purchase a new product at time t has net flow utility of

ui0t = δf
i0t + εi0t,

where δf
i0t is the flow utility from the product currently owned and εi0t is also distributed type 1 extreme

value. For an individual who has purchased a product in the past, δf
i0t = δf

iĵt̂
, where t̂ is the most recent

period of purchase, and ĵ is the product purchased at time t̂. Individuals who have never purchased a

product in the past use the outside good, whose mean utility we normalize to 0, so that δf
i0t = 0 for those

individuals.

In order to evaluate consumer i’s choice at time t, we need to formalize consumer i’s expectations

about the utility from future products. We assume that consumers have no information about the future

values of the idiosyncratic unobservable shocks ε beyond their distribution. The set of products and

their prices and characteristics vary across time due to entry and exit and changes in prices for existing

products. Consumers are uncertain about future product attributes but have rational expectations about

their evolution. We assume that each consumer is, on average over time, correct about the mean and

variance of the future quality path.5

We now define the state variables and use them to exposit the dynamic decision process. Let

εi.t ≡ (εi0t, . . . εiJtt). Then, the purchase decision for consumer i depends on preferences αi and εi.t, en-

dowments δf
i0t, current product attributes and expectations of future product attributes. Future product

4Given that all camcorder prices are greater than one dollar, our specification for price is rationalized by a model

where consumers have income Yit; they purchase at most two products, a money good mit and possibly a camcorder; and

the utility derived from the money good is αp
i min{0, ln(Yit − mit)}. The specification can easily be modified to use the

empirical income density, as in Nevo (2001)’s study on the breakfast cereal industry.
5A more general rational expectations model would allow individual consumers to have consistently biased estimates of

the future logit inclusive value but let the mean expectations across consumers be accurate. While such a model would be

easy to specify, it would be difficult to identify without expectations data.
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attributes will depend on firm behavior which is a function of consumer endowments and supply-side

factors such as technological progress. Let Ωt denote current product attributes and any other factors

that influence future product attributes. We assume that Ωt+1 evolves according to some Markov pro-

cess P (Ωt+1|Ωt) that accounts for firm optimizing behavior. Thus, the state vector for consumer i is

(εi.t, δ
f
i0t,Ωt). Let V (εi.t, δ

f
i0t,Ωt) denote the value function, and EVi(δ

f
i0t,Ωt) =

∫
εi.t

Vi(εi.t, δ
f
i0t,Ωt)dPε

denote the expectation of the value function, integrated over realizations of εi.t.

We can now define the Bellman equation for consumer i as

Vi

(
εi.t, δ

f
i0t,Ωt

)
= max

{
ui0t + βE

[
EVi

(
δf
i0t,Ωt+1

)∣∣∣ Ωt

]
, (1)

max
j=1,...,Jt

{
uijt + βE

[
EVi

(
δf
ijt,Ωt+1

)∣∣∣ Ωt

]}}
where “E” denotes the expectation operator, a conditional expectation in this case. From (1), the

consumer can choose to wait and keep her current product (option zero), or purchase any of the available

products (the next Jt options). Note that the value of waiting is greater than the expected discounted

stream of flow utilities ui0t +(δf
i0t + γ)β/(1−β) because waiting encapsulates the option to buy a better

product in the future.

We can now use the aggregation properties of the type 1 extreme value distribution to express the

expectation Bellman equation in a relatively simple form. In particular, Anderson, De Palma & Thisse

(1992) and Rust (1987) show that the value of the best choice from several options in a logit model can

be expressed as the logorithm of the sum of the exponents of the mean utility of each option plus a single

type 1 extreme value draw.

To formally illustrate this property for our context, we require two definitions. First, for each product

j = 1, . . . , Jt, let δij (Ωt) denote the mean expected discounted utility for consumer i purchasing product

j at time t; thus

δij (Ωt) = δf
ijt − αp

i ln (pjt) + βE
[
EVi

(
δf
ij ,Ωt+1

)∣∣∣ Ωt

]
. (2)

Second, define the logit inclusive value for consumer i at time t to be

δi (Ωt) = ln

 ∑
j=1,...,Jt

exp [δij (Ωt)]

 . (3)

We abbreviate δi (Ωt) as δit when it is clear to which Ωt we are referring.

Then, Rust (1987) shows that the choice problem has the same expected value as a much simpler

choice problem, where at each period t, the consumer makes a one-time purchase of a product with mean

utility δit or holds the outside good with mean utility δf
i0t. Formally,

EVi

(
δf
i0t,Ωt

)
= ln

(
exp (δit) + exp

(
δf
i0t + βE

[
EVi

(
δf
i0t,Ωt+1

)∣∣∣ Ωt

]))
+ γ. (4)
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Equation (4) shows that the state variable Ωt only affects EVi through its impact on the current and

future values of δit. Intuitively, if two states yield the same contingent paths of δit then the expected

value of either state is the same. We state this point formally:

Proposition 1 Consider states Ωt and Ω′t for which the following two properties holds: (1) δi(Ωt) =

δi(Ω′t) and (2) P (δi(Ωτ+1)|Ωτ ) = P
(
δi(Ω′τ+1)|Ω′τ

)
if δi(Ωτ ) = δi(Ω′τ ), for every τ ≥ t and every state

Ωτ and Ω′τ . Then, EVi

(
δf
i0t,Ωt

)
= EVi

(
δf
i0t,Ω

′
t

)
.

The proof appears in the appendix.

Using Proposition 1, we can rewrite the state vector for EVi so that

EVi

(
δf
i0t,Ωt

)
= EVi

(
δf
i0t, δit, P [δi,τ+1|Ωτ ]

)
. (5)

While (5) provides a simplification, the state space is still infinite dimensional and so cannot be used for

computational purposes. We wish to proceed by making simplifying assumptions on the evolution of δit.

Before doing so, we first consider the relationship between δit and the underlying product characteristics.

For any belief structure on the evolution of product characteristics, (2) and (3) provide an algorithm

to compute current and future values of δit, showing that this mapping exists. We can also prove the

converse given some regularity conditions:

Proposition 2 Consider any set of contingent probabilities for the evolution of δit, Pi [δi,τ+1|Ωτ ] , τ > t.

Assume that the possible values for Ωτ and δiτ are both elements of a finite set. Then, for any vector of

preferences αi there is at least one set of conditional distributions Pi(xj,τ+1, pj,τ+1|Ωτ ) such that this set

of distributions together with optimizing behavior imply the contingent probabilities Pi [δi,τ+1|Ωτ ].

The proof appears in the appendix.

Proposition 2 shows that any set of restrictions on the evolution of δit will be consistent with some set

of restrictions on the evolution of xjt and pjt.6 We proceed by making a major simplifying assumption,

that the current δit is sufficient to predict future values of δit:

Assumption 1 Inclusive Value Sufficiency (IVS)

If δi(Ωt) = δi(Ω′t), then Pi (δi(Ωt+1)|Ωt) = Pi

(
δi(Ω′t+1)|Ω′t

)
for all t and Ωt, Ω′t.

The assumption of IVS and Proposition 1 together imply that all states with the same δit have the

same expected value. Hence, it is sufficient to condition the value function on δf
i0t and δit rather then

6The proposition does not show that distributions over future states are what actually occur or that the distributions

are similar across consumers with different random coefficients.
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δf
i0t and Ωt. Thus, the state space is reduced to two dimensions. We express

EVi

(
δf
i0t, δit

)
= ln

(
exp (δit) + exp

(
δf
i0t + βE

[
EVi

(
δf
i0t, δi,t+1

)∣∣∣ δit]))
+ γ. (6)

From Proposition 2, the IVS assumption together with any specification for the belief structure on the

δit evolution can be generated with some belief structure on fundamentals, implying that IVS is always

consistent with individual maximization.

