
Chapter 5. Realistic Computer Models

Deepak Ajwani⋆ and Henning Meyerhenke⋆⋆

5.1 Introduction

Many real-world applications involve storing and processing large amounts of
data. These data sets need to be either stored over the memory hierarchy of one
computer or distributed and processed over many parallel computing devices or
both. In fact, in many such applications, choosing a realistic computation model
proves to be a critical factor in obtaining practically acceptable solutions. In
this chapter, we focus on realistic computation models that capture the running
time of algorithms involving large data sets on modern computers better than
the traditional RAM (and its parallel counterpart PRAM) model.

5.1.1 Large Data Sets

Large data sets arise naturally in many applications. We consider a few examples
here.

– GIS terrain data: Remote sensing [435] has made massive amounts of high
resolution terrain data readily available. NASA already measures the data
volumes from satellite images in petabytes (1015 bytes). With the emergence
of new terrain mapping technologies such as laser altimetry, this data is likely
to grow much further. Terrain analysis is central to a range of important
geographic information systems (GIS) applications concerned with the effects
of topography.

– Data warehouses of companies that keep track of every single transaction on
spatial/temporal databases. Typical examples include the financial sector
companies, telecommunication companies and online businesses. Many data
warehouse appliances already scale to one petabyte and beyond [428].

– The World Wide Web (WWW) can be looked upon as a massive graph
where each web-page is a node and the hyperlink from one page to another
is a directed edge between the nodes corresponding to those pages. As of
August 2008, it is estimated that the indexed web contains at least 27 billion
webpages [208].
Typical problems in the analysis (e.g., [129, 509]) of WWW graphs include
computing the diameter of the graph, computing the diameter of the core

⋆ Supported by German Science Foundation (DFG) grant ME 3250/1-1, DFG grant
ME 2088/1-3, and by MADALGO - Center for Massive Data Algorithmics, a Center
of the Danish National Research Foundation

⋆⋆ Partially supported by German Science Foundation (DFG) Research Training Group
GK-693 of the Paderborn Institute for Scientific Computation (PaSCo) and by DFG
Priority Programme 1307 Algorithm Engineering.

5. Realistic Computer Models 195

of the graph, computing connected and strongly connected components and
other structural properties such as computing the correct parameters for the
power law modeling of WWW graphs. There has also been a lot of work on
understanding the evolution of such graphs.

Internet search giants and portals work on very large datasets. For example,
Yahoo!, a major Internet portal, maintains (as of 2008) a database of more
than a petabyte [426].

– Social networks: Social networks provide yet another example of naturally
evolving massive graphs [55]. One application area is citation graphs, in
which nodes represent the papers and an edge from one paper to another
shows the citation. Other examples include networks of friends, where nodes
denote individuals and edges show the acquaintance, and telephone graphs,
where nodes represent phone numbers and edges represent phone call in
the last few days. Typical problems in social networks include finding local
communities, e. g., people working on similar problems in citation graphs.

– Artificial Intelligence and Robotics: In applications like single-agent search,
game playing and action planning, even if the input data is small, interme-
diate data can be huge. For instance, the state descriptors of explicit state
model checking softwares are often so large that main memory is not suffi-
cient for the lossless storage of reachable states during the exploration [267].

– Scientific modeling and simulation (e. g., particle physics, molecular dynam-
ics), engineering (e. g., CAD), medical computing, astronomy and numerical
computing.

– Network logs such as fault alarms, CPU usage at routers and flow logs.
Typical problems on network logs include finding the number of distinct IP
addresses using a given link to send their traffic or how much traffic in two
routers is common.

– Ad hoc network of sensors monitoring continuous physical observations –
temperature, pressure, EMG/ECG/EEG signals from humans, humidity etc.

– Weather prediction centers collect a massive amount of weather, hydrologi-
cal, radar, satellite and weather balloon data and integrate it into a variety
of computer models for improving the accuracy of weather forecasts.

– Genomics, where the sequence data can be as large as a few terabytes [111].

– Graphics and animations [281].

Note that the term “large” as used in this chapter is in comparison with the
memory capacity and it depends not only on the level of memory hierarchy but
also the computational device in use. For instance, road network of a small city
may fit in the main memory of modern computers, but still be considered “large”
for route planning applications involving a flash memory card on a small mobile
device like Pocket PC [342,699] or in the context of cache misses.

Next, we consider the traditional RAMmodel of computation and the reasons
for its inadequacy for applications involving large data sets.

196 D. Ajwani and H. Meyerhenke

5.1.2 RAM Model

The running time of an algorithm is traditionally analyzed by counting the
number of executed primitive operations or “instructions” as a function of the
input size n (cf. Chapter 4). The implicit underlying model of computation is the
one-processor, random-access machine (RAM) model. The RAM model or the
“von Neumann model of computation” consists of a computing device attached
to a storage device (or “memory”). The following are the key assumptions of this
model:

– Instructions are executed one after another, with no concurrent operations.
– Every instruction takes the same amount of time, at least up to small con-
stant factors.

– Unbounded amount of available memory.
– Memory stores words of size O(log n) bits where n is the input size.
– Any desired memory location can be accessed in unit time.
– For numerical and geometric algorithms, it is sometimes also assumed that
words can represent real numbers accurately.

– Exact arithmetic on arbitrary real numbers can be done in constant time.

The above assumptions greatly simplify the analysis of algorithms and allow for
expressive asymptotic analysis.

5.1.3 Real Architecture

Unfortunately, modern computer architecture is not as simple. Rather than hav-
ing an unbounded amount of unit-cost access memory, we have a hierarchy of
storage devices (Figure 5.1) with very different access times and storage capac-
ities. Modern computers have a microprocessor attached to a file of registers.
The first level (L1) cache is usually only a few kilobytes large and incurs a delay
of a few clock cycles. Often there are separate L1 caches for instructions and
data. Nowadays, typical second level (L2) cache has a size of about 32-512 KB
and access latencies around ten clock cycles. Some processors also have a rather
expensive third level (L3) cache of up to 256 MB made of fast static random
access memory cells. A cache consists of cache lines that each store a number of
memory words. If an accessed item is not in the cache, it and its neighbor entries
are fetched from the main memory and put into a cache line. These caches usu-
ally have limited associativity, i. e., an element brought from the main memory
can be placed only in a restricted set of cache lines. In a direct-mapped cache the
target cache line is fixed and only based on the memory address, whereas in a
full-associative cache the item can be placed anywhere. Since the former is too
restrictive and the latter is expensive to build and manage, a compromise often
used is a set-associative cache. There, the item’s memory address determines a
fixed set of cache lines into which the data can be mapped, though within each
set, any cache line can be used. The typical size of such a set of cache lines is
a power of 2 in the range from 2 to 16. For more details about the structure of
caches the interested reader is referred to [631] (in particular its Chapter 7).

5. Realistic Computer Models 197

SpeedSize

Caches

Main Memory

Hard Disk

Registers
< 1 KB

< 8 GB

10 ms

< 256 MB

1 ns

10 ns

5-70 ns

> 20 GB

Figure 5.1. Memory hierarchy in modern computer architecture.

The main memory is made of dynamic random access memory cells. These
cells store a bit of data as a charge in a capacitor rather than storing it as
the state of a flip-flop which is the case for most static random access memory
cells. It requires practically the same amount of time to access any piece of data
stored in the main memory, irrespective of its location, as there is no physical
movement (e. g., of a reading head) involved in the process of retrieving data.
Main memory is usually volatile, which means that it loses all data when the
computer is powered down. At the time of the writing, the main memory size of
a PC is usually between 512 MB and 32 GB and a typical RAM memory has an
access time of 5 to 70 nanoseconds.

Magnetic hard disks offer cheap non-volatile memory with an access time of
10 ms, which is 106 times slower than a register access. This is because it takes
very long to move the access head to a particular track of the disk and wait until
the disk rotates into the seeked position. However, once the head starts reading
or writing, data can be transferred at the rate of 35-125 MB/s. Hence, reading
or writing a contiguous block of hundreds of KB takes only about twice as long
as accessing a single byte, thereby making it imperative to process data in large
chunks.

Apart from the above mentioned levels of a memory hierarchy, there are
instruction pipelines, an instruction cache, logical/physical pages, the translation

198 D. Ajwani and H. Meyerhenke

lookaside buffer (TLB), magnetic tapes, optical disks and the network, which
further complicate the architecture.

The reasons for such a memory hierarchy are mainly economical. The faster
memory technologies are costlier and, as a result, fast memories with large capac-
ities are economically prohibitive. The memory hierarchy emerges as a reasonable
compromise between the performance and the cost of a machine.

Microprocessors like Intel Xeon have multiple register sets and are able to
execute a corresponding number of threads of activity in parallel, even as they
share the same execution pipeline. The accumulated performance is higher, as
a thread can use the processor while another thread is waiting for a memory
access to finish.

Explicit parallel processing takes the computer architecture further away
from the RAM model. On parallel machines, some levels of the memory hier-
archy may be shared whereas others are distributed between the processors.
The communication cost between different machines is often the bottleneck for
algorithms on parallel architectures.

5.1.4 Disadvantages of the RAM Model

The beauty of the RAM model lies in the fact that it hides all the ‘messy’
details of computer architecture from the algorithm designer. At the same time,
it encapsulates the comparative performance of algorithms remarkably well. It
strikes a fine balance by capturing the essential behavior of computers while
being simple to work with. The performance guarantees in the RAM model are
not architecture-specific and therefore robust. However, this is also the limiting
factor for the success of this model. In particular, it fails significantly when the
input data or the intermediate data structure is too large to reside completely
within the internal memory. This failure can be observed between any two levels
of the memory hierarchy.

For most problems on large data sets, the dominant part of the running time
of algorithms is not the number of “instructions”, but the time these algorithms
spend waiting for the data to be brought from the hard disk to internal memory.
The I/Os or the movement of data between the memory hierarchies (and in
particular between the main memory and the disk) are not captured by the
RAM model and hence, as shown in Figure 5.2, the predicted performance on
the RAM model increasingly deviates from the actual performance. As we will
see in Section 5.5.2, the running times of even elementary graph problems like
breadth-first search become I/O-dominant as the input graph is just twice as
large as the available internal memory. While the RAM model predicts running
time in minutes, it takes hours in practice.

Since the time required by algorithms for large data sets in the sequential
setting can be impractical, a larger number of processors are sometimes used
to compute the solution in parallel. On parallel architectures, one is often in-
terested in the parallel time, work, communication costs etc. of an algorithm.
These performance parameters are simply beyond the scope of the traditional
one-processor RAM model. Even the parallel extension of the RAM model, the

5. Realistic Computer Models 199

Input Size

real performance

predicted performance

Time

Figure 5.2. Predicted performance of RAM model versus its real performance.

PRAM model, fails to capture the running time of algorithms on real parallel
architectures as it ignores the communication cost between the processors.

5.1.5 Future Trends

The problem is likely to aggravate in the future. According to Moore’s law,
the number of transistors double every 18 months. As a result, the CPU speed
continued to improve at nearly the same pace until recently, i.e., an average per-
formance improvement of 1% per week. Meanwhile, due to heat problems caused
by even higher clock speeds, processor architects have passed into increasing the
number of computing entities (cores) per processor instead. The usage of paral-
lel processors and multi-cores makes the computations even faster. On the other
hand, random access memory speeds and hard drive seek times improve at best
a few percentages per year. Although the capacity of the random access memory
doubles about every two years, users double their data storage every 5 months.
Multimedia (pictures, music and movies) usage in digital form is growing and the
same holds true for the content in WWW. For example, the number of articles
in the online encyclopedia Wikipedia has been doubling every 339 days [830]
and the online photo sharing network Flickr that started in 2004 had more than
three billion pictures as of November 2008 [289] and claims that three to five
million photos are updated daily on its network. Consequently, the problem sizes
are increasing and the I/O-bottleneck is worsening.

5.1.6 Realistic Computer Models

Since the RAM model fails to capture the running time of algorithms for prob-
lems involving large data sets and the I/O bottleneck is likely to worsen in
future, there is clearly a need for realistic computer models – models taking

200 D. Ajwani and H. Meyerhenke

explicit care of memory hierarchy, parallelism or other aspects of modern ar-
chitectures. These models should be simple enough for algorithm design and
analysis, yet they should be able to capture the intricacies of the underlying ar-
chitecture. Their performance metric can be very different from the traditional
“counting the instructions” approach of the RAM model and algorithm design
on these models may need fundamentally different techniques. This chapter in-
troduces some of the popular realistic computation models – external memory
model, parallel disk model, cache-oblivious model, and parallel bridging mod-
els like BSP, LogP, CGM, QSM etc. – and provides the basic techniques for
designing algorithms on most of these models.

In Section 5.2, many techniques for exploiting the memory hierarchy are in-
troduced. This includes different memory hierarchy models, algorithm design
techniques and data structures as well as several optimization techniques spe-
cific to caches. After the introduction of various parallel computing models in
Section 5.3, Section 5.4 shows the relationship between the algorithms designed
in memory hierarchy and parallel models. In Section 5.5, we discuss success sto-
ries of Algorithm Engineering on large data sets using the introduced computer
models from various domains of computer science.

5.2 Exploiting the Memory Hierarchy

5.2.1 Memory Hierarchy Models

In this section, we introduce some of the memory hierarchy models that have
led to successful Algorithm Engineering on large data sets.

External Memory Model. The I/O model or the external memory (EM)
model (depicted in Figure 5.3) as introduced by Aggarwal and Vitter [11] as-
sumes a single central processing unit and two levels of memory hierarchy. The
internal memory is fast, but has a limited size of M words. In addition, we
have an external memory which can only be accessed using I/Os that move B
contiguous words between internal and external memory. For some problems,
the notation is slightly abused and we assume that the internal memory can
have up toM data items of a constant size (e. g., vertices/edges/characters/seg-
ments etc.) and in one I/O operation, B contiguous data items move between
the two memories. At any particular timestamp, the computation can only use
the data already present in the internal memory. The measure of performance
of an algorithm is the number of I/Os it performs. An algorithm A has lower
I/O-complexity than another algorithm A′ if A requires less I/Os than A′.

Although we mostly use the sequential variant of the external memory model,
it also has an option to express disk parallelism. There can be D parallel disks
and in one I/O, D arbitrary blocks can be accessed in parallel from the disks.
The usage of parallel disks helps us alleviate the I/O bottleneck.

5. Realistic Computer Models 201

D · B

Memory M

CPU

Disk 1 Disk i Disk D

Figure 5.3. The external memory model.

Parallel Disk Model. The parallel disk model (depicted in Figure 5.4) by
Vitter and Shriver [810] is similar to the external memory model, except that it
adds a realistic restriction that only one block can be accessed per disk during
an I/O, rather than allowing D arbitrary blocks to be accessed in parallel. The
parallel disk model can also be extended to allow parallel processing by allowing
P parallel identical processors each with M/P internal memory and equipped
with D/P disks.

Sanders et al. [696] gave efficient randomized algorithms for emulating the
external memory model of Aggarwal and Vitter [11] on the parallel disk model.

Ideal Cache Model. In the external memory model we are free to choose any
two levels of the memory hierarchy as internal and external memory. For this
reason, external memory algorithms are sometimes also referred to as cache-
aware algorithms (“aware” as opposed to “oblivious”). There are two main prob-
lems with extending this model to caches: limited associativity and automated
replacement. As shown by Sen and Chatterjee [724], the problem of limited asso-
ciativity in caches can be circumvented at the cost of constant factors. Frigo et
al. [308] showed that a regular algorithm causes asymptotically the same num-
ber of cache misses with LRU (least recently used) or FIFO (first-in first-out)
replacement policy as with optimal off-line replacement strategy. Intuitively, an
algorithm is called regular if the number of incurred cache misses (with an op-
timal off-line replacement) increase by a constant factor when the cache size is
reduced to half.

202 D. Ajwani and H. Meyerhenke

Memory M

CPU

Disk 1 Disk i Disk D

BBBBB BBB

Figure 5.4. The parallel disk model.

Similar to the external memory model, the ideal cache model [308] assumes
a two level memory hierarchy, with the faster level having a capacity of storing
at most M elements and data transfers in chunks of B elements. In addition, it
also assumes that the memory is managed automatically by an optimal offline
cache-replacement strategy, and that the cache is fully associative.

Cache-Oblivious Model. In practice, the model parameters B and M need
to be finely tuned for an optimal performance. For different architectures and
memory hierarchies, these values can be very different. This fine-tuning can be
at times quite cumbersome. Besides, we can optimize only one memory hierarchy
level at a time. Ideally, we would like a model that would capture the essence
of the memory hierarchy without knowing its specifics, i. e., values of B and M ,
and at the same time is efficient on all hierarchy levels simultaneously. Yet, it
should be simple enough for a feasible algorithm analysis. The cache-oblivious
model introduced by Frigo et al. [308] promises all of the above. In fact, the
immense popularity of this model lies in its innate simplicity and its ability to
abstract away the hardware parameters.

The cache-oblivious model also assumes a two level memory hierarchy with
an internal memory of size M and block transfers of B elements in one I/O.
The performance measure is the number of I/Os incurred by the algorithm.
However, the algorithm does not have any knowledge of the values of M and B.
Consequently, the guarantees on I/O-efficient algorithms in the cache-oblivious
model hold not only on any machine with multi-level memory hierarchy but
also on all levels of the memory hierarchy at the same time. In principle, these

5. Realistic Computer Models 203

algorithms are expected to perform well on different architectures without the
need of any machine-specific optimization.

The cache-oblivious model assumes full associativity and optimal replace-
ment policy. However, as we argued for the ideal cache model, these assumptions
do not affect the asymptotics on realistic caches.

However, note that cache-oblivious algorithms are usually more complicated
than their cache-aware I/O-efficient counterparts. As a result, the constant fac-
tors hidden in the complexity of cache-oblivious algorithms are usually higher
and on large external memory inputs, they are slower in practice.

Various Streaming Models. In the data stream model [603], input data can
only be accessed sequentially in the form of a data stream, and needs to be
processed using a working memory that is small compared to the length of the
stream. The main parameters of the model are the number p of sequential passes
over the data and the size s of the working memory (in bits). Since the classical
data stream model is too restrictive for graph algorithms and even the undirected
connectivity problem requires s×p = Ω(n) [387] (where n is the number of nodes
in a graph), less restrictive variants of streaming models have also been studied.
These include the stream-sort model [12] where sorting is also allowed, the W-
stream model [232] where one can use intermediate temporary streams, and the
semi-streaming model [284], where the available memory is O(n·polylog(n)) bits.

There are still a number of issues not addressed by these models that can be
critical for performance in practical settings, e. g., branch mispredictions [451],
TLB misses etc. For other models on memory hierarchies, we refer to [53, 658,
505,569].

5.2.2 Fundamental Techniques

The key principles in designing I/O-efficient algorithms are the exploitation of
locality and the batching of operations. In a general context, spatial locality
denotes that data close in address space to the currently accessed item is likely to
be accessed soon whereas temporal locality refers to the fact that an instruction
issued or a data item accessed during the current clock cycle is likely to be
issued/accessed in the near future as well. The third concept is batching, which
basically means to wait before issuing an operation until enough data needs to
be processed such that the operation’s cost is worthwhile. Let us see in more
detail what this means for the design of I/O-efficient algorithms.

– Exploiting spatial locality: Since the data transfer in the external mem-
ory model (as well as the cache-oblivious model) happens in terms of block
of elements rather than a single element at a time, the entire block when
accessed should contain as much useful information as possible. This concept
is referred to as “exploiting spatial locality”. The fan-out of B in a B-tree
exploiting the entire information accessible in one I/O to reduce the height
of the tree (and therefore the worst-case complexity of various operations)
is a typical example of “exploiting spatial locality”.

204 D. Ajwani and H. Meyerhenke

Spatial locality is sometimes also used to represent the fact that the likeli-
hood of referencing a resource is higher if a resource near it (with an appro-
priate measure of “nearness”) has just been referenced. Graph clustering and
partitioning techniques are examples for exploiting “nearness”.

– Exploiting temporal locality: The concept of using the data in the inter-
nal memory for as much useful work as possible before it is written back to
the external memory is called “exploiting temporal locality”. The divide and
conquer paradigm in the external memory can be considered as an example
of this principle. The data is divided into chunks small enough to fit into
the internal memory and then the subproblem fitting internally is solved
completely before reverting back to the original problem.

– Batching the operations: In many applications, performing one operation
is nearly as costly as performing multiple operations of the same kind. In
such scenarios, we can do lazy processing of operations, i. e., we first batch a
large number of operations to be done and then perform them “in parallel”
(altogether as one meta operation). A typical example of this approach is the
buffer tree data structure described in more detail in Section 5.2.3. Many
variants of external priority queue also do lazy processing of decrease-key
operations after collecting them in a batch.

The following tools using the above principles have been used extensively in
designing external memory algorithms:

Sorting and Scanning. Many external memory and cache-oblivious algorithms
can be assembled using two fundamental ingredients: scanning and sorting. For-
tunately, there are matching upper and lower bounds for the I/O complexity of
these operations [11]. The number of I/Os required for scanning n data items
is denoted by scan(n) = Θ(n/B) and the I/O complexity of sorting n elements
is sort(n) = Θ(n

B logM/B
n
B) I/Os. For all practical values of B, M and n on

large data sets, scan(n) < sort(n) ≪ n. Intuitively, this means that reading and
writing data in sequential order or sorting the data to obtain a requisite layout
on the disk is less expensive than accessing data at random.

TheO(n/B) upper bound for scanning can easily be obtained by the following
simple modification: Instead of accessing one element at a time (incurring one
I/O for the access), bring B contiguous elements in internal memory using a
single I/O. Thus for the remaining B− 1 elements, one can do a simple memory
access, rather than an expensive disk I/O.

Although a large number of I/O-efficient sorting algorithms have been pro-
posed, we discuss two categories of existing algorithms - merge sort and distri-
bution sort. Algorithms based on the merging paradigm proceed in two phases:
In the run formation phase, the input data is partitioned into sorted sequences,
called “runs”. In the second phase, the merging phase, these runs are merged
until only one sorted run remains, where merging k runs S1, . . . , Sk means that
a single sorted run S′ is produced that contains all elements of runs S1, . . . , Sk.
In the external memory sorting algorithm of Aggarwal and Vitter [11], the first
phase produces sorted runs of M elements and the second phase does a M

B -way

5. Realistic Computer Models 205

merge, leading to O(n
B logM/B

n
B) I/Os. In the cache-oblivious setting, funnel-

sort [308] and lazy funnelsort [131], also based on the merging framework, lead
to sorting algorithms with a similar I/O complexity. Algorithms based on the
distribution paradigm compute a set of splitters x1 ≤ x2 ≤ . . . ≤ xk from the
given data set S in order to partition it into subsets S0, S1, . . . , Sk so that for all
0 ≤ i ≤ k and x ∈ Si, xi ≤ x ≤ xi+1, where x0 = −∞ and xk+1 = ∞. Given this
partition, a sorted sequence of elements in S is produced by recursively sorting
the sets S0, . . . , Sk and concatenating the resulting sorted sequences. Examples
of this approach include BalanceSort [616], sorting using the buffer tree [35],
randomized online splitters [810], and algorithms obtained by simulating bulk-
synchronous parallel sorting algorithms [215].

Simulation of Parallel Algorithms. A large number of algorithms for parallel
computing models can be simulated to give I/O-efficient algorithms and some-
times even I/O-optimal algorithms. The relationship between the algorithms
designed in the two paradigms of parallel and external computing is discussed
in detail in Section 5.4.

Graph Decomposition and Clustering. A large number of external memory
graph algorithms involve decomposing the graphs into smaller subgraphs. Planar
graph separator [528] and its external memory algorithm [535] are a basis for
almost all I/O-efficient planar graph algorithms [45, 40, 46]. Similarly, the tree-
decomposition of a graph leads to external algorithms for bounded treewidth
graphs [534]. For general graphs, the I/O-efficient undirected BFS algorithm of
Mehlhorn and Meyer [555] relies on clustering of the input graph as an important
subroutine. These separators, decompositions and clusterings can be used to
divide the problem into smaller subproblems that fit into the internal memory
[46] or to improve the layout of the graph on the disk [555].

