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5.1 Introduction

Many real-world applications involve storing and processing large amounts of
data. These data sets need to be either stored over the memory hierarchy of one
computer or distributed and processed over many parallel computing devices or
both. In fact, in many such applications, choosing a realistic computation model
proves to be a critical factor in obtaining practically acceptable solutions. In
this chapter, we focus on realistic computation models that capture the running
time of algorithms involving large data sets on modern computers better than
the traditional RAM (and its parallel counterpart PRAM) model.

5.1.1 Large Data Sets

Large data sets arise naturally in many applications. We consider a few examples
here.

– GIS terrain data: Remote sensing [435] has made massive amounts of high
resolution terrain data readily available. NASA already measures the data
volumes from satellite images in petabytes (1015 bytes). With the emergence
of new terrain mapping technologies such as laser altimetry, this data is likely
to grow much further. Terrain analysis is central to a range of important
geographic information systems (GIS) applications concerned with the effects
of topography.

– Data warehouses of companies that keep track of every single transaction on
spatial/temporal databases. Typical examples include the financial sector
companies, telecommunication companies and online businesses. Many data
warehouse appliances already scale to one petabyte and beyond [428].

– The World Wide Web (WWW) can be looked upon as a massive graph
where each web-page is a node and the hyperlink from one page to another
is a directed edge between the nodes corresponding to those pages. As of
August 2008, it is estimated that the indexed web contains at least 27 billion
webpages [208].
Typical problems in the analysis (e.g., [129, 509]) of WWW graphs include
computing the diameter of the graph, computing the diameter of the core
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of the graph, computing connected and strongly connected components and
other structural properties such as computing the correct parameters for the
power law modeling of WWW graphs. There has also been a lot of work on
understanding the evolution of such graphs.

Internet search giants and portals work on very large datasets. For example,
Yahoo!, a major Internet portal, maintains (as of 2008) a database of more
than a petabyte [426].

– Social networks: Social networks provide yet another example of naturally
evolving massive graphs [55]. One application area is citation graphs, in
which nodes represent the papers and an edge from one paper to another
shows the citation. Other examples include networks of friends, where nodes
denote individuals and edges show the acquaintance, and telephone graphs,
where nodes represent phone numbers and edges represent phone call in
the last few days. Typical problems in social networks include finding local
communities, e. g., people working on similar problems in citation graphs.

– Artificial Intelligence and Robotics: In applications like single-agent search,
game playing and action planning, even if the input data is small, interme-
diate data can be huge. For instance, the state descriptors of explicit state
model checking softwares are often so large that main memory is not suffi-
cient for the lossless storage of reachable states during the exploration [267].

– Scientific modeling and simulation (e. g., particle physics, molecular dynam-
ics), engineering (e. g., CAD), medical computing, astronomy and numerical
computing.

– Network logs such as fault alarms, CPU usage at routers and flow logs.
Typical problems on network logs include finding the number of distinct IP
addresses using a given link to send their traffic or how much traffic in two
routers is common.

– Ad hoc network of sensors monitoring continuous physical observations –
temperature, pressure, EMG/ECG/EEG signals from humans, humidity etc.

– Weather prediction centers collect a massive amount of weather, hydrologi-
cal, radar, satellite and weather balloon data and integrate it into a variety
of computer models for improving the accuracy of weather forecasts.

– Genomics, where the sequence data can be as large as a few terabytes [111].

– Graphics and animations [281].

Note that the term “large” as used in this chapter is in comparison with the
memory capacity and it depends not only on the level of memory hierarchy but
also the computational device in use. For instance, road network of a small city
may fit in the main memory of modern computers, but still be considered “large”
for route planning applications involving a flash memory card on a small mobile
device like Pocket PC [342,699] or in the context of cache misses.

Next, we consider the traditional RAMmodel of computation and the reasons
for its inadequacy for applications involving large data sets.
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5.1.2 RAM Model

The running time of an algorithm is traditionally analyzed by counting the
number of executed primitive operations or “instructions” as a function of the
input size n (cf. Chapter 4). The implicit underlying model of computation is the
one-processor, random-access machine (RAM) model. The RAM model or the
“von Neumann model of computation” consists of a computing device attached
to a storage device (or “memory”). The following are the key assumptions of this
model:

– Instructions are executed one after another, with no concurrent operations.
– Every instruction takes the same amount of time, at least up to small con-
stant factors.

– Unbounded amount of available memory.
– Memory stores words of size O(log n) bits where n is the input size.
– Any desired memory location can be accessed in unit time.
– For numerical and geometric algorithms, it is sometimes also assumed that
words can represent real numbers accurately.

– Exact arithmetic on arbitrary real numbers can be done in constant time.

The above assumptions greatly simplify the analysis of algorithms and allow for
expressive asymptotic analysis.

5.1.3 Real Architecture

Unfortunately, modern computer architecture is not as simple. Rather than hav-
ing an unbounded amount of unit-cost access memory, we have a hierarchy of
storage devices (Figure 5.1) with very different access times and storage capac-
ities. Modern computers have a microprocessor attached to a file of registers.
The first level (L1) cache is usually only a few kilobytes large and incurs a delay
of a few clock cycles. Often there are separate L1 caches for instructions and
data. Nowadays, typical second level (L2) cache has a size of about 32-512 KB
and access latencies around ten clock cycles. Some processors also have a rather
expensive third level (L3) cache of up to 256 MB made of fast static random
access memory cells. A cache consists of cache lines that each store a number of
memory words. If an accessed item is not in the cache, it and its neighbor entries
are fetched from the main memory and put into a cache line. These caches usu-
ally have limited associativity, i. e., an element brought from the main memory
can be placed only in a restricted set of cache lines. In a direct-mapped cache the
target cache line is fixed and only based on the memory address, whereas in a
full-associative cache the item can be placed anywhere. Since the former is too
restrictive and the latter is expensive to build and manage, a compromise often
used is a set-associative cache. There, the item’s memory address determines a
fixed set of cache lines into which the data can be mapped, though within each
set, any cache line can be used. The typical size of such a set of cache lines is
a power of 2 in the range from 2 to 16. For more details about the structure of
caches the interested reader is referred to [631] (in particular its Chapter 7).
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Figure 5.1. Memory hierarchy in modern computer architecture.

The main memory is made of dynamic random access memory cells. These
cells store a bit of data as a charge in a capacitor rather than storing it as
the state of a flip-flop which is the case for most static random access memory
cells. It requires practically the same amount of time to access any piece of data
stored in the main memory, irrespective of its location, as there is no physical
movement (e. g., of a reading head) involved in the process of retrieving data.
Main memory is usually volatile, which means that it loses all data when the
computer is powered down. At the time of the writing, the main memory size of
a PC is usually between 512 MB and 32 GB and a typical RAM memory has an
access time of 5 to 70 nanoseconds.

Magnetic hard disks offer cheap non-volatile memory with an access time of
10 ms, which is 106 times slower than a register access. This is because it takes
very long to move the access head to a particular track of the disk and wait until
the disk rotates into the seeked position. However, once the head starts reading
or writing, data can be transferred at the rate of 35-125 MB/s. Hence, reading
or writing a contiguous block of hundreds of KB takes only about twice as long
as accessing a single byte, thereby making it imperative to process data in large
chunks.

Apart from the above mentioned levels of a memory hierarchy, there are
instruction pipelines, an instruction cache, logical/physical pages, the translation
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lookaside buffer (TLB), magnetic tapes, optical disks and the network, which
further complicate the architecture.

The reasons for such a memory hierarchy are mainly economical. The faster
memory technologies are costlier and, as a result, fast memories with large capac-
ities are economically prohibitive. The memory hierarchy emerges as a reasonable
compromise between the performance and the cost of a machine.

Microprocessors like Intel Xeon have multiple register sets and are able to
execute a corresponding number of threads of activity in parallel, even as they
share the same execution pipeline. The accumulated performance is higher, as
a thread can use the processor while another thread is waiting for a memory
access to finish.

Explicit parallel processing takes the computer architecture further away
from the RAM model. On parallel machines, some levels of the memory hier-
archy may be shared whereas others are distributed between the processors.
The communication cost between different machines is often the bottleneck for
algorithms on parallel architectures.

5.1.4 Disadvantages of the RAM Model

The beauty of the RAM model lies in the fact that it hides all the ‘messy’
details of computer architecture from the algorithm designer. At the same time,
it encapsulates the comparative performance of algorithms remarkably well. It
strikes a fine balance by capturing the essential behavior of computers while
being simple to work with. The performance guarantees in the RAM model are
not architecture-specific and therefore robust. However, this is also the limiting
factor for the success of this model. In particular, it fails significantly when the
input data or the intermediate data structure is too large to reside completely
within the internal memory. This failure can be observed between any two levels
of the memory hierarchy.

For most problems on large data sets, the dominant part of the running time
of algorithms is not the number of “instructions”, but the time these algorithms
spend waiting for the data to be brought from the hard disk to internal memory.
The I/Os or the movement of data between the memory hierarchies (and in
particular between the main memory and the disk) are not captured by the
RAM model and hence, as shown in Figure 5.2, the predicted performance on
the RAM model increasingly deviates from the actual performance. As we will
see in Section 5.5.2, the running times of even elementary graph problems like
breadth-first search become I/O-dominant as the input graph is just twice as
large as the available internal memory. While the RAM model predicts running
time in minutes, it takes hours in practice.

Since the time required by algorithms for large data sets in the sequential
setting can be impractical, a larger number of processors are sometimes used
to compute the solution in parallel. On parallel architectures, one is often in-
terested in the parallel time, work, communication costs etc. of an algorithm.
These performance parameters are simply beyond the scope of the traditional
one-processor RAM model. Even the parallel extension of the RAM model, the
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Figure 5.2. Predicted performance of RAM model versus its real performance.

PRAM model, fails to capture the running time of algorithms on real parallel
architectures as it ignores the communication cost between the processors.

5.1.5 Future Trends

The problem is likely to aggravate in the future. According to Moore’s law,
the number of transistors double every 18 months. As a result, the CPU speed
continued to improve at nearly the same pace until recently, i.e., an average per-
formance improvement of 1% per week. Meanwhile, due to heat problems caused
by even higher clock speeds, processor architects have passed into increasing the
number of computing entities (cores) per processor instead. The usage of paral-
lel processors and multi-cores makes the computations even faster. On the other
hand, random access memory speeds and hard drive seek times improve at best
a few percentages per year. Although the capacity of the random access memory
doubles about every two years, users double their data storage every 5 months.
Multimedia (pictures, music and movies) usage in digital form is growing and the
same holds true for the content in WWW. For example, the number of articles
in the online encyclopedia Wikipedia has been doubling every 339 days [830]
and the online photo sharing network Flickr that started in 2004 had more than
three billion pictures as of November 2008 [289] and claims that three to five
million photos are updated daily on its network. Consequently, the problem sizes
are increasing and the I/O-bottleneck is worsening.

5.1.6 Realistic Computer Models

Since the RAM model fails to capture the running time of algorithms for prob-
lems involving large data sets and the I/O bottleneck is likely to worsen in
future, there is clearly a need for realistic computer models – models taking
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explicit care of memory hierarchy, parallelism or other aspects of modern ar-
chitectures. These models should be simple enough for algorithm design and
analysis, yet they should be able to capture the intricacies of the underlying ar-
chitecture. Their performance metric can be very different from the traditional
“counting the instructions” approach of the RAM model and algorithm design
on these models may need fundamentally different techniques. This chapter in-
troduces some of the popular realistic computation models – external memory
model, parallel disk model, cache-oblivious model, and parallel bridging mod-
els like BSP, LogP, CGM, QSM etc. – and provides the basic techniques for
designing algorithms on most of these models.

In Section 5.2, many techniques for exploiting the memory hierarchy are in-
troduced. This includes different memory hierarchy models, algorithm design
techniques and data structures as well as several optimization techniques spe-
cific to caches. After the introduction of various parallel computing models in
Section 5.3, Section 5.4 shows the relationship between the algorithms designed
in memory hierarchy and parallel models. In Section 5.5, we discuss success sto-
ries of Algorithm Engineering on large data sets using the introduced computer
models from various domains of computer science.

5.2 Exploiting the Memory Hierarchy

5.2.1 Memory Hierarchy Models

In this section, we introduce some of the memory hierarchy models that have
led to successful Algorithm Engineering on large data sets.