For most of our specifications we assume that consumer i perceives Pi (δi,t+1|δit) as its actual empirical

density fitted to a simple functional form and use a simple linear autoregressive specification,

δi,t+1 = γ1i + γ2iδit + νit, (7)

where νit is normally distributed with mean 0 and γ1i and γ2i are incidental parameters specific to each

consumer i. Similar functional forms have been used in the existing dynamic literature (see Melnikov,

2001; Hendel & Nevo, 2006). Our specification amounts to a bounded rationality assumption where

consumers have a limited ability to predict the evolution of the future and can only predict partitions

of the future state, but are correct on average about the probability of occurrence of each partition.

Our functional form is of potential concern since it is not explicitly generated from supply-side dynamic

optimization. For example, δit could be high either because there are many products in the market all

with high prices or because there is a single product in the market with a low price. While dynamic profit

maximization might lead these two states to have different patterns of industry evolution, consumers in

our model will lump them into the same partition.7

In order to examine the robustness of our results, we also examine results from two other functional

forms for expectations. First, we assume perfect foresight, where consumers know all future product

attributes. This functional form is straightforward: the industry state is t. Moreover, it is a special case

of IVS provided that the industry attributes are such that δit is never exactly the same for two time

periods (as would occur if quality were improving, prices were non-decreasing and the set of products

were non-decreasing): in this case, there would be a one-to-one mapping from t to δit and so δit would be

sufficient to predict the future state. We do not use perfect foresight as our main specification because

we believe that it is more realistic to assume that consumers have only a limited ability to predict the

future.

Second, we loosen IVS by expanding the industry state space beyond δit. Given the potential impor-

tance of the number of products in determining industry evolution, we use Jt (the number of products)

as an additional predictor, so that both δit and Jt predict δi,t+1 and Jt+1. For this variant, we adjust
7Hendel & Nevo (2006) provide a similar discussion of the implications of (7).
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IVS appropriately and we specify two linear regressions for the state evolution that are similar to (7).

The linear regressions have δi,t+1 and ln(Jt+1) as dependent variables and include both aggregate state

variables as regressors.8

Last, to examine the validity of our assumption, we also perform a test of IVS. We construct a

moment based on the assumption of no autocorrelation E [νitνi,t+1] = 0 for a consumer i with mean

characteristics. We do not impose this moment in estimation but rather test its validity at the estimated

parameters.

An implication of (7) is that, for 0 < γ2i < 1,9 a graph of mean δit against time finds a concave

line with an asymptote that is approached from below. This asymptote is important in our model since

it represents a steady state in the evolution of product characteristics that the consumer expects to

approach. The eventual arrival of a steady state is what allows us to treat the consumer as facing a

stationary environment, even though observed choices are evolving quickly.

We now briefly discuss market shares and the supply side of the model. Using the value function

resulting from IVS, we can write the probability that consumer i purchases good j as the aggregate

probability of purchase times the probability of purchasing a given product conditional on purchase:

ŝij

(
δf
i0t, δijt, δit

)
=

exp (δit)

exp
(
EVi

(
δf
i0t, δit

)
− γ

) × exp (δijt)
exp (δit)

(8)

= exp
(
δijt − EVi

(
δf
i0t, δit

)
+ γ

)
.

For the supply side, we assume that products arrive according to some exogenous process and that

their characteristics evolve exogenously as well. Firms have rational expectations about the future

evolution of product characteristics. After observing consumer endowments and xjt and ξjt for all

current products, firms simultaneously make pricing decisions. Firms cannot commit to prices beyond

the current period. These supply side assumptions are sufficient to estimate the demand side of the

model. A fully specified dynamic oligopoly model would be necessary to understand changes in industry

equilibrium given changes in exogenous variables.

2.2 Inference

This subsection discusses the estimation of the parameters of the model, (α,Σ, β), respectively the mean

consumer tastes for product characteristics and price, the variance in consumer tastes in these variables
8This idea, of adding additional predictors to a limited information dynamic decision problem in order to test the impact

of the limitation assumption, has been used in the macroeconomics general equilibrium literature to understand the impact

of heterogeneity. See Krusell & Smith (1998).
9We estimate 0 < γ2i < 1 for all types i.
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and the discount factor. We do not attempt to estimate β because it is notoriously difficult to identify

the discount factor for dynamic decision models (see Magnac & Thesmar, 2002). This is particularly

true for our model, where substantial consumer waiting can be explained by either little discounting of

the future or moderate preferences for the product. Thus, we set β = .99 at the level of the month.

We develop a method for estimating the remaining parameters that is based on BLP and Rust

(1987) and the literatures that follow.10 Our estimation algorithm involves three levels of non-linear

optimizations: on the outside is a search over the parameters; inside that is a fixed point calculation of

the vector of population mean flow utilities δ̄f
jt; and inside that is the calculation of predicted market

shares, which is based on consumers’ dynamic optimization decisions.

We now describe each of the three levels of optimization. The inner loop evaluates the vector of

predicted market shares as a function of δ̄f
.. (the δ̄f

jt vector) and necessary parameters by solving the

consumer dynamic programming problem for a number of simulated consumers and then integrating

across consumer types. Let α̃i ≡ (α̃x
i , α̃

p
i ) ∼ φl, where l is the dimensionality of αi and φl is the standard

normal density with dimensionality l. Note that αi = α+ Σ1/2α̃i and δf
ijt = δ̄f

jt + Σ1/2α̃ixjt.

For each draw, we start with initial guesses, calculate the logit inclusive values from (3), use these

to calculate the coefficients of the product evolution Markov process regression in (7), and use these

to calculate the expectation Bellman from (6). We repeat this process until convergence.11 Using the

resulting policy function ŝij(δ
f
i0t, δijt, δit) and computed values of δijt and δit, we then solve for market

share for this draw by starting at time 0 with the assumption that all consumers hold the outside good.12

Iteratively for subsequent time periods, we solve for consumer purchase decisions given the distribution

of flow utility of holdings using (8) and update the distribution of flow utility of holdings based on

purchases.

To perform the iterative calculation, we discretize the state space (δf
i0t, δit) and the transition matrix.

Specifically, we compute the value function by discretizing δf
i0t into 20 evenly-spaced grid points and δit

into 50 evenly-spaced grid points and allowing 20 points for the transition matrix. We specify that δit

can take on values from 20% below the observed values to 20% above and assume that evolutions of δit

that would put it above the maximum bound simply place it at the maximum bound. We have examined
10Computer code for performing the estimation is available from the authors upon request.
11We also perform this three-equation fixed point to solve for new consumer decisions following counterfactual changes

in product characteristics or prices. In particular, note that it is necessary to recalculate new δit, γ1i and γ2i values (in

addition to the value function) since these are all jointly determined by optimizing behavior.
12A strength of our data set is that it reaches back essentially to the start of the industry, so we can assume that all

consumers start with nothing. In another setting, we would have to make assumptions or estimate consumer holdings at

the start of the time horizon. For an example, see Schiraldi (2007).
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the impact of easing each of these restrictions and found that they have very small effects on the results.