Time Forward Processing. Time forward processing [35] is an elegant tech-
nique for solving problems that can be expressed as a traversal of a directed
acyclic graph (DAG) from its sources to its sinks. Given the vertices of a DAG
G in topologically sorted order and a labelling φ on the nodes of G, the prob-
lem is to compute another labelling ψ on the nodes such that label ψ(v) for
a node v can be computed from labels φ(v) and the labels ψ(u1), . . . , ψ(uk) of
v’s in-neighbors u1, . . . , uk in O(sort(k)) I/Os. This problem can be solved in
O(sort(m)) I/Os, where m is the number of edges in the DAG. The idea [35] is
to process the nodes in G by increasing topological number and use an external
priority queue (Section 5.2.3) to realize the “sending” of information along the
edges of G. When a node ui wants to send its output ψ(ui) to another node v, it
inserts ψ(ui) into priority queue Q and gives it priority v. When the node v is be-
ing evaluated, it removes all entries with priority v from Q. As every in-neighbor
of v sends its output to v by queuing it with priority v, this provides v with the
required labels and it can then compute its new label ψ(v) in O(sort(k)) I/Os.

206 D. Ajwani and H. Meyerhenke

Many problems on undirected graphs can be expressed as evaluation prob-
lems of DAGs derived from these graphs. Applications of this technique for the
construction of I/O-efficient data structures are also known.

Distribution Sweeping. Goodrich et al. [349] introduced distribution sweep-
ing as a general approach for developing external memory algorithms for prob-
lems which in internal memory can be solved by a divide-and-conquer algorithm
based on a plane sweep. This method has been successfully used in developing
I/O-efficient algorithms for orthogonal line segment intersection reporting, all
nearest neighbors problem, the 3D maxima problem, computing the measure
(area) of a set of axis-parallel rectangles, computing the visibility of a set of line
segments from a point, batched orthogonal range queries, and reporting pair-
wise intersections of axis-parallel rectangles. Brodal et al. [131] generalized the
technique for the cache-oblivious model.

Full-Text Indexes. A full-text index is a data structure storing a text (a string
or a set of strings) and supporting string matching queries: Given a pattern string
P , find all occurrences of P in the text. Due to their fast construction and the
wealth of combinatorial information they reveal, full-text indexes are often used
in databases and genomics applications. The external memory suffix tree and
suffix array can serve as full-text indexes. For a text T , they can be constructed
in O(sort(n)) I/Os [280], where n is the number of characters in T . Other ex-
ternal full text indexing schemes use a hierarchy of indexes [58], compact Pat
trees [176] and string B-trees [285].

There are many other tools for designing external memory algorithms. For
instance, list ranking [733, 168], batch filtering [349], Euler tour computation
[168], graph blocking techniques [10, 615] etc. Together with external memory
data structures, these tools and algorithms alleviate the I/O bottleneck of many
problems significantly.

5.2.3 External Memory Data Structures

In this section, we consider basic data structures used to design worst-case ef-
ficient algorithms in the external memory model. Most of these data structures
are simple enough to be of practical interest.

An I/O-efficient storage of a set of elements under updates and query oper-
ations is possible under the following circumstances:

– Updates and queries are localized. For instance, querying for the most re-
cently inserted element in case of a stack and least recently inserted element
in case of a queue.

– We can afford to wait for an answer of a query to arrive, i. e., we can batch
the queries (as in the case of a buffer tree).

5. Realistic Computer Models 207

– We can wait for the updates to take place, even if we want an online answer
for the query. Many priority queue applications in graph algorithms are
examples of this.

For online updates and queries on arbitrary locations, the B-tree is the most
popular data structure supporting insertion, deletion and query operations in
O(logB n) I/Os.

Stacks and Queues. Stacks and queues are two of the most basic data struc-
tures used in RAM model algorithms to represent dynamic sets of elements and
support deletion of elements in (last-in-first-out) LIFO and (first-in-first-out)
FIFO order, respectively. While in internal memory, we can implement these
data structures using an array of length n and a few pointers, it can lead to
one I/O per insert and delete in the worst case. For the case of a stack, we can
avoid this by keeping a buffer of 2B elements in the internal memory that at any
time contains k most recently added set elements, where k ≤ 2B. Removing an
element needs no I/Os, except for the case when the buffer is empty. In this case,
a single I/O is used to retrieve the block of B elements most recently written
to external memory. Similarly, inserting an element uses no I/Os, except when
the buffer runs full. In this case, a single I/O is used to write the B least recent
elements to a block in external memory. It is not difficult to see that for any
sequence of B insert or delete operations, we will need at most one I/O. Since at
most B elements can be read or written in one I/O, the amortized cost of 1/B
I/Os is the best one can hope for storing or retrieving a sequence of data items
much larger than internal memory.

Analogously, we keep two buffers for queues: a read buffer and a write buffer
of size B consisting of least and most recently inserted elements, respectively.
Remove operations work on the read buffer and delete the least recent element
without any I/O until the buffer is empty, in which case the appropriate external
memory block is read into it. Insertions are done to the write buffer which when
full is written to external memory. Similar to the case of stacks, we get an
amortized complexity of 1/B I/Os per operation.

Linked Lists. Linked lists provide an efficient implementation of ordered lists
of elements, supporting sequential search, deletion and insertion in arbitrary
locations of the list. Traversing a pointer based linked list implementation used
commonly in an internal memory algorithm may need to perform one I/O every
time a pointer is followed. For an I/O-efficient implementation of linked lists,
we keep the elements in blocks and maintain the invariant that there are more
than 2

3B elements in every pair of consecutive blocks. Inserting an element can
be done in a single I/O if the appropriate block is not full. If it is full but any
of its two neighbors has spare capacity, we can push an element to that block.
Otherwise, we split the block into two equally sized blocks. Similarly for deletion,
we check if the delete operation results in violating the invariant and if so, we
merge the two violating blocks. Split and merge can also be supported in O(1)
I/Os similarly.

208 D. Ajwani and H. Meyerhenke

To summarize, such an implementation of linked lists in external memory
supports O(1) I/O insert, delete, merge and split operations while supporting
O(i/B) I/O access to the ith element in the list.

B-tree. The B-tree [77, 182, 416] is a generalization of balanced binary search
trees to a balanced tree of degree Θ(B). Increasing the degree of the nodes helps
us exploit the information provided by one I/O block to guide the search better
and thereby reducing the height of the tree to O(logB n). This in turn allows
O(logB n) I/O insert, delete and search operations. In external memory, a search
tree like the B-tree or its variants can be used as the basis for a wide range of
efficient queries on sets.

The degree of a node in a B-tree is Θ(B) with the root possibly having smaller
degree. Normally, the n data items are stored in the Θ(n/B) leaves (in sorted
order) of a B-tree, with each leaf storing Θ(B) elements. All leaves are on the
same level and the tree has height O(logB n). Searching an element in a B-tree
can be done by traversing down the tree from the root to the appropriate leaf
in O(logB n) I/Os. One dimensional range queries can similarly be answered in
O(logB n + T/B) I/Os, where T is the output size. Insertion can be performed
by first searching the relevant leaf l and if it is not full, inserting the new element
there. If not, we split l into two leaves l′ and l′′ of approximately the same size
and insert the new element in the relevant leaf. The split of l results in the
insertion of a new routing element in the parent of l, and thus the need for a
split may propagate up the tree. A new root (of degree 2) is produced when
the root splits and the height of the tree grows by one. The total complexity of
inserting a new element is thus O(logB n) I/Os. Deletion is performed similarly
in O(logB n) I/Os by searching the appropriate leaf and removing the element
to be deleted. If this results in too few elements in the leaf, we can fuse it with
one of its siblings. Similar to the case of splits in insertion, fuse operations may
propagate up the tree and eventually result in the height of the tree decreasing
by one. The following are some of the important variants of a B-tree:

– Weight balanced B-tree [47]: Instead of a degree constraint (that the degree
of a node v should be Θ(B) in a normal B-tree), in this variant, we require
the weight of a node v to be Θ(Bh) if v is the root of a subtree of height
h. The weight of v is defined as the number of elements in the leaves of the
subtree rooted in v.

– Level balanced B-tree: Apart from the insert, delete and search operations,
we sometimes need to be able to perform divide and merge operations on
a B-tree. A divide operation at element x constructs two trees containing
all elements less than and greater than x, respectively. A merge operation
performs the inverse operation. This variant of B-tree supports both these
operations in O(logB n) I/Os.

– Partially persistent B-tree: This variant of the B-tree supports querying not
only on the current version, but also on the earlier versions of the data
structure. All elements are stored in a slightly modified B-tree where we also

5. Realistic Computer Models 209

associate a node existence interval with each node. Apart from the normal B-
tree constraint on the number of elements in a node, we also maintain that a
node contains Θ(B) alive elements in its existence interval. This means that
for a given time t, the nodes with existence intervals containing t make up
a B-tree on the elements alive at that time.

– String B-tree: Strings of characters can often be arbitrarily long and different
strings can be of different length. The string B-tree of Ferragina and Grossi
[285] uses a blind trie data structure to route a query string q. A blind trie
is a variant of the compacted trie [482, 588], which fits in one disk block. A
query can thus be answered in O(logB n+ |q|/B) I/Os.

Cache-oblivious variants of B-trees will be discussed later in Section 5.2.6.

Buffer Tree. A buffer tree [35] is a data structure that supports an arbitrary
sequence of n operations (inserts, delete, query) in O(n

B log M
B

n
B) I/Os. It is simi-

lar to a B-tree, but has degree Θ(M/B) and each internal node has an associated
buffer which is a queue that contains a sequence of up to M updates and queries
to be performed in the subtree where the node is root. New update and query
operations are “lazily” written to the root buffer (whose write buffer is kept in
the internal memory), while non-root buffers reside entirely in external memory.
When the buffer gets full, these operations are flushed down to the subtree where
they need to be performed. When an operation reaches the appropriate node, it
is executed.

Priority Queue. The priority queue is an abstract data structure of fundamen-
tal importance in graph algorithms. It supports insert, delete-min and decrease-
key operations in O(1

B log M
B

n
B) I/Os amortized, while keeping the minimum

element in the internal memory. The key technique behind the priority queue is
again the buffering of operations. The following invariants added to the buffer
tree provide an implementation of the priority queue:

– The buffer of the root node is always kept in the internal memory.
– The O(M/B) leftmost leaves, i. e., the leaves of the leftmost internal node,
are also always kept in the internal memory.

– All buffers on the path from the root to the leftmost leaf are empty.

The decrease-key operation in external memory is usually implemented by in-
serting the element with the new key and “lazily” deleting the old key.

There are many other external memory data structures, like interval tree [47],
priority search tree, range tree, Bkd-tree [649], O-tree [453], PR-tree [42] etc. For
a survey on I/O-efficient data structures, refer to [808,37,36,809].

5.2.4 Cache-aware Optimization

In this section we present some important techniques for an efficient use of
caches. Recall that caches are part of the memory hierarchy between processor

210 D. Ajwani and H. Meyerhenke

registers and the main memory. They can make up several levels themselves and
exploit the common observation that computations are local. If the code does
not respect the locality properties (temporal and spatial), a required data item
is likely to be not in the cache. Then, a cache miss occurs and several contiguous
data words have to be loaded from memory into the cache.

Some techniques to avoid these expensive cache misses are presented in this
section. Although these concepts are mainly designed for caches in the original
sense, some of them might also give insights for the optimization of any level of
the memory hierarchy. We consider two computationally intense areas, namely
numerical linear algebra and computer graphics. In particular for numerical ap-
plications it is well-known that on many machine types the theoretical peak per-
formance is rarely reached due to memory hierarchy related issues (e. g., [335]).
Typically, the codes in both fields perform most work in small computational
kernels based on loop nests. Therefore, while instruction cache misses are no
problem, the exploitation of locality for efficient reuse of already cached data
must be of concern in order to obtain satisfactory performance results.

Detecting Poor Cache Performance. The typical way in practice to analyze
the performance of a program, and in particular its performance bottlenecks, is
to use profiling tools. One freely available set of tools for profiling Linux or
Unix programs comprises gprof [351] and the Valgrind tool suite [613], which
includes the cache simulator cachegrind. While gprof determines how much CPU
time is spent in which program function, cachegrind performs simulations of
the L1 and L2 cache in order to determine the origins of cache misses in the
profiled code. These results can also be displayed graphically with kprof [498]
and kcachegrind [825], respectively.

Some tools provide access to certain registers of modern microprocessors
called performance counters. These accesses provide information about certain
performance-related events such as cache misses without affecting the program’s
execution time. Note that a variety of free and commercial profiling and perfor-
mance tuning tools exists. An extensive list of tools and techniques is outside the
scope of this work. The interested reader is referred to Kowarschik and Weiß [497]
and Goedecker and Hoisie [335] for more details and references.

Fundamental Cache-Aware Techniques. In general, it is only worthwhile
to optimize code portions that contribute significantly to the runtime because
improvements on small contributors have only a small speedup effect on the
whole program (cf. Amdahl’s law in Chapter 6, Section 6.3).

In cases where the profiling information shows that severe bottlenecks are
caused by frequent cache misses, one should analyze the reasons for this behavior
and try to identify the particular class of cache-miss responsible for the problem.
A cache miss can be categorized as cold miss (or compulsory miss), capacity
miss, or conflict miss [395]. While a cold miss occurs when an item is accessed
for the first time, a capacity miss happens when an item has been in the cache
before the current access, but has already been evicted due to the cache’s limited

5. Realistic Computer Models 211

size. Conflict misses arise when an accessed item has been replaced because
another one is mapped to its cache line. The following selection of basic and
simple-to-implement techniques can often help to reduce the number of these
misses and thus improve the program performance. They fall into the categories
data access and data layout optimizations. The former consists mostly of loop
transformations, the latter mainly of modifications in array layouts.

Loop Interchange and Array Transpose. Since data is fetched blockwise into
the cache, it is essential to access contiguous data consecutively, for example
multidimensional arrays. These arrays must be mapped onto a one-dimensional
memory index space, which is done in a row-major fashion in C, C++, and Java
and in a column-major fashion in Fortran. In the former the rightmost index
increases the fastest as one moves through consecutive memory locations, where
in the latter this holds for the leftmost index.

The access of data stored in a multidimensional array often occurs in a loop
nest with a fixed distance of indices (stride) between consecutive iterations. If
this data access does not respect the data layout, memory references are not
performed on contiguous data (those with stride 1), which usually leads to cache
misses. Therefore, whenever possible, the order in which the array is laid out in
memory should be the same as in the program execution, i. e., if i is the index
of the outer loop and j of the inner one, then the access A[i][j] is accordant
to row-major and A[j][i] to column-major layout. The correct access can be
accomplished by either exchanging the loop order (loop interchange) or the array
dimensions in the declaration (array transpose).

Loop Fusion and Array Merging. The loop fusion technique combines two loops
that are executed directly after another with the same iteration space into one
single loop. Roughly speaking, this transformation is legal unless there are de-
pendencies from the first loop to the second one (cf. [497] for more details). It
results in a higher instruction level parallelism, reduces the loop overhead, and
may also improve data locality. This locality improvement can be highlighted by
another technique, the array merging. Instead of declaring two arrays with the
same dimension and type (e. g., double a[n], b[n]), these arrays are combined
to one multidimensional array (double ab[n][2]) or as an array of a structure
comprised of a and b and length n. If the elements of a and b are typically
accessed together, this ensures the access of contiguous memory locations.

Array Padding. In direct-mapped caches or caches with small associativity the
entries at some index i of two different arrays might be mapped to the same
cache line. Alternating accesses to these elements therefore cause a large num-
ber of conflict misses. This can be avoided by inserting a pad, i. e., an allocated,
but unused array of suitable size to change the offset of the second array, be-
tween the two conflicting arrays (inter-array padding). The same idea applies
to multidimensional arrays, where the leading dimension (the one with stride-1
access) is padded with unused memory locations (intra-array padding) if two
elements of the same column are referenced shortly after another.

212 D. Ajwani and H. Meyerhenke

For additional cache-aware optimization techniques the interested reader is
again referred to Kowarschik and Weiß [497] and Goedecker and Hoisie [335].

Cache-Aware Numerical Linear Algebra. The need for computational ker-
nels in linear algebra that achieve a high cache performance is addressed for
instance by the freely available implementations of the library interfaces Basic
Linear Algebra Subprograms (BLAS) [105] and Linear Algebra Package (LA-
PACK) [30]. While BLAS provides basic vector and matrix operations of three
different categories (level 1: vector-vector, level 2: matrix-vector, level 3: matrix-
matrix), LAPACK uses these subroutines to provide algorithms such as solvers
for linear equations, linear least-square and eigenvalue problems, to name a few.
There are also vendor-specific implementations of these libraries, which are tuned
to specific hardware, and the freely available Automatically Tuned Linear Algebra
Software (ATLAS) library [829]. The latter determines the hardware parame-
ters during its installation and adapts its parameters accordingly to achieve a
high cache efficiency on a variety of platforms. In general it is advantageous
to use one of these highly-tuned implementations instead of implementing the
provided algorithms oneself, unless one is willing to carry out involved low-level
optimizations for a specific machine [829].

One very important technique that is used to improve the cache efficiency
of numerical algorithms is loop blocking, which is also known as loop tiling. The
way it can be applied to such algorithms is illustrated by an example after giv-
ing a very brief background on sparse iterative linear equation solvers. In many
numerical simulation problems in science and engineering one has to solve large
systems of linear equations Ax = b for x, where x and b are vectors of length n
and the matrix A ∈ R

n×n is sparse, i. e., it contains only O(n) non-zero entries.
These systems may stem from the discretization of a partial differential equa-
tion. As these linear systems cannot be solved by direct methods due to the large
runtime and space consumption this would cause, iterative algorithms that ap-
proximate the linear system solution are applied. They may range from the basic
splitting methods of Jacobi and Gauß-Seidel over their successive overrelaxation
counterparts to Krylov subspace and multigrid methods [686]. The latter two
are hard to optimize for cache data reuse [781] due to global operations in the
first case and the traversal of a hierarchical data structure in the second one.

Since Krylov subspace and multigrid methods are much more efficient in the
RAM model than the basic splitting algorithms, some work to address these
issues has been done. Three general concepts can be identified to overcome most
of the problems. The first aims at reducing the number of iterations by per-
forming more work per iteration to speed up convergence, the second concept
performs algebraic transformations to improve data reuse, and the third one re-
moves data dependencies, e. g., by avoiding global sums and inner products. See
Toledo’s survey [781] for more details and references.

For multigrid methods in particular, one can optimize the part responsible for
eliminating the high error frequencies. This smoothing is typically performed by
a small number of Jacobi or Gauß-Seidel iterations. If the variables of the matrix

5. Realistic Computer Models 213

Figure 5.5. Rather than iterating over one complete matrix row (left), the loop
blocking techniques iterates over small submatrices that fit completely into the
cache (right).

correspond to graph nodes and the non-zero off-diagonal entries to graph edges,
one can say that these algorithms update a node’s approximated solution value
by a certain edge-weighted combination of the approximated solution values at
neighboring nodes. More precisely, the iteration formula of Gauß-Seidel iterations
for computing a new approximation x(k+1) given an initial guess x(0) is

x
(k+1)
i = a−1

i,i



bi −
∑

j<i

ai,jx
(k+1)
j −

∑

j>i

ai,jx
(k)
j



 , 1 ≤ i ≤ n.

Some of the previously presented data layout and access optimizations can be ap-
plied to enhance the cache performance of the Gauß-Seidel algorithm [497]. Data
layout optimizations include array padding to reduce possible conflict misses and
array merging to improve the spatial locality of the entries in row i of A and
bi. As indicated above, a very effective and widely used technique for the im-
provement of data access and therefore temporal locality in loop nests is loop
blocking. This technique changes the way in which the elements of objects, in our
case this would be A and also the corresponding vector elements, are accessed.
Rather than iterating over one row after the other, the matrix is divided into
small block matrices that fit into the cache. New inner loops that iterate within
the blocks are introduced into the original loop nest. The bounds of the outer
loops are then changed to access each such block after the other. An example of
this process assuming the traversal of a dense matrix is shown in Figure 5.5.

For simple problems such as matrix transposition or multiplication this is
rather straightforward (a more advanced cache-oblivious blocking scheme for
matrix multiplication is described in Section 5.2.5). However, loop blocking and
performing several Gauß-Seidel steps one after another on the same block ap-
pears to be a little more complicated due to the data dependencies involved.
When iterating over blocks tailored to the cache, this results in the computation
of parts of x(k′), k′ > k + 1, before x(k+1) has been calculated completely. How-
ever, if these blocks have an overlap of size k′− (k+1) and this number is small
(as is the case for multigrid smoothers), the overhead for ensuring that each
block has to be brought into the cache only once is small [723]. This blocking
scheme eliminates conflict misses and does not change the order of calculations

214 D. Ajwani and H. Meyerhenke

(and thus the numerical result of the calculation). Hence, it is used in other
iterative algorithms, too, where it is also called covering [781].

The case of unstructured grids, which is much more difficult in terms of
cache analysis and optimization, has also been addressed in the literature [254].
The issues mainly arise here due to different local structures of the nodes (e. g.,
varying node degrees), which make indirect addressing necessary. In general,
indirect addressing deteriorates cache performance because the addresses stored
in two adjacent memory locations may be far away from each other. In order
to increase the cache performance of the smoother in this setting, one can use
graph partitioning methods to divide the grid into small blocks of nodes that
fit into the cache. Thus, after a reordering of the matrix and the operators, the
smoother can perform as much work as possible on such a small block, which
requires the simultaneous use of one cache block only.

The speedups achievable by codes using the presented optimization tech-
niques depend on the problem and on the actual machine characteristics. Kowar-
schik and Weiß [497] summarize experimental results in the area of multigrid
methods by stating that an optimized code can run up to five times faster than
an unoptimized one.

5.2.5 Cache-Oblivious Algorithms

As indicated above, cache-aware optimization methods can improve the run-
time of a program significantly. Yet, the portability of this performance speedup
from one machine to another is often difficult. That is why one is interested in
algorithms that do not require specific hardware parameters.

One algorithmic technique to derive such cache-oblivious algorithms is the
use of space-filling curves [687]. These bijective mappings from a line to a higher-
dimensional space date back to the end of the 19th century [635,390]. They have
been successfully applied in a variety of computer science fields, e. g., manage-
ment of multimedia databases and image processing as well as load balancing of
parallel computations (see Mokbel et al. [583]). When applied to objects with a
regular structure, for instance structured or semi-structured grids, space-filling
curves often produce high-quality solutions, e. g., partitionings of these graphs
with high locality [862]. Here we present how this concept can be used to derive
a cache-oblivious matrix multiplication algorithm. However, in case of unstruc-
tured grids or meshes that contain holes, space-filling curves usually work not as
well as other approaches. The way to deal with these issues is shown afterwards
by means of the cache-oblivious reordering of unstructured geometric meshes.

Matrix Multiplication. Multiplying two matrices is part of many numerical
applications. Since we use it as a reference algorithm throughout this chapter,
we define it formally.

Problem 1. Let A and B be two n × n matrices stored in the memory mainly
intended for the computational model. Compute the matrix product C := AB

5. Realistic Computer Models 215

Algorithm 3 Naive matrix multiplication

1: for i = 1 to n do
2: for j = 1 to n do
3: C[i, j] = 0.0;
4: for k = 1 to n do
5: C[i, j] = C[i, j] + A[i, k] ·B[k, j];

Figure 5.6. Recursive construction of the Peano curve.

and store it in the same type of memory using an algorithm resembling the naive
one (cf. Algorithm 3).

Algorithm 3 is called standard or naive1 and requires O(n3) operations. It
contains a loop nest where two arrays of length n are accessed at the same time,
one with stride 1, the other one with stride n. A loop interchange would not
change the stride-n issue, but by applying the loop blocking technique, cached
entries of all matrices can be reused. An automatic and therefore cache-oblivious
blocking of the main loop in matrix multiplication can be achieved by recursive
block building [369]. Several techniques have been suggested how to guide this
recursion by space-filling curves. A method based on the Peano curve [635] (see
Figure 5.6, courtesy of Wikipedia [634]) seems to be very promising, because
it increases both spatial and temporal locality. We therefore illustrate its main
ideas, the complete presentation can be found in Bader and Zenger [57].

Again, the key idea for a cache-efficient computation of C := AB is the
processing of matrix blocks. Each matrix is subdivided recursively into nx × ny

block matrices until all of them are small, e. g., some fraction of the cache size.
To simplify the presentation, we use nine recursive blocks (as in Figure 5.6) and
the recursion stops with submatrices that have three rows and three columns.
Note that, according to its authors [57], the algorithm works with any block
size nx × ny if nx and ny are odd. Each submatrix of size 3 × 3 is stored in a

1 Naive refers to the fact that asymptotically faster, but more complicated algorithms
exist [758,186].

216 D. Ajwani and H. Meyerhenke

Peano-like ordering, as indicated by the indices:




a0 a5 a6

a1 a4 a7

a2 a3 a8



 ·





b0 b5 b6
b1 b4 b7
b2 b3 b8



 =





c0 c5 c6
c1 c4 c7
c2 c3 c8





The multiplication of each block is done in the standard way, for example,
c7 := a1b6 + a4b7 + a7b8. In general, an element cr can be written as the sum of
three products cr =

∑

(p,q)∈Ir
apbq, where Ir contains the three respective index

pairs. Hence, after initializing all cr to 0, one has to execute for all triples (r, p, q)
the instruction cr ← cr + apbq in an arbitrary order. To do this cache-efficiently,
jumps in the indices r, p, and q have to be avoided. It is in fact possible to find
such an operation order where two consecutive triples differ by no more than
1 in each element, so that optimal spatial and very good temporal locality is
obtained. The same holds for the outer iteration, because the blocks are also
accessed in the Peano order due to the recursive construction.