External Memory Model. The I/O model or the external memory (EM)
model (depicted in Figure 5.3) as introduced by Aggarwal and Vitter [11] as-
sumes a single central processing unit and two levels of memory hierarchy. The
internal memory is fast, but has a limited size of M words. In addition, we
have an external memory which can only be accessed using I/Os that move B
contiguous words between internal and external memory. For some problems,
the notation is slightly abused and we assume that the internal memory can
have up toM data items of a constant size (e. g., vertices/edges/characters/seg-
ments etc.) and in one I/O operation, B contiguous data items move between
the two memories. At any particular timestamp, the computation can only use
the data already present in the internal memory. The measure of performance
of an algorithm is the number of I/Os it performs. An algorithm A has lower
I/O-complexity than another algorithm A′ if A requires less I/Os than A′.

Although we mostly use the sequential variant of the external memory model,
it also has an option to express disk parallelism. There can be D parallel disks
and in one I/O, D arbitrary blocks can be accessed in parallel from the disks.
The usage of parallel disks helps us alleviate the I/O bottleneck.
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Figure 5.3. The external memory model.

Parallel Disk Model. The parallel disk model (depicted in Figure 5.4) by
Vitter and Shriver [810] is similar to the external memory model, except that it
adds a realistic restriction that only one block can be accessed per disk during
an I/O, rather than allowing D arbitrary blocks to be accessed in parallel. The
parallel disk model can also be extended to allow parallel processing by allowing
P parallel identical processors each with M/P internal memory and equipped
with D/P disks.

Sanders et al. [696] gave efficient randomized algorithms for emulating the
external memory model of Aggarwal and Vitter [11] on the parallel disk model.

Ideal Cache Model. In the external memory model we are free to choose any
two levels of the memory hierarchy as internal and external memory. For this
reason, external memory algorithms are sometimes also referred to as cache-
aware algorithms (“aware” as opposed to “oblivious”). There are two main prob-
lems with extending this model to caches: limited associativity and automated
replacement. As shown by Sen and Chatterjee [724], the problem of limited asso-
ciativity in caches can be circumvented at the cost of constant factors. Frigo et
al. [308] showed that a regular algorithm causes asymptotically the same num-
ber of cache misses with LRU (least recently used) or FIFO (first-in first-out)
replacement policy as with optimal off-line replacement strategy. Intuitively, an
algorithm is called regular if the number of incurred cache misses (with an op-
timal off-line replacement) increase by a constant factor when the cache size is
reduced to half.
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Figure 5.4. The parallel disk model.

Similar to the external memory model, the ideal cache model [308] assumes
a two level memory hierarchy, with the faster level having a capacity of storing
at most M elements and data transfers in chunks of B elements. In addition, it
also assumes that the memory is managed automatically by an optimal offline
cache-replacement strategy, and that the cache is fully associative.

Cache-Oblivious Model. In practice, the model parameters B and M need
to be finely tuned for an optimal performance. For different architectures and
memory hierarchies, these values can be very different. This fine-tuning can be
at times quite cumbersome. Besides, we can optimize only one memory hierarchy
level at a time. Ideally, we would like a model that would capture the essence
of the memory hierarchy without knowing its specifics, i. e., values of B and M ,
and at the same time is efficient on all hierarchy levels simultaneously. Yet, it
should be simple enough for a feasible algorithm analysis. The cache-oblivious
model introduced by Frigo et al. [308] promises all of the above. In fact, the
immense popularity of this model lies in its innate simplicity and its ability to
abstract away the hardware parameters.

The cache-oblivious model also assumes a two level memory hierarchy with
an internal memory of size M and block transfers of B elements in one I/O.
The performance measure is the number of I/Os incurred by the algorithm.
However, the algorithm does not have any knowledge of the values of M and B.
Consequently, the guarantees on I/O-efficient algorithms in the cache-oblivious
model hold not only on any machine with multi-level memory hierarchy but
also on all levels of the memory hierarchy at the same time. In principle, these
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algorithms are expected to perform well on different architectures without the
need of any machine-specific optimization.

The cache-oblivious model assumes full associativity and optimal replace-
ment policy. However, as we argued for the ideal cache model, these assumptions
do not affect the asymptotics on realistic caches.

However, note that cache-oblivious algorithms are usually more complicated
than their cache-aware I/O-efficient counterparts. As a result, the constant fac-
tors hidden in the complexity of cache-oblivious algorithms are usually higher
and on large external memory inputs, they are slower in practice.

Various Streaming Models. In the data stream model [603], input data can
only be accessed sequentially in the form of a data stream, and needs to be
processed using a working memory that is small compared to the length of the
stream. The main parameters of the model are the number p of sequential passes
over the data and the size s of the working memory (in bits). Since the classical
data stream model is too restrictive for graph algorithms and even the undirected
connectivity problem requires s×p = Ω(n) [387] (where n is the number of nodes
in a graph), less restrictive variants of streaming models have also been studied.
These include the stream-sort model [12] where sorting is also allowed, the W-
stream model [232] where one can use intermediate temporary streams, and the
semi-streaming model [284], where the available memory is O(n·polylog(n)) bits.

There are still a number of issues not addressed by these models that can be
critical for performance in practical settings, e. g., branch mispredictions [451],
TLB misses etc. For other models on memory hierarchies, we refer to [53, 658,
505,569].

5.2.2 Fundamental Techniques

The key principles in designing I/O-efficient algorithms are the exploitation of
locality and the batching of operations. In a general context, spatial locality
denotes that data close in address space to the currently accessed item is likely to
be accessed soon whereas temporal locality refers to the fact that an instruction
issued or a data item accessed during the current clock cycle is likely to be
issued/accessed in the near future as well. The third concept is batching, which
basically means to wait before issuing an operation until enough data needs to
be processed such that the operation’s cost is worthwhile. Let us see in more
detail what this means for the design of I/O-efficient algorithms.

– Exploiting spatial locality: Since the data transfer in the external mem-
ory model (as well as the cache-oblivious model) happens in terms of block
of elements rather than a single element at a time, the entire block when
accessed should contain as much useful information as possible. This concept
is referred to as “exploiting spatial locality”. The fan-out of B in a B-tree
exploiting the entire information accessible in one I/O to reduce the height
of the tree (and therefore the worst-case complexity of various operations)
is a typical example of “exploiting spatial locality”.



204 D. Ajwani and H. Meyerhenke

Spatial locality is sometimes also used to represent the fact that the likeli-
hood of referencing a resource is higher if a resource near it (with an appro-
priate measure of “nearness”) has just been referenced. Graph clustering and
partitioning techniques are examples for exploiting “nearness”.

– Exploiting temporal locality: The concept of using the data in the inter-
nal memory for as much useful work as possible before it is written back to
the external memory is called “exploiting temporal locality”. The divide and
conquer paradigm in the external memory can be considered as an example
of this principle. The data is divided into chunks small enough to fit into
the internal memory and then the subproblem fitting internally is solved
completely before reverting back to the original problem.

– Batching the operations: In many applications, performing one operation
is nearly as costly as performing multiple operations of the same kind. In
such scenarios, we can do lazy processing of operations, i. e., we first batch a
large number of operations to be done and then perform them “in parallel”
(altogether as one meta operation). A typical example of this approach is the
buffer tree data structure described in more detail in Section 5.2.3. Many
variants of external priority queue also do lazy processing of decrease-key
operations after collecting them in a batch.

The following tools using the above principles have been used extensively in
designing external memory algorithms:

Sorting and Scanning. Many external memory and cache-oblivious algorithms
can be assembled using two fundamental ingredients: scanning and sorting. For-
tunately, there are matching upper and lower bounds for the I/O complexity of
these operations [11]. The number of I/Os required for scanning n data items
is denoted by scan(n) = Θ(n/B) and the I/O complexity of sorting n elements
is sort(n) = Θ( n

B logM/B
n
B ) I/Os. For all practical values of B, M and n on

large data sets, scan(n) < sort(n) ≪ n. Intuitively, this means that reading and
writing data in sequential order or sorting the data to obtain a requisite layout
on the disk is less expensive than accessing data at random.

TheO(n/B) upper bound for scanning can easily be obtained by the following
simple modification: Instead of accessing one element at a time (incurring one
I/O for the access), bring B contiguous elements in internal memory using a
single I/O. Thus for the remaining B− 1 elements, one can do a simple memory
access, rather than an expensive disk I/O.

Although a large number of I/O-efficient sorting algorithms have been pro-
posed, we discuss two categories of existing algorithms - merge sort and distri-
bution sort. Algorithms based on the merging paradigm proceed in two phases:
In the run formation phase, the input data is partitioned into sorted sequences,
called “runs”. In the second phase, the merging phase, these runs are merged
until only one sorted run remains, where merging k runs S1, . . . , Sk means that
a single sorted run S′ is produced that contains all elements of runs S1, . . . , Sk.
In the external memory sorting algorithm of Aggarwal and Vitter [11], the first
phase produces sorted runs of M elements and the second phase does a M

B -way
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merge, leading to O( n
B logM/B

n
B ) I/Os. In the cache-oblivious setting, funnel-

sort [308] and lazy funnelsort [131], also based on the merging framework, lead
to sorting algorithms with a similar I/O complexity. Algorithms based on the
distribution paradigm compute a set of splitters x1 ≤ x2 ≤ . . . ≤ xk from the
given data set S in order to partition it into subsets S0, S1, . . . , Sk so that for all
0 ≤ i ≤ k and x ∈ Si, xi ≤ x ≤ xi+1, where x0 = −∞ and xk+1 = ∞. Given this
partition, a sorted sequence of elements in S is produced by recursively sorting
the sets S0, . . . , Sk and concatenating the resulting sorted sequences. Examples
of this approach include BalanceSort [616], sorting using the buffer tree [35],
randomized online splitters [810], and algorithms obtained by simulating bulk-
synchronous parallel sorting algorithms [215].

Simulation of Parallel Algorithms. A large number of algorithms for parallel
computing models can be simulated to give I/O-efficient algorithms and some-
times even I/O-optimal algorithms. The relationship between the algorithms
designed in the two paradigms of parallel and external computing is discussed
in detail in Section 5.4.

Graph Decomposition and Clustering. A large number of external memory
graph algorithms involve decomposing the graphs into smaller subgraphs. Planar
graph separator [528] and its external memory algorithm [535] are a basis for
almost all I/O-efficient planar graph algorithms [45, 40, 46]. Similarly, the tree-
decomposition of a graph leads to external algorithms for bounded treewidth
graphs [534]. For general graphs, the I/O-efficient undirected BFS algorithm of
Mehlhorn and Meyer [555] relies on clustering of the input graph as an important
subroutine. These separators, decompositions and clusterings can be used to
divide the problem into smaller subproblems that fit into the internal memory
[46] or to improve the layout of the graph on the disk [555].

Time Forward Processing. Time forward processing [35] is an elegant tech-
nique for solving problems that can be expressed as a traversal of a directed
acyclic graph (DAG) from its sources to its sinks. Given the vertices of a DAG
G in topologically sorted order and a labelling φ on the nodes of G, the prob-
lem is to compute another labelling ψ on the nodes such that label ψ(v) for
a node v can be computed from labels φ(v) and the labels ψ(u1), . . . , ψ(uk) of
v’s in-neighbors u1, . . . , uk in O(sort(k)) I/Os. This problem can be solved in
O(sort(m)) I/Os, where m is the number of edges in the DAG. The idea [35] is
to process the nodes in G by increasing topological number and use an external
priority queue (Section 5.2.3) to realize the “sending” of information along the
edges of G. When a node ui wants to send its output ψ(ui) to another node v, it
inserts ψ(ui) into priority queue Q and gives it priority v. When the node v is be-
ing evaluated, it removes all entries with priority v from Q. As every in-neighbor
of v sends its output to v by queuing it with priority v, this provides v with the
required labels and it can then compute its new label ψ(v) in O(sort(k)) I/Os.
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Many problems on undirected graphs can be expressed as evaluation prob-
lems of DAGs derived from these graphs. Applications of this technique for the
construction of I/O-efficient data structures are also known.

