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Sensor Networks

Chi-Yin Chow, Wenjian Xu and Tian He

Abstract Since wireless sensor networks (WSNs) are vulnerable to malicious
attacks due to their characteristics, privacy is a critical issue in many WSN applica-
tions. In this chapter, we discuss existing privacy enhancing technologies designed
for protecting system privacy, data privacy and context privacy in wireless sensor net-
works (WSNs). The privacy-preserving techniques for the system privacy hide the
information about the location of source nodes and the location of receiver nodes. The
data privacy techniques mainly protect the privacy of data content and in-network
data aggregation. The context privacy refers to location privacy of users and the
temporal privacy of events. For each of these three kinds of privacy in WSNs, we
describe its threats and illustrate its existing privacy-preserving techniques. More
importantly, we make comparisons between different techniques and indicate their
strengths and weaknesses. We also discuss possible improvement, thus highlighting
some research trends in this area.

1 Introduction

Privacy is a critical issue when applying theoretical research in wireless sen-
sor networks (WSNs) to scientific, civilian and military applications [35, 45],
e.g., environmental sensing, smart transportation and enemy intrusion detection.
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WSNs are vulnerable to privacy breaches because they possess the following
characteristics:

• Wireless communication. Wireless sensors need to communicate with each other
through wireless communication. Wireless communication signals are easy to be
tracked or eavesdropped by adversaries. We show later in this chapter that, in
some kinds of applications, privacy breaches take place when adversaries are able
to track or eavesdrop wireless communication signals even if the content of the
transmitted data is protected securely.

• Open environments. WSNs are usually deployed in open environments to provide
sensing and monitoring services. Such open environments could cause privacy
concerns because malicious people can easily approach the system area or even
physically access the sensor.

• Large-scale networks. The number of sensor nodes in a WSN is often large, so
that protecting every node from being compromised by adversaries is difficult.
Thus, the privacy enhancing technology designed for the WSN should be able to
deal with a situation that the network contains some compromise sensor nodes
which can be controlled by adversaries.

• Limited capacity. In general, wireless sensors have scarce resources, e.g., limited
computational power, constrained battery power, and scarce storage space. As a
result, existing privacy enhancing technologies designed for the Internet or wireless
networks are not applicable to WSNs.

Due to these limitations, it is very challenging to design secure privacy-preserving
techniques for WSNs. It is essential for researchers to study existing privacy enhanc-
ing technologies for WSNs, investigate their strengths and weaknesses, and identify
new privacy breaches to improve them. To help researchers to understand the state-
of-the-art privacy enhancing technologies for WSNs, we category them into three
main types of privacy, namely, system privacy, data privacy, and context privacy.
These three kinds of privacy are defined as follows:

1. System privacy is the ability of a system to protect the information about the
setting of its WSN (e.g., the location information of its base station) and the
communication information among its network components (e.g., the source node
of data).

2. Data privacy is the ability of a system to preserve the data content through the
course of transmission or in-network aggregation.

3. Context privacy is the ability of a system to protect the user location monitored
by sensor nodes, or the time when an event is detected by sensor nodes.

For each of these three kinds of privacy, we discuss its threats and then highlight its
existing privacy-preserving techniques.

The rest of this chapter is organized as follows: Sect. 2 presents an overview
of this chapter. Sections 3, 4, and 5 describe the threat models and solutions of
system privacy, data privacy, and context privacy, respectively. Section 6 concludes
this chapter and discusses future research directions.
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2 Overview of This Chapter

Various WSN applications require different privacy protection techniques. For exam-
ple, in an event detection application, the location information of source sensor nodes
is the sensitive information and can be inferred by adversaries through wireless com-
munication signal analysis even without knowing the transmitted data content. Such
event detection applications require system privacy protection. In a data collection
application, its sensor node’s readings are sensitive and should be protected during
the course of transmission. Thus, data collection applications need data privacy pro-
tection. In a location monitoring application, the location information of monitored
individuals is sensitive and should be protected. Location monitoring applications
call for context privacy protection. From these three applications, we can see that
different types of WSN applications have their own definition of sensitive informa-
tion and they require different privacy protection techniques. In other words, exiting
privacy enhancing technologies for WSNs are application-oriented because many of
them are designed for a particular WSN application.

In this chapter, we identify three main types of privacy for existing WSN appli-
cations, namely, system privacy, data privacy, and context privacy. For each type of
privacy, we first discuss its threat model and then describe its protection techniques,
as depicted in Fig. 1. For system privacy, we mainly discuss privacy-preserving tech-
niques designed to protect the source node of data and the location information of
base stations. For data privacy, we survey privacy-preserving techniques for protect-
ing data content during transmission or in-network aggregate processing. For context
privacy, we focus on protection techniques designed for preserving the location pri-
vacy of people monitored by sensor nodes and the temporal information of events
detected by sensor nodes.

3 System Privacy

Tracking wireless communication signals in a WSN could reveal different kinds of
sensitive information such as which sensor node generates a reading, which sensor
node is the destination of a packet and which sensor nodes are near a base station (or a

Fig. 1 Our taxonomy of privacy enhancing technologies for wireless sensor networks (WSNs)
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sink node). For example, sensors deployed for detecting and monitoring a particular
type of endangered animal in a forest (e.g., giant pandas [57]) can be utilized by
hunters to locate the monitored animals. After a sensor node detects a target animal,
it sends a report to the base station. A hunter can eavesdrop wireless communication
signals to trace from the base station back to the source node, even without capturing
and analyzing the transmitted data content. This kind of privacy breach would cause
serious consequences and is difficult to be detected. More powerful adversaries can
also compromise a sensor node and capture packets to learn the routing path from
the source sensor node to the base station.

Under the system privacy, we identify two main types of privacy issues, namely,
data source privacy, and base station privacy. Adversaries may locate the data source
or the base station by analyzing wireless communication signals. Privacy-preserving
techniques designed for protecting data source and base station privacy may prevent
such malicious attacks.

3.1 Data Source Privacy

Consider our example where a WSN is deployed for detecting and monitoring a
particular type of endangered animal in a forest. After a sensor node detects a target
animal, it generates a report about the animal’s activities and send the report to the
base station through a multi-hop routing protocol [2, 3]. Suppose an adversary is
equipped with devices such as antenna and spectrum analyzers that can be used to
capture wireless signals between sensor nodes and measure the angle of arrival of
signals. And all sensor nodes keep silent until they detect a target animal in their
sensing area. After a sensor node detects a target animal, it sends a report to the base
station. The adversary would capture wireless communication signals along the data
transmission path from the source sensor node to the base station, and then he can
carry out a traffic backtracking attack to find the source sensor node by capturing
wireless signals for each hop, analyzing their direction, and then identifying the
sender of each hop, as illustrated in Fig. 2. In practice, the adversary could use traffic
backtracking to locate the endangered animals and bring danger to them, even though
he is not able to read the report content. In this section, we discuss existing privacy
enhancing techniques for two main types of attacks: local eavesdropping (Sect. 3.1.1)
and global eavesdropping (Sect. 3.1.3).

3.1.1 Local Eavesdropping

Phantom routing is a routing protocol designed to prevent the traffic backtracking
attack [32, 46]. The main idea of the phantom routing protocol is to select a phantom
source node at a location far away from the real one. The protocol consists of two
main steps:
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Fig. 2 The traffic backtrack-
ing attack in a WSN

Fig. 3 The phantom routing
paths of two data packets from
the real source node to the
base station

1. Camouflage step. This step ensures that a phantom source sensor node is located
far away from the real source node. For example, when a sensor node wants to
send out a packet, the packet is forwarded to the other node with hop distance h.