The analysis of this scheme for the 3 × 3 example in the ideal cache model
with cache size M shows that the spatial locality of the elements is at most a
factor of 3 away from the theoretical optimum. Moreover, the number of cache
line transfers T (n) for the whole algorithm with n a power of 3 is given by
the recursion T (n) = 27T (n/3). For blocks of size k × k each block admits
T (k) = 2 · ⌈k2/B⌉, where B is the size of a cache line. Altogether this leads
to the transfer of O(n3/

√
M) data items (or O(n3/B

√
M) cache lines) into the

cache, which is asymptotically optimal [781] and improves the naive algorithm
by a factor of

√
M . The Peano curve ordering plays also a major role in a cache-

oblivious self-adaptive full multigrid method [553].

Mesh Layout. Large geometric meshes may contain hundreds of millions of
objects. Their efficient processing for interactive visualization and geometric ap-
plications requires an optimized usage of the CPU, the GPU (graphics processing
unit), and their memory hierarchies. Considering the vast amount of different
hardware combinations possible, a cache-oblivious scheme seems most promis-
ing. Yoon and Lindstrom [853] have developed metrics to predict the number
of cache misses during the processing of a given mesh layout, i. e., the order in
which the mesh objects are laid out on disk or in memory. On this basis a heuris-
tic is described which computes a layout attempting to minimize the number of
cache misses of typical applications. Note that similar algorithmic approaches
have been used previously for unstructured multigrid (see Section 5.2.4) and for
computing a linear ordering in implicit graph partitioning called graph-filling
curves [702].

For the heuristic one needs to specify a directed graph G = (V,E) that
represents an anticipated runtime access pattern [853]. Each node vi ∈ V corre-
sponds to a mesh object (e. g., a vertex or a triangle) and a directed arc (vi, vj)
is inserted into E if it is likely that the object corresponding to vj is accessed
directly after the object represented by vi at runtime. Given this graph and
some probability measures derived from random walk theory, the task is to find

5. Realistic Computer Models 217

a one-to-one mapping of nodes to layout indices, ϕ : V → {1, . . . , |V |}, that
reduces the expected number of cache misses. Assuming that the cache holds
only a single block whose size is a power of two, a cache-oblivious metric based
on the arc length lij = |ϕ(vi) − ϕ(vj)| is derived, which is proportional to the
expected number of cache misses:

COMg(ϕ) =
1

|E|
∑

(vi,vj)∈E

log(lij) = log











∏

(vi,vj)∈E

lij





1

|E|






,

where the rightmost expression is the logarithm of the geometric mean of the
arc lengths. The proposed minimization algorithm for this metric is related to
multilevel graph partitioning [386], but the new algorithm’s refinement steps
proceed top-down rather than bottom-up. First, the original mesh is partitioned
into k (e. g., k = 4) sets using a graph partitioning tool like METIS [468], which
produces a low number of edges between nodes of different partitions. Then,
among the k! orders of these sets the one is chosen that minimizes COMg(ϕ).
This partitioning and ordering process is recursively continued on each set until
all sets contain only one vertex. Experiments show that the layout computed
that way (which can be further improved by cache-awareness) accelerates several
geometric applications significantly compared to other common layouts.

Other Cache-Oblivious Algorithms. Efficient cache-oblivious algorithms
are also known for many fundamental problems such as sorting [308], distri-
bution sweeping [131], BFS and shortest-paths [134], and 3D convex hulls [158].
For more details on cache-oblivious algorithms, the reader is referred to the
survey paper by Brodal [130].

5.2.6 Cache-Oblivious Data Structures

Many cache-oblivious data structures like static [650] and dynamic B-trees [90,
88,133], priority queue [132,38], kd-tree [9], with I/O complexity similar to their
I/O-efficient counterparts have been developed in recent years. A basic building
block of most cache-oblivious data structures (e. g., [9, 90, 88, 133, 657, 89]) is a
recursively defined layout called the van Emde Boas layout closely related to
the definition of a van Emde Boas tree [794]. For the sake of simplicity, we only
describe here the van Emde Boas layout of a complete binary tree T . If T has
only one node, it is simply laid out as a single node in memory. Otherwise, let h
be the height of T . We define the top tree T0 to be the subtree consisting of the
nodes in the topmost ⌊h/2⌋ levels of T , and the bottom trees T1, . . . , Tk to be
the 2⌊h/2−1⌋ subtrees of size 2⌈h/2⌉ − 1 each, rooted in the nodes on level ⌈h/2⌉
of T . The van Emde Boas layout of T consists of the van Emde Boas layout of
T0 followed by the van Emde Boas layouts of T1, . . . , Tk.

A binary tree with a van Emde Boas layout can be directly used as a static
cache-oblivious B-tree [650]. The number of I/Os needed to perform a search in

218 D. Ajwani and H. Meyerhenke

T , i. e., traversing a root-to-leaf path, can be analyzed by considering the first
recursive level of the van Emde Boas layout when the subtrees are smaller than
B. The size of such a base tree is between Θ(

√
B) and Θ(B) and therefore, the

height of a base tree is Ω(logB). By the definition of the layout, each base tree is
stored in O(B) contiguous memory locations and can thus be accessed in O(1)
I/Os. As the search path traverses O(log n/ logB) = O(logB n) different base
trees (where n is the number of elements in the B-tree), the I/O complexity of
a search operation is O(logB n) I/Os.

For more details on cache-oblivious data structures, the reader is referred to
a book chapter by Arge et al. [39].

5.3 Parallel Computing Models

So far, we have seen how the speed of computations can be optimized on a serial
computer by considering the presence of a memory hierarchy. In many fields,
however, typical problems are highly complex and may require the processing of
very large amounts of intermediate data in main memory. These problems often
arise in scientific modeling and simulation, engineering, geosciences, computa-
tional biology, and medical computing [108, 147, 388, 494, 660] for more applica-
tions). Usually, their solutions must be available within a given timeframe to
be of any value. Take for instance the weather forecast for the next three days:
If a sequential processor requires weeks for a sufficiently accurate computation,
its solution will obviously be worthless. A natural solution to this issue is the
division of the problem into several smaller subproblems that are solved con-
currently. This concurrent solution process is performed by a larger number of
processors which can communicate with each other to share intermediate results
where necessary. That way the two most important computing resources, com-
putational power and memory size, are increased so that larger problems can be
solved in shorter time.

Yet, a runtime reduction occurs only if the system software and the applica-
tion program are implemented for the efficient use of the given parallel computing
architecture, often measured by their speed-up and efficiency [503]. The absolute
speedup, i. e., the running time of the best sequential algorithm divided by the
running time of the parallel algorithm, measures how much faster the problem
can be solved by parallel processing. Efficiency is then defined as the absolute
speedup divided by the number of processors used.2 In contrast to its absolute
counterpart, relative speedup measures the inherent parallelism of the considered
algorithm. It is defined as the ratio of the parallel algorithm’s running times on
one processor and on p processors [767].

To obtain a high efficiency, the application programmer might not want to
concentrate on the specifics of one architecture, because it distracts from the
actual problem and also limits portability of both the code and its execution

2 On a more technical level efficiency can also be defined as the ratio of real program
performance and theoretical peak performance.

5. Realistic Computer Models 219

speed. Therefore, it is essential to devise an algorithm design model that ab-
stracts away unnecessary details, but simultaneously retains the characteristics
of the underlying hardware in order to predict algorithm performance realisti-
cally [379]. For sequential computing the random access machine (RAM) has
served as the widely accepted model of computation (if EM issues can be ne-
glected), promoting “consistency and coordination among algorithm developers,
computer architects and language experts” [533, p. 1]. Unfortunately, there has
been no equivalent with similar success in the area of parallel computing.

One reason for this issue is the diversity of parallel architectures. To name
only a few distinctions, which can also be found in Kumar et al. [503, Chapter 2],
parallel machines differ in the control mechanism (SIMD vs. MIMD), address-
space organization (message passing vs. shared memory), the interconnection
networks (dynamic vs. static with different topologies), and processor granularity
(computation-communication speed ratio). This granularity is referred to as fine-
grained for machines with a low computation-communication speed ratio and as
coarse-grained for machines with a high ratio. As a consequence of this diversity,
it is considered rather natural that a number of different parallel computing
models have emerged over time (cf. [379,533,539,743]).

While shared-memory and network models, presented in Sections 5.3.1 and
5.3.2, dominated the design of parallel algorithms in the 1980’s [798, Chapters 17
and 18], their shortcomings regarding performance prediction or portability have
led to new developments. Valiant’s seminal work on bulk-synchronous parallel
processing [789], introduced in 1990, spawned a large number of works on parallel
models trying to bridge the gap between simplicity and realism. These bridging
models are explained in Section 5.3.3.

In Section 5.3.5 we present an algorithmic example and comparisons for the
most relevant models and argue why some of them are favored over others to-
day. Yet, considering recent works on different models, it is not totally clear
even today which model is the best one. In particular because the field of par-
allel computing experiences a dramatic change: Besides traditional dedicated
supercomputers with hundreds or thousands of processors, standard desktop
processors with multiple cores and specialized multicore accelerators play an
ever increasing role.

Note that this chapter focuses on parallel models rather than the complete
process of parallel Algorithm Engineering; for many important aspects of the
latter, the reader is referred to Bader et al. [56].

5.3.1 PRAM

The parallel random access machine (PRAM) was introduced in the late 1970s
and is a straightforward extension of the sequential RAM model [300]. It con-
sists of p processors that operate synchronously under the control of a common
clock. They have each a private memory unit, but also access to a single global
(or shared) memory for interprocessor communication (see [432, p. 9ff.]). Two
measures determine the quality of a PRAM algorithm, the time and the work.
Time denotes the number of parallel time steps an algorithm requires, work the

220 D. Ajwani and H. Meyerhenke

product of time and the number of processors employed. Alternatively, work can
be seen as the total number of operations executed by all processors. Three ba-
sic models are usually distinguished based on the shared memory access, more
precisely if a cell may be read or written by more than one processor within
the same timestep. Since there exist efficient simulations between these models,
concurrent access does not increase the algorithmic power of the corresponding
models dramatically [432, p. 496ff.].

The PRAM model enables the algorithm designer to identify the inherent
parallelism in a problem and therefore allows the development of architecture-
independent parallel algorithms [379]. However, it does not take the cost of in-
terprocessor communication into account. Since the model assumes that global
memory accesses are not more expensive than local ones, which is far from real-
ity, its speedup prediction is typically inconsistent with the speedups observed
on real parallel machines. This limitation has been addressed by tailor-made
hardware [632, 806] and a number of extensions (cf. [23, 533] and the references
therein). It can also be overcome by using models that reflect the underlying
hardware more accurately, which leads us to the so-called network models.

5.3.2 Network Models

In a network model the processors are represented by nodes of an undirected
graph whose edges stand for communication links between the processors. Since
each processor has its own local memory and no global shared memory is present,
these links are used to send communication messages between processors. During
each algorithm step every node can perform local computations and communica-
tion with its neighbor nodes. If the algorithm designer uses a network model with
the same topology as the actual machine architecture that is supposed to run
the algorithm, the performance inconsistencies of the PRAM can be removed.
However, porting an algorithm from one platform to another without a severe
performance loss is often not easy. This portability issue is the reason why the
use of network models is discouraged today for the development of parallel algo-
rithms (see, e. g., [198]). For more results on these models we refer the interested
reader to the textbooks of Akl [22] and Leighton [514], who present extensive
discussions and many algorithms for various representatives of networks, e. g.,
arrays, meshes, hypercubes, and butterflies.

5.3.3 Bridging Models

The issues mentioned before and the convergence in parallel computer architec-
tures towards commodity processors with large memory have led to the devel-
opment of bridging models [198, 199]. They attempt to span the range between
algorithm design and parallel computer architecture [332] by addressing the is-
sues experienced with previous models, in particular by accounting for interpro-
cessor communication costs and by making only very general assumptions about

5. Realistic Computer Models 221

Figure 5.7. Schematic view of a sequence of supersteps in a BSP computation.

the underlying hardware. The presentation in this section is mainly in histor-
ical order, mentioning only the most relevant bridging models and important
variations.

Bulk-Synchronous Parallel Model and its Variants. The bulk-synchro-
nous parallel (BSP) model [789] consists of a number of sequential processors
with local memory, a network router that delivers messages directly between any
pair of processors for interprocessor communication, and a mechanism for global
synchronization at regular intervals. A BSP algorithm is divided into so-called
supersteps, each of which consists of local computations on already present data,
message transmissions and receptions. Between each superstep a synchronization
takes place, as illustrated in Figure 5.7. This decoupling of computation and
communication simplifies the algorithm design to reduce the likelihood of errors.

For the analysis of such an algorithm three parameters besides the input
size n are used: the number of processors p, the minimum superstep duration l
arising from communication latency and synchronization (compare [329]), and
finally the gap g, which denotes the ratio between computation and communica-
tion speed of the whole system. The model assumes that delivering messages of
maximum size h (so-called h-relations) within one superstep requires gh+ l ma-
chine cycles. This accounts for the cost of communication by integrating memory
speed and bandwidth into the model. Hence, the cost of a superstep is w+gh+ l,
where w denotes the maximum number of machine cycles over all processors
required for local computation in this superstep. The cost of the complete al-
gorithm is the sum of all supersteps’ costs. Another measure sometimes used is
called slackness or slack. It refers to the lower bound of n/p from which on the
algorithm’s runtime achieves an asymptotically optimal, i. e., linear, speedup.

On some parallel machines very small messages exhibit significant overhead
due to message startup costs and/or latency. This can lead to a severe misesti-
mation of an algorithm’s performance [444]. Therefore, one variation of Valiant’s

222 D. Ajwani and H. Meyerhenke

original model called BSP* [76] addresses the granularity of messages by intro-
ducing a parameter B, the “optimum” message size to fully exploit the bandwidth
of the router. Messages smaller than B generate the same costs as messages of
size B, thus enforcing their algorithmic grouping to achieve higher communica-
tion granularity.

Many parallel machines can be partitioned into smaller subsets of proces-
sors where communication within each subset is faster than between different
ones (consider, e. g., the BlueGene/L supercomputer architecture [778], a clus-
ter of symmetric multiprocessors, or grid computing with parallel machines at
different sites). This fact is incorporated in the decomposable BSP model [209],
abbreviated D-BSP. Here the set of processors can be recursively decomposed
into independent subsets. For each level i of this decomposition hierarchy, the
p processors are partitioned into 2i fixed and disjoint groups called i-clusters
(p = 2k, k ∈ N, 0 ≤ i ≤ log p). A D-BSP program proceeds then as a sequence
of labeled supersteps, where in an i-superstep, 0 ≤ i < log p, communication
and synchronization takes place only within the current i-clusters. Messages are
of constant size and each level i of the decomposition hierarchy has its own gap
gi, where it is natural to assume that the gap increases when one moves towards
level 0 of the hierarchy, thereby rewarding locality of computation. According
to Bilardi et al. [99], D-BSP models real parallel architectures more effectively
than BSP. As usual, this comes along with a more complicated model.

Coarse-Grained Multicomputer. Observed speedups of BSP algorithms may
be significantly lower than expected if the parameter g and the communication
overhead are high, which is true for many loosely-coupled systems like clusters.
This is mainly due to the impact of small messages and has led to the coarse-
grained multicomputer (CGM) model [216]. CGM enforces coarse-grained com-
munication by message grouping, a similar idea as in the BSP* model, but with-
out using an additional model parameter. It consists of p processors with O(n

p)
local memory each, which are connected by an arbitrary connection network
(even shared memory is allowed).

Analogous to BSP, an algorithm consists of supersteps that decouple compu-
tation and communication. The main difference is that during each communica-
tion round every processor groups all the messages for one target into a single
message and sends and receives in total O(n

p) data items with high probability.
Furthermore, communication calls can be seen as variations of global sorting
operations on the input data, which facilitates a simple estimation of commu-
nication costs. Typically, the total running time is given as the sum of compu-
tation and communication costs, where the number of communication rounds
(and therefore supersteps) is desired to be constant. Coarse-grained parallel al-
gorithms based on the CGM model have become quite popular, e. g., see two
special issues of Algorithmica on coarse-grained parallel computing [212,213].

QSM. The authors of the Queuing Shared Memory (QSM) model advocate a
shared-memory model enriched by some important architectural characteristics

5. Realistic Computer Models 223

such as bandwidth constraints [332]. Their main argument is that a shared-
memory model allows for a smooth transition from sequential algorithm design
to symmetric multiprocessors and, ultimately, massively parallel systems. Con-
sequently, the QSM model consists of a number of homogeneous processors with
local memory that communicate by reading from and writing to shared mem-
ory. Like BSP this model assumes program execution in phases between which
synchronization is performed. Within each phase one is free to interleave the
possible operations shared-memory read, shared-memory write, and local com-
putation arbitrarily. The only parameters used are the number of processors p
and the computation-communication gap g.

Shared-memory accesses during a phase may access the same location either
reading or writing (but not both) and complete by the end of that phase. For the
cost analysis one determines the cost of a single phase, which is the maximum
of the costs for the three following operations: maximum number of local opera-
tions, gap g times the maximum number of shared-memory reads or writes, and
the maximum shared-memory contention. The cost of the complete algorithm is
again the sum of all phase costs.

5.3.4 Recent Work

Bridging Models. To cover follow-up research, we first turn our attention to
heterogeneous parallel computing, where one uses a heterogeneous multicom-
puter by combining different types of machines over different types of network.
This can be viewed as a precursor to grid computing. Hence, the two extensions
of CGM and BSP that incorporate heterogeneity, HCGM [587] and HBSP [836],
might be of interest there. Both models account for differing processor speeds,
but possible network differences are not distinguished. This issue and limited
success of heterogeneous high performance computing may prevent a wide ap-
plicability of these models without modifications.

A more recent bridging model is PRO [322], a restriction of BSP and CGM
whose main characteristic is the comparison of all metrics to a specific sequential
algorithm Aseq with time and space complexity T (n) and S(n), respectively.
Similar to CGM, the underlying machine consists of p processors having M =
O(S(n)/p) local memory each, where a coarseness of M ≥ p is assumed. The
execution proceeds in supersteps of separated computation and communication.
The latter is performed with grouped messages and costs one time unit per word
sent or received. Interestingly, the quality measure of PRO is not the time (which
is enforced to be in O(T (n)/p)), but the range of values for p that facilitate a
linear speedup w.r.t. Aseq. This measure is called Grain(n) and shown to be

in O(
√

S(n)) due to the coarseness assumed in the model. The better of two
PRO algorithms solving the same problem with the same underlying sequential
algorithm is therefore the one with higher grain.

As noted before, there are a large number of other parallel computing models,
mostly modifications of the presented ones, dealing with some of their issues. Yet,
since they have not gained considerable importance and an exhaustive presen-
tation of this vast topic is outside the scope of this work, we refer the interested

224 D. Ajwani and H. Meyerhenke

reader to the books [22,192,193,503,514,660], the surveys [190,379,465,533,539,
743], and [332,353,790].

Multicore Computing: Algorithmic Models and Programming Frame-

works. Most models that have been successful in the 1990s do not assume
shared memory but incorporate some form of explicit inter-processor communi-
cation. This is due to the widespread emergence of cluster computers and other
machines with distributed memory and message passing communication during
that time. Meanwhile nearly all standard CPUs built today are already parallel
processors because they contain multiple computing cores. The idiosyncracies
of this architectural change need to be reflected in the computational model if
algorithms are to be transformed into efficient programs for multicore processors
or parallel machines of a large number of multicore CPUs.

One particular issue, which combines the topics hierarchical memory and
parallel computing, is the sharing of caches. In modern multicore processors it
is common that the smallest cache levels are private to a core. However, usually
the larger the cache level is, the more cores share the same cache. Savage and
Zubair [701] address cache sharing with the universal multicore model (UMM).
They introduce the Multicore Memory Hierarchy Game (MMHG), a pebbling
game on a DAG that models the computations. By means of the MMHG Savage
and Zubair derive general lower bounds on the communication complexity be-
tween different hierarchy levels and apply these bounds to scientific and financial
applications.

With the prevalence of multicore chips with shared memory the PRAMmodel
seems to experience a renaissance. While it is still regarded as hardly realistic,
it recently serves as a basis for more practical approaches. Dorrigiv et al. [253]
suggest the LoPRAM (low degree parallelism PRAM) model. Besides having
two different thread types, the model assumes that an algorithm with input size
n is executed on at most O(log n) processors – instead of O(n) as in the PRAM
model. Dorrigiv et al. show that for a wide range of divide-and-conquer algo-
rithms optimal speedup can be obtained. Vishkin et al. [806] propose a method-
ology for converting PRAM algorithms into explicit multi-threading (XMT) pro-
grams. The XMT framework includes a programming model that resembles the
PRAM, but relaxes the synchronous processing of individual steps. Moreover,
the framework includes a compiler of XMTC (an extension of the C language)
to a PRAM-on-chip hardware architecture. Recent studies suggest that XMT
allows for an easier implementation of parallel programs than MPI [399] and
that important parallel algorithms perform faster on the XMT PRAM-on-chip
processor than on a standard dual-core CPU [150].

Valiant extends his BSP model to hierarchical multicore machines [791]. This
extension is done by assuming d hierarchy levels with four BSP parameters
each, i. e., level i has parameters (pi, gi, Li,mi), where pi denotes the number
of subcomponents in level i, gi their bandwidth, Li the cost of synchronizing
them, and mi the memory/cache size of level i. For the problems of associative
composition, matrix multiplication, fast Fourier transform, and sorting, lower

5. Realistic Computer Models 225

bounds on the communication and synchronization complexity are given. Also,
for the problems stated above, algorithms are described that are optimal w. r. t.
to communication and synchronization up to constant factors.

A more practical approach to map BSP algorithms to modern multicore
hardware is undertaken by Hou et al. [413]. They extend C by a few parallel
constructs to obtain the new programming language BSGP. Programs written
in BSGP are compiled into GPU kernel programs that are executable by a wide
range of modern graphics processors.

The trend to general purpose computations on GPUs can be explained by
the much higher peak performance of these highly parallel systems compared
to standard CPUs. Govindaraju et al. [350] try to capture the most important
properties of GPU architectures in a cache-aware model. They then develop
cache-efficient scientific algorithms for the GPU. In experiments these new algo-
rithms clearly outperform their optimized CPU counterparts.

The technological change to multicore processors requires not only algorith-
mic models for the design of theoretically efficient algorithms, but also suitable
programming frameworks that allow for an efficient implementation. Among
these frameworks are:

– OpenMP [161], Cilk++ [174], and Threading Building Blocks [667] are APIs
or runtime environments for which the programmer identifies independent
tasks. When the compiled application program is executed, the runtime en-
vironment takes care of technical details such as thread creation and deletion
and thus relieves the programmer from this burden.

– Chapel [155], Fortress [24], Unified Parallel C (UPC) [95], Sequoia [282],
and X10 [162] are parallel programming languages, whose breakthrough for
commercial purposes has yet to come.

– CUDA [617], Stream [8], and OpenCL [473] are intended for a simplified
programming of heterogeneous systems with CPUs and GPUs, in case of
OpenCL also with other accelerators instead of GPUs.

A further explanation of these works is outside the scope of this chapter since
their main objective is implementation rather than algorithm design.

5.3.5 Application and Comparison

In this section, we indicate how to develop and analyze parallel algorithms in
some of the models presented above. The naive matrix multiplication algorithm
serves here again as an example. Note that we do not intend to teach the de-
velopment of parallel algorithms in detail, for this we refer to the textbooks
stated in the previous section. Instead, we wish to use the insights gained from
the example problem as well as from other results to compare these models and
argue why some are more relevant than others for today’s parallel algorithm
engineering.

226 D. Ajwani and H. Meyerhenke

Algorithm 4 PRAM algorithm for standard matrix multiplication

The processors are labelled as P (i, j, k), 0 ≤ i, j, k < p1/3.