Distribution Sweeping. Goodrich et al. [349] introduced distribution sweep-
ing as a general approach for developing external memory algorithms for prob-
lems which in internal memory can be solved by a divide-and-conquer algorithm
based on a plane sweep. This method has been successfully used in developing
I/O-efficient algorithms for orthogonal line segment intersection reporting, all
nearest neighbors problem, the 3D maxima problem, computing the measure
(area) of a set of axis-parallel rectangles, computing the visibility of a set of line
segments from a point, batched orthogonal range queries, and reporting pair-
wise intersections of axis-parallel rectangles. Brodal et al. [131] generalized the
technique for the cache-oblivious model.

Full-Text Indexes. A full-text index is a data structure storing a text (a string
or a set of strings) and supporting string matching queries: Given a pattern string
P , find all occurrences of P in the text. Due to their fast construction and the
wealth of combinatorial information they reveal, full-text indexes are often used
in databases and genomics applications. The external memory suffix tree and
suffix array can serve as full-text indexes. For a text T , they can be constructed
in O(sort(n)) I/Os [280], where n is the number of characters in T . Other ex-
ternal full text indexing schemes use a hierarchy of indexes [58], compact Pat
trees [176] and string B-trees [285].

There are many other tools for designing external memory algorithms. For
instance, list ranking [733, 168], batch filtering [349], Euler tour computation
[168], graph blocking techniques [10, 615] etc. Together with external memory
data structures, these tools and algorithms alleviate the I/O bottleneck of many
problems significantly.

5.2.3 External Memory Data Structures

In this section, we consider basic data structures used to design worst-case ef-
ficient algorithms in the external memory model. Most of these data structures
are simple enough to be of practical interest.

An I/O-efficient storage of a set of elements under updates and query oper-
ations is possible under the following circumstances:

– Updates and queries are localized. For instance, querying for the most re-
cently inserted element in case of a stack and least recently inserted element
in case of a queue.

– We can afford to wait for an answer of a query to arrive, i. e., we can batch
the queries (as in the case of a buffer tree).
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– We can wait for the updates to take place, even if we want an online answer
for the query. Many priority queue applications in graph algorithms are
examples of this.

For online updates and queries on arbitrary locations, the B-tree is the most
popular data structure supporting insertion, deletion and query operations in
O(logB n) I/Os.

Stacks and Queues. Stacks and queues are two of the most basic data struc-
tures used in RAM model algorithms to represent dynamic sets of elements and
support deletion of elements in (last-in-first-out) LIFO and (first-in-first-out)
FIFO order, respectively. While in internal memory, we can implement these
data structures using an array of length n and a few pointers, it can lead to
one I/O per insert and delete in the worst case. For the case of a stack, we can
avoid this by keeping a buffer of 2B elements in the internal memory that at any
time contains k most recently added set elements, where k ≤ 2B. Removing an
element needs no I/Os, except for the case when the buffer is empty. In this case,
a single I/O is used to retrieve the block of B elements most recently written
to external memory. Similarly, inserting an element uses no I/Os, except when
the buffer runs full. In this case, a single I/O is used to write the B least recent
elements to a block in external memory. It is not difficult to see that for any
sequence of B insert or delete operations, we will need at most one I/O. Since at
most B elements can be read or written in one I/O, the amortized cost of 1/B
I/Os is the best one can hope for storing or retrieving a sequence of data items
much larger than internal memory.

Analogously, we keep two buffers for queues: a read buffer and a write buffer
of size B consisting of least and most recently inserted elements, respectively.
Remove operations work on the read buffer and delete the least recent element
without any I/O until the buffer is empty, in which case the appropriate external
memory block is read into it. Insertions are done to the write buffer which when
full is written to external memory. Similar to the case of stacks, we get an
amortized complexity of 1/B I/Os per operation.

Linked Lists. Linked lists provide an efficient implementation of ordered lists
of elements, supporting sequential search, deletion and insertion in arbitrary
locations of the list. Traversing a pointer based linked list implementation used
commonly in an internal memory algorithm may need to perform one I/O every
time a pointer is followed. For an I/O-efficient implementation of linked lists,
we keep the elements in blocks and maintain the invariant that there are more
than 2

3B elements in every pair of consecutive blocks. Inserting an element can
be done in a single I/O if the appropriate block is not full. If it is full but any
of its two neighbors has spare capacity, we can push an element to that block.
Otherwise, we split the block into two equally sized blocks. Similarly for deletion,
we check if the delete operation results in violating the invariant and if so, we
merge the two violating blocks. Split and merge can also be supported in O(1)
I/Os similarly.
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To summarize, such an implementation of linked lists in external memory
supports O(1) I/O insert, delete, merge and split operations while supporting
O(i/B) I/O access to the ith element in the list.

B-tree. The B-tree [77, 182, 416] is a generalization of balanced binary search
trees to a balanced tree of degree Θ(B). Increasing the degree of the nodes helps
us exploit the information provided by one I/O block to guide the search better
and thereby reducing the height of the tree to O(logB n). This in turn allows
O(logB n) I/O insert, delete and search operations. In external memory, a search
tree like the B-tree or its variants can be used as the basis for a wide range of
efficient queries on sets.

The degree of a node in a B-tree is Θ(B) with the root possibly having smaller
degree. Normally, the n data items are stored in the Θ(n/B) leaves (in sorted
order) of a B-tree, with each leaf storing Θ(B) elements. All leaves are on the
same level and the tree has height O(logB n). Searching an element in a B-tree
can be done by traversing down the tree from the root to the appropriate leaf
in O(logB n) I/Os. One dimensional range queries can similarly be answered in
O(logB n + T/B) I/Os, where T is the output size. Insertion can be performed
by first searching the relevant leaf l and if it is not full, inserting the new element
there. If not, we split l into two leaves l′ and l′′ of approximately the same size
and insert the new element in the relevant leaf. The split of l results in the
insertion of a new routing element in the parent of l, and thus the need for a
split may propagate up the tree. A new root (of degree 2) is produced when
the root splits and the height of the tree grows by one. The total complexity of
inserting a new element is thus O(logB n) I/Os. Deletion is performed similarly
in O(logB n) I/Os by searching the appropriate leaf and removing the element
to be deleted. If this results in too few elements in the leaf, we can fuse it with
one of its siblings. Similar to the case of splits in insertion, fuse operations may
propagate up the tree and eventually result in the height of the tree decreasing
by one. The following are some of the important variants of a B-tree:

– Weight balanced B-tree [47]: Instead of a degree constraint (that the degree
of a node v should be Θ(B) in a normal B-tree), in this variant, we require
the weight of a node v to be Θ(Bh) if v is the root of a subtree of height
h. The weight of v is defined as the number of elements in the leaves of the
subtree rooted in v.

– Level balanced B-tree: Apart from the insert, delete and search operations,
we sometimes need to be able to perform divide and merge operations on
a B-tree. A divide operation at element x constructs two trees containing
all elements less than and greater than x, respectively. A merge operation
performs the inverse operation. This variant of B-tree supports both these
operations in O(logB n) I/Os.

– Partially persistent B-tree: This variant of the B-tree supports querying not
only on the current version, but also on the earlier versions of the data
structure. All elements are stored in a slightly modified B-tree where we also
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associate a node existence interval with each node. Apart from the normal B-
tree constraint on the number of elements in a node, we also maintain that a
node contains Θ(B) alive elements in its existence interval. This means that
for a given time t, the nodes with existence intervals containing t make up
a B-tree on the elements alive at that time.

– String B-tree: Strings of characters can often be arbitrarily long and different
strings can be of different length. The string B-tree of Ferragina and Grossi
[285] uses a blind trie data structure to route a query string q. A blind trie
is a variant of the compacted trie [482, 588], which fits in one disk block. A
query can thus be answered in O(logB n+ |q|/B) I/Os.

Cache-oblivious variants of B-trees will be discussed later in Section 5.2.6.

Buffer Tree. A buffer tree [35] is a data structure that supports an arbitrary
sequence of n operations (inserts, delete, query) in O( n

B log M
B

n
B ) I/Os. It is simi-

lar to a B-tree, but has degree Θ(M/B) and each internal node has an associated
buffer which is a queue that contains a sequence of up to M updates and queries
to be performed in the subtree where the node is root. New update and query
operations are “lazily” written to the root buffer (whose write buffer is kept in
the internal memory), while non-root buffers reside entirely in external memory.
When the buffer gets full, these operations are flushed down to the subtree where
they need to be performed. When an operation reaches the appropriate node, it
is executed.

Priority Queue. The priority queue is an abstract data structure of fundamen-
tal importance in graph algorithms. It supports insert, delete-min and decrease-
key operations in O( 1

B log M
B

n
B ) I/Os amortized, while keeping the minimum

element in the internal memory. The key technique behind the priority queue is
again the buffering of operations. The following invariants added to the buffer
tree provide an implementation of the priority queue:

– The buffer of the root node is always kept in the internal memory.
– The O(M/B) leftmost leaves, i. e., the leaves of the leftmost internal node,
are also always kept in the internal memory.

– All buffers on the path from the root to the leftmost leaf are empty.

The decrease-key operation in external memory is usually implemented by in-
serting the element with the new key and “lazily” deleting the old key.

There are many other external memory data structures, like interval tree [47],
priority search tree, range tree, Bkd-tree [649], O-tree [453], PR-tree [42] etc. For
a survey on I/O-efficient data structures, refer to [808,37,36,809].

5.2.4 Cache-aware Optimization

In this section we present some important techniques for an efficient use of
caches. Recall that caches are part of the memory hierarchy between processor
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registers and the main memory. They can make up several levels themselves and
exploit the common observation that computations are local. If the code does
not respect the locality properties (temporal and spatial), a required data item
is likely to be not in the cache. Then, a cache miss occurs and several contiguous
data words have to be loaded from memory into the cache.

Some techniques to avoid these expensive cache misses are presented in this
section. Although these concepts are mainly designed for caches in the original
sense, some of them might also give insights for the optimization of any level of
the memory hierarchy. We consider two computationally intense areas, namely
numerical linear algebra and computer graphics. In particular for numerical ap-
plications it is well-known that on many machine types the theoretical peak per-
formance is rarely reached due to memory hierarchy related issues (e. g., [335]).
Typically, the codes in both fields perform most work in small computational
kernels based on loop nests. Therefore, while instruction cache misses are no
problem, the exploitation of locality for efficient reuse of already cached data
must be of concern in order to obtain satisfactory performance results.

Detecting Poor Cache Performance. The typical way in practice to analyze
the performance of a program, and in particular its performance bottlenecks, is
to use profiling tools. One freely available set of tools for profiling Linux or
Unix programs comprises gprof [351] and the Valgrind tool suite [613], which
includes the cache simulator cachegrind. While gprof determines how much CPU
time is spent in which program function, cachegrind performs simulations of
the L1 and L2 cache in order to determine the origins of cache misses in the
profiled code. These results can also be displayed graphically with kprof [498]
and kcachegrind [825], respectively.

Some tools provide access to certain registers of modern microprocessors
called performance counters. These accesses provide information about certain
performance-related events such as cache misses without affecting the program’s
execution time. Note that a variety of free and commercial profiling and perfor-
mance tuning tools exists. An extensive list of tools and techniques is outside the
scope of this work. The interested reader is referred to Kowarschik and Weiß [497]
and Goedecker and Hoisie [335] for more details and references.

Fundamental Cache-Aware Techniques. In general, it is only worthwhile
to optimize code portions that contribute significantly to the runtime because
improvements on small contributors have only a small speedup effect on the
whole program (cf. Amdahl’s law in Chapter 6, Section 6.3).

In cases where the profiling information shows that severe bottlenecks are
caused by frequent cache misses, one should analyze the reasons for this behavior
and try to identify the particular class of cache-miss responsible for the problem.
A cache miss can be categorized as cold miss (or compulsory miss), capacity
miss, or conflict miss [395]. While a cold miss occurs when an item is accessed
for the first time, a capacity miss happens when an item has been in the cache
before the current access, but has already been evicted due to the cache’s limited
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size. Conflict misses arise when an accessed item has been replaced because
another one is mapped to its cache line. The following selection of basic and
simple-to-implement techniques can often help to reduce the number of these
misses and thus improve the program performance. They fall into the categories
data access and data layout optimizations. The former consists mostly of loop
transformations, the latter mainly of modifications in array layouts.