2. Routing step. This step makes sure that the packet can be delivered to the base
station. After forwarding the data packet h hops, a conventional routing protocol
(e.g., flooding [39], probabilistic broadcast [19], or single-path routing [28, 33])
is used to route the packet to the base station.

Figure 3 shows an example of the phantom routing where h = 4 and a source
sensor node sends out two packets X and Y . During the camouflage step (i.e., the
first four hops), the routing paths of the packets X and Y (indicated by bold arrows)
from the real source sensor node are different. After forwarding the packets 4 hops,
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they are forwarded to the base station through a single-path routing protocol. These
camouflage paths make an adversary difficult to backtrack to the source sensor node
in a given time period. The basic idea is that the adversary can trace back to a certain
intermediate node by capturing the transmission signal of one of these two packets,
but he may never catch any other packet from the real source sensor node at that
intermediate node because the routing paths of other packets do not pass through
that node. In this way, the phantom routing could direct the adversary to a place far
away from the real source sensor node, and therefore it cuts off the backtracking of
the adversary.

We next discuss several techniques that have been proposed for the camouflage
step.

1. Random walk [32]. For each of the first h hops, the sensor node randomly
chooses a neighbor node to forward the packet. Since such a random walk may
visit a sensor node more than once and the node at the h-th hop (i.e., the phantom
source) may remain clustered around the actual source node, the pure random
walk is inefficient for leading the phantom source node to be far away from the
actual source node [32, 46].

2. Neighbor-grouping-based directed walk [32]. When a sensor node forwards a
packet, it divides its neighbor nodes into two sets S and S′. The node first randomly
selects one of these two sets and then randomly forwards the packet to a neighbor
node in the selected set. For example, the neighbor nodes can be divided into two
sets based on their hop distance to the base station, i.e., S includes all the neighbor
nodes with the hop distance smaller than or the same as the sensor node’s hop
distance and S′ includes all the nodes with the hop distance larger than the sensor
node’s hop distance.

3. Greedy random walk [58]. Before a sensor node forwards a packet, it uses a
Bloom filter [5] to store the identifiers of itself and its neighbor nodes and then
forwards the packet with the Bloom filter. After a neighbor node receives the
packet, it randomly selects a neighbor node whose identifier is not stored in the
Bloom filter as the next hop, adds the identifiers of its neighbor nodes in the
Bloom filter, and then forwards the packet with the updated Bloom filter.

4. Minimum distance [37]. When a sensor node wants to send out a packet, it
randomly selects the location of a phantom source node such that the distance
between the sensor node and the phantom source node is at least certain distance
dmin . Figure 4 illustrates this technique in our example, where both packets X
and Y are first forwarded to their phantom source nodes that are far away from
the source sensor node by at least dmin . Then, the phantom source nodes route
X and Y using a single-path routing protocol. However, the sensor node may not
have the actual location of every node in the system, if an intermediate node that
is able to tell that the selected phantom source node does not exist, it becomes the
phantom source node. The actual source node can also select all the intermediate
nodes on the routing path to a selected phantom node using either an angle-based
or a quadrant-based approach.
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Fig. 4 The minimum distance
technique in the camouflage
step of phantom routing

Fig. 5 The sink toroidal
region (STaR) technique in the
camouflage step of phantom
routing

5. Sink toroidal region [38]. In this technique, a phantom source node is always
selected inside a sink toroidal region (STaR) around a base station or a sink. The
STaR is defined by two circles centered at the base station with radius r and
R, where r < R. The intersection area between these two areas constitutes the
STaR. A source sensor node randomly selects a location within the STaR as the
phantom source, and then forwards its packet to it, as in the minimum distance
technique. The STaR area should be large enough such that it is not practical for
an adversary to monitor the entire STaR. Figure 5 depicts STaR in our example,
where the shaded donut shape is the STaR. Packets X and Y are first forwarded
to their randomly selected phantom source nodes inside the STaR and then a
single-path routing protocol is used to forward them to the base station.
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3.1.2 Discussion

All these techniques share the same goal: randomly finding a phantom source node
that is far away from the actual source node. The first three techniques require an
intermediate node to make its local decision to find a phantom node, while the last
two techniques allow the source sensor node to determine the phantom node, and
even all the intermediate nodes in the routing path between itself and the phantom
node in the minimum distance technique. The last two techniques are more reliable,
energy-efficient, and secure, because the sensor node has more control over the
selection of its phantom node. However, if the sensor node does not have a global
view of the system, it may not be able to use the minimum distance or STaR technique.
It would be useful to extend them to allow intermediate nodes to make their local
decision based on the source sensor node’s requirements and its performance can be
the same as the centralized decision scenario.

3.1.3 Global Eavesdropping

In the previous section, we discussed the privacy-preserving techniques designed for
a scenario that an adversary can only eavesdrop on a limited portion of the network
at a time, i.e., a local eavesdropper. In this section, we consider a stronger adversary
called a global eavesdropper [41, 51, 59] who is capable to deploy his sensor nodes
or compromise sensor nodes to monitor the communication traffic in the entire WSN.
With a global view of the network traffic, the adversary can easily infer the location
of a source node using the traffic analysis attack.

The basic approach of preventing the traffic analysis attack from global eaves-
droppers is to inject dummy traffic into a WSN to make adversaries confused and
thus unable to distinguish a real data source from a set of dummy data sources. There
are three main kinds of techniques to inject dummy traffic into a WSN:

1. Periodic collection [41]. Every sensor node independently and periodically sends
out data packets regardless of whether it has real data packets to send out or only
dummy data packets. More specifically, each sensor node has a timer that fires
at a constant rate. When the timer fires, if the node has a packet in its buffer, it
forwards the packet; otherwise, it sends a dummy packet with a random payload.
In this way, the adversary is not able to distinguish a real source sensor node from
other dummy sensor nodes because they are all sending out data packets in the
same manner. The drawback of this solution is that a network with more sensor
nodes incurs higher communication overhead.

2. Source simulation [41]. Although the periodic collection technique provides
optimal source-location privacy, if the constant rate is small, the system delay
may be very high; if the rate is large, the system may have too much dummy
traffic and suffer from high power consumption. The source simulation technique
artificially creates multiple fake traces in the network to hide the traffic generated
by real objects. For example, if a WSN is designed to monitor pandas in a forest,
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their historical habits and behaviors are studied to create fake traces for pandas.
Before deployment, we randomly select a set of sensor nodes and initialize a
unique token in each of them. These tokens are transmitted between sensor nodes
in the network to simulate the behavior of pandas. Thus, the adversary who wants
to trace pandas using the traffic analysis attack probably finds a virtual one.

3. Probabilistic dummy generation [51]. The objective of this technique is also
to reduce the amount of dummy traffic and latency of the periodic collection
technique. This technique uses the exponential distribution to control the rate of
dummy generation by creating a sequence of dummy packets such that the time
intervals between two consecutive messages follow the predefined exponential
distribution. For a packet generated by a real event, the packet is delayed as long
as its transmission time also follows the predefined exponential distribution. The
whole concept of this technique is based on a statistical property: if two proba-
bilistic distributions are both exponential distributions with very close means, they
are statistically indistinguishable from each other. Experimental results show that
this technique effectively reduces communication overhead while it can provide
the same level of privacy protection as the periodic collection technique.