1: P (i, j, k) computes C′(i, j, k) = A(i, k) ·B(k, j)
2: for h := 1 to log n do
3: if (k ≤ n

2h) then
4: P (i, j, k) sets C′(i, j, k) := C′(i, j, 2k − 1) + C′(i, j, 2k)

5: if (k = 1) then
6: P (i, j, k) sets C(i, j) := C′(i, j, 1)

Algorithm 5 BSP algorithm for standard matrix multiplication

Let A and B be distributed uniformly, but arbitrarily, across the p processors denoted
by P (i, j, k), 0 ≤ i, j, k < p1/3. Moreover, let A[i, j] denote the s × s submatrix of A
with s := n/p1/3. Define B[i, j] and C[i, j] analogously.

1: P (i, j, k) acquires the elements of A[i, j] and B[j, k].
2: P (i, j, k) computes A[i, j] ·B[j, k] and sends each resulting value to the processor
responsible for computing the corresponding entry in C.

3: P (i, j, k) computes each of its final n2/p elements ofC by adding the values received
for these elements.

Algorithm Design Example. Algorithm 4 [432, p. 15f.] performs matrix mul-
tiplication on a PRAM with concurrent read access to the shared memory. Here
and in the following two examples we assume that the algorithm (or program) is
run by all processors in parallel, which are distinguished by their unique label.
The algorithm’s idea is to perform all necessary multiplications in log n parallel
steps with n3/ log n processors (Step 1) and to compute the sums of these prod-
ucts in log n parallel steps (Steps 4 and 6). The latter can be done by means of
a binary tree-like algorithm which sums n numbers in the following way: Sum
the index pair 2i− 1 and 2i, 1 ≤ i ≤ n/2 in parallel to obtain n/2 numbers and
proceed recursively. Hence, for the second step O(n3) processors require O(log n)
steps. This would lead to a time complexity of O(log n) and a suboptimal work
complexity, because the processor-time product would be O(n3 log n). However,
it is not difficult to see that Step 4 can be scheduled such that O(n3/ log n)
processors suffice to finish the computation in O(log n) timesteps, resulting in
the optimal work complexity for this algorithm of O(n3).

This algorithm illustrates both the strength and the weakness of the PRAM
model. While it makes the inherent parallelism in the problem visible, the as-
sumption to have p = n3/ log n processors to solve a problem of size n × n is
totally unrealistic today. On the other hand we can use the idea of emulating
the algorithm with only p′ < p processors. If each of the p′ processors operates
on a block of the matrix instead of a single element, we already have an idea
how a coarse-grained algorithm might work.

Indeed, Algorithm 5, due to McColl and Valiant [543], performs matrix mul-
tiplication in the BSP model by working on matrix blocks. Its cost analysis

5. Realistic Computer Models 227

Algorithm 6 CGM and PRO algorithm for standard matrix multiplication

Let the matrices A and B be distributed onto the processors blockwise such that
processor P (i, j) stores A[i, j], the s × s (s = n/p1/2) submatrix of A, and B[i, j],
0 ≤ i, j < p1/2.

1: P (i, j) computes C[i, j] := A[i, j] ·B[i, j].
2: for superstep i := 1 to p1/2 do
3: P (i, j) sends the block of A processed in the previous step to P (i, (j + 1)

mod p1/2) and receives the new block from P (i, (j − 1) mod p1/2).
4: P (i, j) sends the block of B processed in the previous step to P ((i + 1)

mod p1/2, j) and receives the new block from P ((i− 1) mod p1/2, j).
5: P (i, j) determines the product of the current submatrices of A and B and adds
the result to C[i, j].

proceeds as follows: the first superstep requires the communication of n2/p2/3

values, resulting in O(g · n2/p2/3 + l) time steps. Computation and communica-
tion of Superstep 2 account together for O(n3/p+ g ·n2/p2/3 + l) time steps and
the final superstep requires costs of O(n2/p2/3 + l). This yields a total runtime
of O(n3/p+g ·n2/p2/3 + l), which is optimal in terms of communication costs for
any BSP implementation of standard matrix multiplication [543]. Algorithm 5 is
therefore best possible in the sense that it achieves all lower bounds for compu-
tation, communication, and synchronization costs. Note that the memory con-
sumption can be reduced at the expense of increased communication costs [544],
a basic variant of which is presented in the following paragraph.

Recall that the CGM model requires that communication is grouped and may
not to exceedO(n2/p) values per round (note that the input size of the considered
problem is n2 instead of n). Hence, the blocking and communication scheme of
the algorithm above has to be adapted. First, this is done by setting s := n/p1/2.
Then, using the definitions from Algorithm 5 and assuming for simplicity that
s and p1/2 are integers, we obtain Algorithm 6, which is briefly mentioned by
McColl [543].

It is easy to verify that the computation costs account for O(n3/p) and the
communication costs for O(n2/p1/2) cycles. Thus, it becomes a valid CGM algo-
rithm with O(p1/2) communication rounds and can also be used in the PRO
model with the desired speedup property. To compute the quality measure
Grain(n), observe that the communication within the loop must not be more
expensive than the computation. This is fulfilled whenever n3/p3/2 ≥ n2/p ⇔
p ≤ n2 and we obtain with the coarseness assumption the optimal grain of O(n).

The examples for the more realistic bridging models show that blocking and
grouping of data is not only essential in the external memory setting but also for
parallel algorithms. It is sometimes even better to perform more internal work
than necessary if thereby the communication volume can be reduced. Note that
this connection between the two computational models is no coincidence since
both aim at the minimization of communication. For the I/O model communica-
tion means data transfers to/from the external disk, for parallel models it refers

228 D. Ajwani and H. Meyerhenke

to inter-processor communication. Before we investigate this connection in more
detail in Section 5.4, the bridging models discussed above are compared.

Further Model Comparison. The reasons for discouraging the sole use of
PRAM and network models for parallel algorithm development have already
been discussed before. In this brief comparison we therefore focus on the major
bridging models.

The main aim of another bridging model, called LogP [198], is to capture
machine characteristics for appropriate performance prediction. This burdens
the algorithm designer with the issue of stalling due to network contention and
nondeterminism within the communication. Since it has been shown that stall-
free LogP programs can be efficiently emulated on a BSP machine (and vice
versa) [100], this has led to the conclusion that BSP offers basically the same
opportunities as LogP while being easier to deal with. Consequently, apart from
a number of basic algorithms for LogP, there seems to be little interest in further
results on design and analysis of LogP algorithms (compare [661] and [187]).

A similar argument applies to QSM, because it can also be emulated effi-
ciently on a BSP machine (and vice versa) [332, 661]. Although QSM can be
used to estimate the practical performance of PRAM algorithms and it requires
only two parameters, it seems that it has had only limited success compared
to BSP related models based on point-to-point messages. This might be due to
the fact that it does not reward large messages and that more focus was put
on massively parallel systems rather than shared-memory machines. It remains
to be seen if some QSM ideas might experience a revival with the ubiquity of
multicore CPUs.

One restriction of the coarse-grained models BSP, CGM (and also PRO,
which has yet to prove its broad applicability) is their disregard of actual com-
munication patterns. Although some patterns are more expensive than others,
this is not incorporated into the models and can show large differences between
estimated and actual performance [353,444]. Nevertheless, for many algorithms
and applications these models and their extensions provide a reasonably accu-
rate performance and efficiency estimate. Their design capabilities capture the
most important aspects of parallel computers. Moreover, the analysis can be per-
formed with a small set of parameters for many parallel architectures that are in
use today and in the near future. Another reason for the wide acceptance of BSP
and CGM might be their support of message passing. This type of interprocessor
communication has been standardized by the Message Passing Interface Forum3

as the MPI library [747], whose implementations are now probably the most
widely used communication tools in distributed-memory parallel computers.

All this has led to the fact that BSP and CGM have been used more ex-
tensively than other models to design parallel algorithms in recent years [187].
Even libraries that allow for an easy implementation of BSP and CGM algo-
rithms have been developed. Their implementations are topics of a success story
on parallel computing models in Section 5.6.

3 See http://www.mpi-forum.org/ .

5. Realistic Computer Models 229

Given the convergence of parallel machines and networking hardware to com-
modity computing and the prevalence of multicore CPUs with shared memory
and deep memory hierarchies, a model that combines these features in a both
realistic and simple way would certainly be valuable, as Cormen and Goodrich
already expressed in 1996 [190]. Recently, Arge et al. [43] have proposed the
Parallel External-Memory model as a natural parallel extension of the external-
memory model of Aggarwal and Vitter [11], to private-cache chip multiproces-
sors.

On the other hand, the connection between parallel and external memory
algorithms has been investigated by stating efficient simulations of parallel algo-
rithms in external memory. These results are presented in the upcoming section.

5.4 Simulating Parallel Algorithms for I/O-Efficiency

Previously in this chapter we have presented several models and various tech-
niques for I/O-efficiency, cache optimization, and parallel computing. Generally
speaking, I/O-efficient algorithms are employed to deal with massive data sets in
the presence of a memory hierarchy, while parallel computing is more concerned
with the acceleration of the actual on-chip computations by dividing the work
between several processors. It might not be a surprise that there are some simi-
larities between the models and techniques. In cases where one needs to process
extremely large data sets with high computational power, methods from both
fields need to be combined. Unfortunately, there is no model that incorporates
all the necessary characteristics.

In this section we show the connection of the concepts presented previously
and indicate how to derive sequential and parallel external memory algorithms by
simulation. Generally speaking, simulations transform known parallel algorithms
for a given problem P into an external memory algorithm solving P . The key
idea is to model inter-processor communication as external memory accesses.
Since efficient parallel algorithms aim at the minimization of communication,
one can often derive I/O-efficient algorithms this way. Note, however, that the
simulation concept should be thought of as a guide for designing algorithms,
rather than for implementing them.

First, we explain a simulation of PRAM algorithms in Section 5.4.1. Since
there exists an obvious similarity between bulkwise inter-processor communica-
tion and blockwise access to external memory, one would also expect I/O-efficient
simulation results of coarse-grained parallel algorithms. Indeed, a number of such
simulations have been proposed; they are discussed in Section 5.4.2.

5.4.1 PRAM Simulation

The first simulation we describe obtains I/O-efficient algorithms from simulat-
ing PRAM algorithms [168]. Its value stems from the fact that it enables the

230 D. Ajwani and H. Meyerhenke

efficient transfer of the vast amount of PRAM algorithms into the external mem-
ory setting. The key idea is to show that a single step of a PRAM algorithm
processing n data items can be simulated in O(sort(n)) I/Os. For this consider
a PRAM algorithm A that utilizes n processors and O(n) space and runs in
time O(T (n)). Let each processor perform w. l. o. g. within a single PRAM step
O(1) shared-memory (SM) reads, followed by O(1) steps for local computation
and O(1) shared-memory writes. We now simulate A on an external memory
machine with one processor. For this assume that the state information of the
PRAM processors and the SM content are stored on disk in a suitable format.

The desired transformation of an arbitrary single step of A starts by simulat-
ing the SM read accesses that provide the operands for the computation. This
requires a scan of the processor contexts to store the read accesses and their
memory locations. These values are then sorted according to the indices of the
SM locations. Then, this sorted list of read requests is scanned and the contents
of the corresponding SM locations are retrieved and stored with their requests.
These combined values are again sorted, this time according to the ID of the
processor performing the request. By scanning this sorted copy, the operands
can be transferred to the respective processor. After that, we perform the com-
putations on each simulated processor and write the results to disk. These results
are sorted according to the memory address to which the processors would store
them. The sorted list and a reserved copy of memory are finally scanned and
merged to obtain the previous order with the updated entries. This can all be
done with O(1) scans and O(1) sorts for n entries, so that simulating all steps
of A requires O(T (n) · sort(n)) I/Os in total.

This simulation has a noteworthy property in case of PRAM algorithms
where the number of active processors decreases geometrically with the number
of steps. By this, we mean that after a constant number of steps, the number of
active processors (those that actually perform operations instead of being idle)
and the number of memory cells used afterwards has decreased by a constant
factor. Typically, the work performed by these algorithms, i. e., their processor-
time product, is not optimal due to the high number of inactive processors. These
inactive processors, however, do not need to be simulated in the external memory
setting. One can therefore show that such a non-optimal PRAM algorithm leads
to the same simulation time of O(T (n) · sort(n)) I/Os as above, which means
that the non-optimal work property of the simulated algorithm does not transfer
to the algorithm obtained by simulation.

5.4.2 Coarse-grained Parallel Simulation Results

The simulations of coarse-grained parallel algorithms shown in this section re-
semble the PRAM simulation. They also assume that the state information of
the simulated processors are stored on disk, and they simulate one superstep
after the other. This means that one reads the processor context (memory image
and message buffers) from disk first and then simulates incoming communica-
tion, computation, and outgoing communication, before the updated context is

5. Realistic Computer Models 231

written back to disk. However, the actual implementations need to consider the
idiosyncrasies of the different coarse-grained parallel models.

Note that the virtual processors of the parallel algorithm are simulated by a
possibly smaller number p of processors in the external memory model. Then,
the simulation starts with processors 0, . . . , p − 1, proceeds with the next p
processors, and so on. This serialization of the parallel program is valid due
to the independence of processors within the same superstep. Recall that M
denotes the size of the internal memory and B the block size in the EM model.

Single-processor Simulations. Since it is based on a simple framework, we pro-
ceed our explanation with the sequential simulation of BSP-like algorithms [734].
A BSP-like algorithm assumes the memory space to be partitioned into p blocks
of suitable size. It proceeds in discrete supersteps, is executed on a virtual ma-
chine with p processors, and satisfies the following conditions (cmp. [734, Defi-
nition 1]):

– In superstep s, s ≥ 1, processor pi, 0 ≤ i < p, operates only on the data in
block Bi and on the messages Mes(j, i, s), 0 ≤ j < p.

– In superstep s, s ≥ 1, processor pi, 0 ≤ i < p, generates messagesMes(i, j, s+
1) to be ‘sent’ to pj , 0 ≤ j < p. The size of each message is at most M/3p.
The initial messages of timestep 1 are void.

Then, the simulation can proceed for each superstep as described at the
beginning of this section. In each superstep processor pi, 0 ≤ i < p, fetches Bi

and its respective message buffers Mes(j, i, s), 0 ≤ j < p, from disk, simulates
the computations of the superstep, and stores the updated block Bi as well as
new message buffers to disk in suitable locations.

For these BSP-like algorithms new parameters P = ⌈3 · n/M⌉, G, and L are
introduced to relate coarse-grained models to the EM model. The I/O transfer
gap G denotes the ratio of the number of local computation operations and the
number of words that can be transferred between memory and disks per unit
time, while L denotes the synchronization time of the simulation. They mea-
sure the quality of their simulation by the notion of c-optimality [329], which is
transferred to the I/O setting. An EM algorithm is called c-optimal if its exe-
cution time is at most c times larger than that of a sequential computer with
infinite memory. The main result states that if the BSP parameters (p, g, l) coin-
cide with the new parameters (P,G,L) and there is a c-optimal BSP algorithm
for the same problem, then the corresponding BSP-like algorithm in external
memory is also c-optimal [734, Theorem 3].

If one accepts that the external memory size is bounded from above by M2

(which is a reasonable assumption), the simulation of PRO algorithms in external
memory is another option [370]. It introduces the notion of RAM-awareness,
which provides a measure for the number of random memory accesses that might
correspond to page faults. If this measure of a PRO algorithm A on p = Grain(n)
processors does not exceed the sequential runtime of the underlying algorithm
and A requires T (n) time and S(n) space over all processors, A can be simulated

232 D. Ajwani and H. Meyerhenke

in O(T (n)) computation time with O(S(n)/Grain(n) + Grain(n)) internal and
O(S(n)) external memory.

Multiple-processor Simulations. Dehne et al. [215, 214] show how to simulate
algorithms for the models BSP, BSP*, and CGM on sequential and parallel
machines with parallel disks. These combined models are then called EM-BSP,
EM-BSP*, and EM-CGM, respectively, and extend the parameter set of their
underlying parallel models by M (local memory size for each processor), D
(number of parallel disks connected to each processor), B (transfer block size),
and G (I/O transfer gap in terms of memory block transfer). More precisely,
the simulation costs are the same as for the simulated program plus the costs
induced by I/O, which is taken as the maximum over all processors.

As above, the simulation of the v virtual processors is performed in super-
steps. During each such superstep every simulating processor loads the context
of the virtual processors for which it is responsible from the disk. Whenever vir-
tual communication is replaced by parallel disk I/O, care is taken that irregular
routing schemes are mapped to disks in a balanced way to obtain optimal I/O
costs. Amongst others, this is done by setting the total communication amount
of each processor to Θ(n/v) and by fixing the message size to c · B for some
c ≥ 1, which resembles the idea of BSP*.

The c-optimality notion [329] is extended from local computation to cover
also communication and I/O. Using this, one can show that a work-optimal,
communication-efficient, and I/O-efficient algorithm can be simulated with a
small overhead by an algorithm that is also work-optimal, communication-effi-
cient, and I/O-efficient for a wide range of parameters by using the techniques
of Dehne et al. [215]. There, it is also shown that these methods have led to
improved parallel EM algorithms.

Cache-Oblivious Simulation of D-BSP. For the final topic of this section, our
simulation target is one level higher in the memory hierarchy. More precisely, we
simulate D-BSP programs to achieve sequential cache-oblivious algorithms [636].
(Related simulation results are also presented by Bilardi et al. [99].) The tech-
nique exploits that the D-BSP model assumes a hierarchical decomposition of a
BSP computer in processor groups to capture submachine locality. Recall that
the cache in the Ideal Cache Model (ICM) contains M words organized into
lines of B words each. It is fully associative and assumes the optimal offline
strategy for cache-line replacement. To simulate a D-BSP program in the ICM
in a cache-oblivious manner, the simulation algorithm for improving locality in
a multilevel memory hierarchy [279] is adapted. First of all, the slower memory
of the ICM hierarchy is divided into p blocks of size Θ(µ), where µ is the size
of one D-BSP processor context. Each block contains one processor context and
some extra space for bookkeeping purposes.

Recall that each processor group on level i of the D-BSP hierarchy is called an
i-cluster. Its processors collaborate with each other in an i-superstep. Therefore,
the simulation proceeds in rounds, where each round simulates one i-superstep
for a certain i-cluster in two phases (local computation and communication) and

5. Realistic Computer Models 233

determines the cluster for the next round. Message distribution for intra-cluster
communication is simulated by sorting the contexts of the processors involved,
similar to the method proposed by Fantozzi et al. [279]. In particular by simulat-
ing the same cluster in consecutive supersteps, this simulation strategy is able to
improve the locality of reference, because the necessary processor contexts are
already cached. If sorting the processors’ contexts for simulating communication
is done in a cache-oblivious manner, the whole algorithm is cache-oblivious since
it does not make use of the parameters M and B.

5.5 Success Stories of Algorithms for Memory Hierarchies

In this section we describe some implementations of algorithms for memory hi-
erarchies that have improved the running time on very large inputs considerably
in practice.

5.5.1 Cache-Oblivious Sorting

Brodal et al. [135] show that a careful implementation of a cache-oblivious lazy
funnelsort algorithm [131] outperforms several widely used library implemen-
tations of quicksort on uniformly distributed data. For the largest instances in
the RAM, this implementation outperforms its nearest rival std::sort from the
STL library included in GCC 3.2 by 10-40% on many different architectures like
Pentium III, Athlon and Itanium 2. Compared to cache-aware sorting implemen-
tations exploiting L1 and L2 caches, TLBs and registers [41, 504, 843, 782], the
cache-oblivious implementation is not only more robust – it exploits several lev-
els of memory hierarchy simultaneously – but also faster. Overall, the results of
Brodal et al. [135] show that for sorting, the overhead involved in being cache-
oblivious can be small enough in order to allow nice theoretical properties to
actually transfer into practical advantages.

5.5.2 External Memory BFS

The implementation of the external memory BFS algorithms [600,555] exploiting
disk parallelism on a low cost machine makes BFS viable for massive graphs [19,
20]. On many different classes of graphs, this implementation computes BFS
level decomposition of around billion-edge graphs in few hours which would
have taken the traditional RAM model BFS algorithm [191] several months. In
fact, the difference between the RAM model algorithm and the external memory
algorithms is clearly visible even when more than half of the graph fits in the
internal memory. As shown in Figure 5.8, the running time of the traditional BFS
algorithm significantly deviates from the predicted RAM performance taking
hours, rather than minutes for random graphs less than double the size of the
internal memory. On the other hand, the external BFS implementations referred
to as MR_BFS and MM_BFS in the plot, compute the BFS level decomposition
in a few minutes.

234 D. Ajwani and H. Meyerhenke

2
14

2
12

2
10

2
8

2
6

2
4

2
2

2
22

2
21

2
20

2
19

2
18

T
im

e
 (

in
 s

e
c
)

n

IM BFS
MR BFS
MM BFS

Figure 5.8. Running time of the RAM model BFS algorithm IM_BFS [191] and
the external memory BFS algorithms MR_BFS [600] and MM_BFS [555] with
respect to the number of nodes (n) of a random graph. The number of edges is
always kept at 4n.

5.5.3 External Suffix Array Construction

The suffix array, a lexicographically sorted array of the suffixes of a string, has
received considerable attention lately because of its applications in string match-
ing, genome analysis and text compression. However, most known implementa-
tions of suffix array construction could not handle inputs larger than 2 GB.
Dementiev et al. [229] show that external memory computation of suffix arrays
is feasible. They provide a EM implementation that can process much larger
character strings in hours on low cost hardware. In fact, the running time of
their implementation is significantly faster than previous external memory im-
plementations.

5.5.4 External A*-Search

In many application domains like model checking and route planning, the state
space often grows beyond the available internal memory. Edelkamp et al. [267]
propose and implement an external version of A* to search in such state spaces.
Embedding their approach in the model checking software SPIN, they can detect
deadlocks in an optical telegraph protocol for 20 stations, with an intermediate
data requirement of 1.1 Terabytes on hard disk (with only 2.5 GB of available
main memory).

5. Realistic Computer Models 235

5.6 Parallel Bridging Model Libraries

The number of publications on parallel algorithms developed for one of the ma-
jor bridging models, in particular BSP and CGM, shows their success in the
academic world. Moreover, following the Algorithm Engineering paradigm and
for an easier use of these models in practice, library standards have been devel-
oped. The older one is the BSPlib standard [393], whose corresponding library
implementations shall provide methods for the direct transformation of BSP al-
gorithms into parallel applications. According to Bisseling [102], two efficient
implementations exist, the Oxford BSP toolset [625] and the Paderborn Uni-
versity BSP library (PUB) [119]. A more recent implementation [766] has been
developed, which facilitates the use of BSPlib on all platforms with the message-
passing interface MPI. Its objective is to provide BSPlib on top of MPI, making
the library portable to most parallel computers. CGMlib is a library following
the same ideas for the coarse-grained multicomputer model. So far, there exists
only one implementation known to the authors [157]. Although a widespread
use of these libraries outside the academic world is not apparent, their influence
should not be underestimated. They can, for instance, be used for a gentle in-
troduction to parallel programming [102] and as a basis for distributed web/grid
computing [344,118].

Note that there exist many more languages, libraries, and tools for parallel
programming, as well as applications, of course. Even an approximate description
of these works would be outside the scope of this chapter. Since they are also
not as close to the original models, we instead refer the interested reader to Fox
et al. [305] and various handbooks on parallel computing [108,147,388,494,660].
They cover many aspects of parallel computing from the late 1980s until today.

5.7 Conclusion

The simple models RAM and PRAM have been of great use to designers of both
sequential and parallel algorithms. However, they show severe deficiencies as well.
The RAM model fails to capture the idiosyncrasies of large data sets that do
not fit into main memory, the PRAM does not model the costs arising by inter-
processor communication. Since both, parallel computation and the processing
of very large data sets, have become more and more important in practice, this
has led to the development of more realistic models of computation. The external
memory (EM) model has proved to be quite successful in algorithm engineer-
ing on problems involving large data sets that do not fit in the main memory
and thus, reside on the hard disk. In the parallel setting the bulk-synchronous
approach (BSP) is very important, which models inter-processor communica-
tion explicitly. Several variants of both have been developed, e. g., to include the
specifics of caches (ICM) or of coarse-grained communication (CGM). Although
developed for different purposes, all these models have several strategies in com-
mon on how to avoid I/O transfer and communication, respectively, in particular
the exploitation of locality and the grouping of data before their transmission.

