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Abstract. The automatic recognition of smoke signatures in lidar signals collected during very
small-scale experimental forest fires using neural-network algorithms was studied. An algo-
rithm for pre-processing of raw lidar signals is proposed, which selects suspicious backscat-

tering peaks and makes them unbiased and scale independent. The resulting patterns can be
successfully classified as corresponding to alarm or no-alarm conditions by a neural-network
algorithm based on a simple one-neuron structure (perceptron). In the case of an alarm, the
pre-processing algorithm provides the location of the smoke plume. Five algorithms selected

from the literature, and one that was specially developed, all with learning rate adaptation,
were used for training the perceptron. Their efficiencies and statistical properties were com-
pared. The best perceptron classifier presented an efficiency of 97% in the classification of

smoke-signature patterns and a false alarm rate of 0.9%.
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Abbreviations. BP – backpropagation; BPSDLR – backpropagation with adaptation of self-
determined learning rate; NPRCG – Newton-like method with periodically restarted con-
jugate gradient; PA – polynomial approximation; PNR – peak-to-noise ratio; PPRCG –
polynomial approximation with periodically restarted conjugate gradient; RPROP – resilient

propagation; SDAS – steepest descent with adaptive step size

1. Introduction

The lidar (LIght detection and ranging) technique has been widely used in atmo-

spheric and environmental research [4, 11, 14]. A lidar consists of a radiation emitter,

receiver optics (usually a Newtonian or Cassegrainian telescope), a photo-detector,

and data processing hardware and software. The radiation emitter is a pulsed laser,

which emits short intense radiation pulses through the atmosphere. Part of the

radiation that is backscattered by molecules, particles, and objects is collected by the

receiver and measured as a function of time. The distance from the backscattering

centre to the lidar may be calculated from the time delay between the laser pulse

emission and the reception of the backscattered signal, s, and the velocity of light, c,

by the equation R ¼ cs=2. The raw lidar signal is represented by the dependence of
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the backscattered radiation intensity on the distance at which backscattering oc-

curred. To improve the signal-to-noise ratio, returns from several laser pulses are

usually accumulated in one signal.

Remote detection of forest fires using lidar was recently demonstrated by the

authors [20, 21]. This technique presents considerable advantages when compared to

passive surveillance methods, because it yields higher sensitivity and does not require

line-of-sight observation of the flames. The high scattering efficiency of the particles

in the smoke which results from burning wood and grass, enables smoke plumes

from small forest fires to be easily detected up to distances of 6.5 km using a 100 mJ

Q-switched Nd:YAG laser based lidar [20].

For successful application of lidar in automatic forest fire surveillance the smoke

signatures in lidar signals must be promptly recognised and false alarms rejected.

False alarms resulting from atmospheric phenomena lead to spurious peaks in the

lidar signal. Lack of knowledge of aerosol distribution in the atmosphere and its

dependence on weather conditions, as well as random changes in atmospheric re-

fraction index, make it difficult to use parametric models of the lidar sensing process.

Neural-network techniques have been successfully applied to automatic forest fire

detection based on images obtained using ground-based, airborne, or spaceborne

infrared or video cameras [1, 3, 17, 19]. They have also been exhaustively applied to

the classification of radar [8], sonar [7], and sodar [16] signals. The present appli-

cation and previously reported applications are however different because in image

analysis two-dimensional scenes are classified, while in the present case the classifi-

cation deals with a one-dimensional signal representing the distribution of back-

scattered radiation intensity along the laser beam propagation direction [2].

The present paper reports the successful application of neural networks to the

recognition of smoke signatures in raw lidar signals. Five learning algorithms pre-

viously reported in the literature and one specifically designed were tested and

compared, with the aim of assessing which algorithm provides the best performance

for the present application. The neural networks were used to classify signals as a

smoke plume (alarm) or absence of smoke (no alarm) and, in an alarm situation, the

pre-processing algorithm provides the distance to the smoke plume. The training and

validation sets were constructed from experimental curves containing peaks corre-

sponding to smoke plumes and atmospheric noise. The work described in the present

paper is part of a research programme that aims at applying the best learning

algorithm to the training of neural networks that are associated in committee ma-

chine structures [6].