3.1.4 Discussion

The basic idea of these dummy traffic injecting techniques is to use dummy traffic to
hide the real data source sensor nodes. There is a tradeoff between the communication
overhead (e.g., bandwidth and power consumption) and the privacy protection [29].
K. Mehta et al. provide a method to estimate a lower bound on the communication
overhead needed to achieve a certain level of privacy protection in the network [41].
In addition, some scientists study how to reduce communication overhead for dummy
traffic without sacrificing any privacy protection. For example, Y. Yang et al. suggest
placing some proxy sensor nodes in a WSN to filter out dummy packets and drop
them after a certain number of hops of transmission [59].

There is a new research direction for source data privacy in unattended wireless
sensor networks (UWSNs), where critical sensor nodes replicate their readings in
a certain number of randomly selected nodes d-hop away from the critical sensor
nodes. Recent study has found that there is a tradeoff between source-location privacy
and data survivability (i.e., the number of data replicas) [7]. When an adversary finds
the data source node, he can destroy the critical node in the system.

3.2 Base Station Privacy

In some WSN applications, such as security monitoring systems, the physical loca-
tion of a base station (or a sink node) is considered as sensitive information. The
main reason is that revealing the physical location of a base station to the adversary
may give him a chance to make either physical or denial-of-service attacks to the
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base station in order to disable the WSN [15]. However, many routing protocols
would reveal obvious traffic patterns in the network. The sensor nodes near the base
station forward a greater number of data packets than other sensor nodes that are
far away from the base station [16]. Based on such unbalanced traffic, it is easy for
the adversary to infer the base station’s physical location. The main idea of hiding
the location information of the base station is similar to that of the phantom routing
and dummy traffic injection techniques, but it focuses on how to make the adversary
difficult to distinguish a sink node (or a base station) from other sensor nodes. We
describe four techniques for protecting the base station privacy.

3.2.1 Multi-Parent Routing

In the multi-parent routing [16], each sensor node has multiple parent nodes.
Each sensor node s finds its multiple parents based on their hop distance to the base
station. The base station broadcasts a beacon message with a level field that is initially
set to one. When s receives the beacon message, the value of level indicates s’s hop
distance to the base station. s next increases level by one and rebroadcasts the beacon
message with the increased level value to its neighbors. After a certain time period,
s selects all neighbor nodes whose level value is less than s’s level value as its parent
nodes. Figure 6 depicts an example, where a WSN consists of seven sensor nodes s1
to s7 and each sensor node already finds its level value. s3 have four neighbor nodes
(i.e., s1, s2, s6, and s7), but only the level values of s1 and s2 are less than s3’s level
value. Thus, s1 and s2 are s3’s multiple parent nodes. Each sensor node erases its
level value after all the sensor nodes have found their multiple parent nodes. When a
sensor node wants to send a data packet, it randomly selects one of its multiple parent
nodes to send the packet. Although this technique is similar to the phantom routing
technique, it aims at spreading out traffic evenly in the whole WSN to make the
adversary difficult to infer the physical location of the base station instead of finding
an intermediate phantom node. Multi-parent routing often works with random walk
and fractal propagation, as will be discussed later, to enhance the privacy-protecting
performance.

Fig. 6 Multi-parent routing
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3.2.2 Random Walk

Although a random walk has been proposed for reliable data transmission [56], it
can also be used to protect the base station privacy [16]. The basic idea is that a
sensor node has two ways to forward a packet: (1) the node forwards the packet to
one of its parent nodes with equal probability or (2) it forwards the packet of one of
its neighbors with equal probability. The node uses the first way with probability p
or the second one with probability 1 − p.

3.2.3 Fractal Propagation

The multi-parent routing and random walk techniques can avoid forwarding packets
to the base station through the shortest or static path. The fractal propagation tech-
nique can further spread out fake packets [16]. When a sensor node overhears that its
neighbor node forwards a data packet, it also generates a fake data packet following
a predefined probability distribution with a system parameter k and forwards it to a
randomly selected neighbor node. After the neighbor node receives the fake packet,
it reduces the value of k by one and forwards it to one of its neighbor nodes with
the updated k value. When a node receives the fake packet with k = 0, it simply
drops the packet. As a result, this technique spreads out the communication traffic
of a data packet in the network. This technique works due to the fact that the nor-
mal nodes can distinguish a fake packet from a real one, while the adversary cannot
distinguish since it does not know the encryption key. If we use this technique with
the multi-parent routing and random walk techniques, a full picture of the real and
fake communication flows triggered by a data packet transmission looks like a fractal
shape, as depicted in Fig. 7.

3.2.4 Hiding Traffic Direction Information

The goal of hiding traffic direction information is to make the directions of both
incoming and outgoing traffic at a node uniformly distributed [30]. The basic idea
is that each sensor node divides its neighbor nodes into two disjoint lists: closer and
further lists, where the closer list contains the neighbor nodes that are closer to a
receiver and the further list consists of the neighbor nodes that are further way from
the receiver. The distance between two sensor nodes can be measured by their hop
distance or their Euclidean distance. When a sensor node forwards a data packet,
it selects the next hop from the further list with probability p, and from the closer
list with probability 1 − p. p is used to balance a performance trade-off between
communication overhead (i.e., latency and power consumption) and privacy. For
example, if p is smaller, the node selects more next hops in the closer list. Thus,
the routing paths are shorter and the power consumption is lower, but the receiver’s
location privacy is weaker. On the other hand, if p is larger, more next hops are elected
from the further list. Although the privacy protection is stronger, the routing paths
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Fig. 7 The real and fake
communication traffic trigged
by a data packet transmission
using the fractal propagation
technique with the multi-
parent routing and random
walk techniques

Base Station

Source Sensor Node

are longer and the power efficiency is lower. To further protect the receiver-location
privacy, fake packets can also be injected with this technique to smooth out the traffic.
Whenever a sensor node forwards a packet, it also sends a fake packet to a randomly
chosen neighbor in the further list, and the fake packet will be further forwarded
away by h hops (h ≥ 2). Experimental results show that this technique with fake
packet injection deliveries more packets than the phantom routing technique [32]
and the fractal propagation technique [16], when p ≥ 0.4.

3.2.5 Discussion

In general, the techniques designed for protecting the base-station- or receiver-
location privacy are based on random forwarding and fake packet injection. Some of
these techniques (i.e., [16, 30]) require that each sensor node knows its hop distance
from a sink through a broadcast message from the sink. An intelligent fake packet
injection technique has been designed to protect the base-station privacy during such
a topology discovery period [36]. Most of existing techniques for protecting base
station privacy only consider stationary base stations. It is interesting to consider a
scenario where a base station is able to move to sensor nodes to collect data. There are
only a few attempts to tackle this scenario. For example, data forwarded to random
nodes and mobile base stations move in the network following some random paths
to collect data from sensor nodes [43]. Actually, the mobility of the base station can
enhance the privacy of the base station itself [1]. Specifically, the base station relo-
cates itself within the WSN periodically, which obfuscates previous traffic analysis
conducted by the adversary. Thus, the privacy of the base station is protected. Nev-
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ertheless, more research efforts are needed to tackle the privacy issue of mobile base
stations with stationary sensor nodes or even with mobile sensor nodes.

4 Data Privacy

Wireless sensor nodes are usually deployed to monitor surroundings by providing
a variety of readings. In many WSN applications, sensor readings may be sensitive
information, e.g., a log of identifications of border-crossing vehicles. Such readings
must be protected from malicious attacks. This section describes existing privacy-
preserving techniques for two main types of data privacy: data content privacy and
aggregate data privacy.