236 D. Ajwani and H. Meyerhenke

Fundamental techniques for an efficient use of the memory hierarchy or of
parallel computers have been illustrated by means of different external memory
data structures, cache-aware, cache-oblivious, and parallel algorithms. This has
been supplemented by a description of successful implementations of external
memory algorithms that facilitate the efficient processing of very large data
sets. Also, libraries for an easy implementation of parallel algorithms developed
in one of the models mentioned above have been presented. These examples
show the impact of realistic computational models on the design and practical
implementation of algorithms for these purposes. Moreover, one can say that
for very large data sets and complex parallel computations it is hardly possible
nowadays to obtain efficient programs without using the techniques and ideas of
the models presented in this chapter.

Despite these successes it should be noted that models necessarily have their
disadvantages because they are only abstractions and simplifications of the real
world. While the interest in new parallel models seemed to be decreasing until
the mid 2000s, the general breakthrough of multicore processors has produced
a number of new models and in particular practical programming frameworks
(parallel languages, runtime environments, etc.). A rather simple model com-
bining parallelism and memory hierarchy issues, in particular with automated
optimizations in a hardware-oblivious way, would certainly be a step forward
towards even more realistic performance prediction. The very recent proposals
on multicore models have yet to prove their suitability in this regard. From a
practical perspective it will be very interesting to see which developments in
languages and runtime environments will experience widespread adoption both
in academia and in industry. We believe that a mostly seamless transition from
a realistic model to the actual implementation – as previously in the sequential
case – will be the key to success.

Bibliography

1. Ittai Abraham, Amos Fiat, Andrew V. Goldberg, and Renato F. Werneck, High-
way dimension, shortest paths, and provably efficient algorithms, Proceedings of
the 21st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2010,
pp. 782–793.

2. Jean-Raymond Abrial, The B-book: Assigning programs to meanings, Cambridge
University Press, August 1996.

3. Jean-Raymond Abrial, Stephen A. Schuman, and Bertrand Meyer, Specification
language, On the Construction of Programs: An Advanced Course (R. M. McKeag
and A. M. Macnaghten, eds.), Cambridge University Press, 1980, pp. 343–410.

4. Dimitris Achlioptas, Marek Chrobak, and John Noga, Competitive analysis of
randomized paging algorithms, Theoretical Computer Science 234 (2000), no. 1–
2, 203–218.

5. Tobias Achterberg, Timo Berthold, Alexander Martin, and Kati Wolter, SCIP –
solving constraint integer programs, http://scip.zib.de/, 2007.

6. Tobias Achterberg, Martin Grötschel, and Thorsten Koch, Software for teach-
ing modeling of integer programming problems, ZIB Report 06-23, Zuse Institute
Berlin, 2006.

7. Michael J. Ackerman, The visible human project - getting the data, http://www.
nlm.nih.gov/research/visible/getting_data.html (last update: 11 January
2010), 2004.

8. Advanced Micro Devices, Inc., AMD developer central - ATI stream software
development kit (SDK), http://developer.amd.com/gpu/ATIStreamSDK/Pages/
default.aspx, 2009.

9. Pankaj K. Agarwal, Lars Arge, Andrew Danner, and Bryan Holland-Minkley,
Cache-oblivious data structures for orthogonal range searching, Proceedings of
the 19th Annual ACM Symposium on Computational Geometry, ACM Press,
2003, pp. 237–245.

10. Pankaj K. Agarwal, Lars A. Arge, T. M. Murali, Kasturi Varadarajan, and Jef-
frey Vitter, I/O efficient algorithms for contour-line extraction and planar graph
blocking, Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete Al-
gorithms (SODA), 1998, pp. 117–126.

11. Alok Aggarwal and Jeffrey S. Vitter, The input/output complexity of sorting and
related problems, Communications of the ACM, 31(9) (1988), 1116–1127.

12. Gagan Aggarwal, Mayur Datar, Sridhar Rajagopalan, and Matthias Ruhl, On
the streaming model augmented with a sorting primitive, Proceedings of the 45th
Annual IEEE Symposium on Foundations of Computer Science (FOCS) (2004),
540–549.

13. Manindra Agrawal, Neeraj Kayal, and Nitin Saxena, PRIMES is in P, Annals of
Mathematics 160 (2004), no. 2, 781–793.

14. Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman, The design and analysis
of computer algorithms, Addison-Wesley Publishing Company, 1974.

15. Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin, Network flows:
Theory, algorithms, and applications, Prentice Hall, Englewood Cliffs, New Jersey,
1993.

Bibliography 455

16. Ravindra K. Ahuja, Kurt Mehlhorn, James B. Orlin, and Robert E. Tarjan, Faster
algorithms for the shortest path problem, Journal of the ACM 37 (1990), no. 2,
213–223.

17. Ravindra K. Ahuja and James B. Orlin, Use of representative operation counts in
computational testing of algorithms, INFORMS Journal on Computing 8 (1992),
318–330.

18. AIX versions 3.2 and 4 performance tuning guide, http://www.unet.univie.ac.
at/aix/aixbman/prftungd/toc.htm, 1996.

19. Deepak Ajwani, Roman Dementiev, and Ulrich Meyer, A computational study of
external-memory BFS algorithms, Proceedings of the 17th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), 2006, pp. 601–610.

20. Deepak Ajwani, Roman Dementiev, Ulrich Meyer, and Vitaly Osipov, The short-
est path problem: The ninth DIMACS implementation challenge, DIMACS series
in Discrete Mathematics and Theoretical Computer Science, vol. 74, ch. Breadth
first search on massive graphs, pp. 291–308, American Mathematical Society,
2009.

21. Deepak Ajwani, Itay Malinger, Ulrich Meyer, and Silvan Toledo, Characterizing
the performance of flash memory storage devices and its impact on algorithm
design, Experimental Algorithms (WEA 2008), LNCS, vol. 5038, Springer, Hei-
delberg, 2008, pp. 208–219.

22. Selim G. Akl, Parallel computation: models and methods, Prentice-Hall, Inc., 1997.
23. Albert Alexandrov, Mihai F. Ionescu, Klaus E. Schauser, and Chris Scheiman,

LogGP: Incorporating long messages into the LogP model for parallel computation,
Journal of Parallel and Distributed Computing 44 (1997), no. 1, 71–79.

24. Eric Allen, David Chase, Christine Flood, Victor Luchangco, Jan-Willem
Maessen, Sukyoung Ryu, and Guy L. Steele Jr., Project Fortress: A multicore
language for multicore processors, Linux Magazine (2007), 38–43.

25. Ernst Althaus, Tobias Polzin, and Siavash V. Daneshmand, Improving linear pro-
gramming approaches for the Steiner tree problem, Research Report MPI-I-2003-
1-004, Max-Planck-Institut für Informatik, Saarbrücken, Germany, 2003.

26. Gene M. Amdahl, Validity of the single processor approach to achieving large scale
computing capabilities, Readings in computer architecture, Morgan Kaufmann
Publishers Inc., 1999, pp. 79–81.

27. Nina Amenta and Günter M. Ziegler, Deformed products and maximal shadows
of polytopes, Contemporary Mathematics, vol. 223, pp. 57–90, American Mathe-
matical Society, 1999.

28. Mohammad M. Amini and Richard S. Barr, Network reoptimization algorithms:
A statistically designed comparison, ORSA Journal on Computing 5 (1993), no. 4,
395–409.

29. Ping An, Alin Jula, Silvius Rus, Steven Saunders, Tim Smith, Gabriel Tanase,
Nathan Thomas, Nancy M. Amato, and Lawrence Rauchwerger, STAPL: An
adaptive, generic parallel C++ library, LCPC, 2001, pp. 193–208.

30. Ed Anderson, Zhaojun Bai, Christian Bischof, Susan Blackford, James Demmel,
Jack Dongarra, Jeremy Du Croz, Anne Greenbaum, Sven Hammarling, A. McKen-
ney, and Danny Sorensen, LAPACK users’ guide, 3rd ed., Society for Industrial
and Applied Mathematics, 1999.

31. Stephanos Androutsellis-Theotokis and Diomidis Spinellis, A survey of peer-to-
peer content distribution technologies, ACM Computing Surveys 36 (2004), no. 4,
335–371.

32. Yash P. Aneja, An integer linear programming approach to the Steiner problem in
graphs, Networks 10 (1980), 167–178.

456 Bibliography

33. David L. Applegate, Robert E. Bixby, Vasek Chvátal, and William J. Cook, The
traveling salesman problem: A computational study, Princeton University Press,
2006.

34. Krzysztof Apt, Principles of constraint programming, Cambridge University
Press, 2003.

35. Lars Arge, The buffer tree: A new technique for optimal I/O-algorithms, Algo-
rithms and Data Structures, 4th International Workshop, WADS ’95 (Selim G.
Akl, Frank K. H. A. Dehne, Jörg-Rüdiger Sack, and Nicola Santoro, eds.), LNCS,
vol. 955, Springer, Heidelberg, 1995, pp. 334–345.

36. , External memory data structures, ESA 2001 (Friedhelm Meyer auf der
Heide, ed.), LNCS, vol. 2161, Springer, Heidelberg, 2001, pp. 1–29.

37. , External memory data structures, Handbook of Massive Data Sets (James
Abello, Panos M. Pardalos, and Mauricio G. C. Resende, eds.), Kluwer Academic
Publishers, 2002, pp. 313–357.

38. Lars Arge, Michael Bender, Erik Demaine, Bryan Holland-Minkley, and J. Ian
Munro, Cache-oblivious priority-queue and graph algorithms, Proceedings of the
34th ACM Symposium on Theory of Computing (STOC), ACM Press, 2002,
pp. 268–276.

39. Lars Arge, Gerth S. Brodal, and Rolf Fagerberg, Cache-oblivious data structures,
Handbook on Data Structures and Applications (D. P. Mehta and S. Sahni, eds.),
CRC Press, 2004.

40. Lars Arge, Gerth S. Brodal, and Laura Toma, On external-memory MST, SSSP
and multi-way planar graph separation, Journal of Algorithms 53(2) (2004), 186–
206.

41. Lars Arge, Jeffrey Chase, Jeffrey Vitter, and Rajiv Wickremesinghe, Efficient
sorting using registers and caches, ACM Journal of Experimental Algorithmics 7
(2002), no. 9, 1–17.

42. Lars Arge, Mark de Berg, Herman Haverkort, and Ke Yi, The priority R-tree: A
practically efficient and worst-case optimal R-tree, SIGMOD International Con-
ference on Management of Data (2004), 347–358.

43. Lars Arge, Michael T. Goodrich, Michael Nelson, and Nodari Sitchinava, Fun-
damental parallel algorithms for private-cache chip multiprocessors, Proceedings
of the 20th Annual ACM Symposium on Parallel Algorithms and Architectures
(SPAA), 2008, pp. 197–206.

44. Lars Arge, Octavian Procopiuc, and Jeffrey S. Vitter, Implementing I/O-efficient
data structures using TPIE, 10th European Symposium on Algorithms (ESA)
(Rolf H. Möhring and Rajeev Raman, eds.), LNCS, vol. 2461, Springer, Heidel-
berg, 2002, pp. 88–100.

45. Lars Arge and Laura Toma, Simplified external memory algorithms for planar
DAGs, Algorithm Theory - SWAT 2004, (Torben Hagerup and Jyrki Katajainen,
eds.), LNCS, vol. 2461, Springer, Heidelberg, 2004, pp. 493–503.

46. Lars Arge, Laura Toma, and Norbert Zeh, I/O-efficient topological sorting of
planar DAGs, Proceedings of the 15th Annual ACM Symposium on Parallel Al-
gorithms and Architectures (SPAA), ACM, 2003, pp. 85–93.

47. Lars Arge and Jeffrey S. Vitter, Optimal dynamic interval management in external
memory, Proceedings of the 37th Annual IEEE Symposium on Foundations Of
Computer Science (FOCS), 1996, pp. 560–569.

48. Sanjeev Arora, Polynomial time approximation schemes for the Euclidean trav-
eling salesman and other geometric problems, Journal of the ACM 45 (1998),
753–782.

Bibliography 457

49. Sunil Arya and David M. Mount, Approximate nearest neighbor queries in fixed
dimensions, Proceedings of the 4th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), 1993, pp. 271–280.

50. Anthony C. Atkinson, Plots, transformations and regression: an introduction to
graphical methods of diagnostic regression analysis, Oxford University Press, U.K.,
1987.

51. Franz Aurenhammer and Rolf Klein, Voronoi diagrams, ch. 5, Handbook of Com-
putational Geometry (Jörg-Rüdiger Sack and Jorge Urrutia, eds.), North-Holland,
1999, pp. 201–290.

52. Francis Avnaim, Jean-Daniel Boissonnat, Olivier Devillers, Franco Preparata, and
Mariette Yvinec, Evaluating signs of determinants using single precision arith-
metic, Algorithmica 17 (1997), no. 2, 111–132.

53. Brian Babcock, Shirnath Babu, Mayur Datar, Rajeev Motwani, and Jennifer
Widom, Models and issues in data stream systems, ACM PODS (2002), 1–16.

54. David A. Bader, Varun Kanade, and Kamesh Madduri, SWARM: A parallel pro-
gramming framework for multi-core processors, 21st International Parallel and
Distributed Processing Symposium (IPDPS 2007), 2007, pp. 1–8.

55. David A. Bader and Kamesh Madduri, SNAP, small-world network analysis and
partitioning: An open-source parallel graph framework for the exploration of large-
scale networks, 22nd International Parallel and Distributed Processing Sympo-
sium (IPDPS 2008), 2008, pp. 1–12.

56. David A. Bader, Bernard M. E. Moret, and Peter Sanders, Algorithm engineer-
ing for parallel computation, Experimental Algorithmics. From Algorithm De-
sign to Robust and Efficient Software (Rudolf Fleischer, Bernard Moret, and
Erik Meineche Schmidt, eds.), LNCS, vol. 2547, Springer, Heidelberg, 2002, pp. 1–
23.

57. Michael Bader and Christoph Zenger, Cache oblivious matrix multiplication using
an element ordering based on a Peano curve, Linear Algebra and its Applications
(Special Issue in honor of Friedrich Ludwig Bauer) 417 (2006), no. 2-3, 301–313.

58. Ricardo Baeza-Yates, Eduardo F. Barbosa, and Nivio Ziviani, Hierarchies of in-
dices for text searching, Journal of Information Systems 21 (1996), 497–514.

59. Helmut Balzert, Lehrbuch der Software-Technik, Spektrum Akademischer Verlag,
Heidelberg, 1996.

60. Richard S. Barr, Bruce L. Golden, James P. Kelly, Mauricio G. C. Resende, and
William R. Stewart Jr., Designing and reporting on computational experiments
with heuristic methods, Journal of Heuristics 1 (1995), no. 1, 9–32.

61. Chris Barrett, Keith Bisset, Martin Holzer, Goran Konjevod, Madhav V. Marathe,
and Dorothea Wagner, Engineering label-constrained shortest-path algorithms,
Shortest Path Computations: Ninth DIMACS Challenge (Camil Demetrescu, An-
drew V. Goldberg, and David S. Johnson, eds.), DIMACS Book, vol. 74, American
Mathematical Society, 2009, pp. 309–319.

62. Chris Barrett, Keith Bisset, Riko Jacob, Goran Konjevod, and Madhav V.
Marathe, Classical and contemporary shortest path problems in road networks:
Implementation and experimental analysis of the TRANSIMS router, Proceed-
ings of the 10th Annual European Symposium on Algorithms (ESA’02) (Rolf H.
Möhring and Rajeev Raman, eds.), LNCS, vol. 2461, Springer, Heidelberg, 2002,
pp. 126–138.

63. Chris Barrett, Riko Jacob, and Madhav V. Marathe, Formal-language-constrained
path problems, SIAM Journal on Computing 30 (2000), no. 3, 809–837.

458 Bibliography

64. Roman Barták, Constraint programming: In pursuit of the holy grail, Proceedings
of the Week of Doctoral Students (WDS), Prague, Czech Republic, MatFyzPress,
1999.

65. Victor R. Basili, Barry Boehm, Al Davis, Watts S. Humphrey, Nancy Leveson,
Nancy R. Mead, John D. Musa, David L. Parnas, Shari L. Pfleeger, and Elaine
Weyuker, New year’s resolutions for software quality, IEEE Softw. 21 (2004),
no. 1, 12–13.

66. Holger Bast, Stefan Funke, Domagoj Matijevic, Peter Sanders, and Dominik
Schultes, In transit to constant shortest-path queries in road networks, Proceedings
of the 9th Workshop on Algorithm Engineering and Experiments (ALENEX’07),
SIAM, 2007, pp. 46–59.

67. Holger Bast, Stefan Funke, Peter Sanders, and Dominik Schultes, Fast routing in
road networks with transit nodes, Science 316 (2007), no. 5824, 566.

68. Holger Bast and Ingmar Weber, Don’t compare averages, 4th International Work-
shop on Experimental and Efficient Algorithms (WEA) (Sotiris E. Nikoletseas,
ed.), LNCS, no. 3503, Springer, Heidelberg, 2005, pp. 67–76.

69. Vicente H. F. Batista, David L. Millman, Sylvain Pion, and Johannes Singler,
Parallel geometric algorithms for multi-core computers, Proceedings of the 25th
Annual ACM Symposium on Computational Geometry, ACM, 2009, pp. 217–226.

70. Veit Batz, Daniel Delling, Peter Sanders, and Christian Vetter, Time-dependent
contraction hierarchies, Proceedings of the 11th Workshop on Algorithm Engi-
neering and Experiments (ALENEX’09), SIAM, 2009, pp. 97–105.

71. Reinhard Bauer and Daniel Delling, SHARC: Fast and robust unidirectional rout-
ing, Proceedings of the 10th Workshop on Algorithm Engineering and Experi-
ments (ALENEX’08) (Ian Munro and Dorothea Wagner, eds.), SIAM, April 2008,
pp. 13–26.

72. , SHARC: Fast and robust unidirectional routing, ACM Journal of Experi-
mental Algorithmics 14 (2009), 2.4–2.29, Special Section on Selected Papers from
ALENEX 2008.

73. Reinhard Bauer, Daniel Delling, Peter Sanders, Dennis Schieferdecker, Dominik
Schultes, and Dorothea Wagner, Combining hierarchical and goal-directed speed-
up techniques for Dijkstra’s algorithm, Proceedings of the 7th Workshop on Ex-
perimental Algorithms (WEA’08) (Catherine C. McGeoch, ed.), LNCS, vol. 5038,
Springer, Heidelberg, 2008, pp. 303–318.

74. , Combining hierarchical and goal-directed speed-up techniques for Dijk-
stra’s algorithm, ACM Journal of Experimental Algorithmics 15 (2010), no. 3.

75. Reinhard Bauer, Daniel Delling, and Dorothea Wagner, Shortest-path indices:
Establishing a methodology for shortest-path problems, Tech. Report 2007-14, ITI
Wagner, Faculty of Informatics, Universität Karlsruhe (TH), 2007.

76. Armin Bäumker, Wolfgang Dittrich, and Friedhelm Meyer auf der Heide, Truly
efficient parallel algorithms: 1-optimal multisearch for an extension of the BSP
model., Theoretical Computer Science 203 (1998), no. 2, 175–203.

77. Rudolf Bayer and Edward M. McCreight, Organization and maintenance of large
ordered indexes, Acta Informatica (1972), 173–189.

78. John E. Beasley, An algorithm for the Steiner tree problem in graphs, Networks
14 (1984), 147–159.

79. , OR-Library: Distributing test problems by electronic mail, Journal of the
Operation Research Society 41 (1990), 1069–1072.

80. John E. Beasley and Abilio Lucena, A branch and cut algorithm for the Steiner
problem in graphs, Networks 31 (1998), 39–59.

Bibliography 459

81. Andreas Beckmann, Roman Dementiev, and Johannes Singler, Building a parallel
pipelined external memory algorithm library, 23rd IEEE International Parallel &
Distributed Processing Symposium (IPDPS), IEEE, 2009.

82. Nelson H. F. Beebe, GNU scientific library, http://www.math.utah.edu/

software/gsl.html, 2001.
83. René Beier and Berthold Vöcking, Probabilistic analysis of knapsack core algo-

rithms, Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Al-
gorithms (SODA), 2004, pp. 468–477.

84. , Random knapsack in expected polynomial time, Journal of Computer and
System Sciences 69 (2004), no. 3, 306–329.

85. , An experimental study of random knapsack problems, Algorithmica 45
(2006), no. 1, 121–136.

86. , Typical properties of winners and losers in discrete optimization, SIAM
Journal on Computing 35 (2006), no. 4, 855–881.

87. Shai Ben-David and Allan Borodin, A new measure for the study of on-line algo-
rithms, Algorithmica 11 (1994), no. 1, 73–91.

88. Michael A. Bender, Richard Cole, and Rajeev Raman, Exponential structures
for cache-oblivious algorithms, Proceedings of 29th International Colloquium
on Automata, Languages, and Programming (ICALP) (Peter Widmayer, Fran-
cisco Triguero Ruiz, Rafael Morales Bueno, Matthew Hennessy, Stephan Eiden-
benz, and Ricardo Conejo, eds.), LNCS, vol. 2380, Springer, Heidelberg, 2002,
pp. 195–207.

89. Michael A. Bender, Erik D. Demaine, and Martin Farach-Colton, Cache-oblivious
B-trees, Proceedings of the 41st Annual IEEE Symposium on Foundations of
Computer Science (FOCS), IEEE Computer Society Press, 2000, pp. 399–409.

90. Michael A. Bender, Ziyang Duan, John Iacono, and Jing Wu, A locality-preserving
cache-oblivious dynamic dictionary, Proceedings of 13th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), 2002, pp. 29–38.

91. Jon L. Bentley, Multidimensional binary search trees used for associative search-
ing, Communications of the ACM 18 (1975), no. 9, 509–517.

92. , Experiments on traveling salesman heuristics, Proceedings of the 1st An-
nual ACM-SIAM Symposium on Discrete Algorithms (SODA), 1990, pp. 91–99.

93. , Programming perls, Addison Wesley Professional, 2000.
94. Eric Berberich, Arno Eigenwillig, Michael Hemmer, Susan Hert, Lutz Kettner,

Kurt Mehlhorn, Joachim Reichel, Susanne Schmitt, Elmar Schömer, and Nicola
Wolpert, EXACUS: Efficient and exact algorithms for curves and surfaces, Algo-
rithms - ESA 2005 (Gerth Stølting Brodal and Stefano Leonardi, eds.), LNCS,
vol. 3669, Springer, Heidelberg, 2005, pp. 155–166.

95. Berkeley Unified Parallel C (UPC) Project, Berkeley Unified Parallel C (UPC)
project, http://upc.lbl.gov/, 2009.

96. Piotr Berman and Viswanathan Ramaiyer, Improved approximations for the
Steiner tree problem, Journal of Algorithms 17 (1994), 381–408.

97. Emanuele Berretini, Gianlorenzo D’Angelo, and Daniel Delling, Arc-flags in dy-
namic graphs, ATMOS’09 - Proceedings of the 9th Workshop on Algorithmic
Approaches for Transportation Modeling, Optimization, and Systems, Dagstuhl
Seminar Proceedings, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Ger-
many, 2009.

98. Thomas Beth and Dieter Gollmann, Algorithm engineering for public key algo-
rithms, IEEE Journal on Selected Areas in Communications 7 (1989), 458–466.

460 Bibliography

99. Gianfranco Bilardi, Andrea Pietracaprina, and Geppino Pucci, Handbook of par-
allel computing: Models, algorithms and applications, ch. Decomposable BSP:
A Bandwidth-Latency Model for Parallel and Hierarchical Computation, CRC
Press, 2007.

100. Gianfranco Bilardi, Andrea Pietracaprina, Geppino Pucci, Kieran T. Herley, and
Paul G. Spirakis, BSP versus LogP, Algorithmica 24 (1999), no. 3-4, 405–422.

101. Robert V. Binder, Testing object-oriented systems: Models, patterns, and tools,
Addison-Wesley Professional, October 1999.

102. Rob H. Bisseling, Parallel scientific computation. A structured approach using
BSP and MPI, Oxford University Press, 2004.

103. Robert E. Bixby, Solving real-world linear programs: A decade and more of
progress, Operations Research 50 (2002), 3–15.

104. Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto, Fourier
meets Möbius: fast subset convolution, Proceedings of the 39th Annual ACM Sym-
posium on Theory of Computing (STOC), ACM, 2007, pp. 67–74.

105. L. Susan Blackford, James Demmel, Jack Dongarra, Iain Duff, Sven Hammarling,
Greg Henry, Michael Heroux, Linda Kaufman, Andrew Lumsdaine, Antoine Pe-
titet, Roldan Pozo, Karin Remington, and Richard C. Whaley, An updated set of
basic linear algebra subprograms (BLAS), ACM Trans. Math. Software 28 (2002),
no. 2, 135–151.