2. Network Structure and Signal Pre-processing

As classification implies a one-directional processing of information, the natural

option for the network topology is a feedforward structure, whose simplest imple-

mentation is a single-layer perceptron [9]. While a multilayer perceptron is composed

of several layers of neurons and one-directional synaptic links between neighbouring
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layers of neurons, a simple perceptron is composed of only one layer of input nodes

connected by synaptic links to a single output neuron. The performance of the

simplest neural network represented by a perceptron was investigated in the present

study. The activation function used in the output neuron is the hyperbolic tangent,

which maps the outputs into the bounded interval ()1, 1) and, at the same time,

provides non-zero and continuous gradient values necessary for learning algorithms

based on error backpropagation (BP).

Information processing with a single neuron is linear, even though a non-linear

function is used in its output [9]. The non-linear activation function can only help

reducing oscillations around the minima of the error function during the minimi-

sation procedure, by decreasing the gradient value when the weights are close to

those that minimise the error function. Therefore the application of single-layer

perceptrons is confined to the classification of linearly separable patterns. However,

the simple structure of the perceptron results in shorter calculation times for both

learning and classification, a very important feature for real-time applications.

The amplitude of the smoke-plume peak in a raw lidar signal varies due to changes

in the density of particles in the smoke plume, distance, and wind. The background

in the lidar signal curve, as shown in Figure 1, is composed of electronics noise and

atmospheric noise [5]. Since this signal background can be represented as a linear

combination of non-coincident peaks, the distinction of smoke signatures from

atmospheric noise using a perceptron is in principle impossible. However, pre-

liminary tests have demonstrated that smoke signatures and atmospheric noise peaks

can be efficiently distinguished by perceptron-based algorithms if the segments used

for classification are centred around the peak maximum. Although the signal-to-

noise ratio decreases with distance, the smoke signature holds its shape. Thus, the

classification problem is distance-independent in the sense that the recognition

conditions for a tenuous smoke plume observed at some distance are equivalent to

Figure 1. Lidar curve with smoke signature at 6.1 km.
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those for a denser plume at a greater distance, provided that the signal-to-noise ratio

is similar. This fact enables a lidar signal of one to two thousand points (a range of

about 10 km, measured with six-metre resolution) to be viewed by the neural net-

work through a narrow window of several tens of points, which moves along the

signal curve, reducing signal pre-processing to the window motion algorithm. Mo-

tion stops only if a local maximum coincides with the window centre. When this

situation occurs, the signal curve in the region of interest is scaled so that the

minimum and maximum values are )0.9 and 0.9, in order to eliminate the signal

background and avoid saturation of the neurons. This technique considerably sim-

plifies all data processing because: (i) the number of neural inputs and links is

reduced to the window width, decreasing calculation complexity; (ii) recognition

becomes independent of scale and of signal background; (iii) linear separation

methods, in particular simple perceptron-based algorithms, become applicable; and

(iv) the neural network is only required for classification, while the problem of

calculating the distance to the target is eliminated, because this distance is given by

the co-ordinate of the window centre.

3. Pattern Description

Two sets of patterns were used for the supervised learning: a training set consisting

of the lidar patterns and corresponding outputs to be learnt by the network, and the

validation set, used to test the ability of the trained network to generalise. The

patterns in the training and validation sets contain peaks due to atmospheric noise

and smoke-plume signatures of experimental campfires (burning rate of about

0.02 kg/s) resulting from the accumulation of medium (32) and large (more than 128)

numbers of lidar returns in one raw lidar signal. The lidar signals, from which the

patterns were gathered, were obtained using laser radiation with wavelengths of 532

and 1064 nm and laser pulse energies ranging from 2 to 17 mJ. However, variations

in these parameters did not produce any substantial differences in the characteristics

of smoke-signature or atmospheric noise patterns.