4.1 Data Content Privacy

Many research efforts have mainly focused on how to design encryption and authenti-
cation mechanisms for WSNs that consider the computational and power constraints
of wireless sensor nodes. Since these techniques are more related to security issues in
WSNs, we briefly highlight two well-known suites of security protocols. Interested
readers are referred to two survey papers [8, 50].

1. SPINS [47]. SPINS consists of two components, a secure network encryption
protocol (SNEP) and a micro version of timed efficient streaming loss-tolerant
authentication protocol (µTESLA). SNEP provides secure channels between
a senor node and a base station for data confidentiality, data authentication
for two-party communication, data integrity through data authentication, and
guarantee for data freshness (i.e., no adversary replays old data). µTESLA pro-
vides authenticated broadcast communication.

2. Localized Encryption and Authentication Protocol (LEAP) [60]. LEAP sup-
ports the management of four types of keys to provide different security require-
ments for different kinds of data communications on sensor nodes. (1) Every sen-
sor node has a unique individual key that is shared with the base station for their
secure communication; (2) the sensor nodes in the same group have a shared group
key for building a secure broadcast channel from the base station to the whole
group; (3) every sensor node shares a cluster key with its neighbors for securing
local broadcast messages; and (4) every node also shares a pairwise shared key
with each of its neighbor nodes for secure communication with authentication. In
addition, LEAP provides an efficient protocol for establishing and updating these
keys, as well as an authentication mechanism for them.

There are two key limitations of security protocols in WSNs [44, 53]. (1) Con-
strained resources. Since sensor nodes usually have limited battery and computa-
tional power, only simple and fast methods of cryptography can be used in WSNs.
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Wireless communication is a major cause of power consumption, so unnecessary
information exchange should be avoided. (2) Unsecure key storage. Since sensor
nodes are usually deployed in an open area, they have no secure storage for their
secret keys. Recent results have shown that pairing-based cryptography (PBC) is suit-
able for constrained sensors [44, 53]. Based on PBC, authenticated identity-based
non-interactive security protocols can be designed for WSNs. Experimental results
have shown that PBC is feasible on 8-, 16-, and 32-bit sensor processors and vari-
ous types of sensor platforms, e.g., MICA2/MICAz, TelosB/Tmote Sky, and Imote2.
Therefore, it is important for the sensor network security community to restudy how
PBC can be used to enhance the existing suites of security protocols.

4.2 Aggregate Data Privacy

One of the important functions of WSN applications is the support for in-network
data processing, which means sensor nodes can collaborate with each other to provide
services or answer queries without a centralized server. End-to-end encryption and
authentication techniques are not applicable to in-network data processing because
intermediate nodes cannot access any by-passing data. In practice, many WSN appli-
cations only need to provide aggregate statistics such as SUM, AVERAGE, MIN,
or MAX of sensor readings in a certain region or within a certain time period [40].
These applications can employ in-network data aggregation to reduce the amount of
raw sensor readings to be reported, so sensor and network resources can be saved.
Data aggregation techniques often assume that all sensor nodes in the WSN are trust-
worthy [49]. However, this assumption may not be realistic because sensor nodes
can be compromised by the adversary who wants to steal sensor readings. If the raw
sensor readings are passing through and being aggregated on these compromised
nodes, this would cause privacy leakage.

Before presenting privacy-preserving data aggregation techniques, we summarize
their desired characteristics as follows:

1. Privacy. The data generated by a sensor node should be only known to itself.
Furthermore, a privacy-preserving data aggregation technique should be able to
handle attacks and collusion among compromised nodes, since it is possible that
some nodes may collude to uncover the private data of other nodes.

2. Efficiency. Data aggregation reduces the amount of traffic in a WSN, thus saving
bandwidth and power usage. However, a privacy-preserving data aggregation
technique introduces additional computational and communication overhead to
sensor nodes. A good technique should minimize such kinds of overhead.

3. Accuracy. A privacy-preserving data aggregation technique should not reduce
the accuracy of aggregate values.

Different WSN applications make different trade-offs among these performance
metrics. The rest of this section discuss four privacy-preserving schemes for data
aggregation, namely, cluster-based private data aggregation (CPDA), slice-mix-
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aggregate (SMART), secret perturbation, and k-indistinguishable privacy-preserving
data aggregation (KIPDA).

4.2.1 CPDA: Cluster-Based Private Data Aggregation

CPDA [25] is designed to support privacy-preserving SUM aggregation in WSNs. In
CPDA, sensor nodes are randomly grouped into clusters. For each cluster, algebraic
properties of polynomials are used to calculate an aggregate SUM. CPDA guarantees
that the data of individual node is not exposed to other nodes. Finally, the intermediate
aggregate values in each cluster are further aggregated along a routing path to a base
station. In general, CPDA consists of three main steps:

1. Formation of clusters. The first step in CPDA is to construct clusters to perform
intermediate aggregations. Every cluster consists of one cluster head (CH) and
many cluster members. The CH is responsible for calculating intermediate aggre-
gations and reporting their results to a base station. Figure 8 depicts a cluster with
three sensor nodes s0, s1, and s2, where s0 is the CH.

2. Intermediate aggregation. This step is based on a random key distribution mech-
anism proposed in [18]. Consider a cluster with one head and n members, where
s0 is the CH and s1, . . . , sn are other sensor nodes in the cluster. Each node si

(0 ≤ i ≤ n) sends a seed Ai to other members in its cluster. As depicted in
Fig. 8a, s0 sends A0 to s1 and s2, s1 sends A1 to s0 and s2, and s2 sends A2 to
s0 and s1. For each node s j (0 ≤ j ≤ n), each node si (0 ≤ i ≤ n) perturbs
its own private reading into V i

j based on s j ’s seed and n random numbers gen-

erated by si , and it then sends E(V i
j ) in an encrypted form to s j , where i �= j .

As illustrated in Fig. 8b, s0 sends E(V 0
1 ) and E(V 0

2 ) to s1 and s2, respectively;
s1 sends E(V 1

0 ) and E(V 1
2 ) to s0 and s2, respectively; and s2 sends E(V 2

0 ) and
E(V 2

1 ) to s0 and s1, respectively. Each node s j (1 ≤ j ≤ n), except the CH, next

adds all received V i
j (0 ≤ i ≤ n) and its V j

j together to compute a sum Fj , and
then send Fj to its CH. In the running example, s1 and s2 send F1 and F2 to the
CH s0, respectively. Finally, after the CH receives Fj from each member s j , it is

(a) (b) (c)

Fig. 8 An example of CPDA within a cluster of three sensor nodes. a Broadcast seeds. b Send
encrypted perturbed values. c Send assembled values to CH
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able to compute the sum of the original readings from all the nodes in the cluster
without compromising the privacy of individual nodes’ data value.

3. Cluster data aggregation. The cluster head reports its intermediate aggregate
sum to the base station. The base station computes an aggregate SUM by summing
up all collected intermediate aggregate sums.

CPDA guarantees that if less than (n − 1) nodes collude in a cluster of size n,
the individual sensor readings in the cluster cannot be disclosed. Therefore, larger
average cluster size contributes to better privacy-preservation performance, but it also
incurs more computational overhead to compute the intermediate aggregation value.
As a result, there is a design tradeoff between the privacy protection and computation
efficiency.

Although CPDA can provide private data aggregation, it cannot guarantee data
integrity. If an adversary changes the intermediate aggregate result in some clusters,
the aggregate result would deviate from the actual one dramatically [26]. CPDA has
been extended to iCPDA [27] that can guarantee data integrity through additional
piggybacks. In iCPDA, every node in a cluster collects necessary information to
calculate an intermediate aggregate result within the cluster. Hence, all the nodes in
the cluster can figure out the intermediate aggregated value in the cluster, enabling
them to monitor their CH and detect data pollution attacks. Experimental results
showed that the communication overhead of iCPDA is a little bit higher than CPDA
due to the extra message exchange.