106. Paul Blaer and Peter K. Allen, Topbot: automated network topology detection
with a mobile robot, Proceedings of the 2003 IEEE International Conference on
Robotics and Automation, 2003, pp. 1582–1587.

107. Daniel K. Blandford, Guy E. Blelloch, and Ian A. Kash, Compact representations
of separable graphs, Proceedings of the 14th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), 2003, pp. 679–688.

108. Jacek Blazewicz, Denis Trystram, Klaus Ecker, and Brigitte Plateau (eds.), Hand-
book on parallel and distributed processing, Springer-Verlag New York, Inc., 2000.

109. Blitz++: Object-oriented scientific computing, http://www.oonumerics.org/

blitz/, 2005, Version 0.9.
110. Joshua Bloch, Effective Java: Programming language guide, Java series, Addison-

Wesley, Boston, 2001.
111. Toby Bloom and Ted Sharpe, Managing data from high-throughput genomic pro-

cessing: A case study, Very Large Data Bases (VLDB) (2004), 1198–1201.
112. Manuel Blum and Sampath Kannan, Designing programs that check their work,

Journal of the ACM 42 (1995), no. 1, 269–291.
113. Hans L. Bodlaender, A linear-time algorithm for finding tree-decompositions of

small treewidth, SIAM J. Computing 25 (1996), no. 6, 1305–1317.
114. Hans L. Bodlaender and Jan A. Telle, Space-efficient construction variants of

dynamic programming, Nordic Journal of Computing 11 (2004), 374–385.
115. Andrej Bogdanov and Luca Trevisan, Average-case complexity, Found. Trends

Theor. Comput. Sci. 2 (2006), no. 1, 1–106.
116. Béla Bollobás, Modern graph theory, Springer-Verlag, New York, 2002.
117. Andre B. Bondi, Characteristics of scalability and their impact on performance,

WOSP ’00: Proceedings of the 2nd international workshop on Software and per-
formance (New York, NY, USA), ACM Press, 2000, pp. 195–203.

118. Olaf Bonorden, Joachim Gehweiler, and Friedhelm Meyer auf der Heide, A web
computing environment for parallel algorithms in Java, Journal on Scalable Com-
puting: Practice and Experience 7 (2006), no. 2, 1–14.

119. Olaf Bonorden, Ben Juurlink, Ingo von Otte, and Ingo Rieping, The Paderborn
University BSP (PUB) library, Parallel Computing 29 (2003), no. 2, 187–207.

Bibliography 461

120. Boost C++ Libraries, http://www.boost.org, 2010, version 1.42.
121. Manjit Borah, Robert M. Owens, and Mary J. Irwin, A fast and simple Steiner

routing heuristic, Discrete Applied Mathematics 90 (1999), 51–67.
122. Christian Borgelt and Rudolf Kruse, Unsicherheit und Vagheit: Begriffe, Metho-

den, Forschungsthemen, KI, Künstliche Intelligenz 3/01 (2001), 18–24.
123. Egon Börger and Robert Stärk, Abstract state machines: A method for high-level

system design and analysis, Springer-Verlag, 2003.
124. Karl H. Borgwardt, The simplex method – a probabilistic analysis, Springer, 1987.
125. Allan Borodin and Ran El-Yaniv, Online computation and competitive analysis,

Cambridge University Press, 1998.
126. Glencora Borradaile, Claire Kenyon-Mathieu, and Philip N. Klein, A polynomial-

time approximation scheme for Steiner tree in planar graphs, Proceedings of the
18th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2007,
pp. 1285–1294.

127. , Steiner tree in planar graphs: An O(n log n) approximation scheme with
singly-exponential dependence on epsilon, Algorithms and Data Structures, 10th
International Workshop, WADS 2007, Halifax, Canada, August 15-17, 2007, Pro-
ceedings (Frank K. H. A. Dehne, Jörg-Rüdiger Sack, and Norbert Zeh, eds.),
LNCS, vol. 4619, Springer, Heidelberg, 2007, pp. 275–286.

128. Nirmal K. Bose and A.K. Garga, Neural network design using Voronoi diagrams,
IEEE Transactions on Neural Networks 4 (1993), no. 5, 778–787.

129. Ulrich Brandes and Thomas Erlebach (eds.), Network analysis, LNCS, vol. 3418,
Springer, Heidelberg, 2005.

130. Gerth S. Brodal, Cache-oblivious algorithms and data structures, Algorithm The-
ory - SWAT 2004 (Torben Hagerup and Jyrki Katajainen, eds.), LNCS, vol. 3111,
Springer, Heidelberg, 2004, pp. 3–13.

131. Gerth S. Brodal and Rolf Fagerberg, Cache oblivious distribution sweeping, Pro-
ceedings of the 29th International Colloquium Automata, Languages and Pro-
gramming (ICALP) (Peter Widmayer, Francisco Triguero Ruiz, Rafael Morales
Bueno, Matthew Hennessy, Stephan Eidenbenz, and Ricardo Conejo, eds.), LNCS,
vol. 2380, Springer, Heidelberg, 2002, pp. 426–438.

132. , Funnel heap - a cache oblivious priority queue, Proceedings of the 13th
International Symposium on Algorithms and Computation (Prosenjit Bose and
Pat Morin, eds.), LNCS, vol. 2518, Springer, Heidelberg, 2002, pp. 219–228.

133. Gerth S. Brodal, Rolf Fagerberg, and Riko Jacob, Cache oblivious search trees
via binary trees of small height, Proceedings of the 13th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), 2002, pp. 39–48.

134. Gerth S. Brodal, Rolf Fagerberg, Ulrich Meyer, and Norbert Zeh, Cache-oblivious
data structures and algorithms for undirected breadth-first search and shortest
paths, Algorithm Theory - SWAT 2004 (Torben Hagerup and Jyrki Katajainen,
eds.), LNCS, vol. 3111, Springer, Heidelberg, 2004, pp. 480–492.

135. Gerth S. Brodal, Rolf Fagerberg, and Kristoffer Vinther, Engineering a cache-
oblivious sorting algorithm, Proceedings of the 6th Workshop on Algorithm En-
gineering and Experiments (ALENEX), SIAM, 2004, pp. 4–17.

136. Hervé Brönnimann, Christoph Burnikel, and Sylvain Pion, Interval arithmetic
yields efficient dynamic filters for computational geometry, Proceedings of the
14th Annual ACM Symposium on Computational Geometry, 1998, pp. 165–174.

137. Hervé Brönnimann, Ioannis Z. Emiris, Victor Y. Pan, and Sylvain Pion, Com-
puting exact geometric predicates using modular arithmetic with single precision,
Proceedings of the 13th Annual ACM Symposium on Computational Geometry
(New York, NY, USA), ACM Press, 1997, pp. 174–182.

462 Bibliography

138. Hervé Brönnimann and Mariette Yvinec, Efficient exact evaluation of signs of de-
terminants, Proceedings of the 13th Annual ACM Symposium on Computational
Geometry (New York, NY, USA), ACM Press, 1997, pp. 166–173.

139. Anthony Brooke, David Kendrick, Alexander Meeraus, and Richard E. Rosenthal,
GAMS - A user’s guide, 2006.

140. Edith Brunel, Daniel Delling, Andreas Gemsa, and Dorothea Wagner, Space-
efficient SHARC-routing, SEA 2010 (Paola Festa, ed.), LNCS, vol. 6049, Springer,
Heidelberg, 2010, pp. 47–58.

141. Christoph Burnikel, Rudolf Fleischer, Kurt Mehlhorn, and Stefan Schirra, Effi-
cient exact geometric computation made easy, Proceedings of the 15th Annual
ACM Symposium on Computational Geometry (New York, NY, USA), ACM
Press, 1999, pp. 341–350.

142. , A strong and easily computable separation bound for arithmetic expres-
sions involving radicals, Algorithmica 27 (2000), 87–99.

143. Christoph Burnikel, Stefan Funke, Kurt Mehlhorn, Stefan Schirra, and Susanne
Schmitt, A separation bound for real algebraic expressions, Proceedings of the 9th
Annual European Symposium on algorithms (ESA 2001) (F. Meyer auf der Heide,
ed.), LNCS, vol. 2161, Springer, Heidelberg, 2001, pp. 254–265.

144. Christoph Burnikel, Stefan Funke, and Michael Seel, Exact geometric computation
using cascading, International Journal of Computational Geometry and Applica-
tions 11 (2001), no. 3, 245–266.

145. Michael Bussieck, Optimal lines in public rail transport, Ph.D. thesis, Technische
Universität Braunschweig, 1998.

146. David R. Butenhof, Programming with POSIX threads, Addison-Wesley, 1997.
147. Rajkumar Buyya (ed.), High performance cluster computing: Programming and

applications, Prentice Hall PTR, Upper Saddle River, NJ, USA, 1999.
148. C++ applications, http://public.research.att.com/~bs/applications.html,

2009.
149. Scott Camazine, Nigel R. Franks, James Sneyd, Eric Bonabeau, Jean-Louis

Deneubourg, and Guy Theraula, Self-organization in biological systems, Princeton
University Press, Princeton, NJ, USA, 2001.

150. George C. Caragea, A. Beliz Saybasili, Xingzhi Wen, and Uzi Vishkin, Brief an-
nouncement: Performance potential of an easy-to-program PRAM-on-chip proto-
type versus state-of-the-art processor, SPAA 2009: Proceedings of the 21st Annual
ACM Symposium on Parallel Algorithms and Architectures, Calgary, Alberta,
Canada, August 11-13, 2009, ACM, 2009, pp. 163–165.

151. CGAL: Computational Geometry Algorithms Library, http://www.cgal.org/,
2009, Version 3.4.

152. CGAL user and reference manual, 2009, http://www.cgal.org/Manual/index.
html.

153. cgmLIB: A library for coarse-grained parallel computing, http://lib.cgmlab.

org/, 2003, version 0.9.5 Beta.
154. Arjav J. Chakravarti, Gerald Baumgartner, and Mario Lauria, The organic grid:

Self-organizing computation on a peer-to-peer network, IEEE Transactions on Sys-
tems, Man, and Cybernetics, Part A: Systems and Humans 35 (2005), no. 3,
373–384.

155. Bradford L. Chamberlain, David Callahan, and Hans P. Zima, Parallel pro-
grammability and the Chapel language, Int. J. High Perform. Comput. Appl. 21
(2007), no. 3, 291–312.

Bibliography 463

156. Albert Chan and Frank Dehne, CGMgraph/CGMlib: Implementing and testing
CGM graph algorithms on PC clusters, PVM/MPI (Jack Dongarra, Domenico
Laforenza, and Salvatore Orlando, eds.), LNCS, vol. 2840, Springer, Heidelberg,
2003, pp. 117–125.

157. Albert Chan, Frank Dehne, and Ryan Taylor, CGMGRAPH/CGMLIB: Imple-
menting and testing CGM graph algorithms on PC clusters and shared memory
machines, International Journal of High Performance Computing Applications 19
(2005), no. 1, 81–97.

158. Timothy M. Chan and Eric Y. Chen, Optimal in-place algorithms for 3-D convex
hulls and 2-D segment intersection, Proceedings of the 25th Annual ACM Sym-
posium on Computational Geometry (New York, NY, USA), ACM Press, 2009,
pp. 80–87.

159. Rohit Chandra, Ramesh Menon, Leo Dagum, David Kohr, Dror Maydan, and Jeff
McDonald, Parallel programming in openMP, Morgan Kaufmann, San Francisco,
2000.

160. Ee-Chien Chang, Sung W. Choi, DoYong Kwon, Hyungja Park, and Chee-Keng
Yap, Shortest path amidst disc obstacles is computable, Proceedings of the 21st An-
nual ACM Symposium on Computational Geometry, ACM Press, 2005, pp. 116–
125.

161. Barbara Chapman, Gabriele Jost, and Ruud van der Pas, Using OpenMP:
Portable shared memory parallel programming, MIT Press, 2007.

162. Philippe Charles, Christian Grothoff, Vijay A. Saraswat, Christopher Donawa,
Allan Kielstra, Kemal Ebcioglu, Christoph von Praun, and Vivek Sarkar, X10:
an object-oriented approach to non-uniform cluster computing, OOPSLA, 2005,
pp. 519–538.

163. Bernard Chazelle, Triangulating a simple polygon in linear time, Proceedings of
the 31st Annual IEEE Symposium on Foundations of Computer Science, 1990,
pp. 29–38.

164. , Triangulating a simple polygon in linear time, Discrete Computational
Geometry 6 (1991), 485–524.

165. , Cuttings, Handbook of Data Structures and Applications, CRC Press,
2005.

166. Jianer Chen, Iyad A. Kanj, and Ge Xia, Improved parameterized upper bounds for
vertex cover, Proceedings of the 31st International Symposium on Mathematical
Foundations of Computer Science (MFCS ’06) (Rastislav Kralovic and Pawel
Urzyczyn, eds.), LNCS, vol. 4162, Springer, Heidelberg, 2006, pp. 238–249.

167. Boris V. Cherkassky, Andrew V. Goldberg, and Tomasz Radzik, Shortest paths
algorithms: Theory and experimental evaluation, Mathematical Programming 73
(1996), 129–174.

168. Yi-Jen Chiang, Michael T. Goodrich, Edward F. Grove, Roberto Tamassia, Dar-
ren Erik Vengroff, and Jeffrey Scott Vitter, External-memory graph algorithms,
Proceedings of the 6th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), 1995, pp. 139–149.

169. Samir Chopra, E.R. Gorres, and M.R. Rao, Solving the Steiner tree problem on a
graph using branch and cut, ORSA Journal on Computing 4 (1992), 320–335.

170. Samir Chopra and M.R. Rao, The Steiner tree problem I: Formulations, compo-
sitions and extension of facets, Mathematical Programming 64 (1994), 209–229.

171. El-Arbi Choukhmane, Une heuristique pour le probleme de l’arbre de Steiner,
RAIRO Rech. Opér. 12 (1978), 207–212.

464 Bibliography

172. Nicos Christofides, Worst-case analysis of a new heuristic for the traveling sales-
man problem, Tech. Report 388, GSIA, Carnegie-Mellon University, Pittsburgh,
1976.

173. Chris Chu and Yiu-Chung Wong, Fast and accurate rectilinear Steiner minimal
tree algorithm for VLSI design, ISPD ’05: Proceedings of the 2005 international
symposium on Physical design (New York, NY, USA), ACM Press, 2005, pp. 28–
35.

174. Cilk Arts, Multicore programming software, http://www.cilk.com/, 2009.
175. CLAPACK: f2c’ed version of LAPACK, http://www.netlib.org/clapack/,

2008, Version 3.1.1.1.
176. David R. Clark and J. Ian Munro, Efficient suffix trees on secondary storage,

Proceedings of the 7th Annual ACM-SIAM Symposium On Discrete Algorithms
(SODA) (1996), 383–391.

177. Kenneth L. Clarkson, Safe and effective determinant evaluation, Proceedings of
the 31st IEEE Symposium on Foundations of Computer Science (FOCS) (Pitts-
burgh, PA), October 1992, pp. 387–395.

178. Alan Cobham, The intrinsic computational difficulty of functions, Proc. 1964 In-
ternational Congress for Logic, Methodology, and Philosophy of Science (Y. Bar-
Hillel, ed.), North-Holland, Amsterdam, 1964, pp. 24–30.

179. Ernest J. Cockayne and Denton E. Hewgill, Exact computation of Steiner minimal
trees in the plane, Information Processing Letters 22 (1986), 151–156.

180. , Improved computation of plane Steiner minimal trees, Algorithmica 7
(1992), no. 2/3, 219–229.

181. Marie Coffin and Matthew J. Saltzmann, Statistical analysis of computational
tests of algorithms and heuristics, INFORMS Journal on Computing 12 (2000),
no. 1, 24–44.

182. Douglas Comer, The ubiquitous B-tree, ACM Computing Surveys (1979), 121–
137.

183. William J. Conover, Practical nonparametric statistics, John Wiley & Sons, 1980.
184. Stephen A. Cook, The complexity of theorem-proving procedures, Proceedings

of the 3rd Annual ACM Symposium on Theory of Computing (STOC), 1971,
pp. 151–158.

185. William J. Cook, William H. Cunningham, William R. Pulleyblank, and Alexan-
der Schrijver, Combinatorial optimization, Wiley, New York, 1998.

186. Don Coppersmith and Shmuel Winograd, Matrix multiplication via arithmetic
progressions, J. Symb. Comput. 9 (1990), no. 3, 251–280.

187. Massimo Coppola and Martin Schmollinger, Hierarchical models and software
tools for parallel programming, Algorithms for Memory Hierarchies (Ulrich Meyer,
Peter Sanders, and Jop F. Sibeyn, eds.), LNCS, vol. 2625, Springer, Heidelberg,
2003, pp. 320–354.

188. Luigi Cordella, Pasquale Foggia, Carlo Sansone, and Mario Vento, An improved
algorithm for matching large graphs, 3rd IAPR-TC15 Workshop on Graph-based
Representations in Pattern Recognition, May 2001.

189. The Core library, http://cs.nyu.edu/exact/core_pages/index.html, 2004,
Version 1.7.

190. Thomas H. Cormen and Michael T. Goodrich, A bridging model for parallel com-
putation, communication, and I/O, ACM Computing Surveys 28 (1996), Article
No. 208.

191. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein,
Introduction to algorithms, 3rd ed., MIT Press, 2009.

Bibliography 465

192. Ricardo Corrêa, Inês Dutra, Mario Fiallos, and Fernando Gomes (eds.), Mod-
els for parallel and distributed computation. Theory, algorithmic techniques and
applications, Kluwer, 2002.

193. Michael Cosnard and Denis Trystram, Parallel algorithms and architectures, PWS
Publishing Co., 1995.

194. Richard Courant and Herbert Robbins,What is mathematics?, Oxford University
Press, 1941.

195. Andreas Crauser and Kurt Mehlhorn, LEDA-SM, extending LEDA to secondary
memory, 3rd International Workshop on Algorithmic Engineering (WAE) (Jef-
frey Scott Vitter and Christos D. Zaroliagis, eds.), LNCS, vol. 1668, Springer,
Heidelberg, 1999, pp. 228–242.

196. Harlan P. Crowder, Ron S. Dembo, and John M. Mulvey, Reporting computa-
tional experiments in mathematical programming, Mathematical Programming 15
(1978), 316–329.

197. , On reporting computational experiments with mathematical software,
ACM Transactions on Mathematical Software 5 (1979), no. 2, 193–203.

198. David E. Culler, Richard M. Karp, David Patterson, Abhijit Sahay, Eunice E.
Santos, Klaus E. Schauser, Ramesh Subramonian, and Thorsten von Eicken, LogP:
a practical model of parallel computation, Commun. ACM 39 (1996), no. 11, 78–
85.

199. David E. Culler, Jaswinder P. Singh, and Anoop Gupta, Parallel computer archi-
tecture - a hardware/software approach, Morgan Kaufmann, 1999.

200. Ole-Johan Dahl, Edsger W. Dijkstra, and Charles A. R. Hoare, Structured pro-
gramming, Academic Press, New York, 1972.

201. Aldo Dall‘Osso, Computer algebra systems as mathematical optimizing compilers,
Science of Computer Programming 59 (2006), no. 3, 250–273.

202. George B. Dantzig, Linear programming and extensions, Princeton University
Press, Princeton, NJ, 1963.

203. Dash optimization – Leading optimization software, http://www.

dashoptimization.com/home/products/products_optimizer.html, 2007.
204. M. Poggi de Aragão and Renato F. Werneck, On the implementation of MST-

based heuristics for the Steiner problem in graphs, Proceedings of the Fourth In-
ternational Workshop on Algorithm Engineering and Experiments (ALENEX’02)
(David M. Mount and Clifford Stein, eds.), LNCS, vol. 2409, Springer, Heidelberg,
2002, pp. 1–15.

205. Mark de Berg, Linear size binary space partitions for fat objects, Proceedings
of the 3rd Annual European Symposium on Algorithms (ESA 1995) (Paul G.
Spirakis, ed.), LNCS, vol. 979, Springer, Heidelberg, 1995, pp. 252–263.

206. Mark de Berg, Otfried Cheong, Marc van Krefeld, and Mark Overmars, Com-
putational geometry: Algorithms and applications, 3rd rev. ed., Springer-Verlag,
2008.

207. Mark de Berg, A. Frank van der Stappen, Jules Vleugels, and Matthew J. Katz,
Realistic input models for geometric algorithms, Algorithmica 34 (2002), no. 1,
81–97.

208. Maurice de Kunder, Geschatte grootte van het geïndexeerde world wide web, Mas-
ter’s thesis, Universiteit van Tilburg, 2008.

209. Pilar de la Torre and Clyde P. Kruskal, Submachine locality in the bulk syn-
chronous setting (extended abstract), Proc. 2nd Intl. Euro-Par Conference (Euro-
Par’96) - Volume II, Springer-Verlag, 1996, pp. 352–358.

210. Angela Dean and Daniel Voss, Design and analysis of experiments, Springer Texts
in Statistics, Springer, 1999.

466 Bibliography

211. Rina Dechter and Judea Pearl, Tree clustering for constraint networks, Artificial
Intelligence 38 (1989), no. 3, 353–366.

212. Frank Dehne, Guest editor’s introduction, Algorithmica 24 (1999), no. 3-4, 173–
176.

213. , Guest editor’s introduction, Algorithmica 45 (2006), no. 3, 263–267.
214. Frank Dehne, Wolfgang Dittrich, and David Hutchinson, Efficient external me-

mory algorithms by simulating coarse-grained parallel algorithms, Algorithmica
36 (2003), 97–122.

215. Frank Dehne, Wolfgang Dittrich, David Hutchinson, and Anil Maheshwari, Bulk
synchronous parallel algorithms for the external memory model, Theory Comput.
Systems 35 (2002), 567–597.

216. Frank Dehne, Andreas Fabri, and Andrew Rau-Chaplin, Scalable parallel compu-
tational geometry for coarse grained multicomputers., Int. J. Comput. Geometry
Appl. 6 (1996), no. 3, 379–400.

217. Theodorus J. Dekker, A floating-point technique for extending the available pre-
cision, Numerische Mathematik 18 (1971), no. 3, 224–242.

218. Daniel Delling, Time-dependent SHARC-routing, Proceedings of the 16th An-
nual European Symposium on Algorithms (ESA’08) (Dan Halperin and Kurt
Mehlhorn, eds.), LNCS, vol. 5193, Springer, Heidelberg, 2008, Best Student Pa-
per Award - ESA Track B, pp. 332–343.

219. , Engineering and augmenting route planning algorithms, Ph.D. thesis,
Universität Karlsruhe (TH), Fakultät für Informatik, 2009.

220. , Time-dependent SHARC-routing, Algorithmica (2009), Special Issue: Eu-
ropean Symposium on Algorithms 2008.

221. Daniel Delling, Robert Geisberger, Peter Sanders, Dominik Schultes, and Chris-
tian Vetter, Exact routing in large road networks using contraction hierarchies,
submitted to Transportation Science, 2009.

222. Daniel Delling and Giacomo Nannicini, Bidirectional core-based routing in dy-
namic time-dependent road networks, Proceedings of the 19th International Sym-
posium on Algorithms and Computation (ISAAC’08) (Seok-Hee Hong, Hiroshi
Nagamochi, and Takuro Fukunaga, eds.), LNCS, vol. 5369, Springer, Heidelberg,
2008, pp. 813–824.

223. Daniel Delling, Thomas Pajor, and Dorothea Wagner, Accelerating multi-modal
route planning by access-nodes, Proceedings of the 17th Annual European Sym-
posium on Algorithms (ESA’09) (Amos Fiat and Peter Sanders, eds.), LNCS, vol.
5757, Springer, Heidelberg, September 2009, pp. 587–598.

224. Daniel Delling, Peter Sanders, Dominik Schultes, and Dorothea Wagner, Engi-
neering route planning algorithms, Algorithmics (Jürgen Lerner, Dorothea Wag-
ner, and Katharina A. Zweig, eds.), LNCS, vol. 5515, Springer, Heidelberg, 2009,
pp. 117–139.

225. , Highway hierarchies star, Shortest Path Computations: Ninth DIMACS
Challenge (Camil Demetrescu, Andrew V. Goldberg, and David S. Johnson, eds.),
DIMACS Book, vol. 74, American Mathematical Society, 2009, pp. 141–174.

226. Daniel Delling and Dorothea Wagner, Landmark-based routing in dynamic graphs,
Proceedings of the 6th Workshop on Experimental Algorithms (WEA’07) (Camil
Demetrescu, ed.), LNCS, vol. 4525, Springer, Heidelberg, 2007, pp. 52–65.