To capture the smoke-plume structure, the signals were recorded with a 6-m

distance between sampling points, resulting in approximately 7-points-wide smoke

signatures. After some trial runs of the recognition algorithms, a width of the sliding

window and, correspondingly, a pattern length of 21 points, three times the smoke

signature width, was chosen. In fact this number of points was sufficient to provide

statistically meaningful information about the central peak and the noise in its

vicinity and so to supply enough information to allow a correct classification of the

pattern on the basis of the peaks shape and width, and the peak amplitude in relation

to the background. In accordance with the pre-processing procedure, all patterns

had centred maximums and were normalised to fit in the interval [)0.9, 0.9], as
presented in Figure 2.

In order to quantitatively characterise the pattern noisiness, a parameter called

peak-to-noise ratio (PNR) was introduced. The PNR is defined as the ratio between
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the maximum amplitude and the standard deviation of the pattern points in the

vicinity of the peak (here PNR appears to be a more appropriate term than signal-to-

noise ratio, because the central maximum itself may correspond to noise). The

maximum and standard deviation values are calculated with reference to a linear

background obtained by the root-mean-square interpolation of all pattern points

except seven points in the centre, which presumably form the peak to be analysed.

The distribution of the PNR for the smoke-signature patterns is shown in

Figure 3. The smoke-signature patterns present PNRs over a wide range from 7 to

92, although the highest concentration of patterns occurs for 7 £ PNR £ 16. The

histograms of PNR distribution for atmospheric noise and the smoke signatures are

Figure 2. Smoke signature extracted from the lidar curve presented in Figure 1.

Figure 3. Distribution of smoke-signature patterns over PNR.
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compared in Figure 4. The histogram shows that atmospheric noise has a pro-

nounced non-Gaussian distribution [12], with a slow decay towards larger PNR

values. Despite the noise reduction resulting from the accumulation of at least 32

lidar returns in each signal, the two distributions overlap considerably. For this

reason, methods based on a signal-to-noise criterion, which have been traditionally

used in automatic signal recognition, are not the most appropriate. Forest-fire

detection with a low false-alarm rate can only be achieved with derivation of the

decision from several parameters characterising the signal peak. This fact provides

additional support for the application of neural networks that form the decision

from as many signal parameters as they have input nodes.

4. Learning Algorithms

BP is an efficient algorithm for supervised learning of multilayer and simple per-

ceptrons. This method minimises output errors by gradient descent over the error

surface E(w) in the multidimensional space of the interconnection weights w

(transmission coefficients of the synaptic links). The weights are updated according

to the rule

wi ! wi � lriE ð1Þ
where wi is the weight of the link to the ith input node, l is the learning rate, and

riE ¼ oE=owi is the component of the error gradient corresponding to the direction

wi. In the simplest implementation of the BP algorithm, the learning rate remains

fixed. This results in slow convergence, because the error surface usually presents

gentle slopes intersected by narrow steep regions. In steep regions the learning rate

has to be low to prevent over-adjustment, while in flat regions it has to be high in

order to compensate the small local gradient values. Taking this fact into consid-

Figure 4. Distribution of atmospheric noise and smoke-signature patterns over PNR.
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eration, all the learning algorithms tested in the present work use dynamic adapta-

tion of the learning rate in function of the changes in the error gradient value. Six

algorithms were used for training the perceptrons, five of them selected from the

literature (back propagation with adaptation of self-determined learning rate,

BPSDLR; steepest descent with adaptive step size, SDAS; resilient propagation,

RPROP; polynomial approximation, PA and Newton-like method with periodically

restarted conjugate gradient, NPRCG, please see below), and the sixth (polynomial

approximation with periodically restarted conjugated gradient, PPRCG) specially

developed by the authors for the present classification task.

In the calculation of the optimal learning rate, the BP method with adaptation of a

self-determined learning rate, BPSDLR [13] takes error and error gradient values

into consideration. Accelerating the descent, this option leads to poor stability, so a

special convergence criterion tests each value of the learning rate in order to ensure

algorithm convergence. If convergence cannot be guaranteed, learning-rate tuning is

performed by reducing its value to half.