Loop Interchange and Array Transpose. Since data is fetched blockwise into
the cache, it is essential to access contiguous data consecutively, for example
multidimensional arrays. These arrays must be mapped onto a one-dimensional
memory index space, which is done in a row-major fashion in C, C++, and Java
and in a column-major fashion in Fortran. In the former the rightmost index
increases the fastest as one moves through consecutive memory locations, where
in the latter this holds for the leftmost index.

The access of data stored in a multidimensional array often occurs in a loop
nest with a fixed distance of indices (stride) between consecutive iterations. If
this data access does not respect the data layout, memory references are not
performed on contiguous data (those with stride 1), which usually leads to cache
misses. Therefore, whenever possible, the order in which the array is laid out in
memory should be the same as in the program execution, i. e., if i is the index
of the outer loop and j of the inner one, then the access A[i][j] is accordant
to row-major and A[j][i] to column-major layout. The correct access can be
accomplished by either exchanging the loop order (loop interchange) or the array
dimensions in the declaration (array transpose).

Loop Fusion and Array Merging. The loop fusion technique combines two loops
that are executed directly after another with the same iteration space into one
single loop. Roughly speaking, this transformation is legal unless there are de-
pendencies from the first loop to the second one (cf. [497] for more details). It
results in a higher instruction level parallelism, reduces the loop overhead, and
may also improve data locality. This locality improvement can be highlighted by
another technique, the array merging. Instead of declaring two arrays with the
same dimension and type (e. g., double a[n], b[n]), these arrays are combined
to one multidimensional array (double ab[n][2]) or as an array of a structure
comprised of a and b and length n. If the elements of a and b are typically
accessed together, this ensures the access of contiguous memory locations.

Array Padding. In direct-mapped caches or caches with small associativity the
entries at some index i of two different arrays might be mapped to the same
cache line. Alternating accesses to these elements therefore cause a large num-
ber of conflict misses. This can be avoided by inserting a pad, i. e., an allocated,
but unused array of suitable size to change the offset of the second array, be-
tween the two conflicting arrays (inter-array padding). The same idea applies
to multidimensional arrays, where the leading dimension (the one with stride-1
access) is padded with unused memory locations (intra-array padding) if two
elements of the same column are referenced shortly after another.
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For additional cache-aware optimization techniques the interested reader is
again referred to Kowarschik and Weiß [497] and Goedecker and Hoisie [335].

Cache-Aware Numerical Linear Algebra. The need for computational ker-
nels in linear algebra that achieve a high cache performance is addressed for
instance by the freely available implementations of the library interfaces Basic
Linear Algebra Subprograms (BLAS) [105] and Linear Algebra Package (LA-
PACK) [30]. While BLAS provides basic vector and matrix operations of three
different categories (level 1: vector-vector, level 2: matrix-vector, level 3: matrix-
matrix), LAPACK uses these subroutines to provide algorithms such as solvers
for linear equations, linear least-square and eigenvalue problems, to name a few.
There are also vendor-specific implementations of these libraries, which are tuned
to specific hardware, and the freely available Automatically Tuned Linear Algebra
Software (ATLAS) library [829]. The latter determines the hardware parame-
ters during its installation and adapts its parameters accordingly to achieve a
high cache efficiency on a variety of platforms. In general it is advantageous
to use one of these highly-tuned implementations instead of implementing the
provided algorithms oneself, unless one is willing to carry out involved low-level
optimizations for a specific machine [829].

One very important technique that is used to improve the cache efficiency
of numerical algorithms is loop blocking, which is also known as loop tiling. The
way it can be applied to such algorithms is illustrated by an example after giv-
ing a very brief background on sparse iterative linear equation solvers. In many
numerical simulation problems in science and engineering one has to solve large
systems of linear equations Ax = b for x, where x and b are vectors of length n
and the matrix A ∈ R

n×n is sparse, i. e., it contains only O(n) non-zero entries.
These systems may stem from the discretization of a partial differential equa-
tion. As these linear systems cannot be solved by direct methods due to the large
runtime and space consumption this would cause, iterative algorithms that ap-
proximate the linear system solution are applied. They may range from the basic
splitting methods of Jacobi and Gauß-Seidel over their successive overrelaxation
counterparts to Krylov subspace and multigrid methods [686]. The latter two
are hard to optimize for cache data reuse [781] due to global operations in the
first case and the traversal of a hierarchical data structure in the second one.

Since Krylov subspace and multigrid methods are much more efficient in the
RAM model than the basic splitting algorithms, some work to address these
issues has been done. Three general concepts can be identified to overcome most
of the problems. The first aims at reducing the number of iterations by per-
forming more work per iteration to speed up convergence, the second concept
performs algebraic transformations to improve data reuse, and the third one re-
moves data dependencies, e. g., by avoiding global sums and inner products. See
Toledo’s survey [781] for more details and references.

For multigrid methods in particular, one can optimize the part responsible for
eliminating the high error frequencies. This smoothing is typically performed by
a small number of Jacobi or Gauß-Seidel iterations. If the variables of the matrix
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Figure 5.5. Rather than iterating over one complete matrix row (left), the loop
blocking techniques iterates over small submatrices that fit completely into the
cache (right).

correspond to graph nodes and the non-zero off-diagonal entries to graph edges,
one can say that these algorithms update a node’s approximated solution value
by a certain edge-weighted combination of the approximated solution values at
neighboring nodes. More precisely, the iteration formula of Gauß-Seidel iterations
for computing a new approximation x(k+1) given an initial guess x(0) is

x
(k+1)
i = a−1

i,i



bi −
∑

j<i

ai,jx
(k+1)
j −

∑

j>i

ai,jx
(k)
j



 , 1 ≤ i ≤ n.

Some of the previously presented data layout and access optimizations can be ap-
plied to enhance the cache performance of the Gauß-Seidel algorithm [497]. Data
layout optimizations include array padding to reduce possible conflict misses and
array merging to improve the spatial locality of the entries in row i of A and
bi. As indicated above, a very effective and widely used technique for the im-
provement of data access and therefore temporal locality in loop nests is loop
blocking. This technique changes the way in which the elements of objects, in our
case this would be A and also the corresponding vector elements, are accessed.
Rather than iterating over one row after the other, the matrix is divided into
small block matrices that fit into the cache. New inner loops that iterate within
the blocks are introduced into the original loop nest. The bounds of the outer
loops are then changed to access each such block after the other. An example of
this process assuming the traversal of a dense matrix is shown in Figure 5.5.

For simple problems such as matrix transposition or multiplication this is
rather straightforward (a more advanced cache-oblivious blocking scheme for
matrix multiplication is described in Section 5.2.5). However, loop blocking and
performing several Gauß-Seidel steps one after another on the same block ap-
pears to be a little more complicated due to the data dependencies involved.
When iterating over blocks tailored to the cache, this results in the computation
of parts of x(k′), k′ > k + 1, before x(k+1) has been calculated completely. How-
ever, if these blocks have an overlap of size k′− (k+1) and this number is small
(as is the case for multigrid smoothers), the overhead for ensuring that each
block has to be brought into the cache only once is small [723]. This blocking
scheme eliminates conflict misses and does not change the order of calculations
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(and thus the numerical result of the calculation). Hence, it is used in other
iterative algorithms, too, where it is also called covering [781].

The case of unstructured grids, which is much more difficult in terms of
cache analysis and optimization, has also been addressed in the literature [254].
The issues mainly arise here due to different local structures of the nodes (e. g.,
varying node degrees), which make indirect addressing necessary. In general,
indirect addressing deteriorates cache performance because the addresses stored
in two adjacent memory locations may be far away from each other. In order
to increase the cache performance of the smoother in this setting, one can use
graph partitioning methods to divide the grid into small blocks of nodes that
fit into the cache. Thus, after a reordering of the matrix and the operators, the
smoother can perform as much work as possible on such a small block, which
requires the simultaneous use of one cache block only.

The speedups achievable by codes using the presented optimization tech-
niques depend on the problem and on the actual machine characteristics. Kowar-
schik and Weiß [497] summarize experimental results in the area of multigrid
methods by stating that an optimized code can run up to five times faster than
an unoptimized one.

5.2.5 Cache-Oblivious Algorithms

As indicated above, cache-aware optimization methods can improve the run-
time of a program significantly. Yet, the portability of this performance speedup
from one machine to another is often difficult. That is why one is interested in
algorithms that do not require specific hardware parameters.

One algorithmic technique to derive such cache-oblivious algorithms is the
use of space-filling curves [687]. These bijective mappings from a line to a higher-
dimensional space date back to the end of the 19th century [635,390]. They have
been successfully applied in a variety of computer science fields, e. g., manage-
ment of multimedia databases and image processing as well as load balancing of
parallel computations (see Mokbel et al. [583]). When applied to objects with a
regular structure, for instance structured or semi-structured grids, space-filling
curves often produce high-quality solutions, e. g., partitionings of these graphs
with high locality [862]. Here we present how this concept can be used to derive
a cache-oblivious matrix multiplication algorithm. However, in case of unstruc-
tured grids or meshes that contain holes, space-filling curves usually work not as
well as other approaches. The way to deal with these issues is shown afterwards
by means of the cache-oblivious reordering of unstructured geometric meshes.

Matrix Multiplication. Multiplying two matrices is part of many numerical
applications. Since we use it as a reference algorithm throughout this chapter,
we define it formally.

Problem 1. Let A and B be two n × n matrices stored in the memory mainly
intended for the computational model. Compute the matrix product C := AB



5. Realistic Computer Models 215

Algorithm 3 Naive matrix multiplication

1: for i = 1 to n do
2: for j = 1 to n do
3: C[i, j] = 0.0;
4: for k = 1 to n do
5: C[i, j] = C[i, j] + A[i, k] ·B[k, j];

Figure 5.6. Recursive construction of the Peano curve.

and store it in the same type of memory using an algorithm resembling the naive
one (cf. Algorithm 3).

Algorithm 3 is called standard or naive1 and requires O(n3) operations. It
contains a loop nest where two arrays of length n are accessed at the same time,
one with stride 1, the other one with stride n. A loop interchange would not
change the stride-n issue, but by applying the loop blocking technique, cached
entries of all matrices can be reused. An automatic and therefore cache-oblivious
blocking of the main loop in matrix multiplication can be achieved by recursive
block building [369]. Several techniques have been suggested how to guide this
recursion by space-filling curves. A method based on the Peano curve [635] (see
Figure 5.6, courtesy of Wikipedia [634]) seems to be very promising, because
it increases both spatial and temporal locality. We therefore illustrate its main
ideas, the complete presentation can be found in Bader and Zenger [57].

Again, the key idea for a cache-efficient computation of C := AB is the
processing of matrix blocks. Each matrix is subdivided recursively into nx × ny

block matrices until all of them are small, e. g., some fraction of the cache size.
To simplify the presentation, we use nine recursive blocks (as in Figure 5.6) and
the recursion stops with submatrices that have three rows and three columns.
Note that, according to its authors [57], the algorithm works with any block
size nx × ny if nx and ny are odd. Each submatrix of size 3 × 3 is stored in a

1 Naive refers to the fact that asymptotically faster, but more complicated algorithms
exist [758,186].
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Peano-like ordering, as indicated by the indices:




a0 a5 a6

a1 a4 a7

a2 a3 a8



 ·





b0 b5 b6
b1 b4 b7
b2 b3 b8



 =





c0 c5 c6
c1 c4 c7
c2 c3 c8





The multiplication of each block is done in the standard way, for example,
c7 := a1b6 + a4b7 + a7b8. In general, an element cr can be written as the sum of
three products cr =

∑

(p,q)∈Ir
apbq, where Ir contains the three respective index

pairs. Hence, after initializing all cr to 0, one has to execute for all triples (r, p, q)
the instruction cr ← cr + apbq in an arbitrary order. To do this cache-efficiently,
jumps in the indices r, p, and q have to be avoided. It is in fact possible to find
such an operation order where two consecutive triples differ by no more than
1 in each element, so that optimal spatial and very good temporal locality is
obtained. The same holds for the outer iteration, because the blocks are also
accessed in the Peano order due to the recursive construction.