4.2.2 Slice-Mix-Aggregate (SMART)

The basic idea of SMART [25] is to slice readings and use the associative property
of addition to compute aggregate SUM. In general, SMART consists of three main
steps:

1. Slicing readings. Suppose a WSN has N sensor nodes. Each sensor node si

randomly selects a set of m peers within a certain hop distance. After si gets a
private reading di , di is sliced into m pieces. si randomly keeps one piece, and
then each of the remaining m − 1 pieces is randomly sent in an encrypted form
to a distinct one of the selected m peers. Let di j be a piece of di that is sent from
si to another sensor node s j , and hence, di = ∑N

j=1 di j , where di j = 0 if s j does
not receive any piece of di .

2. Mixing slices. When a sensor node s j receives k encrypted pieces within a certain
time interval, s j decrypts each piece and sums up all received pieces to compute
a mixed value r j = ∑N

i=1 di j , where di j = 0 if si is not one of the senders of the
k pieces. Then, s j sends r j to the query server.

3. Aggregation. After the query server receives the mixed values from all the sen-
sor nodes within a certain time interval, it sums them up to get the final result∑N

j=1 r j = ∑N
i=1

∑N
j=1 di j = ∑N

i=1 di , where r j = 0 is the query server does
not receive any mixed value from node s j and di = 0 if node si does not report
any reading within the time interval.
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Unlike CPDA, SMART does not need to form any clusters, so it can reduce the
computational cost of cluster-wise data aggregation.

4.2.3 Secret Perturbation

The basic idea of secret perturbation [20] is that each sensor node si has a pre-assigned
secret Si , which is only known to si and the base station. si does not send its original
reading di to the base station. Instead, si only sends a perturbed version of di , i.e.,
d̂i = di + Si , to the base station. Each intermediate node between si and the base
station receiving a perturbed value can perform an additive aggregation function
on it with other perturbed values sent from other nodes to get a single perturbed
value. Since the base station knows the secret of each sensor node, it can subtract the
perturbations from a perturbed value to get an actual reading. In general, the basic
secret perturbation scheme consists of three main steps to compute aggregate SUM:

1. System initialization. Given N sensor nodes and the range of each sensor reading
[0, dmax ], the base station selects an integer L , a prime number q and a secure
hash function hash(x) such that max{2L−1, 2N } < q < 2L , dmax < 2L and
0 ≤ hash(x) < 2L . It also assigns each sensor node si with two secret numbers.

2. Perturbed aggregation. When a sensor node si receives a query, it gets a reading
di , uses hash(x) to calculate a perturbed reading value d̂i and an auxiliary reading
value Âi , and initializes a list of IDs of reporting sensor nodes listi = {i}. If si

is a leaf node or it has no downstream node that reports data, si simply sends
〈d̂i , Âi , listi 〉. On the other hand, if the other node s j receives 〈d̂ik , Âik , listik 〉
from its downstream nodes, where k = 0, 1, . . . ,m and m < N , it computes its
own d̂ j , Â j and list j , and then performs an additive aggregation 〈d̂ j , Â j , list j 〉
on all the received 〈d̂ik , Âik , listik 〉.

3. Retrieving the original aggregation at a base station. After the base station s0
receives the perturbed tuples 〈d̂ik , Âik , listik 〉 from its downstream nodes, where
k = 0, 1, . . . ,m, m ≤ N , and the ID of the base station is 0, s0 computes its d̂0,
Â0 and list0. so is then able to find the sum of its reading and the original readings
of all the received tuples.

Taiming Feng et al. have extended the basic secret perturbation scheme to the
fully-reporting secret perturbation scheme [20] that does not require sensor nodes
to report their IDs by requesting every sensor node to report an actual or dummy
reading in the perturbed form. They further proposed the adaptive secret perturbation
scheme to minimize communication overhead and avoid reporting node IDs.

4.2.4 k-Indistinguishable Privacy-Preserving Data Aggregation (KIPDA)

The KIPDA scheme [21] is designed for MAX/MIN aggregation in WSNs based
on the concept of k-anonymity [52]. The basic idea of KIPDA is that each sensor



626 C.-Y. Chow et al.

node reports its actual reading along with k − 1 other restricted or unrestricted
camouflage values such that the actual reading is indistinguishable among the k
values. A base station is able to find an exact aggregate MAX/MIN result based on
k-indistinguishable data reported from sensor nodes. We present the four main steps
in KIPDA with a running example with k = 7 for aggregate MAX, as depicted in
Fig. 9.

1. System setup. The base station decides a set of global real value positions for a
vector with k elements. Each position is assigned to each sensor node to indicate
which position in a reported vector should store its actual reading. For each
sensor node, the remaining unassigned positions are divided into two disjoint sets:
(1) a set of unrestricted positions, where a random camouflage number is generated
for each position, and (2) a set of restricted positions, where a camouflage value
that is required to be less than or equal to an actual reading for aggregate MAX
while a camouflage value that is required to be larger than or equal to an actual
reading for aggregate MIN. In our example (Fig. 9), we assume that k is seven,
the size of each set of unrestricted positions is two, and the size of each set of
restricted positions is four.

2. Filling camouflage values. After a sensor node receives a query, it puts its actual
reading at its real value position assigned by the base station in a vector. Then,
it generates a camouflage value at every unrestricted or restricted position in the
vector. Finally, it sends the vector to the base station through its parent node. In
the running example, sensor node 1 puts is actual reading (i.e., 23) at the first
position in a vector (indicated by an underline) and generates two unrestricted
camouflage values 30 and 21 that are put at the fourth and sixth positions in
the vector (indicated by shaded cells), respectively, as Fig. 9. Since the query
computes aggregate MAX, node 1 generates four camouflage values that are less
than the actual reading (i.e., 23). In this example, node 1 puts 18, 15, 20, and 8 at

Fig. 9 An example of processing aggregate MAX using KIPDA with k = 7



18 Privacy Enhancing Technologies for Wireless Sensor Networks 627

the second, third, fifth, and seventh positions in the vector, respectively. Similarly,
nodes 2 and 3 generate their vectors. Since node 1 is the parent node of nodes 2
and 3, nodes 2 and 3 send their vectors to node 1.

3. Aggregation at an intermediate node. After a sensor node receives vectors
from its children nodes, it computes an intermediate aggregation result vec-
tor. For each position in the result vector, the node selects the maximum value
at the same position among all the received vectors. The node next sends the
result vector to its parent node. For example (Fig. 9), node 1 receives the vec-
tors from nodes 2 and 3. The value at the first position of the result vector is
max{23, 26, 10} = 26. Similarly, the value at the second position of the result
vector is max{18, 35, 11} = 35 and so on. After node 1 computes the intermedi-
ate result vector 〈26, 35, 33, 30, 34, 21, 13〉, the vector is sent to the base station
through its parent node.

4. Retrieving the original aggregation at a base station. After the base station
receives an aggregate vector, it selects the maximum value among the values at
the global real value positions in the vector as the query answer. For example
(Fig. 9), the base station receives an aggregate vector 〈26, 35, 33, 30, 34, 21, 13〉
from node 1. The base station selects the maximum values at the first, third and fifth
positions in the vector. Thus, the final aggregate MAX is max{26, 33, 34} = 34.