To aggregate across draws, a simple method would be to sample over α̃i and scale the draws using

Σ1/2. Since our estimation algorithm is very computationally intensive and computational time is roughly

proportional to the number of simulation draws, we instead use importance sampling to reduce sampling

variance, as in BLP. Let ŝsum

(
α̃i, δ̄

f
.., α

p,Σ
)

denote the sum of predicted market shares of all camcorders

at any time period for an individual with parameters (αp,Σ) and draw α̃i. Then, instead of sampling

from the density φl we sample from the density

f(α̌i) ≡
ŝsum

(
α̌i, δ̄

f
.., α

p,Σ
)
φl(α̌i)∫

ŝsum

(
α̌, δ̄f

.., α
p,Σ

)
φl(α̌)dα̌

, (9)

and then reweight draws by

wi ≡
∫
ŝsum

(
α̌, δ̄f

.., α
p,Σ

)
φl(α̌)dα̌

ŝsum

(
α̌i, δ̄f

.., α
p,Σ

) ,

in order to obtain the correct expectation. Our importance sampling density oversamples purchasers,

which will reduce the sampling variance of market shares. As in BLP, we sample from the density f

by sampling from the density φl and using an acceptance/rejection criterion. We compute (9) using a

reasonable guess of (αp,Σ) and computing δ̄f
.. from these parameters using the middle-loop procedure

described below. Instead of drawing i.i.d. pseudo-random normal draws for φl, we use Halton sequences

based on the first l prime numbers to further reduce the sampling variance (see Gentle, 2003). In practice,

we use 40 draws, although results for the base specification do not change substantively when we use 100

draws.

We now turn to the middle loop, which recovers δ̄f
.. by performing a fixed point equation similar to

that developed by BLP. We iterate until convergence

δ̄f,new
jt = δ̄f,old

jt + ψ ·
(
ln(sjt)− ln

(
ŝjt

(
δ̄f,old
.. , αp,Σ

)))
,∀j, t, (10)

where ŝjt

(
δ̄f,old
.. , αp,Σ

)
is the model market share (computed in the inner loop), sjt is actual market

share, and ψ is a tuning parameter that we generally set to 1− β. Note that it is not necessary to treat

the inner loop and middle loop as separate. We have found some computational advantages to taking

a step in (10) before the inner loop is entirely converged and to performing (6) much more frequently

than either (7) or (3). However, we require full convergence of (3), (6), (7) and (10) before moving to

the outermost loop.

An important issue is whether (3), (6), (7) and (10) have a unique fixed point, which is necessary

to guarantee identification of the model. We have used a variety of different starting values and have

never had a problem with not finding a solution or finding too many solutions. However, we cannot
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prove uniqueness of the fixed point. Berry (1994) proves uniqueness for models where all products are

substitutes. A variant of our model where consumers can only purchase once and where every current

and future product attribute including the extreme value shocks are known would satisfy substitutability.

In contrast, in most dynamic models, products may be complements. As one example, if we exogenously

increase utility of a current period product, we increase sales at the expense of sales of other products in

the current period. With innovation, if this leads to lower sales next period it may lead to higher sales

in two periods as more consumers will value an upgrade. We believe that this complementarity is very

unlikely to result in multiple solutions, as would occur from network effects, for instance. Nonetheless,

it makes a proof of uniqueness very challenging.

The outer loop specifies a GMM criterion function

G (α,Σ) = z′ξ (α,Σ) ,

where ξ (α,Σ) is the vector of unobserved product characteristics for which the predicted product shares

equal the observed product shares conditional on parameters, and z is a matrix of exogenous variables,

described in detail in Subsection 2.3 below. We estimate parameters to satisfy(
α̂, Σ̂

)
= arg minα,Σ

{
G (α,Σ)′WG (α,Σ)

}
, (11)

where W is a weighting matrix.

We minimize (11) by performing a nonlinear search over (αp,Σ). For each (αp,Σ) vector, we first

obtain δ̄f
.. from the middle loop. The fact that αxxjt and ξjt enter flow utility linearly (recall that

δ̄f
jt = αxxjt +ξjt) then allows us to solve in closed form for the αx that minimizes (11) given δ̄f

.., as in the

static discrete choice literature.13 We perform the nonlinear search using a simplex method. We perform

a two-stage search to obtain asymptotically efficient estimates. In the first stage, we let W = (z′z)−1,

which would be efficient if our model were linear instrumental variables with homoscedastic errors, and

then use our first stage estimates to approximate the optimal weighting matrix.14

A simplified version of our model is one in which a given consumer is constrained to only ever purchase

one durable good. In this case, the computation of the inner loop is vastly simplified due to the fact

that only consumers who have never purchased make decisions. Because of this, (2) can be simplified

to δijt = (δf
ijt + βγ)/(1 − β) − αp

i ln (pjt) which implies that δit in (3) does not depend on the value

function. Moreover, we need only solve the expectation Bellman equation (6) for δf
ijt = 0 and hence

13See Nevo (2000b) for details. One difference from the static model is that we cannot solve in closed form for αp since

the price term, αp ln (pjt), is only paid at the time of purchase, unlike ξjt.
14See again Nevo (2000b) for details.
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there is effectively one state variable, δit, instead of two. The computation of the outer loop for this

model is also quicker, since the price coefficient αp can now be solved in closed-form, like αx in the base

model.

2.3 Identification and instruments

Our model follows the same identification strategy as BLP and the literature that follows. Heuristically,

the increase in market share at product j associated with a change in a characteristic of j identifies

the mean of the parameter distribution α. The Σ parameters are identified by the set of products from

which product j draws market share as j’s characteristics change. For instance, if product j draws

only from products with similar characteristics, then this suggests that consumers have heterogeneous

valuations of characteristics which implies that the relevant components of Σ are large. In contrast, if

j draws proportionally from all products, then Σ would likely be small. Because our model is dynamic,

substitution patterns across periods (in addition to within periods) identify parameters. Moreover, our

model endogenously has different distributions of consumer tastes for different time periods which further

identifies parameters. For instance, consumers with high valuations for the product will likely buy early

on, leaving only lower valuation consumers in the market until such time as new features are introduced,

which will draw back repeat consumers.

Note that our model allows for consumers to purchase products repeatedly over time, even though

it can be estimated without any data on repeat purchase probabilities for individuals. At first glance,

it might appear difficult to identify such a model. However, except for the discount factor β, which

we do not estimate, this model does not introduce any new parameters over the model with one-time

purchases or the static model. The reason is that we have made some relatively strong assumptions

about the nature of the product which imply that the only empirically relevant reason to buy a second

durable good is new features, and features are observed in the data. However, we also experiment with

incorporating survey data on household purchase patterns that address this issue below.

As is standard in studies of market power since Bresnahan (1981), we allow price to be endogenous to

the unobserved term (ξjt) but we assume that product characteristics are exogenous. This assumption

is justified under a model in which product characteristics are determined as part of some technological

progress which is exogenous to the unobserved product characteristics in any given period. As in Bres-

nahan and BLP, we do not use cost-shifters as instruments for price and instead exploit variables that

affect the price-cost margin. Similar to BLP, we include the following variables in z: all of the product

characteristics in x; the mean product characteristics for a given firm at the same time period; the mean
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product characteristics for all firms at the time period; and the count of products offered by the firm and

by all firms. These variables are meant to capture how crowded a product is in characteristic space, which

should affect the price-cost margin and the substitutability across products, and hence help identify the

variance of the random coefficients and the price coefficient. While one may question the validity of these

instruments, they are common in the literature. We consider the development of alternative instruments

a good area for future research.

2.4 Extensions to the model

As noted above, we specify a base model that is relatively parsimonious but that we believe still captures

the important features of the digital camcorder market. Many of the assumptions of our model could be

easily relaxed provided that data to identify the resulting additional parameters exist. We now explain

how to extend the model in several ways that would be of use in estimating preferences for other durable

goods industries.

First, we assume that products do not depreciate. It would be easy to modify our model to allow

for either stochastic or deterministic product depreciation. This would alter the Bellman equation (1) so

that the future individual state would not be δf
i0t but rather a depreciated function of this value. Micro-

moment data (see Berry, Levinsohn & Pakes, 2004; Petrin, 2002) on the durability of current goods or

on the frequency of repeat purchases would identify the depreciation coefficients. Second, we assume

that consumers can only hold one digital camcorder concurrently. We could modify the model to allow

consumers to hold two products simultaneously, by allowing for two consumer state variables, one for the

flow utility of each product. Each period, consumers would then choose between replacing either of their

existing products or keeping them both – resulting in 2Jt + 1 choices. Utility from the second product

would be a multiple – likely less than 1 – of the utility from the first product, resulting in one extra

parameter. Micro survey panel data on the stock of goods would identify this extra parameter. Third,

we assume that the set of consumers in the market remains constant over time. We could model the

exogenous entry of new consumers in a straightforward manner. Micro survey data on when households

started considering a category for purchase would be useful to credibly identify the level of exogenous

entry. In combination with micro survey data on the stock of goods, we could potentially identify

differences in random coefficients by date of entry into the market.