For the steepest descent with adaptive step size, SDAS [22], a Lipschitz continuity

condition is imposed on the error gradient, and the optimal learning rate is calcu-

lated on the basis of a local estimation of the Lipschitz constant.

In the resilient propagation method, RPROP [18], the calculation of the value of

the weight update does not take into account the magnitude of the error gradient.

The update is based on changes of the error gradient sign because they indicate a

jump over error surface minima. If the sign does not change, the weight update value

increases; if the sign changes, the weight update value decreases, enabling the weight

vector to step closer to the minimum of the error surface.

The following three BP selected methods perform dynamic learning rate adapta-

tion through the computation of both the first and second derivatives of the error.

The computational complexity is higher than for standard BP methods, but the gain

in convergence speed fully compensates for it. The first two methods are taken from

the literature, while the third one, derived from the previous two, is novel.

The objective of polynomial approximation, PA [23] is to find the smallest learning

rate, l ¼ l�, for which the error function has a minimum. Since rE indicates the

local descent direction, the value of the first derivative of the error with respect to the

learning rate is less than zero for l ¼ 0. Starting with zero, l is increased stepwise

until the first derivative becomes positive. With two values of the learning rate, one

corresponding to positive and the other to negative values of the first derivative of

the error, it is possible to estimate l� using a third-order polynomial interpolation.

In the Newton-like method with periodically restarted conjugate gradient,

NPRCG [23] it is assumed that a convex parabola can approximate the dependence

of the error function on the learning rate. The optimal learning rate is calculated

from the first and second derivatives of the error function. The momentum factor,

which defines the influence of the previous weight update values on the current ones,

leading to more stable and faster convergence, is simultaneously calculated. At the

points of the weight space where the second derivative of the error for l ¼ 0 is equal
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to or less than zero the calculations do not converge. At these points polynomial

approximation is used instead.

Combining polynomial interpolation with the periodically restarted conjugate

gradient it is possible to obtain a new algorithm, polynomial approximation with

periodically restarted conjugate gradient, PPRCG, which exhibits very fast conver-

gence while maintaining good generalisation characteristics. In this algorithm the

learning rate is obtained using the third-order polynomial interpolation, but

the descent is performed through the conjugate-gradient method. To the best of the

authors’ knowledge, this algorithm was not reported previously.

5. Numerical Results

Numerical computations were performed using a perceptron consisting of 21 signal

input nodes and an additional node that always receives a signal +1 (to represent the

neural activation bias in the same form as the signal components), connected by

synaptic links with a single output neuron. To find the conditions that provide the

best generalisation capability for the perceptron, the following learning parameters

were varied:

• the range for randomly generating the initial weights of the synaptic links (the

intervals [)0.2, 0.2], [)0.5, 0.5] and [)0.8, 0.8] were tested);

• the number of patterns in the training set;

• the number of updates to the interconnection weights (number of training epochs).

Random generation of the initial weights introduces a stochastic character to the

algorithms and makes it necessary to assess the statistical properties of the results by

repeating each combination of the above parameters 10 times.

5.1. OPEN-SKY LIDAR OBSERVATIONS: RECOGNITION OF SMOKE SIGNATURES

AGAINST ATMOSPHERIC NOISE

From the thousands of patterns gathered, 282 representative patterns were chosen

for the training and validation sets. The atmospheric-noise patterns were collected

from lidar signals of the smoke-free atmosphere resulting from the accumulation of

32 or more lidar returns. From lidar signals containing peaks due to smoke plumes,

it was possible to gather 95 patterns with smoke signatures. All smoke signatures

have PNR > 7. Due to the smaller number of smoke signature patterns in com-

parison with atmospheric noise patterns, all the smoke signature patterns were used

in the composition of the training and validation sets. Several training sets con-

taining 37, 62, 78 and 118 patterns were built, and the rest of the patterns were used

in the validation set. For all tested algorithms, the 78-pattern training set produced

the classifiers showing the least number of misclassifications. This training set was

composed of 41 smoke signatures and 37 atmospheric-noise patterns. Together with

this training set, a validation set composed of 54 smoke signatures and 150
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atmospheric noise patterns was used. At the same time, changing the weight ini-

tialisation range did not produce significant variations in the percentage of mis-

classifications.