The analysis of this scheme for the 3 × 3 example in the ideal cache model
with cache size M shows that the spatial locality of the elements is at most a
factor of 3 away from the theoretical optimum. Moreover, the number of cache
line transfers T (n) for the whole algorithm with n a power of 3 is given by
the recursion T (n) = 27T (n/3). For blocks of size k × k each block admits
T (k) = 2 · ⌈k2/B⌉, where B is the size of a cache line. Altogether this leads
to the transfer of O(n3/

√
M) data items (or O(n3/B

√
M) cache lines) into the

cache, which is asymptotically optimal [781] and improves the naive algorithm
by a factor of

√
M . The Peano curve ordering plays also a major role in a cache-

oblivious self-adaptive full multigrid method [553].

Mesh Layout. Large geometric meshes may contain hundreds of millions of
objects. Their efficient processing for interactive visualization and geometric ap-
plications requires an optimized usage of the CPU, the GPU (graphics processing
unit), and their memory hierarchies. Considering the vast amount of different
hardware combinations possible, a cache-oblivious scheme seems most promis-
ing. Yoon and Lindstrom [853] have developed metrics to predict the number
of cache misses during the processing of a given mesh layout, i. e., the order in
which the mesh objects are laid out on disk or in memory. On this basis a heuris-
tic is described which computes a layout attempting to minimize the number of
cache misses of typical applications. Note that similar algorithmic approaches
have been used previously for unstructured multigrid (see Section 5.2.4) and for
computing a linear ordering in implicit graph partitioning called graph-filling
curves [702].

For the heuristic one needs to specify a directed graph G = (V,E) that
represents an anticipated runtime access pattern [853]. Each node vi ∈ V corre-
sponds to a mesh object (e. g., a vertex or a triangle) and a directed arc (vi, vj)
is inserted into E if it is likely that the object corresponding to vj is accessed
directly after the object represented by vi at runtime. Given this graph and
some probability measures derived from random walk theory, the task is to find
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a one-to-one mapping of nodes to layout indices, ϕ : V → {1, . . . , |V |}, that
reduces the expected number of cache misses. Assuming that the cache holds
only a single block whose size is a power of two, a cache-oblivious metric based
on the arc length lij = |ϕ(vi) − ϕ(vj)| is derived, which is proportional to the
expected number of cache misses:

COMg(ϕ) =
1

|E|
∑

(vi,vj)∈E

log(lij) = log











∏

(vi,vj)∈E

lij





1

|E|






,

where the rightmost expression is the logarithm of the geometric mean of the
arc lengths. The proposed minimization algorithm for this metric is related to
multilevel graph partitioning [386], but the new algorithm’s refinement steps
proceed top-down rather than bottom-up. First, the original mesh is partitioned
into k (e. g., k = 4) sets using a graph partitioning tool like METIS [468], which
produces a low number of edges between nodes of different partitions. Then,
among the k! orders of these sets the one is chosen that minimizes COMg(ϕ).
This partitioning and ordering process is recursively continued on each set until
all sets contain only one vertex. Experiments show that the layout computed
that way (which can be further improved by cache-awareness) accelerates several
geometric applications significantly compared to other common layouts.

Other Cache-Oblivious Algorithms. Efficient cache-oblivious algorithms
are also known for many fundamental problems such as sorting [308], distri-
bution sweeping [131], BFS and shortest-paths [134], and 3D convex hulls [158].
For more details on cache-oblivious algorithms, the reader is referred to the
survey paper by Brodal [130].

5.2.6 Cache-Oblivious Data Structures

Many cache-oblivious data structures like static [650] and dynamic B-trees [90,
88,133], priority queue [132,38], kd-tree [9], with I/O complexity similar to their
I/O-efficient counterparts have been developed in recent years. A basic building
block of most cache-oblivious data structures (e. g., [9, 90, 88, 133, 657, 89]) is a
recursively defined layout called the van Emde Boas layout closely related to
the definition of a van Emde Boas tree [794]. For the sake of simplicity, we only
describe here the van Emde Boas layout of a complete binary tree T . If T has
only one node, it is simply laid out as a single node in memory. Otherwise, let h
be the height of T . We define the top tree T0 to be the subtree consisting of the
nodes in the topmost ⌊h/2⌋ levels of T , and the bottom trees T1, . . . , Tk to be
the 2⌊h/2−1⌋ subtrees of size 2⌈h/2⌉ − 1 each, rooted in the nodes on level ⌈h/2⌉
of T . The van Emde Boas layout of T consists of the van Emde Boas layout of
T0 followed by the van Emde Boas layouts of T1, . . . , Tk.

A binary tree with a van Emde Boas layout can be directly used as a static
cache-oblivious B-tree [650]. The number of I/Os needed to perform a search in
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T , i. e., traversing a root-to-leaf path, can be analyzed by considering the first
recursive level of the van Emde Boas layout when the subtrees are smaller than
B. The size of such a base tree is between Θ(

√
B) and Θ(B) and therefore, the

height of a base tree is Ω(logB). By the definition of the layout, each base tree is
stored in O(B) contiguous memory locations and can thus be accessed in O(1)
I/Os. As the search path traverses O(log n/ logB) = O(logB n) different base
trees (where n is the number of elements in the B-tree), the I/O complexity of
a search operation is O(logB n) I/Os.

For more details on cache-oblivious data structures, the reader is referred to
a book chapter by Arge et al. [39].

5.3 Parallel Computing Models

So far, we have seen how the speed of computations can be optimized on a serial
computer by considering the presence of a memory hierarchy. In many fields,
however, typical problems are highly complex and may require the processing of
very large amounts of intermediate data in main memory. These problems often
arise in scientific modeling and simulation, engineering, geosciences, computa-
tional biology, and medical computing [108, 147, 388, 494, 660] for more applica-
tions). Usually, their solutions must be available within a given timeframe to
be of any value. Take for instance the weather forecast for the next three days:
If a sequential processor requires weeks for a sufficiently accurate computation,
its solution will obviously be worthless. A natural solution to this issue is the
division of the problem into several smaller subproblems that are solved con-
currently. This concurrent solution process is performed by a larger number of
processors which can communicate with each other to share intermediate results
where necessary. That way the two most important computing resources, com-
putational power and memory size, are increased so that larger problems can be
solved in shorter time.

Yet, a runtime reduction occurs only if the system software and the applica-
tion program are implemented for the efficient use of the given parallel computing
architecture, often measured by their speed-up and efficiency [503]. The absolute
speedup, i. e., the running time of the best sequential algorithm divided by the
running time of the parallel algorithm, measures how much faster the problem
can be solved by parallel processing. Efficiency is then defined as the absolute
speedup divided by the number of processors used.2 In contrast to its absolute
counterpart, relative speedup measures the inherent parallelism of the considered
algorithm. It is defined as the ratio of the parallel algorithm’s running times on
one processor and on p processors [767].

To obtain a high efficiency, the application programmer might not want to
concentrate on the specifics of one architecture, because it distracts from the
actual problem and also limits portability of both the code and its execution

2 On a more technical level efficiency can also be defined as the ratio of real program
performance and theoretical peak performance.
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speed. Therefore, it is essential to devise an algorithm design model that ab-
stracts away unnecessary details, but simultaneously retains the characteristics
of the underlying hardware in order to predict algorithm performance realisti-
cally [379]. For sequential computing the random access machine (RAM) has
served as the widely accepted model of computation (if EM issues can be ne-
glected), promoting “consistency and coordination among algorithm developers,
computer architects and language experts” [533, p. 1]. Unfortunately, there has
been no equivalent with similar success in the area of parallel computing.

One reason for this issue is the diversity of parallel architectures. To name
only a few distinctions, which can also be found in Kumar et al. [503, Chapter 2],
parallel machines differ in the control mechanism (SIMD vs. MIMD), address-
space organization (message passing vs. shared memory), the interconnection
networks (dynamic vs. static with different topologies), and processor granularity
(computation-communication speed ratio). This granularity is referred to as fine-
grained for machines with a low computation-communication speed ratio and as
coarse-grained for machines with a high ratio. As a consequence of this diversity,
it is considered rather natural that a number of different parallel computing
models have emerged over time (cf. [379,533,539,743]).

While shared-memory and network models, presented in Sections 5.3.1 and
5.3.2, dominated the design of parallel algorithms in the 1980’s [798, Chapters 17
and 18], their shortcomings regarding performance prediction or portability have
led to new developments. Valiant’s seminal work on bulk-synchronous parallel
processing [789], introduced in 1990, spawned a large number of works on parallel
models trying to bridge the gap between simplicity and realism. These bridging
models are explained in Section 5.3.3.

In Section 5.3.5 we present an algorithmic example and comparisons for the
most relevant models and argue why some of them are favored over others to-
day. Yet, considering recent works on different models, it is not totally clear
even today which model is the best one. In particular because the field of par-
allel computing experiences a dramatic change: Besides traditional dedicated
supercomputers with hundreds or thousands of processors, standard desktop
processors with multiple cores and specialized multicore accelerators play an
ever increasing role.

Note that this chapter focuses on parallel models rather than the complete
process of parallel Algorithm Engineering; for many important aspects of the
latter, the reader is referred to Bader et al. [56].

5.3.1 PRAM

The parallel random access machine (PRAM) was introduced in the late 1970s
and is a straightforward extension of the sequential RAM model [300]. It con-
sists of p processors that operate synchronously under the control of a common
clock. They have each a private memory unit, but also access to a single global
(or shared) memory for interprocessor communication (see [432, p. 9ff.]). Two
measures determine the quality of a PRAM algorithm, the time and the work.
Time denotes the number of parallel time steps an algorithm requires, work the
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product of time and the number of processors employed. Alternatively, work can
be seen as the total number of operations executed by all processors. Three ba-
sic models are usually distinguished based on the shared memory access, more
precisely if a cell may be read or written by more than one processor within
the same timestep. Since there exist efficient simulations between these models,
concurrent access does not increase the algorithmic power of the corresponding
models dramatically [432, p. 496ff.].

The PRAM model enables the algorithm designer to identify the inherent
parallelism in a problem and therefore allows the development of architecture-
independent parallel algorithms [379]. However, it does not take the cost of in-
terprocessor communication into account. Since the model assumes that global
memory accesses are not more expensive than local ones, which is far from real-
ity, its speedup prediction is typically inconsistent with the speedups observed
on real parallel machines. This limitation has been addressed by tailor-made
hardware [632, 806] and a number of extensions (cf. [23, 533] and the references
therein). It can also be overcome by using models that reflect the underlying
hardware more accurately, which leads us to the so-called network models.

5.3.2 Network Models

In a network model the processors are represented by nodes of an undirected
graph whose edges stand for communication links between the processors. Since
each processor has its own local memory and no global shared memory is present,
these links are used to send communication messages between processors. During
each algorithm step every node can perform local computations and communica-
tion with its neighbor nodes. If the algorithm designer uses a network model with
the same topology as the actual machine architecture that is supposed to run
the algorithm, the performance inconsistencies of the PRAM can be removed.
However, porting an algorithm from one platform to another without a severe
performance loss is often not easy. This portability issue is the reason why the
use of network models is discouraged today for the development of parallel algo-
rithms (see, e. g., [198]). For more results on these models we refer the interested
reader to the textbooks of Akl [22] and Leighton [514], who present extensive
discussions and many algorithms for various representatives of networks, e. g.,
arrays, meshes, hypercubes, and butterflies.

5.3.3 Bridging Models

The issues mentioned before and the convergence in parallel computer architec-
tures towards commodity processors with large memory have led to the devel-
opment of bridging models [198, 199]. They attempt to span the range between
algorithm design and parallel computer architecture [332] by addressing the is-
sues experienced with previous models, in particular by accounting for interpro-
cessor communication costs and by making only very general assumptions about
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Figure 5.7. Schematic view of a sequence of supersteps in a BSP computation.

the underlying hardware. The presentation in this section is mainly in histor-
ical order, mentioning only the most relevant bridging models and important
variations.

Bulk-Synchronous Parallel Model and its Variants. The bulk-synchro-
nous parallel (BSP) model [789] consists of a number of sequential processors
with local memory, a network router that delivers messages directly between any
pair of processors for interprocessor communication, and a mechanism for global
synchronization at regular intervals. A BSP algorithm is divided into so-called
supersteps, each of which consists of local computations on already present data,
message transmissions and receptions. Between each superstep a synchronization
takes place, as illustrated in Figure 5.7. This decoupling of computation and
communication simplifies the algorithm design to reduce the likelihood of errors.