Last, and most importantly, we assume that there are no resale markets for digital camcorders.

Many durable goods industries, such as automobiles, have important resale markets. We could model

an industry with resale markets using data on the quantity and price of used products. In this case,
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consumers would have as choices all new and used products on the market. We would also want to allow

for depreciation of products, as above. The Bellman equation would be modified to reflect the fact that

a consumer who owns a product and upgrades to a new product would also receive the market price

for her current product and vintage, upon trading in her current product. Thus, consumers would need

to forecast the market price for their current model in addition to future values of δit. We owe this

discussion to Schiraldi (2007), who extends our model to analyze the market for new and used cars in

Italy in this way. He allows for transactions costs, which are necessary to explain the empirical fact that

consumers do not reoptimize their choice of cars (or other products) very frequently.

3 Data

We estimate our model principally using a panel of aggregate data for digital camcorders.15 The data

are at the monthly level and, for each model and month, include the number of units sold, the average

price, and other observable characteristics. We observe 383 models and 11 brands, with observations

from March 2000 to May 2006. These data start from very early in the product life cycle of digital

camcorders and include the vast majority of models. The price and quantity data were collected by NPD

Techworld which surveys major electronics retailers and covers 80% of the market.16 We create market

shares by dividing sales by the number of U.S. households in a year, as reported by the U.S. Census.

We collected data on several important characteristics from on-line resources. We observe the number

of pixels that the camera uses to record information, which is an important determinant of picture quality.

We observe the amount of magnification in the zoom lens and the diagonal size of the LCD screen for

viewing shots.17 We observe the width and depth of each camera in inches (height was often unavailable),

which we multiply together to create a “size” variable. We also record indicators for whether the camera

has a lamp, whether it can take still photos and whether it has “night shot” capability, an infrared

technology for shooting in low light situations. Finally, we observe the recording media the camera uses

– there are four mutually exclusive media (tape, DVD, hard drive and memory card) – which we record

15We have obtained similar data for digital cameras and DVD players and previous versions of this paper estimated

those industries. Basic features of the results are similar across industries. We focus on camcorders because we believe this

product exhibits the least amount of endogenous complementary goods or network effects (such as titles for DVD players or

complementary products for producing pictures for digital cameras), which would complicate our analysis. Incorporating

network effects into our framework is the subject of current research.
16NPD sales figures do not reflect on-line sellers such as Amazon and they do not cover WalMart. This could potentially

bias welfare results if these vendors disproportionately sell particular types of products.
17We log all continuous variables and treat any screen of less than .1 inch as equivalent to a screen of .1 inch.
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Table 1: Characteristics of digital camcorders in sample 
Characteristic Mean Std. dev. 

Continuous variables   
Sales 2492 (4729) 

Price (Jan. 2000 $) 599 (339) 
Size (sq. inches width !  depth, logged) 2.69 (.542) 

Pixel count  (logged ÷ 10) 1.35 (.047) 
Zoom (magnification, logged) 2.54 (.518) 

LCD screen size (inches, logged) .939 (.358) 
Indicator variables   

Recording media: DVD .095 (.294) 
Recording media: tape .862 (.345) 

Recording media: hard drive .015 (.120) 
Recording media: card (excluded) .028 (.164) 

Lamp .277 (.448) 
Night shot .735 (.442) 

Photo capable .967 (.178) 
Number of observations: 4436 

Unit of observation: model – month 
 

as indicators.

To create our final data set, we exclude from the choice set in any month all digital camcorders that

sold fewer than 100 units in that month. This eliminates about 1% of sales from the sample. We also

exclude from the choice set in any month all products with prices under $100 or over $2000 as these

products likely have very different usages. This eliminates a further 1.6% of sales from the sample. Our

final sample includes 343 models and all 11 brands. The number of products varies from 29 in March

2000 to 98 in May 2006. Table 1 summarizes the sales, price and characteristics data by level of the

model-month for our final sample.

Figure 1 graphs simple averages of two features over time, size and pixel count, using our final sample.

Not surprisingly, cameras improve in these features over time. Weighting by sales produces similar results.

Figure 2 displays a similar graph for features that are characterized by indicator variables: the presence

of a lamp, the presence of night shot, the ability to take still photographs and whether the recording

media is tape. The first two systematically become more popular over time. Photo ability is present in

nearly every camera half-way through the sample but declines slightly in popularity by the end of our

sample. Tape-based camcorders inititally dominated the market but grew less popular over time relative
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Figure 1: Average indicator characteristics over time
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Figure 3: Prices and sales for camcorders
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to DVD- and hard drive-based devices, representing more than 98% of devices in the first few months of

the data but less than 65% in the last few.

Figure 3 shows total sales and average prices for camcorders in our final sample over time. Camcorders

exhibit striking price declines over our sample period while sales increase. Even more noticeable than

the overall increase in sales is the huge spike in sales at the end of each year due to Christmas shopping.

Note that while quantity changes over the Christmas season, there is no visible effect on prices or

characteristics.

Our model needs to have some way of explaining the huge impact of the Christmas season on sales.

One way is to add a monthly characteristic to each product. Given that our demand system is dynamic,

this vastly complicates our model by adding another state variable (month of the year). Moreover, it

is unlikely that products bought over Christmas are inherently more valuable in the future. Thus, we

believe that a reasonable model would assume that a purchase in December adds to utility at the time of

purchase, rather than adding to δf
ijt, the future flow utility of the product. Thus, this results in additional

parameters that are estimated non-linearly. We estimate one specification with seasonal effects. This

specification adds 11 parameters, one for each month but January, that specify the additional utility at

the time of purchase in that month. It also modifies the Bellman equation to have the month of the

year as a state variable, and modifies the regressors in the state expectation equation (7) to allow for
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Figure 4: Penetration and sales of digital camcorders
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month-of-year dummies instead of just a constant term.

Given the computational complexity of this model and the fact that only sales change over Christmas,

for most of our specifications, we addressed the Christmas spike issue by seasonally adjusting our data.

Specifically, we multiplied sales by a separate constant for each month, constant across years. The

constants were chosen so that the sales by month summed over the years in the data were the same for

each month and so that total sales for each year were unchanged. Figure 3 also shows the seasonally-

adjusted sales data, which are, by construction, much smoother than the unadjusted data.

In addition, in some specifications we incorporate household level data on ownership, often referred to

as penetration, to better pin down repeat purchasing behavior. These data come from ICR-CENTRIS,

which performs telephone interviews via random-digit dialing. ICR-CENTRIS completes about 4,000

interviews a month, asking which consumer electronics items a household owns.18 Figure 4 shows our

ICR-CENTRIS data, which contain the percent of households that indicate holding a digital camcorder

in the third quarter of the year for 1999 to 2006. It also shows the year-to-year change in this number

and the new sales of camcorders, as reported by NPD.

The penetration data show rapid growth in penetration early on in the sample but no growth by
18Data on how many camcorders a household owns or data on the time between purchases would be even more directly

useful for understanding repeat purchases. However, a lengthy search of public and private data sources did not turn up

any such information.
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the end. The evidence from the penetration and sales data are not entirely consistent, perhaps due to

differences in sampling methodology: in 3 of the 6 years, the increase in penetration is larger than the

increase in new sales. We also believe the ICR-CENTRIS finding of virtually no new penetration after

2004 to be implausible. Nonetheless, the slowdown in penetration but continued growth in sales together

suggest that there are substantial repeat purchases by the end of our sample. Because of the issues

surrounding the penetration data, we only use it in one robustness specification.