Since the aggregate process of KIPDA does not require end-to-end or link-level
encryption, it achieves higher efficiency than the encryption-based data aggregation
technique in terms of power consumption and latency. In terms of robustness, KIPDA
can tolerate up to a large number of compromised sensor nodes or communication
link. However, it is not easy to apply KIPDA to other aggregation functions other
than MAX and MIN.

4.2.5 Discussion

All the private data aggregation techniques discussed in this section can provide
precise aggregate results if there is no packet loss. In terms of privacy protection,
the secret perturbation technique always prevents the adversary from finding out an
individual sensor’s data or an aggregate result, regardless of the number of compro-
mised sensor nodes. Contrarily, CPDA, SMART and KIPDA can only tolerate up to
a certain threshold number of compromised sensor nodes or communication link. In
terms of efficiency, experimental results [20] showed that the secret perturbation tech-
nique consumes less bandwidth than CPDA and SMART. KIPDA is more efficient
than conventional encryption-based data aggregation techniques which incur high
latency due to the decryption and re-encryption operations. Finally, CPDA, SMART
and secret perturbation techniques are specially designed for aggregate SUM, while
KIPDA is tailored for aggregate MAX/MIN. A WSN application should select the best
private data aggregation technique based on its requirements for privacy protection
and system efficiency.
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5 Context Privacy

In this section, we focus on two kinds of context detected by sensor nodes, namely,
location privacy and temporal privacy, in Sects. 5.1 and 5.2, respectively. Location
privacy protection techniques are designed to anonymize the location information
of people monitored by sensor nodes. Privacy-enhancing techniques for temporal
privacy are designed to hide the time when a query is issued by a user or an event is
detected by a sensor node.

5.1 Location Privacy

Sensor-based location systems have been proposed to support indoor positioning
and monitoring, e.g., [24, 48, 55]. Such indoor monitoring systems can provide
many services: (1) Location-based queries. They can answer queries like “how many
customers on the second floor” and “which shop is the densest one during lunch
hours.” (2) Security and control. The system alerts the administrative staff when it
detects that someone enters an office at midnight or the number of people in a room is
larger than a system-specified limit. (3) Resource management. When the system has
detected no people in an certain area for a certain period of time, it turns off some
building facilities (e.g., lights, escalators and elevators) to save energy. However,
similar to GPS, sensor-based location systems would threaten the user privacy. For
example, if an adversary knows the location of a person’s office, the adversary can
easily determine whether the person is in his or her office by monitoring the sensing
information, e.g., the number of people in a sensing area, reported from the sensor
deployed in his or her office. Once the adversary identifies an individual’s location,
the adversary can track the user’s movements by monitoring location updates from
other sensor nodes [11, 22].

Cricket [48] is a privacy-aware sensor-based location system. Cricket has two
strategies to protect the user’s location privacy: (1) It deploys sensors in a system
area. Every user wears a tag that receives signals from multiple sensors to detect
the user’s location. This decentralized positioning approach does not require any
centralized processing on user location information or store user locations. (2) If
a user concerns about location privacy, he or she can turn off the tag, and thus, no
monitoring system can know the user’s location. However, Cricket [48] is not suitable
for location monitoring systems. The main reason is that if many people do not report
location information to a location monitoring system, the system cannot provide any
meaningful services.

Note that location privacy is different from data source privacy described in
Sect. 3.1. Location privacy protection techniques aim at protecting the privacy of
individuals’ location information collected by source sensor nodes, while the objec-
tive of data source privacy protection techniques is to protect the privacy of the
location of source sensor nodes themselves. We discuss four privacy enhancing tech-
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niques for indoor sensor-based location monitoring systems, and then describe how
a privacy-preserving monitoring system provides location-based services without
compromising the user location privacy.

5.1.1 Pseudonyms

To protect the privacy of individuals’ location information collected by sensors
while taking advantage of location-based services, users’ true identity should be
hidden from the applications receiving their location information. An even-driven
middleware has been designed to act as a proxy server between the user and the
application to help the user hide his/her real identity [4]. As depicted in Fig. 10, after
a user registers his/her interest in a particular location-based service (LBS) with the
middleware, the LBS provider receives event callbacks from the middleware when
the user enters or exits a certain system-specified area. For example, a shopping mall
application is configured to enable an LBS “sending e-coupons to users entering the
shopping mall.” This application should register certain areas in front of the shopping
mall’s entrances and wait for the event callback. When a registered user enters the
application’s registered area, the application sends relevant e-coupons to the user.
Since the users’ real identity can be anonymized by the middleware, they can enjoy
LBS without revealing their real identities. However, it is still risky for a user to use a
long-term pseudonym, even if different LBS providers give out different pseudonyms
to the same user to avoid collusion. This is because an adversary could identify a
user by following the “footsteps” of a pseudonym to or from some places which
are strongly associated with the user’s real identity (e.g., a residential house). One
possible solution is to frequently change a user’s pseudonym, but it may significantly
degrade the quality of LBS. We discuss a mix-zone approach that can balance between
the user location privacy and the quality of services.

Fig. 10 The middleware
model for pseudonyms
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5.1.2 Mix Zones

The idea of mix zones [4] is derived from the concept of mix nodes designed for
anonymous communication systems [6]. A mix zone is defined as a spatial region
with a system-specified maximum number of users who have not registered with
any application callback, while an application zone is defined as an area where LBS
applications could register for event callbacks. An example is depicted in Fig. 11,
where there is one mix zone, which is represented by a shaded area, and three
application zones, which are represented by white rectangles, an art gallery (A),
a book store (B), and a coffee shop (C). Let’s use this simple example to illustrate
the basic idea of mix zones. Suppose that two users Alice and Bob enter the mix
zone from B at the same time, and their identities are mixed; after a certain period,
two users exit from the mix zone and appear in C . We cannot infer that these users
are Alice and/or Bob or other users located in the mix zone before Alice and Bob
entering it. However, if a mix zone has a diameter much larger than the distance the
user can reach during one location update period, it might not be able to protect users
adequately. For the same example depicted in Fig. 11, A is much closer to B than C .
If two users enter the mix zone from A and C at the same time and a user appears
in B at the next location update time, an adversary may tell that the user entering
B from the mix zone is not the one who emerged at C before. Furthermore, if there
is nobody in the mix zone at this time, the user in B can only be the one from A,
thus revealing A’s identity. To address this privacy issue, two metrics are proposed to
measure the level of privacy protection, namely, anonymity set and entropy. A user
can specify the minimum size of his/her anonymity set that is the number of people
visiting the mix zone during the same location update period. The user is not willing
to reveal his/her location information to any application until the mix zone finds a
qualified anonymity set. The entropy is used to measure the level of uncertainty that
a hostile adversary knows about a user’s location information based on the user’s
historical movement data.

Fig. 11 A sample mix zone
for three application zones
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Fig. 12 Examples of node ID
cloaking in the hierarchical
location perturbation algo-
rithm. a Sensor node detected
at least k subjects. b At least
k subjects can only be found
in the room level. c At least k
subjects can only be found in
the room level

(a)

(b)

(c)

5.1.3 Hierarchical Location Perturbation

Sensors could be deployed inside buildings to track the locations of individuals, which
is used for adaptive computing services. However, the location privacy of individuals
may be breached due to the vulnerability of WSN. The basic idea of the hierarchical
location perturbation algorithm [22] is to provide less spatial accuracy and perturb
the count of subjects in a monitored area. In general, the algorithm consists of two
main steps:

Step 1: Defining a hierarchical structure. The system area is partitioned into
several physical hierarchies, e.g., rooms, floor, and building. Each sensor node is
assigned with a unique hierarchical ID. Figure 12 depicts an example of a hierarchical
structure, where the highest level is a building, the second level contains all the floors
in the building, the third level contains all the rooms on each floor, and the lowest level
contains all the sensor nodes in each room. If each node in the hierarchical structure
does not have more than 16 child nodes, the ID of each level can be represented by
four bits, as depicted in Fig. 12a.