Bearing in mind the application, the algorithm efficiency was assessed by the

number of misclassifications (misdetections and false alarms), although training

was performed using the Euclidean error. For a classic step-function activation of

the neuron, each misclassification adds one unity to the Euclidean classification

error and these two assessments would be equal, but not in the present situation.

As a result, the best algorithm is not the one leading to the lowest error for a given

training set because, after reaching a certain value, further reductions in the error

imply a degradation of the generalisation capability of the classifier [10]. The

important point is how fast an algorithm can attain the classification error level

corresponding to a minimum number of misclassifications for both the training

and validation sets. To find the algorithm capable of producing classifiers yielding

the lowest number of misclassifications, 360 perceptrons were constructed for each

of the six algorithms with the 78-pattern training set and subjected to testing with

204 patterns of the validation set. A histogram showing the number of classifiers

that achieved a particular number of misclassifications in both sets is presented in

Figure 5. No algorithm led to a classifier achieving less than 5 misclassifications

and only PPRCG and NPRCG produced classifiers leading to less than 10 mis-

classifications. PPRCG predominates in the group of the best classifiers (5–9

misdetections) but produces its maximum number of classifiers in the next group

(10–14).

In Figure 6 the total number of misclassifications for each algorithm is plotted as a

function of the number of training epochs (as previously, the results presented were

Figure 5. Distribution of classifiers over total number of misclassifications with respect to 78 patterns of

the training set and 204 patterns of the validation set.
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obtained with the 78-pattern training set). Ten trials were performed for each set of

parameters and the results averaged. Each algorithm presents a minimum of mis-

classifications for a particular number of training epochs. If the number of training

epochs is too small, the perceptron does not capture the characteristic features of the

patterns in the training set; if the number of epochs is too large, the perceptron is

excessively affected by irrelevant features in the training patterns, resulting in poor

generalisation capability [10].

Figure 6. Dynamics of the learning process for the six tested algorithms.
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PPRCG and NPRCG are the only algorithms capable of attaining a percentage of

misclassifications lower than 4.5%. The minimum percentage of misclassifications is

3.83 ± 0.297% and 4.22 ± 0.414% for PPRCG and NPRCG, respectively. Thus

for the problem in question, PPRCG appears to be the best learning algorithm

because it exhibits the lowest percentage of misclassifications.

In Table 1 are presented the average number of evaluations per epoch of gradient

and error function (NGrad and NError, respectively), the average number of epochs

required by each algorithm to attain the lowest percentage of misclassifications

(NEpoch) and the corresponding total computational cost (TC). The average and

standard deviation values indicated in Table 1 were calculated by averaging the

results of 10 runs. The other values are constant for each algorithm. The compu-

tational cost of each gradient evaluation (CCGrad) was estimated according to the

formula suggested by [15]:

CCGrad ¼ 3� CCError ð2Þ

where CCError is the computational cost of each error function evaluation. The total

computational cost (TC) was calculated using the expression:

TC ¼ NEpochð3NGrad þNErrorÞ ð3Þ

Different learning algorithms present the minimum percentage of misclassifications

at different values of the training epochs. PPRCG and NPRCG attain their best

performance, on average, in 11 and 18 training epochs respectively, while the other

learning algorithms need 100 or more training epochs. Since the second order

derivatives computational cost for 18 epochs is negligible as compared to other TC

values, NPRCG is the learning algorithm requiring the lowest total computational

cost to achieve its best performance. PPRCG allows the minimum misclassification

percentage to be achieved in only 11 epochs, but at the expense of a larger number of

gradient function evaluations per epoch as compared to other algorithms. Never-

theless using a computer equipped with a 1.7 GHz Pentium IV processor and

256 MB of memory PPRCG takes approximately 5 s to calculate 11 epochs for 78

training patterns.