4 Results and implications

We first exposit our results, then provide evidence on the fit of the model, discuss the implications of

the results and finally use our results to analyze dynamic COLIs.

4.1 Results

We present our parameter estimates in Table 2. Table 2 contains four columns of results. The first

column of results provides the parameter estimates and standard errors from our base specification of

the model presented in Section 2 with two random coefficients, one on price and the other on the constant

term. The base specification reports results that are generally sensible in magnitude and sign. As we

would hope, price contributes negatively to utility for virtually everyone, with a base coefficient of −3.30

and a standard deviation on the random coefficient of .345. Both are precisely estimated. A person with

mean tastes would obtain a negative gross flow utility from a camcorder with all characteristics zero

(relative to the outside option), with a mean constant term of −.092. The standard deviation on the

constant term in the consumer population is .079, indicating that there is substantial variation in the

gross flow utility from a camcorder. Again, both coefficients are statistically significant. In comparing

the magnitudes of these coefficients, recall that price is paid once, while all the other coefficients relate to

flow utility at the level of the month, and hence the price coefficients should be roughly 1/(1− β) = 100

times the magnitude of the other coefficients as compared to a static model.

Most of the characteristics of digital camcorders enter utility with the expected sign and significance,

including camcorder size, pixels, zoom, LCD screen size, night shot capability and the presence of a lamp.

The three included media dummies are all positive. These are relative to the card technology, which

is generally considered the worst. The one coefficient whose sign is not intuitive is photo capability,

which is estimated to be negative and significant. It is hard for our utility model to generate a positive

coefficient on this feature since it varies little and its diffusion slightly reverses over time.
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Table 2: Parameter estimates

Parameter
Base dynamic 

model

Dynamic 
model without 
repurchases

Static model
Dynamic model 
with micro‐
moment

(1) (2) (3) (4)

Mean coefficients (α)
Constant ‐.092 (.029) * ‐.093 (7.24)  ‐6.86 (358)  ‐.367 (.065) *

Log price ‐3.30 (1.03) * ‐.543 (3.09)  ‐.099 (148)  ‐3.43 (.225) *

Log size ‐.007 (.001) * ‐.002 (.116)  ‐.159 (.051) * ‐.021 (.003) *

Log pixel .010 (.003) * ‐.002 (.441)  ‐.329 (.053) * .027 (.003) *

Log zoom .005 (.002) * .006 (.104)  .608 (.075) * .018 (.004) *

Log LCD size .003 (.002) * .000 (.141)  ‐.073 (.093)  .004 (.005) 

Media: DVD .033 (.006) * .004 (1.16)  .074 (.332)  .060 (.019) *

Media: tape .012 (.005) * ‐.005 (.683)  ‐.667 (.318) * .015 (.018) 

Media: HD .036 (.009) * ‐.002 (1.55)  ‐.647 (.420)  .057 (.022) *

Lamp .005 (.002) * ‐.001 (.229)  ‐.219 (.061) * .002 (.003) 

Night shot .003 (.001) * .004 (.074)  .430 (.060) * .015 (.004) *

Photo capable ‐.007 (.002) * ‐.002 (.143)  ‐.171 (.173)  ‐.010 (.006) 

Standard deviation coefficients (Σ1/2)
Constant .079 (.021) * .038 (1.06)  .001 (1147)  .087 (.038) *

Log price .345 (.115) * .001 (1.94)  ‐.001 (427)  .820 (.084) *

Standard errors in parentheses; statistical significance at 5% level indicated with *.  All models 
include brand dummies, with Sony excluded.  There are 4436 observations.
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All of the estimated parameters on characteristics are smaller in absolute value than the parameter

on the constant term. In combination with the fact that these characteristics either are indicators or

have a standard deviation less than 1, this implies that these features are important, but that the vertical

differentiation between camcorders is small relative to the differentiation from the outside good.

A potential concern in our context is the restrictiveness of the logit error assumption. Logit errors

typically imply unrealistic welfare gains from new products (see Petrin, 2002). Ackerberg & Rysman

(2005) argue that this feature implies that logit-based models will perform poorly in contexts where

consumers face different numbers of products over time. Ackerberg & Rysman recommend addressing

this problem by including the log of the number of products, ln(Jt), as a regressor, as if it were a linear

element in δ̄f
jt. Finding a coefficient of 0 implies the logit model is well-specified, whereas a coefficient of

−1 implies “full-crowding,” so there is no demand expansion effect from variety. In unreported results,

we find that other parameters change little and that the coefficient on ln(Jt) is −.013. Although the

coefficient is statistically significant, it is very close to zero and suggests that the i.i.d. logit draws are a

reasonable approximation. Concerns with the implications of logit draws motivate Berry & Pakes (2005)

and Bajari & Benkard (2005) to propose discrete choice models that do not include logit i.i.d. error

terms, but given this coefficient estimate, we do not further pursue this issue.

Column 2 provides estimates from the dynamic model where individuals are restricted to purchase at

most one digital camcorder ever. This specification yields results that are less appealing than our base

specification. In particular, the mean price coefficient drops in magnitude by a factor of 6 and loses its

statistical significance. Many of the characteristics enter mean utility with an unexpected sign, including

pixels, LCD screen size and lamp and many fewer mean coefficients are significant than in the base

specification. The standard deviation coefficients are very small and statistically insignificant. We apply

a formal test of model selection. Rivers & Vuong (2002) derive a test statistic that has a standard normal

distribution under the null hypothesis that the two models fit the data equally well (in this case, in the

sense of the GMM objective function).19 The value of the test statistic is 5.55, which strongly rejects

the single purchase model in favor of our base model. In the one-time purchase model, the magnitude of

the mean price coefficient is much smaller than the standard deviation of the extreme value distribution.

Had this estimated coefficient been applied to the base model, many people would purchase a camcorder

most months, which they are unable to do in the one purchase model. This sharp difference in purchase

patterns between the two models explains why the coefficient estimates can be so different.

Column 3 follows BLP and estimates a traditional static random coefficients discrete choice speci-
19Following Jaumandreu & Moral (2006), we base our test statistics for the non-nested test on the consistent first-stage

GMM estimates.
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fication. To compare these coefficients with the base specification, one would have to multiply all the

coefficients from this specification, except for the coefficients on price, by 1/100. The static model yields

many unappealing results, including a barely negative price coefficient with an enormous standard er-

ror and many coefficients on characteristics that are of the opposite sign from expected. We similarly

perform a non-nested test of this model against the base model and obtain a test statistic of 5.7, which

strongly rejects the static model in favor our base model.

We believe that the very imprecise price coefficients in the static specifications is caused by the fact

that the data cannot easily be explained by a static model. In particular, the static model cannot fit

two facts that are characteristic of the data: first, many more people purchased digital camcorders once

prices fell; but second, within a time period, the cheapest models were often not the most popular.

Because the model cannot then estimate a significantly negative price coefficient, it also does not result

in appropriate coefficients on characteristics.

The dynamic model addresses these two facts because it predicts that people wait to purchase when

expected price declines are small, not necessarily when prices are small. Heuristically, the static price

coefficient is analogous to the coefficient from a regression of market shares on prices whereas the the dy-

namic price coefficient is analogous to the coefficient from a regression of shares on the forward difference

in price, (pjt − βpj,t+1).20 Unlike the static explanation, the dynamic explanation for why consumers

wait does not conflict with consumers buying relatively high-priced products.

As we show below, our base specification implies very little repeat purchase. Thus, we use the

penetration data in the form of a micro-moment (see Petrin, 2002) as a check on our base results.