In each hierarchy, a sensor node is selected as a leader by using a distributed
leader election protocol. Each leader keeps track the number of subjects monitored
in its corresponding hierarchy. Also, each node knows a system-specified anonymity
level k, i.e., the monitoring system can only receive the subject count information of
a monitored area containing at least k subjects.

Step 2: Location perturbation. When a sensor node detects the number of subjects
that is equal to or larger than k, it cloaks the number of subjects by randomly rounding
up or down the subject count to the nearest multiple of k, and sends an exact node
ID to the leader in the upper level. Otherwise, the sensor sends the exact number
of detected subjects with a cloaked node ID to the leader in the upper level. The
leader repeats this step until at least k subjects in a higher level can be found. In
our example, if a sensor node can detect at least k subjects, it can report its exact
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ID with a cloaked subject count to the leader in the upper level (i.e., the room level)
(Fig. 12a). Otherwise, it sends the exact subject count with its cloaked ID “XXXX”
to the leader in the room level. Figure 12b shows the case that the leader in the room
level can detect at least k subjects. If this is not the case, it further sends the exact sum
of the subject counts of its child nodes with its cloaked ID to the leader in the floor
level. Figure 12c shows that the leader in the floor level can find at least k subjects, so
it sends its exact ID with cloaked room and node IDs and the cloaked subject count
to the leader in the building level.

5.1.4 Spatial Cloaking

TinyCasper [9, 11] is a privacy-preserving location monitoring system designed for
WSNs. The basic idea of TinyCasper is that sensor nodes can communicate with
each other and work together to find k-anonymized aggregate locations that are
reported to a server. A k-anonymized aggregate location is defined as (A, N ), where
A a monitored area that contains at least k people and N is the number of people
detected inside A. Figure 13a depicts an example where 17 sensors are deployed in
the system, a nonzero number beside a sensor node indicates the number of people
detected inside its sensing area, the location of six people are represented by circles,
and k = 3. After the sensor nodes communicate with other peers, every node with
a nonzero people count blurs its sensing area into a cloaked area that contains at
least k = 3 people. Then, the sensor node reports the cloaked area A along with
the number of people N located in A as an aggregate location, i.e., (A, N ), to the
server. In our example, sensor nodes s1, s5, s6, s7, and s15 detect a nonzero people
count, they communicate with nearby peers to blur their sensing area. For example,
s7 needs to communicate with nodes s5 and s6 to find three people, and then it blurs
its sensing area into a cloaked area that contains the sensing areas of nodes s5, s6 and
s7 (represented by the left-bottom shaded rectangle in Fig. 13b. s7 reports the cloaked
area with three people as an aggregate location to the server. In this example, the
server receives two three-anonymized aggregate locations (represented by the two
shaded rectangles) (Fig. 13b).

Two in-networks spatial cloaking algorithms have been proposed for Tiny-
Casper [9, 11]. (1) The resource-aware algorithm employs a greedy approach for
sensor nodes to determine their aggregate locations. Its objective is to minimize the
communication and computational overhead. (2) The quality-aware algorithm aims
at enabling sensor nodes to determine their aggregate locations with the minimal
cloaked area, in order to maximize the usability of the aggregate locations that are
used by the server to provide location-based monitoring services. Spatial cloaking
techniques have also been extended to support mobile devices, e.g., smartphones and
mobile sensors, through peer-to-peer communication [12, 13, 42].
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(a) (b)

Fig. 13 Example of spatial cloaking in a sensor-based location monitoring system (k = 3).
a Sensor deployment. b Two k-anonymized aggregate locations

5.1.5 Discussion

Using pseudonyms may not be secure because an adversary could link the old and
new pseudonyms to infer a user’s read identity. The effectiveness of the mix zone
greatly depends on its size, the user population, the sensing resolution, and the user
movement speed. The hierarchical location perturbation algorithm does not con-
sider sensor nodes deployed at the same level in the predefined hierarchy, e.g., the
sensor nodes in the same room. When the subject count of a sensor node does not
satisfy a certain number, the algorithm goes up to its parent. The algorithm trends to
generate cloaked areas larger than necessary, such large aggregate locations would
degrade their usability in location monitoring services. On the other hand, the spatial
cloaking algorithms do not reply on any hierarchical structure and they can support
both indoor and open environments. In addition, since they aim at maximizing the
usability of their cloaked areas by minimizing their area, they can be used to provide
better location monitoring services. We discuss how a WSN can provide location
monitoring services based on cloaked areas in next section.
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5.1.6 Privacy-Preserving Location Monitoring Services

As discussed in Sects 5.1.3 and 5.1.4, the privacy-preserving monitoring system can
only report aggregate locations for the server to provide monitoring services. To
this end, a privacy-preserving aggregate query processor is designed to employ a
spatio-temporal histogram to estimate the subject distribution based on aggregate
locations reported from sensor nodes [10]. The spatio-temporal histogram partitions
the system area into disjoint equal-sized cells that is stored as a two-dimensional
array. Each element M[i, j] is an estimator that represents the estimated number of
subjects located in its corresponding cell area, where i and j indicate the i-th row and
j-th column in the array, respectively. In general, the privacy-preserving aggregate
query processing has two main steps.

Step 1: Histogram updates. The server is able to detect the total number of people
Ntotal in the system area. Initially, Ntotal is uniformly distributed among all esti-
mators in the histogram. When the server receives an aggregate location (A, N ),
the basic approach calculates the sum S of the estimators of the cells intersecting
the aggregate location area A and uniformly distributes the reported people count
N among the cells intersecting A. The difference between S and N is uniformly
distributed among the cells outside A. Several optimization techniques have been
proposed for an adaptive spatio-temporal histogram, in which the server updates the
histogram based on various spatial, temporal, and historical factors.

Figure 14 depicts an example of a basic histogram where the system area is divided
into 25 cells and Ntotal = 100. Initially, Ntotal is uniformly distributed among the
25 cells, so the value of each estimator is 4 (Fig. 14a). Figure 14b shows an aggregate
location with N = 20 people and its cloaked area A is represented by a bold rectangle.
The sum of the four estimators of the four cells intersecting A is 4 × 4 = 16. Since
20 is uniformly distributed among the four cells intersecting A, each estimator in
these four cells is set to 20/4 = 5. The difference 16−20 = −4 is evenly distributed

(a) (b)

Fig. 14 An update on the basic spatio-temporal histogram. a Initial histogram. b An aggregate
location with 20 people
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Fig. 15 Privacy-preserving
aggregate query processing

among the estimators of the cells outside A, so each of those estimators is set to
4 + (−4/21) = 3.81.

Step 2: Aggregate query processing. The query processor is able to answer aggre-
gate queries. Given an aggregate query with a query range, the query processor
calculates the sum of the estimators of the cells intersecting the query range and
returns it as a query answer. Figure 15 depicts an example of an aggregate query with
a spatial query range which is represented by a bold rectangle. The query answer
is the sum of the estimators of the cells intersecting the spatial query range, i.e.,
5 × 4 + 3.81 × 2 = 27.62.

Recently, a stochastic flow model [54] has been designed to provide location
monitoring services in an indoor environment based on the sensor node’s actual
subject count. Since the flow model considers the network topology, it may provide
more accurate location monitoring services. It would be very useful to apply the flow
model to TinyCasper.