227. , Pareto paths with SHARC, Proceedings of the 8th International Sympo-
sium on Experimental Algorithms (SEA’09) (Jan Vahrenhold, ed.), LNCS, vol.
5526, Springer, Heidelberg, June 2009, pp. 125–136.

Bibliography 467

228. , Time-dependent route planning, Robust and Online Large-Scale Opti-
mization (Ravindra K. Ahuja, Rolf H. Möhring, and Christos Zaroliagis, eds.),
LNCS, vol. 5868, Springer, Heidelberg, 2009, pp. 207–230.

229. Roman Dementiev, Juha Kärkkäinen, Jens Mehnert, and Peter Sanders, Better
external memory suffix array construction, ACM Journal of Experimental Algo-
rithms 12 (2008), no. 3.4, 1–24.

230. Roman Dementiev, Lutz Kettner, Jens Mehnert, and Peter Sanders, Engineering
a sorted list data structure for 32 bit keys, ALENEX04: Algorithm Engineering
and Experiments, SIAM, 2004, pp. 142–151.

231. Roman Dementiev, Lutz Kettner, and Peter Sanders, STXXL: Standard template
library for XXL data sets, Software: Practice and Experience 38 (2008), no. 6,
589–637.

232. Camil Demetrescu, Irene Finocchi, and Andrea Ribichini, Trading off space for
passes in graph streaming problems, Proceedings of the 17th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), 2006, pp. 714–723.

233. Camil Demetrescu, Andrew V. Goldberg, and David S. Johnson (eds.), Shortest
path computations: Ninth DIMACS challenge, DIMACS Book, vol. 74, American
Mathematical Society, 2009.

234. Camil Demetrescu and Giuseppe F. Italiano,What do we learn from experimental
algorithmics?, MFCS (Mogens Nielsen and Branislav Rovan, eds.), LNCS, vol.
1893, Springer, Heidelberg, 2000, pp. 36–51.

235. Camil Demetrescu and Giuseppe F. Italiano, Dynamic shortest paths and tran-
sitive closure: Algorithmic techniques and data structures, Journal of Discrete
Algorithms 4 (2006), no. 3.

236. Richard A. DeMillo, W. Michael McCracken, R. J. Martin, and John F. Passafi-
ume, Software testing and evaluation, Benjamin-Cummings Publishing, Redwood
City, 1987.

237. James Demmel and Yozo Hida, Fast and accurate floating point summation with
application to computational geometry, Numerical Algorithms 37 (2005), 101–112.

238. National Institute of Standards Department of Commerce and Technology, An-
nouncing request for candidate algorithm nominations for the advanced encryption
standard (AES), Federal Register 62 (1997), no. 177, 48051–48058.

239. René Descartes, Principia philosophiae, Ludovicus Elzevirius, 1644.
240. Amit Deshpande and Daniel A. Spielman, Improved smoothed analysis of the

shadow vertex simplex method, Proceedings of the 46th Annual IEEE Symposium
on Foundations of Computer Science (FOCS), 2005, pp. 349–356.

241. Robert B. Dial, Algorithm 360: shortest-path forest with topological ordering [H],
Communications of the ACM 12 (1969), no. 11, 632–633.

242. Reinhard Diestel, Graph theory, Graduate Texts in Mathematics, vol. 173,
Springer, 2005.

243. Martin Dietzfelbinger, Primality testing in polynomial time, Springer, 2004.
244. Edsger W. Dijkstra, A note on two problems in connexion with graphs, Numerische

Mathematik 1 (1959), 269–271.
245. , Notes on structured programming, circulated privately, April 1970.
246. Paul DiLascia, What makes good code good?, MSDN Magazine 19 (2004), no. 7,

144.
247. John Dilley, Bruce Maggs, Jay Parikh, Harald Prokop, Ramesh Sitaraman, and

Bill Weihl, Globally distributed content delivery, IEEE Internet Computing 6
(2002), no. 5, 50–58.

248. DIMACS implementation challenges, http://dimacs.rutgers.edu/

Challenges/, 2006.

468 Bibliography

249. DIMACS TSP challenge, http://www.research.att.com/~dsj/chtsp/, 2006.
250. Website of Dinkumware’s STL implementation, http://www.dinkumware.com/

cpp.aspx, 2006.
251. Yann Disser, Matthias Müller–Hannemann, and Mathias Schnee, Multi-criteria

shortest paths in time-dependent train networks, Proceedings of the 7th Workshop
on Experimental Algorithms (WEA’08) (Catherine C. McGeoch, ed.), LNCS, vol.
5038, Springer, Heidelberg, June 2008, pp. 347–361.

252. DOC++, http://docpp.sourceforge.net/, 2003.
253. Reza Dorrigiv, Alejandro López-Ortiz, and Alejandro Salinger, Optimal speedup

on a low-degree multi-core parallel architecture (LoPRAM), SPAA ’08: Proceed-
ings of the twentieth annual symposium on Parallelism in algorithms and archi-
tectures (New York, NY, USA), ACM, 2008, pp. 185–187.

254. Craig C. Douglas, Jonathan Hu, Markus Kowarschik, Ulrich Rüde, and Christian
Weiss, Cache optimization for structured and unstructured grid multigrid, Elect.
Trans. Numer. Anal. 10 (2000), 21–40.

255. Peter Drayton, Ben Albahari, and Ted Neward, C# in a nutshell: A desktop quick
reference, second ed., In a nutshell, O’Reilly & Associates, Inc., 2003.

256. Stuart E. Dreyfus and Robert A. Wagner, The Steiner problems in graphs, Net-
works 1 (1971), 195–207.

257. Ding-Zhu Du and Xinzhen Cheng (eds.), Steiner trees in industries, Kluwer Aca-
demic Publishers, 2001.

258. Ding-Zhu Du and Frank K. Hwang, A proof of the Gilbert-Pollak conjecture on
the Steiner ratio, Algorithmica 7 (1992), 121–135.

259. Zilin Du, Maria Eleftheriou, José E. Moreira, and Chee-Keng Yap, Hypergeo-
metric functions in exact geometric computation, Electronic Notes in Theoretical
Computer Science 66 (2002), no. 1, 53–64.

260. Leticia Duboc, David S. Rosenblum, and Tony Wicks, A framework for modelling
and analysis of software systems scalability, ICSE ’06: Proceeding of the 28th
International Conference on Software Engineering (New York, NY, USA), ACM
Press, 2006, pp. 949–952.

261. Cees W. Duin, Steiner’s problem in graphs: reduction, approximation, variation,
Ph.D. thesis, Universiteit van Amsterdam, 1994.

262. Cees W. Duin and Anton Volgenant, Reduction tests for the Steiner problem in
graphs, Networks 19 (1989), 549–567.

263. Cees W. Duin and Stefan Voss, Efficient path and vertex exchange in Steiner tree
algorithms, Networks 29 (1997), 89–105.

264. Joe W. Duran and John J. Wiorkowski, Quantifying software validity by sampling,
IEEE Transactions on Reliability R-29 (1980), 141–144.

265. The ECLiPSe constraint programming system, http://eclipse.crosscoreop.

com/, 2007.
266. ECMA-334 C# language specification, www.ecma-international.org/

publications/files/ecma-st/ECMA-334.pdf, 2006.
267. Stefan Edelkamp, Shahid Jabbar, and Stefan Schrödl, External A∗, Proc. KI 2004

(Susanne Biundo, Thom W. Frühwirth, and Günther Palm, eds.), LNCS, vol.
3238, Springer, Heidelberg, 2004, pp. 226–240.

268. Herbert Edelsbrunner and Ernst P. Mücke, Simulation of simplicity: A technique
to cope with degenerate cases in geometric algorithms, Proceedings of the 4th
Annual ACM Symposium on Computational Geometry, 1988, pp. 118–133.

269. Jack Edmonds, Paths, trees, and flowers, Canadian J. Math. 17 (1965), 449–467.

Bibliography 469

270. Niklas Eén and Niklas Sörensson, An extensible SAT-solver, Proc. 6th Theory and
Applications of Satisfiability Testing (SAT ’03) (Enrico Giunchiglia and Armando
Tacchella, eds.), LNCS, vol. 2919, Springer, Heidelberg, 2003, pp. 502–518.

271. Wolfgang A. Eiden, Präzise Unschärfe – Informationsmodellierung durch Fuzzy-
Mengen, ibidem-Verlag, 2002.

272. , Scheduling with fuzzy methods, Operations Research Proceedings 2004
(H. Fleuren, D. den Hertog, and P. Kort, eds.), Operations Research Proceedings,
vol. 2004, Springer-Verlag, 2005, pp. 377–384.

273. Ioannis Z. Emiris and John F. Canny, A general approach to removing degenera-
cies, SIAM J. Comput. 24 (1995), no. 3, 650–664.

274. David Eppstein, Quasiconvex analysis of backtracking algorithms, Proceedings of
the 15th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), SIAM,
2004, pp. 788–797.

275. Carl Erikson, Hierarchical levels of detail to accelerate the rendering of large static
and dynamic polygonal environments, Ph.D. thesis, University of North Carolina,
2000.

276. EXACUS: Efficient and exact algorithms for curves and surfaces, http://www.
mpi-inf.mpg.de/projects/EXACUS/, 2006, Version 1.0.

277. Exploratory data analysis, http://www.itl.nist.gov/div898/handbook/eda/

eda.htm, 2006.
278. Andreas Fabri, Geert-Jan Giezeman, Lutz Kettner, Stefan Schirra, and Sven

Schönherr, On the design of CGAL, a computational geometry algorithms library,
Software Practice and Experience 30 (2000), no. 11, 1167–1202.

279. Carlo Fantozzi, Andrea Pietracaprina, and Geppino Pucci, Translating subma-
chine locality into locality of reference, Proc. 18th Intl. Parallel and Distributed
Processing Symp. (IPDPS’04), CD-ROM, IEEE Computer Society, 2004.

280. Martin Farach-Colton, Paolo Ferragina, and S. Muthukrishnan, On the sorting
complexity of suffix tree construction, Journal of the ACM 47 (2000), 987–1011.

281. Ricardo Farias and Claudio T. Silva, Out-of-core rendering of large, unstructured
grids, IEEE Computer Graphics and Applications 21 (2001), no. 4, 42–50.

282. Kayvon Fatahalian, Timothy J. Knight, Mike Houston, Mattan Erez, Daniel Re-
iter Horn, Larkhoon Leem, Ji Young Park, Manman Ren, Alex Aiken, William J.
Dally, and Pat Hanrahan, Sequoia: Programming the memory hierarchy, Proceed-
ings of the 2006 ACM/IEEE Conference on Supercomputing, 2006.

283. Panagiota Fatourou, Paul Spirakis, Panagiotis Zarafidis, and Anna Zoura, Im-
plementation and experimental evaluation of graph connectivity algorithms using
LEDA, WAE: International Workshop on Algorithm Engineering (Jeffrey Scott
Vitter and Christos D. Zaroliagis, eds.), LNCS, vol. 1668, Springer, Heidelberg,
1999, pp. 124–138.

284. Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian
Zhang, On graph problems in a semi-streaming model, Proceedings of the 31st
International Colloquium on Automata, Languages and Programming (ICALP)
(Josep Díaz, Juhani Karhumäki, Arto Lepistö, and Donald Sannella, eds.), LNCS,
vol. 3142, Springer, Heidelberg, 2004, pp. 531–543.

285. Paolo Ferragina and Roberto Grossi, The string B-tree: A new data structure for
string search in external memory and its applications, Journal of the ACM 46
(1999), 236–280.

286. Amos Fiat, Richard M. Karp, Michael Luby, Lyle A. McGeoch, Daniel D. Sleator,
and Neal E. Young, Competitive paging algorithms, J. Algorithms 12 (1991), no. 4,
685–699.

470 Bibliography

287. Amos Fiat and Gerhard J. Woeginger (eds.), Online algorithms: The state of the
art, Springer, 1998.

288. Rudolf Fleischer, Bernard M. E. Moret, and Erik Meineche Schmidt (eds.), Ex-
perimental algorithmics: From algorithm design to robust and efficient software,
LNCS, no. 2547, Springer, Heidelberg, 2002.

289. http://blog.flickr.net/en/2008/11/03/3-billion/, 2008.
290. Christodoulos A. Floudas and Panos M. Pardalos, A collection of test problems for

constrained global optimization problems, LNCS, vol. 455, Springer, Heidelberg,
1990.

291. Pasquale Foggia, The VFLib graph matching library, version 2.0, http://amalfi.
dis.unina.it/graph/db/vflib-2.0/doc/vflib.html, March 2001.

292. Fedor V. Fomin, Fabrizio Grandoni, and Dieter Kratsch, Measure and conquer:
Domination – a case study, Proc. 32nd International Colloquium on Automata,
Languages and Programming (ICALP ’05) (Luís Caires, Giuseppe F. Italiano,
Luís Monteiro, Catuscia Palamidessi, and Moti Yung, eds.), LNCS, vol. 3580,
Springer, Heidelberg, 2005, pp. 191–203.

293. Lester Randolph Ford and Delbert Ray Fulkerson, Flows in networks, Princeton
University Press, Princeton, NJ, 1963.

294. Steven Fortune, A sweepline algorithm for Voronoi diagrams, Proceedings of the
2nd Annual ACM Symposium on Computational Geometry (New York, NY,
USA), ACM Press, 1986, pp. 313–322.

295. , Stable maintenance of point set triangulations in two dimensions, Pro-
ceedings of the 30th Annual IEEE Symposium on Foundations of Computer Sci-
ence (FOCS), 1989, pp. 494–499.

296. , Polyhedral modelling with exact arithmetic, SMA ’95: Proceedings of the
third ACM symposium on Solid modeling and applications (New York, NY, USA),
ACM, 1995, pp. 225–234.

297. , Introduction, Algorithmica 27 (2000), no. 1, 1–4.
298. Steven Fortune and Christopher J. van Wyk, Efficient exact arithmetic for com-

putational geometry, Proceedings of the 9th Annual ACM Symposium on Com-
putational Geometry, 1993, pp. 163–172.

299. , Static analysis yields efficient exact integer arithmetic for computational
geometry, ACM Transactions on Graphics 15 (1996), no. 3, 223–248.

300. Steven Fortune and James Wyllie, Parallelism in random access machines, Pro-
ceedings of the 10th ACM Symposium on Theory of Computing (STOC), 1978,
pp. 114–118.

301. Ulrich Fößmeier and Michael Kaufmann, On exact solutions for the rectilinear
Steiner tree problem, Tech. Report WSI-96-09, Universität Tübingen, 1996.

302. , On exact solutions for the rectilinear Steiner tree problem Part I: Theo-
retical results, Algorithmica 26 (2000), 68–99.

303. Ian T. Foster and Adriana Iamnitchi, On death, taxes, and the convergence of
peer-to-peer and grid computing, Proceedings of the 2nd International Workshop
on Peer-to-Peer Systems (IPTPS’03) (M. Frans Kaashoek and Ion Stoica, eds.),
LNCS, vol. 2735, Springer, Heidelberg, 2003, pp. 118–128.

304. Robert Fourer, David M. Gay, and Brian W. Kernighan, AMPL: A modeling
language for mathematical programming, Brooks/Cole Publishing Company, 2002.

305. Geoffrey Fox, Roy Williams, and Paul Messina, Parallel computing works!, Mor-
gan Kaufmann, 1994.

306. Leonor Frias, Jordi Petit, and Salvador Roura, Lists revisited: Cache-conscious
STL lists, WEA (Carme Àlvarez and Maria J. Serna, eds.), LNCS, vol. 4007,
Springer, Heidelberg, 2006, pp. 121–133.

Bibliography 471

307. Jerome H. Friedman, Jon L. Bentley, and Raphael A. Finkel, An algorithm for
finding best matches in logarithmic expected time, ACM Transactions on Mathe-
matical Software 3 (1977), no. 3, 209–226.

308. Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar Ramachandran,
Cache-oblivious algorithms, Proceedings of the 40th Annual IEEE Symposium
on Foundations of Computer Science (FOCS), IEEE Computer Society, 1999,
pp. 285–298.

309. Bernhard Fuchs, Walter Kern, Daniel Mölle, Stefan Richter, Peter Rossmanith,
and Xinhui Wang, Dynamic programming for minimum Steiner trees, Theory
Comput. Syst. 41 (2007), no. 3, 493–500.

310. Bernhard Fuchs, Walter Kern, and Xinhui Wang, The number of tree stars is
O∗(1.357n), Algorithmica 49 (2007), 232–244.

311. Stefan Funke, Christian Klein, Kurt Mehlhorn, and Susanne Schmitt, Controlled
perturbation for Delaunay triangulations, Proceedings of the 16th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), 2005, pp. 1047–1056.

312. Zvi Galil, Silvio Micali, and Harold N. Gabow, An O(EV log V) algorithm for
finding a maximal weighted matching in general graphs, SIAM J. Comput. 15
(1986), no. 1, 120–130.

313. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design pat-
terns: Elements of reusable object-oriented software, Addison-Wesley, 1995.

314. Joseph L. Ganley and James P. Cohoon, Optimal rectilinear Steiner minimal trees
in O(n22.62n) time, Proc. 6th Canad. Conf. on Computational Geometry, 1994,
pp. 308–313.

315. Emden R. Gansner and Stephen C. North, An open graph visualization system
and its applications to software engineering, Software — Practice and Experience
30 (2000), no. 11, 1203–1233.

316. Michael R. Garey, Ronald L. Graham, and David S. Johnson, The complexity
of computing Steiner minimal trees, SIAM Journal on Applied Mathematics 32
(1977), 835–859.

317. Michael R. Garey and Donald S. Johnson, The rectilinear Steiner tree problem is
NP-complete, SIAM Journal on Applied Mathematics 32 (1977), 826–834.

318. Bernd Gärtner, Martin Henk, and Günter M. Ziegler, Randomized simplex algo-
rithms on Klee-Minty cubes, Combinatorica 18 (1998), no. 3, 349–372.

319. Saul I. Gass and Thomas L. Saaty, The computational algorithm for the parametric
objective function, Naval Research Logistics Quarterly 2 (1955), 39.

320. Marina Gavrilova, Weighted Voronoi diagrams in biology, http://pages.cpsc.
ucalgary.ca/~marina/vpplants/, 2007.

321. Website of the GNU GCC project, http://gcc.gnu.org/, 2006.
322. Assefaw H. Gebremedhin, Isabelle Guerin Lassous, Jens Gustedt, and Jan A.

Telle, PRO: A model for parallel resource-optimal computation, Proc. 16th Int.
Symp. High Performance Computing Systems and Applications (HPCS), IEEE
Computer Society, 2002, pp. 106–113.

323. Robert Geisberger, Peter Sanders, Dominik Schultes, and Daniel Delling, Con-
traction hierarchies: Faster and simpler hierarchical routing in road networks, Pro-
ceedings of the 7th Workshop on Experimental Algorithms (WEA’08) (Cather-
ine C. McGeoch, ed.), LNCS, vol. 5038, Springer, Heidelberg, June 2008, pp. 319–
333.

324. Jutta Geldermann and Heinrich Rommelfanger, Fuzzy Sets, Neuronale Netze und
Künstliche Intelligenz in der industriellen Produktion, VDI-Verlag, Düsseldorf,
2003.

472 Bibliography

325. Ian P. Gent, Stuart A. Grant, Ewen MacIntyre, Patrick Prosser, Paul Shaw,
Barbara M. Smith, and Toby Walsh, How not to do it, Tech. Report 97.27, School
of Computer Studies, University of Leeds, May 1997.

326. Ian P. Gent, Christopher Jefferson, and Ian Miguel, MINION: A fast, scal-
able, constraint solver, Proc. 17th European Conference on Artificial Intelligence
(ECAI ’06) (Gerhard Brewka, Silvia Coradeschi, Anna Perini, and Paolo Traverso,
eds.), Frontiers in Artificial Intelligence and Applications, vol. 141, IOS Press,
2006, pp. 98–102.

327. Ian P. Gent and Toby Walsh, CSPLIB: A benchmark library for constraints, Tech.
Report APES-09-1999, Department of Computer Science, University of Strath-
clyde, Glasgow, 1999.

328. , CSPLIB: A benchmark library for constraints, Principles and Practice of
Constraint Programming - CP’99 (Joxan Jaffar, ed.), LNCS, vol. 1713, Springer,
Heidelberg, 1999, pp. 480–481.

329. Alexandros V. Gerbessiotis and Leslie G. Valiant, Direct bulk-synchronous parallel
algorithms, J. Parallel Distrib. Comput. 22 (1994), no. 2, 251–267.

330. A. J. Geurts, A contribution to the theory of condition, Numerische Mathematik
39 (1982), 85–96.

331. Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli, Fundamentals of software
engineering, Prentice Hall, New Jersey, 1991.

332. Phillip B. Gibbons, Yossi Matias, and Vijaya Ramachandran, Can a shared-
memory model serve as a bridging model for parallel computation?, Theory Com-
put. Syst. 32 (1999), no. 3, 327–359.

333. Robert Giegerich and Stefan Kurtz, From Ukkonen to McCreight and Weiner:
A unifying view of linear-time suffix tree construction, Algorithmica 19 (1997),
no. 3, 331–353.

334. GMP: GNU Multiple Precision Arithmetic Library, http://www.swox.com/gmp/,
2006, Version 4.2.1.

335. Stefan Goedecker and Adolfy Hoisie, Performance optimization of numerically
intensive codes, Society for Industrial and Applied Mathematics, 2001.

336. Michael X. Goemans and David P. Williamson, A general approximation technique
for constrained forest problems, SIAM Journal on Computing 24 (1995), no. 2,
296–317.

337. Simon Gog, Broadword computing and Fibonacci code speed up compressed suffix
arrays, SEA ’09: Proceedings of the 8th International Symposium on Experimen-
tal Algorithms (Jan Vahrenhold, ed.), LNCS, vol. 5526, Springer, Heidelberg,
2009, pp. 161–172.

338. Andrew V. Goldberg and Chris Harrelson, Computing the shortest path: A* search
meets graph theory, Proceedings of the 16th Annual ACM–SIAM Symposium on
Discrete Algorithms (SODA), 2005, pp. 156–165.

339. Andrew V. Goldberg, Haim Kaplan, and Renato F. Werneck, Reach for A*: Effi-
cient point-to-point shortest path algorithms, Proceedings of the 8th Workshop on
Algorithm Engineering and Experiments (ALENEX’06), SIAM, 2006, pp. 129–
143.

340. , Better landmarks within reach, Proceedings of the 6th Workshop on
Experimental Algorithms (WEA’07) (Camil Demetrescu, ed.), LNCS, vol. 4525,
Springer, Heidelberg, June 2007, pp. 38–51.

341. Andrew V. Goldberg and Bernard M. E. Moret, Combinatorial algorithms test sets
[CATS]: The ACM/EATCS platform for experimental research, Proceedings of
the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms, 17-19 January
1999, Baltimore, Maryland, 1999, pp. 913–914.

Bibliography 473

342. Andrew V. Goldberg and Renato F. Werneck, Computing point-to-point shortest
paths from external memory, Proceedings of the 7th Workshop on Algorithm
Engineering and Experiments (ALENEX’05), SIAM, 2005, pp. 26–40.

343. David Goldberg, What every computer scientist should know about floating-point
arithmetic, ACM Computing Surveys 23 (1991), no. 1, 5–48.

344. Andrei Goldchleger, Alfredo Goldman, Ulisses Hayashida, and Fabio Kon, The
implementation of the BSP parallel computing model on the integrade grid mid-
dleware, MGC ’05: Proceedings of the 3rd international workshop on Middleware
for grid computing (New York, NY, USA), ACM, 2005, pp. 1–6.

345. Bruce L. Golden and William R. Stewart, The traveling salesman problem – a
guided tour of combinatorial optimization, ch. Empirical analysis of heuristics,
pp. 207–249, John Wiley & Sons, 1985.

346. Herman H. Goldstine and John von Neumann, Numerical inverting of matrices
of high order II, Proc. Amer. Math. Soc. 2 (1951), 188–202, Reprinted in [774,
pp. 558–572].

347. Michael T. Goodrich, Mark Handy, Benoît Hudson, and Roberto Tamassia, Ac-
cessing the internal organization of data structures in the JDSL library, Al-
gorithm Engineering and Experimentation, International Workshop ALENEX
’99 (Michael T. Goodrich and Catherine C. McGeoch, eds.), LNCS, vol. 1619,
Springer, Heidelberg, 1999, pp. 124–139.