Specifically, we use the penetration data to construct an additional moment that is the difference between

the increase in household penetration between Sep. 2002 and Sep. 2005 predicted by the model and

by the penetration data.21 We chose to use only these two years to mitigate the noise present in the

data. Column 4 reports the result. There are two main differences between these results and the

base specification. First, the standard deviation of the random coefficient on price more than doubles.

That increases the set of consumers who care about price very little. Second, the coefficients on the

characteristics increase, often becoming 2 or 3 times as large. The parameters that increase the most are

on the characteristics that improve the most over time. For instance, there are big parameter changes on

size, zoom and pixel count and small changes on the presence of a lamp or a photograph option. Hence,
20Gandal et al. (2000) show that this heuristic is an exact description of the market with one product, perfect foresight,

zero variance to εijt, linearity in prices, no repeat purchase, and a concave price path.
21See Berry et al. (2004) and Petrin (2002) for details on calculating weighting matrices when combining micro moments

with aggregate moments.
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the model generates repeat purchase by creating a set of price insensitive consumers and increasing the

importance of characteristics that improve over time.

In Table 3, we present a number of robustness checks. Column 1 explores the importance of the IVS

assumption by including ln(Jt) as an additional state variable. The results are very similar to our base

specification, lending support to the IVS assumption. The second column estimates a model with perfect

foresight where the market stops evolving at the last period in our data so that the market structure

available there is exactly what is available ever after. Although it leads to a smaller price coefficient and

zero heterogeneity around price, the model generates mostly the same qualitative results. Hence, it does

not appear that our particular specification of expectations is crucial in generating our results.

Turning now to column 3, the addition of two extra random coefficients results in parameter estimates

for mean coefficients that are very similar to the base specification. In particular, the sign of the mean

coefficients on price and characteristics are all the same as in the base specification, and statistical

significance is similar across specifications, except that the random coefficient on price is now close to 0.

Moreover, the two new random coefficients are estimated to be small and statistically insignificant.

While models with the log of price tend to fit data better, it is easier to theoretically justify a model

with linear price from the perspective of consumers with heterogeneous incomes. Column 4 estimates

our model with a linear price. Again, the qualitative results look similar.

Column 5 estimates a variant of the static model where we aggregate the products to the annual

level.22 The results from this specification are similar to the results from the static BLP model at the

monthly level. Column 6 estimates a model with single purchase and no random coefficients, which is

the model considered by Melnikov (2001). We solve it based on our method rather than the multi-stage

model that Melnikov proposes. The results are not particularly appealing, with an insignificant price

coefficient and numerous negative coefficients on characteristics. Using Melnikov’s method finds similar

results.

Column 7 estimates the model with monthly effects as described in Section 3. Not reported in

the table, the utility function for this specification includes month dummies for utility at the time of

purchase, which are .720 for December, .250 for November and which range from −.146 to .104 for the

other months. Only the December effect is statistically significant. This model fully exploits the cross-

month substitution for identification purposes since the data used in this specification does not normalize

away any monthly variation. Nonetheless, the estimated coefficients on price and characteristics are

remarkably similar to the base specification.

We do not address a number of issues which might be important in diffusion contexts, such as
22This specification drops the first and last year from our data, as we lack information on all months for those years.
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Figure 5: Average estimation error (ξjt) by month
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consumer learning or neighborhood effects. These would be difficult to address with aggregate data.

However, a simple way to capture some of these issues is to use a time trend. In unreported results, we

experimented with a quadratic time trend. The coefficients on time came out economically unimportant

and the remaining parameters were very similar.

4.2 Fit of the model

We first assess the fit of the model by reporting the simple average of the unobserved quality ξjt for each

month in Figure 5 using the estimated parameters from the base specification, Table 2 column 1, and

the vector of δ̄x
jt that are consistent with these parameters. Note that ξjt is the estimation error of the

model. The figure does not indicate any systematic autocorrelation or heteroscedasticity of the average

error over time. This finding is important because there is no reduced-form feature such as a time trend

to match the diffusion path. If one were to match, for instance, an S-shaped diffusion path with a simple

linear regression, we would expect to have systematic autocorrelation in ξjt. However, Figure 5 does not

indicate any such pattern.

We also look at the extent to which the model generates repeat purchases. Figure 6 plots the fraction

of shares due to repeat purchases for the base model as well as for the model with the micro-moment,

Table 2, column 4. Under the base model, repeat purchases account for a very small fraction of total
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Figure 6: Evolution of repeat purchase sales
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sales. Even in the final period, which has the largest fraction, repeat purchases account for only about

.25% of new sales. The underlying reason why there are not more repeat purchases is that the coefficients

on characteristics other than the constant term are small relative to the utility contribution from the

price and the constant terms, implying that the net benefit to upgrading is low.

This finding is not consistent with the evidence, albeit imperfect, from the ICR-CENTRIS household

penetration survey, that new sales are higher than new penetration. Figure 6 also plots the share of

repeat purchases for the specification with the micro-moment. Since this model fits both the increase in

penetration of 4.9% from Sep. 2002 to Sep. 2005 and the new sales of 5.85% over the same time period,

it predicts much higher repeat purchases than the base model. In particular, it predicts that over 25%

of new sales are attributable to repeat purchases by the end of the sample.

Figure 7 shows the difference between δi,t+1 and the period t prediction of this value, for a consumer

with draws in the 50th percentile for both random coefficients. There do not appear to be any significant

deviations in the AR(1) process from our assumed functional form. To verify this formally, we estimate

the value of the additional moment based on serially uncorrelated values of νit using the median consumer.

We find that this moment has a mean of −.474 with a standard deviation of 2.95 implying that we cannot

reject the null hypothesis that the residuals are not serially correlated.
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Figure 7: Difference between δi,t+1 and its period t prediction
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4.3 Implications of the results

We now analyze some implications of the results using the base specification, Table 2 column 1. We first

compare the sources of heterogeneity in our results. To understand the evolution of δit in our model,

Figure 8 plots δit for 3 sets of random coefficients, for which the percentiles in their draws for the price

and constant terms are 80-80, 20-20, and 80-20 respectively. For all consumers, values are increasing

close to linearly over time. As the linearity should make evident, the estimated asymptotes to the AR(1)

processes are reached to the future of our data for the reported draws (and indeed all draws that we use).

The value that the 20-20 consumer places on the market at the end of the sample is far below the value

that the 80-80 consumer places at the beginning. That is, the heterogeneity in valuation of the product

swamps the changes over time. The second two lines allow us to compare consumers that differ only

in their price sensitivity. Again, we see that the heterogeneity in the constant term is more important.

That follows for two reasons: first, the lines are relatively close to their counterparts with different price

draws and second, there is little compression over time even though prices are dropping. Because it is

hard to see the level of compression, we plot the difference between the 80-80 and 80-20 lines separately;

the difference decreases by 15% over the sample period.

Next, we analyze dynamic price elasticities. We compare three price changes: a temporary (one-

month) 1% price increase at time t̄ that consumers know to be temporary; a temporary increase that
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Figure 8: Evolution of δit over time
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Figure 9: Industry dynamic price elasticities
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Figure 10: Dynamic price elasticities for Sony DCRTRV250
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consumers believe to be permanent; and a permanent price increase. In all cases, the price increase is

unexpected before time t̄. When consumers believe the increase to be temporary, we compute the time t̄

expectations of δi,t̄+1 using the baseline δit̄; for the perceived permanent price change, we use the realized

δit̄. For all specifications, we keep the estimated γ1i and γ2i coefficients.23

Figure 9, which displays the industry elasticity with t̄ set to the median period of the sample (April

2003), shows that a temporary price change results in twice as big a response as a permanent one.