5.2 Temporal Privacy

In this section, we discuss two privacy-preserving techniques for temporal privacy in
WSNs, namely, adaptive delaying [31] and probabilistic sampling [23]. The adaptive
delaying technique is mainly designed for protecting the event time or the packet
transmission time, while the probabilistic sampling technique aims at protecting the
user’s query patterns and the unusual event time.
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5.2.1 Adaptive Delaying

In some WSN applications, the time when an event is detected or data is transmitted
by a sensor node is considered as sensitive information. An adversary would be able
to infer temporal information by merely capturing the arrival time of data packets
at some sensor nodes. Packet delaying techniques have been applied to anonymous
network communication. Most of these early techniques rely on the concept of pool
mixes [14], where the pool mix waits until it buffers a certain number of packets before
taking mixing action to protect their anonymity. Thus, the pool mix delays packets
before forwarding them. The concept of pool mixes has been extended to delay
individual incoming packets according a probabilistic distribution before sending
them out [17, 34].

P. Kamat et al. [31] have further used packet delaying to protect the temporal
privacy of detected events and transmitted packets. Suppose a source node S detects
an event and generates a packet at some time X and sends the packet in an encrypted
form to a destination node R, and a compromised node E monitors traffic arriving
at R. The adaptive delaying technique can protect temporal privacy in three network
scenarios:

1. Two-party single-packet network. S obfuscates the time X by storing the packet
in its local buffer for a random time period Y before transmitting it to R. E
witnesses the packet arrives at a time Z = X +Y , while R can decrypt the packet
to know the actual event detection or packet generation time X .

2. Two-party multiple-packet network. Suppose S generates a stream of n pack-
ets p1, p2, . . . , pn at times X1, X2, . . . , Xn and delays them by Y1,Y2, . . . ,Yn ,
respectively, before sending them to R. E observes the packets at Z1, Z2, . . . , Zn ,
where Zi = Xi + Yi (1 ≤ i ≤ n). Similar to the first scenario, R can decrypt
each packet and know its actual event detection or packet generation time. If the
system needs to maintain packet ordering, Y j has to be at least the time until all
previous packets p1, p2, . . . , pi (where 1 ≤ i < j ≤ n) were transmitted. Thus,
there is an ordering of Z1 < Z2 < . . . < Zn . Otherwise, Y j can be independent
of each other and independent of the event detection or packet generation times.

3. Multihop network. Suppose S sends a stream of packets to R through m inter-
mediate nodes S → N1 → N2 → . . . → Nm → R. The delay of a packet
pi is Yi = Y0,i + Y1,i + . . . + Ym,i , where Yk,i denotes the delay time of i-th
packet at k-th intermediate node and Y0,i denotes the delay time of i-th packet at
S. Consequently, E observes the arrival of each packet pi at Zi = Xi + Yi .

Delaying packets protects temporal privacy, but it increases burden on the
buffer at an intermediate node, especially the nodes close to the base station. When a
buffer is full, a replacement strategy is needed to replace a victim packet in the buffer
for a newly received packet. The victim packet is transmitted immediately instead
of dropping it. Four replacement strategies have been designed to choose a victim
packet from a buffer as follows:

1. Longest delayed first (LDF). The packet has been delayed in the buffer for the
longest time is selected as the victim packet.
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2. Shortest delay time first (SDTF). The packet has been delayed in the buffer for
the shortest time is selected as the victim packet.

3. Longest remaining delay first (LRDF). The packet with the longest remaining
delay time in the buffer is selected as the victim packet.

4. Shortest remaining delay first (SRDF). The packet with the shortest remaining
delay time in the buffer is selected as the victim packet.

A rated-controlled adaptive delaying mechanism is used to adjust the delay process
based on the employed replacement strategy. In the adversary model of simulations,
the adversary estimates the creation time of each packet. The total estimation error
for m packets is calculated as the mean square error, i.e.,

∑m
i=1(x

′
i − xi )

2/m, where
xi is the true creation time for packet i and x ′

i is estimated by the adversary. The larger
this value is, the better the temporal privacy is protected. At the same time, tolerable
end-to-end delivery latency for each packet should be maintained. Simulation results
show that LRDF is the best replacement strategy in terms of both temporal privacy
and latency.

5.2.2 Probabilistic Sampling

Data can be collected from sensor nodes in an on-demand or a periodic manner. The
on-demand manner is easy for an adversary to infer when a user issues a query or a
sensor node detects an event. Although the periodic manner can protect the temporal
privacy of queries issued by users and events detected by sensor nodes, its power
consumption is very high if the data collection time interval is short. However, it
may not satisfy a user-specified deadline if the time interval is long. To this end, a
probabilistic sampling technique is designed [23]. The basic idea is to carefully report
data at random times to blend user requests and events with the routine traffic, thus
making user requests and events indistinguishable to an attacker. In this technique,
the day is divided into time intervals, TimeInterval, and each time interval contains
the same number of equal-sized time slots. Figure 16 depicts an example, where the
time slot is one second and the day is divided into 86,400 time slots. Each time
interval is five seconds, so it contains five time slots and the day has 17,280 time
intervals. This technique has three important policies:

Fig. 16 Probabilistic sam-
pling

1 2 3 4 5 6 7 8 86400

24 hours

One time slot (1 sec)

One time interval (5 sec)
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1. A time slot is a short time period, in which at most one data report or query can
transmit or issue, respectively. The base station and the sensor node have the same
probability P (e.g., 1/(TimeInterval × 2)) of issuing a query or initiating a data
report, respectively.

2. A user should only be able to issue one query every time interval.
3. When there are too many time slots between two reports from a sensor node, P

should be increased until the sensor node can generate a data report. After that,
P is reset to its original value.

With the careful design of the generation probability of automatic data reports, the
privacy of user queries and unusual events in the network is protected. Experimental
results show that the probabilistic sampling technique can effectively reduce the
chance that an adversary can identify whether a user issues a query in a time interval.

5.2.3 Discussion

The adaptive delaying technique [31] does not consider any user- or system-specified
deadline for a query or data collection. It would be more interesting if this technique
can be extended to be time-constrained. In addition, it is important to investigate
whether such a time constraint degrades its privacy protection. On the other hand,
although the probabilistic sampling technique [23] considers user-specified dead-
lines, it is not clear how to adjust the probability P to meet the deadline and maxi-
mize the accuracy of a query answer. More sophisticated models are needed to answer
these questions.

6 Conclusion and Future Directions

In this chapter, we highlighted the existing privacy enhancing technologies for wire-
less sensor networks (WSNs). We categorized these technologies into three main
types of privacy, namely, system privacy, data privacy and context privacy. For each
type of privacy, we presented its major privacy-preserving techniques. In the con-
text privacy, the user location privacy is a new type of privacy in WSNs. There are
three main open privacy issues in privacy-preserving location monitoring services.
(1) Existing solutions only aim at protecting snapshot location privacy. It is important
to study continuous location monitoring privacy to avoid tracking a target user’s loca-
tion by analyzing consecutive snapshots of aggregate locations reported from sensor
nodes. (2) The state-of-the-art privacy-preserving aggregate query processor can only
support range queries. It is essential to design more advanced query processors to
support more complex analysis, e.g., data mining. (3) There is a tradeoff between
user privacy and data accuracy. For example, a higher anonymity level would lead
to a larger aggregate location area that degrades the user location accuracy. It would
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be very interesting to derive a theoretical model to balance such a tradeoff and find
an appropriate privacy protection level for a desired level of accuracy.
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