For the analysis of such an algorithm three parameters besides the input
size n are used: the number of processors p, the minimum superstep duration l
arising from communication latency and synchronization (compare [329]), and
finally the gap g, which denotes the ratio between computation and communica-
tion speed of the whole system. The model assumes that delivering messages of
maximum size h (so-called h-relations) within one superstep requires gh+ l ma-
chine cycles. This accounts for the cost of communication by integrating memory
speed and bandwidth into the model. Hence, the cost of a superstep is w+gh+ l,
where w denotes the maximum number of machine cycles over all processors
required for local computation in this superstep. The cost of the complete al-
gorithm is the sum of all supersteps’ costs. Another measure sometimes used is
called slackness or slack. It refers to the lower bound of n/p from which on the
algorithm’s runtime achieves an asymptotically optimal, i. e., linear, speedup.

On some parallel machines very small messages exhibit significant overhead
due to message startup costs and/or latency. This can lead to a severe misesti-
mation of an algorithm’s performance [444]. Therefore, one variation of Valiant’s
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original model called BSP* [76] addresses the granularity of messages by intro-
ducing a parameter B, the “optimum” message size to fully exploit the bandwidth
of the router. Messages smaller than B generate the same costs as messages of
size B, thus enforcing their algorithmic grouping to achieve higher communica-
tion granularity.

Many parallel machines can be partitioned into smaller subsets of proces-
sors where communication within each subset is faster than between different
ones (consider, e. g., the BlueGene/L supercomputer architecture [778], a clus-
ter of symmetric multiprocessors, or grid computing with parallel machines at
different sites). This fact is incorporated in the decomposable BSP model [209],
abbreviated D-BSP. Here the set of processors can be recursively decomposed
into independent subsets. For each level i of this decomposition hierarchy, the
p processors are partitioned into 2i fixed and disjoint groups called i-clusters
(p = 2k, k ∈ N, 0 ≤ i ≤ log p). A D-BSP program proceeds then as a sequence
of labeled supersteps, where in an i-superstep, 0 ≤ i < log p, communication
and synchronization takes place only within the current i-clusters. Messages are
of constant size and each level i of the decomposition hierarchy has its own gap
gi, where it is natural to assume that the gap increases when one moves towards
level 0 of the hierarchy, thereby rewarding locality of computation. According
to Bilardi et al. [99], D-BSP models real parallel architectures more effectively
than BSP. As usual, this comes along with a more complicated model.

Coarse-Grained Multicomputer. Observed speedups of BSP algorithms may
be significantly lower than expected if the parameter g and the communication
overhead are high, which is true for many loosely-coupled systems like clusters.
This is mainly due to the impact of small messages and has led to the coarse-
grained multicomputer (CGM) model [216]. CGM enforces coarse-grained com-
munication by message grouping, a similar idea as in the BSP* model, but with-
out using an additional model parameter. It consists of p processors with O(n

p )
local memory each, which are connected by an arbitrary connection network
(even shared memory is allowed).

Analogous to BSP, an algorithm consists of supersteps that decouple compu-
tation and communication. The main difference is that during each communica-
tion round every processor groups all the messages for one target into a single
message and sends and receives in total O(n

p ) data items with high probability.
Furthermore, communication calls can be seen as variations of global sorting
operations on the input data, which facilitates a simple estimation of commu-
nication costs. Typically, the total running time is given as the sum of compu-
tation and communication costs, where the number of communication rounds
(and therefore supersteps) is desired to be constant. Coarse-grained parallel al-
gorithms based on the CGM model have become quite popular, e. g., see two
special issues of Algorithmica on coarse-grained parallel computing [212,213].

QSM. The authors of the Queuing Shared Memory (QSM) model advocate a
shared-memory model enriched by some important architectural characteristics
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such as bandwidth constraints [332]. Their main argument is that a shared-
memory model allows for a smooth transition from sequential algorithm design
to symmetric multiprocessors and, ultimately, massively parallel systems. Con-
sequently, the QSM model consists of a number of homogeneous processors with
local memory that communicate by reading from and writing to shared mem-
ory. Like BSP this model assumes program execution in phases between which
synchronization is performed. Within each phase one is free to interleave the
possible operations shared-memory read, shared-memory write, and local com-
putation arbitrarily. The only parameters used are the number of processors p
and the computation-communication gap g.

Shared-memory accesses during a phase may access the same location either
reading or writing (but not both) and complete by the end of that phase. For the
cost analysis one determines the cost of a single phase, which is the maximum
of the costs for the three following operations: maximum number of local opera-
tions, gap g times the maximum number of shared-memory reads or writes, and
the maximum shared-memory contention. The cost of the complete algorithm is
again the sum of all phase costs.

5.3.4 Recent Work

Bridging Models. To cover follow-up research, we first turn our attention to
heterogeneous parallel computing, where one uses a heterogeneous multicom-
puter by combining different types of machines over different types of network.
This can be viewed as a precursor to grid computing. Hence, the two extensions
of CGM and BSP that incorporate heterogeneity, HCGM [587] and HBSP [836],
might be of interest there. Both models account for differing processor speeds,
but possible network differences are not distinguished. This issue and limited
success of heterogeneous high performance computing may prevent a wide ap-
plicability of these models without modifications.

A more recent bridging model is PRO [322], a restriction of BSP and CGM
whose main characteristic is the comparison of all metrics to a specific sequential
algorithm Aseq with time and space complexity T (n) and S(n), respectively.
Similar to CGM, the underlying machine consists of p processors having M =
O(S(n)/p) local memory each, where a coarseness of M ≥ p is assumed. The
execution proceeds in supersteps of separated computation and communication.
The latter is performed with grouped messages and costs one time unit per word
sent or received. Interestingly, the quality measure of PRO is not the time (which
is enforced to be in O(T (n)/p)), but the range of values for p that facilitate a
linear speedup w.r.t. Aseq. This measure is called Grain(n) and shown to be

in O(
√

S(n)) due to the coarseness assumed in the model. The better of two
PRO algorithms solving the same problem with the same underlying sequential
algorithm is therefore the one with higher grain.

As noted before, there are a large number of other parallel computing models,
mostly modifications of the presented ones, dealing with some of their issues. Yet,
since they have not gained considerable importance and an exhaustive presen-
tation of this vast topic is outside the scope of this work, we refer the interested
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reader to the books [22,192,193,503,514,660], the surveys [190,379,465,533,539,
743], and [332,353,790].

Multicore Computing: Algorithmic Models and Programming Frame-

works. Most models that have been successful in the 1990s do not assume
shared memory but incorporate some form of explicit inter-processor communi-
cation. This is due to the widespread emergence of cluster computers and other
machines with distributed memory and message passing communication during
that time. Meanwhile nearly all standard CPUs built today are already parallel
processors because they contain multiple computing cores. The idiosyncracies
of this architectural change need to be reflected in the computational model if
algorithms are to be transformed into efficient programs for multicore processors
or parallel machines of a large number of multicore CPUs.

One particular issue, which combines the topics hierarchical memory and
parallel computing, is the sharing of caches. In modern multicore processors it
is common that the smallest cache levels are private to a core. However, usually
the larger the cache level is, the more cores share the same cache. Savage and
Zubair [701] address cache sharing with the universal multicore model (UMM).
They introduce the Multicore Memory Hierarchy Game (MMHG), a pebbling
game on a DAG that models the computations. By means of the MMHG Savage
and Zubair derive general lower bounds on the communication complexity be-
tween different hierarchy levels and apply these bounds to scientific and financial
applications.

With the prevalence of multicore chips with shared memory the PRAMmodel
seems to experience a renaissance. While it is still regarded as hardly realistic,
it recently serves as a basis for more practical approaches. Dorrigiv et al. [253]
suggest the LoPRAM (low degree parallelism PRAM) model. Besides having
two different thread types, the model assumes that an algorithm with input size
n is executed on at most O(log n) processors – instead of O(n) as in the PRAM
model. Dorrigiv et al. show that for a wide range of divide-and-conquer algo-
rithms optimal speedup can be obtained. Vishkin et al. [806] propose a method-
ology for converting PRAM algorithms into explicit multi-threading (XMT) pro-
grams. The XMT framework includes a programming model that resembles the
PRAM, but relaxes the synchronous processing of individual steps. Moreover,
the framework includes a compiler of XMTC (an extension of the C language)
to a PRAM-on-chip hardware architecture. Recent studies suggest that XMT
allows for an easier implementation of parallel programs than MPI [399] and
that important parallel algorithms perform faster on the XMT PRAM-on-chip
processor than on a standard dual-core CPU [150].

Valiant extends his BSP model to hierarchical multicore machines [791]. This
extension is done by assuming d hierarchy levels with four BSP parameters
each, i. e., level i has parameters (pi, gi, Li,mi), where pi denotes the number
of subcomponents in level i, gi their bandwidth, Li the cost of synchronizing
them, and mi the memory/cache size of level i. For the problems of associative
composition, matrix multiplication, fast Fourier transform, and sorting, lower
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bounds on the communication and synchronization complexity are given. Also,
for the problems stated above, algorithms are described that are optimal w. r. t.
to communication and synchronization up to constant factors.

A more practical approach to map BSP algorithms to modern multicore
hardware is undertaken by Hou et al. [413]. They extend C by a few parallel
constructs to obtain the new programming language BSGP. Programs written
in BSGP are compiled into GPU kernel programs that are executable by a wide
range of modern graphics processors.

The trend to general purpose computations on GPUs can be explained by
the much higher peak performance of these highly parallel systems compared
to standard CPUs. Govindaraju et al. [350] try to capture the most important
properties of GPU architectures in a cache-aware model. They then develop
cache-efficient scientific algorithms for the GPU. In experiments these new algo-
rithms clearly outperform their optimized CPU counterparts.

The technological change to multicore processors requires not only algorith-
mic models for the design of theoretically efficient algorithms, but also suitable
programming frameworks that allow for an efficient implementation. Among
these frameworks are:

– OpenMP [161], Cilk++ [174], and Threading Building Blocks [667] are APIs
or runtime environments for which the programmer identifies independent
tasks. When the compiled application program is executed, the runtime en-
vironment takes care of technical details such as thread creation and deletion
and thus relieves the programmer from this burden.

– Chapel [155], Fortress [24], Unified Parallel C (UPC) [95], Sequoia [282],
and X10 [162] are parallel programming languages, whose breakthrough for
commercial purposes has yet to come.

– CUDA [617], Stream [8], and OpenCL [473] are intended for a simplified
programming of heterogeneous systems with CPUs and GPUs, in case of
OpenCL also with other accelerators instead of GPUs.

A further explanation of these works is outside the scope of this chapter since
their main objective is implementation rather than algorithm design.

5.3.5 Application and Comparison

In this section, we indicate how to develop and analyze parallel algorithms in
some of the models presented above. The naive matrix multiplication algorithm
serves here again as an example. Note that we do not intend to teach the de-
velopment of parallel algorithms in detail, for this we refer to the textbooks
stated in the previous section. Instead, we wish to use the insights gained from
the example problem as well as from other results to compare these models and
argue why some are more relevant than others for today’s parallel algorithm
engineering.
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Algorithm 4 PRAM algorithm for standard matrix multiplication

The processors are labelled as P (i, j, k), 0 ≤ i, j, k < p1/3.

1: P (i, j, k) computes C′(i, j, k) = A(i, k) ·B(k, j)
2: for h := 1 to log n do
3: if (k ≤ n

2h ) then
4: P (i, j, k) sets C′(i, j, k) := C′(i, j, 2k − 1) + C′(i, j, 2k)

5: if (k = 1) then
6: P (i, j, k) sets C(i, j) := C′(i, j, 1)

Algorithm 5 BSP algorithm for standard matrix multiplication

Let A and B be distributed uniformly, but arbitrarily, across the p processors denoted
by P (i, j, k), 0 ≤ i, j, k < p1/3. Moreover, let A[i, j] denote the s × s submatrix of A
with s := n/p1/3. Define B[i, j] and C[i, j] analogously.

1: P (i, j, k) acquires the elements of A[i, j] and B[j, k].
2: P (i, j, k) computes A[i, j] ·B[j, k] and sends each resulting value to the processor
responsible for computing the corresponding entry in C.

3: P (i, j, k) computes each of its final n2/p elements ofC by adding the values received
for these elements.