Specifically, a 1% price increase leads to a contemporaneous decrease in sales of 2.55% when consumers

believe it to be temporary and a decrease of only 1.23% when they believe it to be permanent. In addition,

the response over the following year is also larger, but in the opposite direction: when consumers believe

the temporary price change to be temporary, sales will increase by .54% of the time t̄ sales for the

following 12 months compared to an increase of .22% under the temporary but believed-permanent price

change.

Figure 10 considers the own price elasticity for the Sony DCRTRV250, which had the largest market

share in the median period. Here, the difference in response between a temporary and permanent price

change is small: 2.59% versus 2.41%. This result follows because consumers switch to another product

rather than delay their purchase when one product changes price permanently.
23The price elasticities from the static model are all virtually 0, so we do not include them on the figures.
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Figure 11: Evolution of digital camcorder sales under different assumptions
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Strikingly, we find that the temporary price elasticities are almost the same for the industry as a

whole and the Sony DCRTRV250. However, the sources of the quantity change are different: a delay for

the industry change but a switch to other products for the product change. Because of the difference in

source, the long-run industry temporary price elasticity is much smaller than for the product, as in the

industry case, consumers recover over 20% of the sales reduction in later periods, while virtually none

is recovered for the product. The fact that expectations matter crucially in determining the impact of

price changes suggests that expectations-setting will pay a big role in firm strategies.

Finally, Figure 11 investigates the magnitudes of the dynamic responses by examining the time path

of digital camcorder sales under three different assumptions: the time path generated by the estimated

model (also the actual time path of sales), the time path that would occur if consumers assumed that

their logit inclusive values for digital camcorders remained equal to its present value in all future periods,

and the time path that would occur if firms were faced with all consumers having no digital camcorders

in each period, instead of high valuation consumers having purchased the product and hence generally

having a higher reservation utility for buying, as occurs in our model.

We find that dynamics explain a very important part of the sales path. In particular, if consumers

did not assume that prices and qualities changed, then sales would be somewhat declining over time,

instead of growing rapidly over the sample period. At the beginning of our sample period, sales would
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be huge compared to actual sales, as many consumers would have perceived only a limited option value

from waiting. By the end of our sample period, sales would be significantly less than current sales, as

many consumers who were likely to buy digital camcorders would have bought them early on, having

assumed that quality, in the sense of the logit inclusive value, would be stable over time.

If firms were faced with a situation where all consumers had only the outside good in every period,

then the sales path would be similar until roughly two years into our sample. At this point, many of the

high valuation consumers had started to purchase. By the end of our sample period, we find that sales

in the final month would have been about 3 times as high as they actually were. Note that this increase

in sales is due to high valuation consumers not owning any digital camcorders, and mostly not to having

a larger market, as roughly 90% of the market had not purchased any digital camcorder by the end of

our sample period.

4.4 Cost-of-living indices

We develop a COLI for our model and compare it to widely-used COLIs. All indices are calculated with

seasonally adjusted data. In performing this exercise, we hope to inform the discussion of how to improve

current BLS methods. We do not mean to propose our model as a method that the BLS should consider

for constructing indices as it would probably be infeasible given the time constraints under which the

BLS operates.24

The canonical price index It used by the BLS is a Laspeyres index that specifies

It+1

It
=

Jt∑
j=1

sjt
pj,t+1

pjt
. (12)

We compute a BLS-style price index from (12) using the prices and market shares in our data, linked

over time by model names. As is standard, we normalize the index to 100 for March 2000.25 The main

difficulty in constructing the BLS index is in determining pj,t+1 for products that drop out of the market.

A common approach used by the BLS, which we follow in our computation, is to use the average price
24We focus on indices used by Pakes (2003) and the BLS but there have been other proposals for indices in dynamic

settings. Reis (2005) develops a COLI from a model with durable goods. Contrary to our approach, he assumes that

there are perfect resale markets, that consumers make a continuous purchase choice and implicitly, he considers established

markets where diffusion is not taking place. His focus is on uncertainty in prices. He provide excellent citations on dynamics

in price indices. Housing is an important area where durability has been a concern. See, for instance ,Benkard & Bajari

(2005).
25The BLS must deal with a number of challenging issues associated with the way enumerators collect data that we do

not address here. See Pakes (2003) or more generally, Bureau of Labor Statistics (2007), Chapter 17.
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Figure 12: Average monthly value from camcorder market
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in the market. This introduces the well known “new goods” problem since the exiting product probably

would have been priced below the market average. Pakes (2003) proposes using a prediction of pj,t+1

from a hedonic regression, which addresses this problem. We also construct the Pakes (2003) price index,

which as expected, falls further. We find that the BLS price index falls from 100 to 17.3 over our sample

period and that the Pakes index falls from 100 to 13.9.

Formally, both the CPI and the Pakes index are price indices, not COLIs. However, they are both

motivated by their relationship to the COLI and in practice, are used as such.26 In general, one would

construct COLIs by multiplying the price indices from (12) by the the expenditures in the sector. This

is problematic for the camcorder sector since sales are rapidly growing and prices rapidly falling over

time. Thus, we proceed by including the outside good as a product with an invariant price in (12)

and by multiplying the resulting index by the share-weighted average price in the initial period ($961)

and dividing by 100. This provides the revenue savings realized in subsequent periods, which we then

subtract from the March 2000 figure (of $961) to obtain the extra value generated by the industry in

any month. We plot these two indices in Figure 12. The indices starts at $0 by construction and end six

years later at $2.06 for the BLS COLI and $2.46 for the Pakes COLI. That is, from the BLS COLI, a tax

of $2.06 per household in May 2006 would result in an average utility equal to the Mar. 2006 average

utility, with smaller taxes necessary for earlier months. The relatively small values reflect the fact that

market shares for camcorders are low.
26Bureau of Labor Statistics (2007) states that “the concept of COLI provides the CPI [Consumer Price Index]’s mea-

surement objective (p. 2).”
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The BLS and Pakes COLIs are designed to provide the income change necessary to buy a camcorder

of equal quality in any period. However, this may deviate from the income change necessary to hold

utility constant as willingness-to-pay changes due to evolving consumer holdings and expectations of the

future. We use our structural model to evaluate the price changes that would hold utility constant over

time.

We construct the COLI from our dynamic model as follows: we imagine a social planner who sets a se-

quence of aggregate-state-contingent taxes (or subsidies) that holds the average flow utility constant over

time assuming that consumers follow optimizing behavior. This sequence of taxes forms a compensating

variation measure because it results in the average expected value function being constant over time.

This approach avoids a number of difficulties that might make a COLI for forward-looking consumers

intuitively unappealing.27 Note that the aggregate-state-contingent taxes do not change camcorder pur-

chase behavior in our model. We make one final adjustment which is to assume that a consumer who

buys a product that costs pjt in period t pays a perpetual amortized price of (1 − β)pjt forever after,

instead of paying pjt at time t.28 Note that a consumer pays the amortized price even after replacing

the good. To eliminate this property, one could adjust β by the hazard of replacing the good.

We plot our dynamic COLI in Figure 12. In order to avoid dealing with differing marginal utilities

of money based on different tax and money good quantities, our dynamic COLI is constructed from the

specification with linear price, Table 3 column 3.29 The dynamic index start at $0 by construction and

ends six years later at $1.27.