Table 1. Values of NEpoch, NError, NGrad and TC for the six algorithms studied.

NEpoch NError NGrad TC

PPRCG 11 2 55.77 ± 25.63 1862

NPRCG 18 1 1 72

BPSDLR 120 7.378 ± 1.643 1 1245

SDAS 100 1 1 400

RPROP 140 1 1 560

Polynomial 300 2 9.088 ± 0.8893 8779
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The decay of the classification error, measured as the sum of the squared

Euclidean distances between the desired and the actual output for all patterns in the

training set [9], is plotted in Figure 7 as a function of the number of training epochs.

For each algorithm, the curves show the error decay for the classifier that presents

the best results.

PPRCG presents the fastest error decay, because it benefits from the best char-

acteristics of each of the algorithms that compose it. For the first three epochs, the

PPRCG error decay is similar to the PA algorithm, which presents the fastest error

decrease in these epochs. After that, PPRCG demonstrates a slightly faster con-

vergence than NPRCG. The PPRCG and NPRCG methods achieve a 5% level of

the initial error after 8 and 12 epochs, respectively. The other algorithms need more

than 25 epochs to achieve the same result.

The best classifier was constructed with the PPRCG learning algorithm and the

training set of 78 patterns, 41 containing smoke signatures and 37 containing

atmospheric noise peaks. The validation set was composed of 204 patterns, 54 with

smoke signatures and 150 with atmospheric noise. The efficiency of the best classifier

was 99% for the validation set (no misdetections and three false alarms), and 98%

(three false alarms and three misdetections) with respect to both the training and

validation sets. This means 97% efficiency in the classification of smoke-signature

patterns. When evaluating the efficiency of this classifier with respect to 17,174

atmospheric noise patterns, it was able to correctly classify 99.1% of the patterns.

The histogram of Figure 8 shows the PNR distribution for the atmospheric noise

patterns causing false alarms. For given PNR groups, the percentage of patterns that

cause false alarms increases with PNR. The presence of false alarms in almost all

groups of PNR for atmospheric noise patterns illustrates the fact that perceptrons

base their decisions on features other than PNR.

Figure 7. Normalised decay of the classification error.
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6. Conclusions

The possibility of applying neural networks to smoke signature recognition was

demonstrated by constructing a sliding-window pre-processing algorithm coupled

with a simple single-neuron classifier. The pre-processing algorithm provides the

distance to the smoke plume. The smoke-signature patterns are characterised by

PNRs ranging from 7 to 92, testifying of the high variability in plume and fire

parameters as well as of the lidar signal acquisition conditions in general.

The six learning algorithms under study presented different learning characteristics.

PPRCG and NPRCG were the only ones able to generate classifiers presenting less

than 10 misclassifications for training and validation sets. PPRCG and NPRCG ob-

tained their best performance, on average, in less than 20 training epochs; all the other

learning algorithms needed at least 100 training epochs. Among the algorithms

studied, NPRCG presents the lowest computational cost and is the second best in

terms ofmisclassification percentage. The BP procedure of polynomial approximation

with periodically restarted conjugate gradient (PPRCG) developed in the present work

turned out to be the best learning algorithm for neural-network classifiers of raw lidar

signals even though it does not present the lowest computational cost. PPRCG can

produce the classifiers leading to the lowest number of misclassifications obtained in

this study, while maintaining optimum generalisation. These results indicate that for

the problem in question the periodically restarted conjugate gradient calculation

drastically affects the convergence rate while improving classification efficiency.

With PPRCG it was possible to obtain a perceptron showing 97% efficiency in the

classification of smoke-signatures with peak-to-noise ratio higher than 7, and 99.1%

efficiency in the classification of the total of 17,174 noise patterns resulting from the

accumulation of 32 or more lidar returns. The atmospheric noise patterns presenting

higher values of PNR have a higher probability of resulting in false alarms.

Figure 8. Distribution of atmospheric noise and false alarm patterns over PNR.
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