Algorithm Design Example. Algorithm 4 [432, p. 15f.] performs matrix mul-
tiplication on a PRAM with concurrent read access to the shared memory. Here
and in the following two examples we assume that the algorithm (or program) is
run by all processors in parallel, which are distinguished by their unique label.
The algorithm’s idea is to perform all necessary multiplications in log n parallel
steps with n3/ log n processors (Step 1) and to compute the sums of these prod-
ucts in log n parallel steps (Steps 4 and 6). The latter can be done by means of
a binary tree-like algorithm which sums n numbers in the following way: Sum
the index pair 2i− 1 and 2i, 1 ≤ i ≤ n/2 in parallel to obtain n/2 numbers and
proceed recursively. Hence, for the second step O(n3) processors require O(log n)
steps. This would lead to a time complexity of O(log n) and a suboptimal work
complexity, because the processor-time product would be O(n3 log n). However,
it is not difficult to see that Step 4 can be scheduled such that O(n3/ log n)
processors suffice to finish the computation in O(log n) timesteps, resulting in
the optimal work complexity for this algorithm of O(n3).

This algorithm illustrates both the strength and the weakness of the PRAM
model. While it makes the inherent parallelism in the problem visible, the as-
sumption to have p = n3/ log n processors to solve a problem of size n × n is
totally unrealistic today. On the other hand we can use the idea of emulating
the algorithm with only p′ < p processors. If each of the p′ processors operates
on a block of the matrix instead of a single element, we already have an idea
how a coarse-grained algorithm might work.

Indeed, Algorithm 5, due to McColl and Valiant [543], performs matrix mul-
tiplication in the BSP model by working on matrix blocks. Its cost analysis



5. Realistic Computer Models 227

Algorithm 6 CGM and PRO algorithm for standard matrix multiplication

Let the matrices A and B be distributed onto the processors blockwise such that
processor P (i, j) stores A[i, j], the s × s (s = n/p1/2) submatrix of A, and B[i, j],
0 ≤ i, j < p1/2.

1: P (i, j) computes C[i, j] := A[i, j] ·B[i, j].
2: for superstep i := 1 to p1/2 do
3: P (i, j) sends the block of A processed in the previous step to P (i, (j + 1)

mod p1/2) and receives the new block from P (i, (j − 1) mod p1/2).
4: P (i, j) sends the block of B processed in the previous step to P ((i + 1)

mod p1/2, j) and receives the new block from P ((i− 1) mod p1/2, j).
5: P (i, j) determines the product of the current submatrices of A and B and adds
the result to C[i, j].

proceeds as follows: the first superstep requires the communication of n2/p2/3

values, resulting in O(g · n2/p2/3 + l) time steps. Computation and communica-
tion of Superstep 2 account together for O(n3/p+ g ·n2/p2/3 + l) time steps and
the final superstep requires costs of O(n2/p2/3 + l). This yields a total runtime
of O(n3/p+g ·n2/p2/3 + l), which is optimal in terms of communication costs for
any BSP implementation of standard matrix multiplication [543]. Algorithm 5 is
therefore best possible in the sense that it achieves all lower bounds for compu-
tation, communication, and synchronization costs. Note that the memory con-
sumption can be reduced at the expense of increased communication costs [544],
a basic variant of which is presented in the following paragraph.

Recall that the CGM model requires that communication is grouped and may
not to exceedO(n2/p) values per round (note that the input size of the considered
problem is n2 instead of n). Hence, the blocking and communication scheme of
the algorithm above has to be adapted. First, this is done by setting s := n/p1/2.
Then, using the definitions from Algorithm 5 and assuming for simplicity that
s and p1/2 are integers, we obtain Algorithm 6, which is briefly mentioned by
McColl [543].

It is easy to verify that the computation costs account for O(n3/p) and the
communication costs for O(n2/p1/2) cycles. Thus, it becomes a valid CGM algo-
rithm with O(p1/2) communication rounds and can also be used in the PRO
model with the desired speedup property. To compute the quality measure
Grain(n), observe that the communication within the loop must not be more
expensive than the computation. This is fulfilled whenever n3/p3/2 ≥ n2/p ⇔
p ≤ n2 and we obtain with the coarseness assumption the optimal grain of O(n).

The examples for the more realistic bridging models show that blocking and
grouping of data is not only essential in the external memory setting but also for
parallel algorithms. It is sometimes even better to perform more internal work
than necessary if thereby the communication volume can be reduced. Note that
this connection between the two computational models is no coincidence since
both aim at the minimization of communication. For the I/O model communica-
tion means data transfers to/from the external disk, for parallel models it refers
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to inter-processor communication. Before we investigate this connection in more
detail in Section 5.4, the bridging models discussed above are compared.

Further Model Comparison. The reasons for discouraging the sole use of
PRAM and network models for parallel algorithm development have already
been discussed before. In this brief comparison we therefore focus on the major
bridging models.

The main aim of another bridging model, called LogP [198], is to capture
machine characteristics for appropriate performance prediction. This burdens
the algorithm designer with the issue of stalling due to network contention and
nondeterminism within the communication. Since it has been shown that stall-
free LogP programs can be efficiently emulated on a BSP machine (and vice
versa) [100], this has led to the conclusion that BSP offers basically the same
opportunities as LogP while being easier to deal with. Consequently, apart from
a number of basic algorithms for LogP, there seems to be little interest in further
results on design and analysis of LogP algorithms (compare [661] and [187]).

A similar argument applies to QSM, because it can also be emulated effi-
ciently on a BSP machine (and vice versa) [332, 661]. Although QSM can be
used to estimate the practical performance of PRAM algorithms and it requires
only two parameters, it seems that it has had only limited success compared
to BSP related models based on point-to-point messages. This might be due to
the fact that it does not reward large messages and that more focus was put
on massively parallel systems rather than shared-memory machines. It remains
to be seen if some QSM ideas might experience a revival with the ubiquity of
multicore CPUs.

One restriction of the coarse-grained models BSP, CGM (and also PRO,
which has yet to prove its broad applicability) is their disregard of actual com-
munication patterns. Although some patterns are more expensive than others,
this is not incorporated into the models and can show large differences between
estimated and actual performance [353,444]. Nevertheless, for many algorithms
and applications these models and their extensions provide a reasonably accu-
rate performance and efficiency estimate. Their design capabilities capture the
most important aspects of parallel computers. Moreover, the analysis can be per-
formed with a small set of parameters for many parallel architectures that are in
use today and in the near future. Another reason for the wide acceptance of BSP
and CGM might be their support of message passing. This type of interprocessor
communication has been standardized by the Message Passing Interface Forum3

as the MPI library [747], whose implementations are now probably the most
widely used communication tools in distributed-memory parallel computers.

All this has led to the fact that BSP and CGM have been used more ex-
tensively than other models to design parallel algorithms in recent years [187].
Even libraries that allow for an easy implementation of BSP and CGM algo-
rithms have been developed. Their implementations are topics of a success story
on parallel computing models in Section 5.6.

3 See http://www.mpi-forum.org/ .
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Given the convergence of parallel machines and networking hardware to com-
modity computing and the prevalence of multicore CPUs with shared memory
and deep memory hierarchies, a model that combines these features in a both
realistic and simple way would certainly be valuable, as Cormen and Goodrich
already expressed in 1996 [190]. Recently, Arge et al. [43] have proposed the
Parallel External-Memory model as a natural parallel extension of the external-
memory model of Aggarwal and Vitter [11], to private-cache chip multiproces-
sors.

On the other hand, the connection between parallel and external memory
algorithms has been investigated by stating efficient simulations of parallel algo-
rithms in external memory. These results are presented in the upcoming section.

5.4 Simulating Parallel Algorithms for I/O-Efficiency

Previously in this chapter we have presented several models and various tech-
niques for I/O-efficiency, cache optimization, and parallel computing. Generally
speaking, I/O-efficient algorithms are employed to deal with massive data sets in
the presence of a memory hierarchy, while parallel computing is more concerned
with the acceleration of the actual on-chip computations by dividing the work
between several processors. It might not be a surprise that there are some simi-
larities between the models and techniques. In cases where one needs to process
extremely large data sets with high computational power, methods from both
fields need to be combined. Unfortunately, there is no model that incorporates
all the necessary characteristics.

In this section we show the connection of the concepts presented previously
and indicate how to derive sequential and parallel external memory algorithms by
simulation. Generally speaking, simulations transform known parallel algorithms
for a given problem P into an external memory algorithm solving P . The key
idea is to model inter-processor communication as external memory accesses.
Since efficient parallel algorithms aim at the minimization of communication,
one can often derive I/O-efficient algorithms this way. Note, however, that the
simulation concept should be thought of as a guide for designing algorithms,
rather than for implementing them.

First, we explain a simulation of PRAM algorithms in Section 5.4.1. Since
there exists an obvious similarity between bulkwise inter-processor communica-
tion and blockwise access to external memory, one would also expect I/O-efficient
simulation results of coarse-grained parallel algorithms. Indeed, a number of such
simulations have been proposed; they are discussed in Section 5.4.2.

5.4.1 PRAM Simulation

The first simulation we describe obtains I/O-efficient algorithms from simulat-
ing PRAM algorithms [168]. Its value stems from the fact that it enables the
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efficient transfer of the vast amount of PRAM algorithms into the external mem-
ory setting. The key idea is to show that a single step of a PRAM algorithm
processing n data items can be simulated in O(sort(n)) I/Os. For this consider
a PRAM algorithm A that utilizes n processors and O(n) space and runs in
time O(T (n)). Let each processor perform w. l. o. g. within a single PRAM step
O(1) shared-memory (SM) reads, followed by O(1) steps for local computation
and O(1) shared-memory writes. We now simulate A on an external memory
machine with one processor. For this assume that the state information of the
PRAM processors and the SM content are stored on disk in a suitable format.

The desired transformation of an arbitrary single step of A starts by simulat-
ing the SM read accesses that provide the operands for the computation. This
requires a scan of the processor contexts to store the read accesses and their
memory locations. These values are then sorted according to the indices of the
SM locations. Then, this sorted list of read requests is scanned and the contents
of the corresponding SM locations are retrieved and stored with their requests.
These combined values are again sorted, this time according to the ID of the
processor performing the request. By scanning this sorted copy, the operands
can be transferred to the respective processor. After that, we perform the com-
putations on each simulated processor and write the results to disk. These results
are sorted according to the memory address to which the processors would store
them. The sorted list and a reserved copy of memory are finally scanned and
merged to obtain the previous order with the updated entries. This can all be
done with O(1) scans and O(1) sorts for n entries, so that simulating all steps
of A requires O(T (n) · sort(n)) I/Os in total.

This simulation has a noteworthy property in case of PRAM algorithms
where the number of active processors decreases geometrically with the number
of steps. By this, we mean that after a constant number of steps, the number of
active processors (those that actually perform operations instead of being idle)
and the number of memory cells used afterwards has decreased by a constant
factor. Typically, the work performed by these algorithms, i. e., their processor-
time product, is not optimal due to the high number of inactive processors. These
inactive processors, however, do not need to be simulated in the external memory
setting. One can therefore show that such a non-optimal PRAM algorithm leads
to the same simulation time of O(T (n) · sort(n)) I/Os as above, which means
that the non-optimal work property of the simulated algorithm does not transfer
to the algorithm obtained by simulation.

5.4.2 Coarse-grained Parallel Simulation Results

The simulations of coarse-grained parallel algorithms shown in this section re-
semble the PRAM simulation. They also assume that the state information of
the simulated processors are stored on disk, and they simulate one superstep
after the other. This means that one reads the processor context (memory image
and message buffers) from disk first and then simulates incoming communica-
tion, computation, and outgoing communication, before the updated context is
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written back to disk. However, the actual implementations need to consider the
idiosyncrasies of the different coarse-grained parallel models.

Note that the virtual processors of the parallel algorithm are simulated by a
possibly smaller number p of processors in the external memory model. Then,
the simulation starts with processors 0, . . . , p − 1, proceeds with the next p
processors, and so on. This serialization of the parallel program is valid due
to the independence of processors within the same superstep. Recall that M
denotes the size of the internal memory and B the block size in the EM model.