The dynamic, BLS and Pakes COLI lines are very close for the first two years and then diverge

substantially over the remaining four years. The dynamic COLI shows a clear concavity whereas the

BLS COLI continues approximately linearly over the whole sample. Thus, we find the “new buyer

problem” (Aizcorbe, 2005) to be empirically important. Sales and prices are moving linearly which

causes standard COLIs to move linearly as well. However, relatively low value people are purchasing at

the end of the sample and so overall, surplus is tapering off. Note that a BLS COLI that started in a

later time period would have a lower slope as the average price would be lower than $962, illustrating
27Potential problems are 1) current price declines might benefit every consumer, even those who will not buy for several

periods; 2) surprising price drops might affect welfare changes much more than anticipated ones; and 3) future income

adjustments based on a COLI affect welfare today. See Reis (2005) and Bajari, Benkard & Krainer (2005) for different

approaches.
28If we measured flow utility using the entire price rather than the amortization scheme, we would find that average flow

utility was less than the outside good utility throughout our sample since payments from new purchasers swamp flow from

those who hold the product. Although theoretically consistent, we found this intuitively unappealing.
29We also computed a COLI using the static BLP estimates. It was much larger than the other indices, and peaked at

$6.92. It did not appear reasonable.
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how difficult it is to use a price index as a COLI for camcorders. Although the slope would be different,

the shape would remain the same – and different from our dynamic COLI.

5 Conclusion

This paper develops new methods to estimate the dynamics of consumer preferences for new durable

goods. Our model allows for rational expectations about future product attributes, heterogeneous con-

sumers with persistent heterogeneity over time, endogeneity of price, and the ability for consumers to

upgrade to new durable goods as features improve. Our model is of use in measuring the welfare im-

pact of new durable goods industries and in evaluating dynamic price elasticities for these industries,

among other economic questions. We estimate our model using a panel data set of prices, quantities and

characteristics for the digital camcorder industry.

Our estimates of consumer preferences that account for dynamics are generally sensible. A variety of

robustness measures show that the major simplifying assumptions about the dynamics in the model are

broadly consistent with the data. In contrast, a static analysis performed with the same data yields less

realistic results.

We find substantial heterogeneity in the overall utility from digital camcorders. Our results also show

that much of the reason why the initial market share for digital camcorders was not higher was because

consumers were rationally expecting that the market would later yield cheaper and better players. We

find that industry elasticity of demand is 2.55 for transitory price shocks and 1.23 for permanent price

shocks, with significantly larger permanent elasticities for individual products. Last, we find that the

digital camcorder industry is worth an average of $1.27 more per household per month in 2006 than in

2000 and that standard COLIs would overstate the gain in welfare due to the “new buyer problem.”

We believe that our results show that dynamic estimation of consumer preferences for durable goods

industries is both feasible and important for analyzing industries with new goods. We see several avenues

of future research, including evaluating firm decision problems in the presence of consumer and firm

dynamics.

Appendix

Proof of Proposition 1

Proof Our approach is to prove the proposition for the case of finite horizons and then take appropriate
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limits to address the case of infinite horizons. To ease notation, we omit the constant γ which enters utility

every period. Consider first a model where the market ends at period T > t and define EV T
i

(
δf
i0τ ,Ωt

)
to be the value function when the market ends at period T . We will prove the proposition by induction.

First, the base case. In period T , we can write equation 4 as:

EV T
i

(
δf
i0τ ,ΩT

)
= ln

(
exp(δi(ΩT )) + (1− β)−1 exp(δf

i0T )
)
.

Since ΩT only enters EV T
i through δi, by the second assumption of the proposition, we can write

P
[
EV T

i (δf
i0t,ΩT )|ΩT−1

]
= P

[
EV T

i (δf
i0t,ΩT )|Ω′T−1

]
.

Now the inductive step. For some τ such that t ≤ τ < T assume that P
[
EV T

i (δf
i0t,Ωτ )|Ωτ−1

]
=

P
[
EV T

i (δf
i0t,Ωτ )|Ω′τ−1

]
. We would like to show that P

[
EV T

i (δf
i0t,Ωτ−1)|Ωτ−2

]
=

P
[
EV T

i (δf
i0t,Ωτ−1)|Ω′τ−2

]
. We find

P
[
EV T

i (δf
i0t,Ωτ−1)|Ωτ−2

]
= P

[
ln

(
exp(δi(Ωτ−1)) + exp(E[EV T

i (δf
i0t,Ωτ )|Ωτ−1])

)∣∣∣ Ωτ−2

]
.

The first part has the same density under Ω′τ−2 by the assumptions of the proposition while the second

part has the same density by the inductive assumption. Thus, any function of them has the same density

and we have proved the inductive step.

This proves the finite horizon case. The infinite horizon case holds because

EVi(δ
f
i0t,Ωt) = lim

T→∞
EV T

i (δf
i0t,Ωt) = lim

T→∞
EV T

i (δf
i0t,Ω

′
t) = EVi(δ

f
i0t,Ω

′
t).

The limit exists and hence the equality is true because of discounting and the fact that characteristics

are bounded.�

Proof of Proposition 2

Proof Let K denote the (assumed finite) number of potential values of Ω and k index a particular value

so that δf
ijτ,k denotes the realization of δf

ijτ for the kth value of Ωτ . We must define xjt and pjt in each

of the potential states k to generate the appropriate δit. There will generally be many realizations of xjt

and pjt that could generate any given δit. We (arbitrarily) choose the following: let pjt = 0 always, let

product 1 at any time period τ have some contingent flow utility δf
i1τ,k and let other products have a

utility flow of −∞. For the rest of the proof, we discuss flow utility in terms of δijτk rather than xjτkαi

as there is a straightforward mapping between flow utilities and characteristics given preferences.
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We let −→δi and
−→
δf
i1 denote the vector of δiτ,k logit inclusive values and δf

i1τ,k flow utilities respectively.

Now, define a function f : <K × <∞ → <K × <∞ that maps from potential states and time periods

to the same space, conditional on the (specified) vector of logit inclusive values. We condition f on −→δi
which remains constant at the specified values, and so write f(·|−→δi ). We define fτ,k(

−→
δf
i |
−→
δi ), the value of

f for a particular element, as the value of δf
iτ,k that makes the logit inclusive value for the τ, kth case

equal to δiτ,k holding constant the other flow utilities as
−→
δf
i . For f to be a valid function we first show

that this value is unique. We then show that f has a fixed point. By construction, the flow utilities of a

fixed point of f generate −→δi as the logit inclusive values.

To show uniqueness, for the τ, kth term consider the scalar-valued function g(x|
−→
δf
i1), defined to be

the value of δiτ,k that results from the flow utilities of
−→
δf
i1 for every element but the τ, kth one and x for

the τ, kth one. Note that g is continuous in x: for a sufficiently low δf
i1τ,k it is unboundedly low; for a

sufficiently high δf
i1τ,k it is unboundedly high; and it is monotonically increasing in its argument. Thus

there is a unique x such that g(x|
−→
δf
i1) = δiτ,k. This unique value, g−1(δiτ,k|

−→
δf
i1) defines fτ,k.

Now, as f is infinite dimensional, we would like to apply Schauder’s fixed point theorem. We must

show that f is continuous and that it lies in a convex, compact set. The function f is continuous as g−1

is continuous in the argument
−→̂
δf
i1. To show convexity and compactness, let δmin

i and δmax
i denote bounds

for the minimum and maximum the elements of −→δi respectively. Then, no element of
−→
δf
i1 will be larger

than δmax
i (1 − β), since purchasing a product with a flow utility of δmax

i (1 − β) and never purchasing

another product will already give mean expected utility δmax
i and the actual decision allows for this

option without imposing it. Thus, the elements of
−→
δf
i1 are bounded above. Moreover, if the domain is

bounded above by δmax
i (1−β) then the range is bounded below by δmin

i −β(1−β)δmax
i , since the worst

possible δf
i1τ,k occurs if the current δit is δmin

i and the next period δi,t+1 is δmax
i with certainty and yields

this value. Thus,
−→
δf
i1 ∈ [δmin

i − β(1 − β)δmax
i , δmax

i (1 − β)]∞, which is bounded and closed in R∞ and

hence a compact set by Tychonov’s theorem. By Schauder’s fixed point theorem, f has a fixed point.�
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