Single-processor Simulations. Since it is based on a simple framework, we pro-
ceed our explanation with the sequential simulation of BSP-like algorithms [734].
A BSP-like algorithm assumes the memory space to be partitioned into p blocks
of suitable size. It proceeds in discrete supersteps, is executed on a virtual ma-
chine with p processors, and satisfies the following conditions (cmp. [734, Defi-
nition 1]):

– In superstep s, s ≥ 1, processor pi, 0 ≤ i < p, operates only on the data in
block Bi and on the messages Mes(j, i, s), 0 ≤ j < p.

– In superstep s, s ≥ 1, processor pi, 0 ≤ i < p, generates messagesMes(i, j, s+
1) to be ‘sent’ to pj , 0 ≤ j < p. The size of each message is at most M/3p.
The initial messages of timestep 1 are void.

Then, the simulation can proceed for each superstep as described at the
beginning of this section. In each superstep processor pi, 0 ≤ i < p, fetches Bi

and its respective message buffers Mes(j, i, s), 0 ≤ j < p, from disk, simulates
the computations of the superstep, and stores the updated block Bi as well as
new message buffers to disk in suitable locations.

For these BSP-like algorithms new parameters P = ⌈3 · n/M⌉, G, and L are
introduced to relate coarse-grained models to the EM model. The I/O transfer
gap G denotes the ratio of the number of local computation operations and the
number of words that can be transferred between memory and disks per unit
time, while L denotes the synchronization time of the simulation. They mea-
sure the quality of their simulation by the notion of c-optimality [329], which is
transferred to the I/O setting. An EM algorithm is called c-optimal if its exe-
cution time is at most c times larger than that of a sequential computer with
infinite memory. The main result states that if the BSP parameters (p, g, l) coin-
cide with the new parameters (P,G,L) and there is a c-optimal BSP algorithm
for the same problem, then the corresponding BSP-like algorithm in external
memory is also c-optimal [734, Theorem 3].

If one accepts that the external memory size is bounded from above by M2

(which is a reasonable assumption), the simulation of PRO algorithms in external
memory is another option [370]. It introduces the notion of RAM-awareness,
which provides a measure for the number of random memory accesses that might
correspond to page faults. If this measure of a PRO algorithm A on p = Grain(n)
processors does not exceed the sequential runtime of the underlying algorithm
and A requires T (n) time and S(n) space over all processors, A can be simulated
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in O(T (n)) computation time with O(S(n)/Grain(n) + Grain(n)) internal and
O(S(n)) external memory.

Multiple-processor Simulations. Dehne et al. [215, 214] show how to simulate
algorithms for the models BSP, BSP*, and CGM on sequential and parallel
machines with parallel disks. These combined models are then called EM-BSP,
EM-BSP*, and EM-CGM, respectively, and extend the parameter set of their
underlying parallel models by M (local memory size for each processor), D
(number of parallel disks connected to each processor), B (transfer block size),
and G (I/O transfer gap in terms of memory block transfer). More precisely,
the simulation costs are the same as for the simulated program plus the costs
induced by I/O, which is taken as the maximum over all processors.

As above, the simulation of the v virtual processors is performed in super-
steps. During each such superstep every simulating processor loads the context
of the virtual processors for which it is responsible from the disk. Whenever vir-
tual communication is replaced by parallel disk I/O, care is taken that irregular
routing schemes are mapped to disks in a balanced way to obtain optimal I/O
costs. Amongst others, this is done by setting the total communication amount
of each processor to Θ(n/v) and by fixing the message size to c · B for some
c ≥ 1, which resembles the idea of BSP*.

The c-optimality notion [329] is extended from local computation to cover
also communication and I/O. Using this, one can show that a work-optimal,
communication-efficient, and I/O-efficient algorithm can be simulated with a
small overhead by an algorithm that is also work-optimal, communication-effi-
cient, and I/O-efficient for a wide range of parameters by using the techniques
of Dehne et al. [215]. There, it is also shown that these methods have led to
improved parallel EM algorithms.

Cache-Oblivious Simulation of D-BSP. For the final topic of this section, our
simulation target is one level higher in the memory hierarchy. More precisely, we
simulate D-BSP programs to achieve sequential cache-oblivious algorithms [636].
(Related simulation results are also presented by Bilardi et al. [99].) The tech-
nique exploits that the D-BSP model assumes a hierarchical decomposition of a
BSP computer in processor groups to capture submachine locality. Recall that
the cache in the Ideal Cache Model (ICM) contains M words organized into
lines of B words each. It is fully associative and assumes the optimal offline
strategy for cache-line replacement. To simulate a D-BSP program in the ICM
in a cache-oblivious manner, the simulation algorithm for improving locality in
a multilevel memory hierarchy [279] is adapted. First of all, the slower memory
of the ICM hierarchy is divided into p blocks of size Θ(µ), where µ is the size
of one D-BSP processor context. Each block contains one processor context and
some extra space for bookkeeping purposes.

Recall that each processor group on level i of the D-BSP hierarchy is called an
i-cluster. Its processors collaborate with each other in an i-superstep. Therefore,
the simulation proceeds in rounds, where each round simulates one i-superstep
for a certain i-cluster in two phases (local computation and communication) and
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determines the cluster for the next round. Message distribution for intra-cluster
communication is simulated by sorting the contexts of the processors involved,
similar to the method proposed by Fantozzi et al. [279]. In particular by simulat-
ing the same cluster in consecutive supersteps, this simulation strategy is able to
improve the locality of reference, because the necessary processor contexts are
already cached. If sorting the processors’ contexts for simulating communication
is done in a cache-oblivious manner, the whole algorithm is cache-oblivious since
it does not make use of the parameters M and B.

5.5 Success Stories of Algorithms for Memory Hierarchies

In this section we describe some implementations of algorithms for memory hi-
erarchies that have improved the running time on very large inputs considerably
in practice.

5.5.1 Cache-Oblivious Sorting

Brodal et al. [135] show that a careful implementation of a cache-oblivious lazy
funnelsort algorithm [131] outperforms several widely used library implemen-
tations of quicksort on uniformly distributed data. For the largest instances in
the RAM, this implementation outperforms its nearest rival std::sort from the
STL library included in GCC 3.2 by 10-40% on many different architectures like
Pentium III, Athlon and Itanium 2. Compared to cache-aware sorting implemen-
tations exploiting L1 and L2 caches, TLBs and registers [41, 504, 843, 782], the
cache-oblivious implementation is not only more robust – it exploits several lev-
els of memory hierarchy simultaneously – but also faster. Overall, the results of
Brodal et al. [135] show that for sorting, the overhead involved in being cache-
oblivious can be small enough in order to allow nice theoretical properties to
actually transfer into practical advantages.

5.5.2 External Memory BFS

The implementation of the external memory BFS algorithms [600,555] exploiting
disk parallelism on a low cost machine makes BFS viable for massive graphs [19,
20]. On many different classes of graphs, this implementation computes BFS
level decomposition of around billion-edge graphs in few hours which would
have taken the traditional RAM model BFS algorithm [191] several months. In
fact, the difference between the RAM model algorithm and the external memory
algorithms is clearly visible even when more than half of the graph fits in the
internal memory. As shown in Figure 5.8, the running time of the traditional BFS
algorithm significantly deviates from the predicted RAM performance taking
hours, rather than minutes for random graphs less than double the size of the
internal memory. On the other hand, the external BFS implementations referred
to as MR_BFS and MM_BFS in the plot, compute the BFS level decomposition
in a few minutes.
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Figure 5.8. Running time of the RAM model BFS algorithm IM_BFS [191] and
the external memory BFS algorithms MR_BFS [600] and MM_BFS [555] with
respect to the number of nodes (n) of a random graph. The number of edges is
always kept at 4n.

5.5.3 External Suffix Array Construction

The suffix array, a lexicographically sorted array of the suffixes of a string, has
received considerable attention lately because of its applications in string match-
ing, genome analysis and text compression. However, most known implementa-
tions of suffix array construction could not handle inputs larger than 2 GB.
Dementiev et al. [229] show that external memory computation of suffix arrays
is feasible. They provide a EM implementation that can process much larger
character strings in hours on low cost hardware. In fact, the running time of
their implementation is significantly faster than previous external memory im-
plementations.

5.5.4 External A*-Search

In many application domains like model checking and route planning, the state
space often grows beyond the available internal memory. Edelkamp et al. [267]
propose and implement an external version of A* to search in such state spaces.
Embedding their approach in the model checking software SPIN, they can detect
deadlocks in an optical telegraph protocol for 20 stations, with an intermediate
data requirement of 1.1 Terabytes on hard disk (with only 2.5 GB of available
main memory).
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5.6 Parallel Bridging Model Libraries

The number of publications on parallel algorithms developed for one of the ma-
jor bridging models, in particular BSP and CGM, shows their success in the
academic world. Moreover, following the Algorithm Engineering paradigm and
for an easier use of these models in practice, library standards have been devel-
oped. The older one is the BSPlib standard [393], whose corresponding library
implementations shall provide methods for the direct transformation of BSP al-
gorithms into parallel applications. According to Bisseling [102], two efficient
implementations exist, the Oxford BSP toolset [625] and the Paderborn Uni-
versity BSP library (PUB) [119]. A more recent implementation [766] has been
developed, which facilitates the use of BSPlib on all platforms with the message-
passing interface MPI. Its objective is to provide BSPlib on top of MPI, making
the library portable to most parallel computers. CGMlib is a library following
the same ideas for the coarse-grained multicomputer model. So far, there exists
only one implementation known to the authors [157]. Although a widespread
use of these libraries outside the academic world is not apparent, their influence
should not be underestimated. They can, for instance, be used for a gentle in-
troduction to parallel programming [102] and as a basis for distributed web/grid
computing [344,118].

Note that there exist many more languages, libraries, and tools for parallel
programming, as well as applications, of course. Even an approximate description
of these works would be outside the scope of this chapter. Since they are also
not as close to the original models, we instead refer the interested reader to Fox
et al. [305] and various handbooks on parallel computing [108,147,388,494,660].
They cover many aspects of parallel computing from the late 1980s until today.

5.7 Conclusion

The simple models RAM and PRAM have been of great use to designers of both
sequential and parallel algorithms. However, they show severe deficiencies as well.
The RAM model fails to capture the idiosyncrasies of large data sets that do
not fit into main memory, the PRAM does not model the costs arising by inter-
processor communication. Since both, parallel computation and the processing
of very large data sets, have become more and more important in practice, this
has led to the development of more realistic models of computation. The external
memory (EM) model has proved to be quite successful in algorithm engineer-
ing on problems involving large data sets that do not fit in the main memory
and thus, reside on the hard disk. In the parallel setting the bulk-synchronous
approach (BSP) is very important, which models inter-processor communica-
tion explicitly. Several variants of both have been developed, e. g., to include the
specifics of caches (ICM) or of coarse-grained communication (CGM). Although
developed for different purposes, all these models have several strategies in com-
mon on how to avoid I/O transfer and communication, respectively, in particular
the exploitation of locality and the grouping of data before their transmission.
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Fundamental techniques for an efficient use of the memory hierarchy or of
parallel computers have been illustrated by means of different external memory
data structures, cache-aware, cache-oblivious, and parallel algorithms. This has
been supplemented by a description of successful implementations of external
memory algorithms that facilitate the efficient processing of very large data
sets. Also, libraries for an easy implementation of parallel algorithms developed
in one of the models mentioned above have been presented. These examples
show the impact of realistic computational models on the design and practical
implementation of algorithms for these purposes. Moreover, one can say that
for very large data sets and complex parallel computations it is hardly possible
nowadays to obtain efficient programs without using the techniques and ideas of
the models presented in this chapter.

Despite these successes it should be noted that models necessarily have their
disadvantages because they are only abstractions and simplifications of the real
world. While the interest in new parallel models seemed to be decreasing until
the mid 2000s, the general breakthrough of multicore processors has produced
a number of new models and in particular practical programming frameworks
(parallel languages, runtime environments, etc.). A rather simple model com-
bining parallelism and memory hierarchy issues, in particular with automated
optimizations in a hardware-oblivious way, would certainly be a step forward
towards even more realistic performance prediction. The very recent proposals
on multicore models have yet to prove their suitability in this regard. From a
practical perspective it will be very interesting to see which developments in
languages and runtime environments will experience widespread adoption both
in academia and in industry. We believe that a mostly seamless transition from
a realistic model to the actual implementation – as previously in the sequential
case – will be the key to success.
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