348. Michael T. Goodrich and Roberto Tamassia, Algorithm design: Foundations, anal-
ysis, and internet examples, Wiley, September 2001.

349. Michael T. Goodrich, Jyh-Jong Tsay, Darren E. Vengroff, and Jeffrey S. Vitter,
External-memory computational geometry, Proceedings of the 34th Annual IEEE
Symposium on Foundations of Computer Science (FOCS), 1993, pp. 714–723.

350. Naga K. Govindaraju, Scott Larsen, Jim Gray, and Dinesh Manocha, A me-
mory model for scientific algorithms on graphics processors, Proceedings of the
ACM/IEEE SC2006 Conference on High Performance Networking and Comput-
ing, November 11-17, 2006, Tampa, FL, USA, 2006, p. 89.

351. Susan Graham, Peter Kessler, and Marshall McKusick, An execution profiler for
modular programs, Software - Practice and Experience 13 (1993), 671–685.

352. Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar, Introduction
to parallel computing, Pearson Education, 2003.

353. Ananth Grama, Vipin Kumar, Sanjay Ranka, and Vineet Singh, Architecture
independent analysis of parallel programs, Proc. Intl. Conf. on Computational
Science (ICCS’01) - Part II (London, UK), Springer-Verlag, 2001, pp. 599–608.

354. Jens Gramm, Jiong Guo, Falk Hüffner, and Rolf Niedermeier, Automated genera-
tion of search tree algorithms for hard graph modification problems, Algorithmica
39 (2004), no. 4, 321–347.

355. Torbjörn Granlund, GMP: The GNU multiple precision arithmetic library, Free
Software Foundation, Boston, MA, 2006.

356. Graphviz: Graph visualization software, http://www.graphviz.org/, 2007, ver-
sion 2.16.

357. Harvey J. Greenberg, Computational testing: Why, how and how much, ORSA
Journal on Computing 2 (1990), no. 1, 94–97.

358. Daniel H. Greene, Integer line segment intersection, unpublished manuscript.
359. Daniel H. Greene and Frances F. Yao, Finite-resolution computational geometry,

Proceedings of the 27th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), 1986, pp. 143–152.

474 Bibliography

360. Douglas Gregor and Andrew Lumsdaine, The parallel BGL: A generic library for
distributed graph computations, Tech. report, Open Systems Laboratory, Indiana
University, 2005.

361. Martin Grötschel, Alexander Martin, and Robert Weismantel, The Steiner tree
packing problem in VLSI design, Mathematical Programming 78 (1997), no. 2,
265–281.

362. Penny Grubb and Armstrong A. Takang, Software maintenance: concepts and
practice, 2. ed., World Scientific, 2003.

363. GSL: GNU scientific library, http://www.gnu.org/software/gsl/, 2006, Version
1.8.

364. Leonidas J. Guibas, David Salesin, and Jorge Stolfi, Constructing strongly con-
vex approximate hulls with inaccurate primitives, SIGAL ’90: Proceedings of the
International Symposium on Algorithms (London, UK), Springer-Verlag, 1990,
pp. 261–270.

365. Thorsten Gunkel, Matthias Müller–Hannemann, and Mathias Schnee, Improved
search for night train connections, Proceedings of the 7th Workshop on Algorith-
mic Approaches for Transportation Modeling, Optimization, and Systems (AT-
MOS’07) (Christian Liebchen, Ravindra K. Ahuja, and Juan A. Mesa, eds.), In-
ternationales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss
Dagstuhl, Germany, 2007, pp. 243–258.

366. Yuri Gurevich, Philipp W. Kutter, Martin Odersky, and Lothar Thiele (eds.),
Abstract state machines, theory and applications, international workshop, ASM
2000, LNCS, vol. 1912, Springer, Heidelberg, 2000.

367. Dan Gusfield, Algorithms on strings, trees, and sequences, University of Cam-
bridge Press, 1997.

368. David B. Gustavson, The many dimensions of scalability, COMPCON, 1994,
pp. 60–63.

369. Fred G. Gustavson, Recursion leads to automatic variable blocking for dense
linear-algebra algorithms, IBM J. of Research and Development 41 (1999), no. 6,
737–756.

370. Jens Gustedt, External memory algorithms using a coarse grained paradigm, Tech.
Report 5142, INRIA Lorraine / LORIA, France, March 2004.

371. Jens Gustedt, Stéphane Vialle, and Amelia De Vivo, The parXXL environment:
Scalable fine grained development for large coarse grained platforms, Applied Par-
allel Computing. State of the Art in Scientific Computing, 8th International Work-
shop, PARA 2006 (Bo Kågström, Erik Elmroth, Jack Dongarra, and Jerzy Was-
niewski, eds.), LNCS, vol. 4699, Springer, Heidelberg, 2006, pp. 1094–1104.

372. Ronald J. Gutman, Reach-based routing: A new approach to shortest path algo-
rithms optimized for road networks, Proceedings of the 6th Workshop on Algo-
rithm Engineering and Experiments (ALENEX’04), SIAM, 2004, pp. 100–111.

373. Carsten Gutwenger and Petra Mutzel, A linear time implementation of SPQR-
trees, GD ’00: Proceedings of the 8th International Symposium on Graph Drawing
(Joe Marks, ed.), LNCS, vol. 1984, Springer, Heidelberg, 2001, pp. 77–90.

374. Thomas Haigh, Oral history: An interview with Joseph F. Traub, http://

history.siam.org/oralhistories/traub.htm, March 2004.
375. Nicholas G. Hall and Marc E. Posner, Generating experimental data for com-

putational testing with machine scheduling applications, Operations Research 49
(2001), no. 7, 854–865.

376. Dan Halperin and Eran Leiserowitz, Controlled perturbation for arrangements
of circles, Proceedings of the 19th Annual ACM Symposium on Computational
Geometry, 2003, pp. 264–273.

Bibliography 475

377. Dan Halperin and Eli Packer, Iterated snap rounding, Comput. Geom. Theory
Appl. 23 (2002), 209–225.

378. Dan Halperin and Christian R. Shelton, A perturbation scheme for spherical ar-
rangements with application to molecular modeling, Proceedings of the 13th An-
nual ACM Symposium on Computational Geometry (New York, NY, USA), ACM
Press, 1997, pp. 183–192.

379. Susanne E. Hambrusch, Models for parallel computation, ICPP Workshop, 1996,
pp. 92–95.

380. Maurice Hanan, On Steiner’s problem with rectilinear distance, SIAM Journal on
Applied Mathematics 14 (1966), 255–265.

381. P. Hansen, Bricriteria path problems, Multiple Criteria Decision Making – Theory
and Application – (Günter Fandel and T. Gal, eds.), Springer, 1979, pp. 109–127.

382. Peter E. Hart, Nils Nilsson, and Bertram Raphael, A formal basis for the heuristic
determination of minimum cost paths, IEEE Transactions on Systems Science and
Cybernetics 4 (1968), 100–107.

383. Refael Hassin, Approximation schemes for the restricted shortest path problem,
Mathematics of Operations Research 17 (1992), no. 1, 36–42.

384. Christian Heitmann, Beurteilung der Bestandsfestigkeit von Unternehmen mit
Neuro-Fuzzy, Peter Lang, Frankfurt am Main, 2002.

385. Martin Held, VRONI: An engineering approach to the reliable and efficient com-
putation of Voronoi diagrams of points and line segments, Comput. Geom. Theory
Appl. 18 (2001), no. 2, 95–123.

386. Bruce Hendrickson and Robert Leland, A multilevel algorithm for partitioning
graphs, Supercomputing ’95: Proceedings of the 1995 ACM/IEEE conference on
Supercomputing (CDROM) (New York, NY, USA), ACM Press, 1995, p. 28.

387. Monika R. Henzinger, Prabhakar Raghavan, and Sridhar Rajagopalan, Comput-
ing on data streams, External Memory algorithms, DIMACS series in Discrete
Mathematics and Theoretical Computer Science, vol. 50, 1999, pp. 107–118.

388. Michael A. Heroux, Padma Raghavan, and Horst D. Simon, Parallel processing
for scientific computing (software, environments and tools), SIAM, Philadelphia,
PA, USA, 2006.

389. Susan Hert, Lutz Kettner, Tobias Polzin, and Guido Schäfer, ExpLab - a tool
set for computational experiments, http://explab.sourceforge.net, 2003.

390. David Hilbert, Über die stetige Abbildung einer Linie auf ein Flächenstück, Math.
Annalen 38 (1891), 459–460.

391. Kirsten Hildrum, John D. Kubiatowicz, Satish Rao, and Ben Y. Zhao, Distributed
object location in a dynamic network, SPAA ’02: Proceedings of the Fourteenth
Annual ACM Symposium on Parallel Algorithms and Architectures (New York,
NY, USA), ACM Press, 2002, pp. 41–52.

392. Moritz Hilger, Ekkehard Köhler, Rolf H. Möhring, and Heiko Schilling, Fast
point-to-point shortest path computations with arc-flags, Shortest Path Computa-
tions: Ninth DIMACS Challenge (Camil Demetrescu, Andrew V. Goldberg, and
David S. Johnson, eds.), DIMACS Book, vol. 74, American Mathematical Society,
2009, pp. 41–72.

393. Jonathan Hill, William McColl, Dan Stefanescu, Mark Goudreau, Kevin Lang,
Satish Rao, Torsten Suel, Thanasis Tsantilas, and Rob Bisseling, BSPlib: the
BSP programming library, Parallel Computing 24 (1998), 1947–1980.

394. Mark D. Hill, What is scalability?, SIGARCH Computer Architecture News 18
(1990), no. 4, 18–21.

395. Mark D. Hill and Alan J. Smith, Evaluating associativity in CPU caches, IEEE
Trans. Comput. 38 (1989), no. 12, 1612–1630.

476 Bibliography

396. Benjamin Hiller, Sven Oliver Krumke, and Jörg Rambau, Reoptimization gaps
versus model errors in online-dispatching of service units for ADAC, Discrete
Appl. Math. 154 (2006), no. 13, 1897–1907.

397. Charles A. R. Hoare, An axiomatic basis for computer programming, Communi-
cations of the ACM 12 (1969), no. 10, 576–580.

398. John D. Hobby, Practical segment intersection with finite precision output, Com-
put. Geom. Theory Appl. 13 (1999), no. 4, 199–214.

399. Lorin Hochstein, Victor R. Basili, Uzi Vishkin, and John Gilbert, A pilot study
to compare programming effort for two parallel programming models, Journal of
Systems and Software 81 (2008), no. 11, 1920–1930.

400. Karla L. Hoffman and Richard H. F. Jackson, In pursuit of a methodology for
testing mathematical programming software, Evaluating Mathematical Program-
ming Techniques, Proceedings of a Conference held at the National Bureau of
Standards, Boulder, Colorado, January 5–6, 1981 (John M. Mulvey, ed.), Lec-
ture Notes in Economics and Mathematical Systems, vol. 199, Springer, 1982,
pp. 177–199.

401. Christoph M. Hoffmann, Robustness in geometric computations, Journal of Com-
puting and Information Science in Engineering 2 (2001), 143 – 155.

402. Christoph M. Hoffmann, John E. Hopcroft, and Michael S. Karasick, Towards
implementing robust geometric computations, Proceedings of the 4th Annual ACM
Symposium on Computational Geometry (New York, NY, USA), ACM Press,
1988, pp. 106–117.

403. Robert C. Holte, Very simple classification rules perform well on most commonly
used datasets, Machine Learning 11 (1993), 63–91.

404. Martin Holzer, Frank Schulz, and Dorothea Wagner, Engineering multi-level over-
lay graphs for shortest-path queries, Proceedings of the 8th Workshop on Algo-
rithm Engineering and Experiments (ALENEX’06), SIAM, 2006.

405. , Engineering multi-level overlay graphs for shortest-path queries, ACM
Journal of Experimental Algorithmics 13 (2008), 2.5:1–2.5:26.

406. Martin Holzer, Frank Schulz, Dorothea Wagner, and Thomas Willhalm, Combin-
ing speed-up techniques for shortest-path computations, ACM Journal of Experi-
mental Algorithmics 10 (2005), 2.5.

407. Martin Holzer, Frank Schulz, and Thomas Willhalm, Combining speed-up tech-
niques for shortest-path computations, Proceedings of the 3rd Workshop on Ex-
perimental Algorithms (WEA’04) (Celso C. Ribeiro and Simone L. Martins, eds.),
LNCS, vol. 3059, Springer, Heidelberg, 2004, pp. 269–284.

408. John N. Hooker, Needed: An empirical science of algorithms, Operations Research
42 (1994), no. 2, 201–212.

409. , Testing heuristics: We have it all wrong, Journal of Heuristics 1 (1995),
no. 1, 33–42.

410. Holger H. Hoos and Thomas Stützle, SATLIB: An online resource for research on
SAT, SAT 2000, Highlights of Satisfiability Research in the Year 2000 (Ian Gent,
Hans van Maaren, and Toby Walsh, eds.), Frontiers in Artificial Intelligence and
Applications, vol. 63, IOS Press, 2000, pp. 283–292.

411. John E. Hopcroft and Peter J. Kahn, A paradigm for robust geometric algorithms,
Algorithmica 7 (1992), no. 4, 339–380.

412. John E. Hopcroft and Robert E. Tarjan, Efficient planarity testing, Journal of
the ACM 21 (1974), 549–568.

413. Qiming Hou, Kun Zhou, and Baining Guo, BSGP: Bulk-synchronous GPU pro-
gramming, ACM Trans. Graph. 27 (2008), no. 3, 1–12.

Bibliography 477

414. Stefan Hougardy and Hans-Jürgen Prömel, A 1.598 approximation algorithm for
the Steiner problem in graphs, Proceedings of the Tenth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, 1999, pp. 448–453.

415. Jiang Hu, Charles J. Alpert, Stephen T. Quay, and Gopal Gandham, Buffer in-
sertion with adaptive blockage avoidance, ISPD ’02: Proceedings of the 2002 in-
ternational symposium on Physical design (New York, NY, USA), ACM Press,
2002, pp. 92–97.

416. Scott Huddleston and Kurt Mehlhorn, A new data structure for representing
sorted lists, Acta Informatica (1982), 157–184.

417. Falk Hüffner, Algorithm engineering for optimal graph bipartization, Proceedings
of the 4th International Workshop on Efficient and Experimental Algorithms
(WEA ’05) (Sotiris E. Nikoletseas, ed.), LNCS, vol. 3503, Springer, Heidelberg,
2005, pp. 240–252.

418. Frank K. Hwang, On Steiner minimal trees with rectilinear distance, SIAM Jour-
nal on Applied Mathematics 30 (1976), 104–114.

419. Oscar H. Ibarra and Chul E. Kim, Fast approximation algorithms for the knapsack
and sum of subset problems, Journal of the ACM 22 (1975), no. 4, 463–468.

420. IEEE standard for binary floating-point arithmetic, ANSI/IEEE standard 754-
1985, Institute of Electrical and Electronics Engineers, New York, 1985, Reprinted
in SIGPLAN Notices, 22(2):9-25, 1987.

421. Takahiro Ikeda, Min-Yao Hsu, Hiroshi Imai, Shigeki Nishimura, Hiroshi Shimoura,
Takeo Hashimoto, Kenji Tenmoku, and Kunihiko Mitoh, A fast algorithm for find-
ing better routes by AI search techniques, Proceedings of the Vehicle Navigation
and Information Systems Conference (VNSI’94), ACM Press, 1994, pp. 291–296.

422. ILOG CPLEX: High-performance software for mathematical programming and
optimization, http://www.ilog.com/products/cplex/, 2009.

423. ILOG CPLEX 11.2 reference manuals, 2009, Information available at www.cplex.
com.

424. ILOG solver, http://www.ilog.com/products/solver/, 2009.
425. Toshiyuki Imai, A topology oriented algorithm for the Voronoi diagram of poly-

gons, Proceedings of the 8th Canadian Conference on Computational Geometry,
Carleton University Press, 1996, pp. 107–112.

426. Yahoo claims record with petabyte database, http://www.informationweek.com/
news/software/database/showArticle.jhtml?articleID=207801436, 2008.

427. Intel threading building blocks website, http://osstbb.intel.com/.
428. Netezza promises petabyte-scale data warehouse appliances, http://www.

intelligententerprise.com/showArticle.jhtml?articleID=205600559, 2008.
429. ISO/IEC 14882:2003 programming languages – C++, 2003.
430. Richard H. F. Jackson, Paul T. Boggs, Stephen G. Nash, and Susan Powell,

Guidelines for reporting results of computational experiments. Report of the ad
hoc committee, Mathematical Programming 49 (1991), 413–425.

431. Lars Jacobsen and Kim S. Larsen, Complexity of layered binary search trees with
relaxed balance, Proceedings of the 7th Italian Conference on Theoretical Com-
puter Science (ICTCS), 2001, pp. 269–284.

432. Joseph JaJa, An introduction to parallel algorithms, Addison-Wesley, 1992.
433. Vojtěch Jarník and Miloš Kössler, O minimálních grafech osahujících n daných

bodu, Ĉas. Pêstování Mat. 63 (1934), 223–235.
434. Jean-Marc Jazequel and Bertrand Meyer, Design by contract: The lessons of Ar-

iane, Computer 30 (1997), no. 1, 129–130.
435. John R. Jensen, Remote sensing of the environment: An earth resource perspec-

tive, Prentice Hall, 2007.

478 Bibliography

436. John E. Beasley, An SST-based algorithm for the Steiner problem in graphs, Net-
works 19 (1989), 1–16.

437. David S. Johnson, A theoretician’s guide to the experimental analysis of algo-
rithms, Data Structures, Near Neighbor Searches, and Methodology: Fifth and
Sixth DIMACS Implementation Challenges (M. H. Goldwasser, D. S. Johnson,
and C. C. McGeoch, eds.), DIMACS Monographs, vol. 59, 2002, pp. 215–250.

438. David S. Johnson and Catherine C. McGeoch (eds.), Network flows and matching:
First DIMACS implementation challenge, DIMACS Series in Discrete Mathemat-
ics and Theoretical Computer Science, vol. 12, AMS, Providence, RI, 1993.

439. David S. Johnson and Lyle McGeoch, Experimental analysis of heuristics for the
STSP, The Traveling Salesman Problem and its Variations (Gutin and Punnen,
eds.), Kluwer Academic Publishing, Dordrecht, 2002, pp. 369–443.

440. David S. Johnson and Lyle A. McGeoch, The traveling salesman problem: A
case study in local optimization, Local Search in Combinatorial Optimization
(Emile H.L. Aarts and Jan Karel Lenstra, eds.), John Wiley and Sons, 1997.

441. Stephen Johnson, Lint, a C program checker, Unix Programmer’s Manual, AT&T
Bell Laboratories, 1978.

442. James A. Jones, Mary Jean Harrold, and John Stakso, Visualization of test infor-
mation to assist fault localization, ICSE 2002 International Conference on Soft-
ware Engineering, 2002, pp. 467–477.

443. Mihaljo Jovanovich, Fred Annexstein, and Kenneth Berman, Scalability issues
in large peer-to-peer networks - a case study of Gnutella, Tech. report, ECECS
Department, University of Cincinnati, 2001.

444. Ben H. H. Juurlink and Harry A. G. Wijshoff, A quantitative comparison of
parallel computation models, ACM Trans. Comput. Syst. 16 (1998), no. 3, 271–
318.

445. M. Frans Kaashoek and David R. Karger, Koorde: A simple degree-optimal dis-
tributed hash table, Proceedings of the 2nd International Workshop on Peer-to-
Peer Systems (IPTPS ’03) (M. Frans Kaashoek and Ion Stoica, eds.), LNCS, vol.
2735, Springer, Heidelberg, 2003.

446. Andrew B. Kahng, Ion I. Mǎndoiu, and Alexander Z. Zelikovsky, Highly scalable
algorithms for rectilinear and octilinear Steiner trees, Proceedings 2003 Asia and
South Pacific Design Automation Conference (ASP-DAC), 2003, pp. 827–833.

447. , Approximation algorithms and metaheuristics, ch. Practical Approxima-
tions of Steiner Trees in Uniform Orientation Metrics, Chapman & Hall/CRC,
2007.

448. Andrew B. Kahng and Gabriel Robins, A new class of iterative Steiner tree heuris-
tics with good performances, IEEE Trans. Computer-Aided Design 11 (1992),
1462–1465.

449. Gil Kalai, A subexponential randomized simplex algorithm, Proceedings of the 24th
Annual ACM Symposium on Theory of Computing (STOC), 1992, pp. 475–482.

450. Gil Kalai and Daniel J. Kleitman, A quasi-polynomial bound for the diameter of
graphs of polyhedra, Bulletin Amer. Math. Soc. 26 (1992), 315.

451. Kanela Kaligosi and Peter Sanders, How branch mispredictions affect quicksort,
14th Annual European Symposium on Algorithms (ESA) (Yossi Azar and Thomas
Erlebach, eds.), LNCS, vol. 4186, Springer, Heidelberg, 2006, pp. 780–791.

452. John J. Kanet, Sanjay L. Ahire, and Michael F. Gorman, Handbook of scheduling:
Algorithms, models, and performance analysis, ch. Constraint Programming for
Scheduling, pp. 47–1–47–21, Chapman & Hall /CRC, 2004.

Bibliography 479

453. Kothuri V.R. Kanth and Ambuj Singh, Optimal dynamic range searching in non-
replicating index structures, International Conference on Database Theory ICDT
(1999), 257–276.

454. Craig S. Kaplan, Voronoi diagrams and ornamental design, Proceedings of the
First Annual Symposium of the International Society for the Arts, Mathematics,
and Architecture (ISAMA 1999, San Sebastián, Spain, 71111 June 1999), 1999,
pp. 277–283.

455. Haim Kaplan and Nira Shafrir, The greedy algorithm for shortest superstrings,
Information Processing Letters 93 (2005), no. 1, 13–17.

456. George Karakostas, A better approximation ratio for the vertex cover problem,
Proc. 32nd International Colloquium on Automata, Languages and Program-
ming (ICALP ’05) (Luís Caires, Giuseppe F. Italiano, Luís Monteiro, Catuscia
Palamidessi, and Moti Yung, eds.), LNCS, vol. 3580, Springer, Heidelberg, 2005,
pp. 1043–1050.

457. Vijay Karamcheti, Chen Li, Igor Pechtchanski, and Chee-Keng Yap, A core library
for robust numeric and geometric computation, Proceedings of the 15th Annual
ACM Symposium on Computational Geometry, 1999, pp. 351–359.

458. Michael Karasick, Derek Lieber, and Lee R. Nackman, Efficient Delaunay trian-
gulation using rational arithmetic, ACM Trans. Graph. 10 (1991), no. 1, 71–91.

459. Menelaos I. Karavelas, A robust and efficient implementation for the segment
Voronoi diagram, International Symposium on Voronoi Diagrams in Science and
Engineering (VD2004), 2004, pp. 51–62.

460. David Karger, Eric Lehman, Tom Leighton, Mathhew Levine, Daniel Lewin, and
Rina Panigrahy, Consistent hashing and random trees: Distributed caching proto-
cols for relieving hot spots on the world wide web, ACM Symposium on Theory
of Computing, May 1997, pp. 654–663.

461. Anna R. Karlin, Steven J. Phillips, and Prabhakar Raghavan, Markov paging,
Proceedings of the 33rd Annual IEEE Symposium on Foundations of Computer
Science (FOCS), 1992, pp. 208–217.

462. Björn Karlsson, Beyond the C++ standard library: An introduction to Boost,
Addison-Wesley, 2005.

463. Narendra Karmarkar, A new polynomial-time algorithm for linear programming,
Combinatorica 4 (1984), no. 4, 373–396.

464. Richard M. Karp, Reducibility among combinatorial problems, Complexity of
Computer Computations (R.E. Miller and J.W. Thatcher, eds.), Plenum Press,
New York, 1972, pp. 85–104.

465. Richard M. Karp and Vijaya Ramachandran, Parallel algorithms for shared-
memory machines, Handbook of Theoretical Computer Science, Volume A: Algo-
rithms and Complexity, Elsevier, 1990, pp. 869–942.

466. Marek Karpinski and Alexander Zelikovsky, New approximation algorithms for
the Steiner tree problem, Journal of Combinatorial Optimization 1 (1997), 47–65.

467. George Karypis, METIS - family of multilevel partitioning algorithms, 2007.
468. George Karypis and Vipin Kumar, A fast and high quality multilevel scheme for

partitioning irregular graphs, SIAM J. Sci. Comput. 20 (1998), no. 1, 359–392.
469. Jonathan A. Kelner and Daniel A. Spielman, A randomized polynomial-time sim-

plex algorithm for linear programming, Proceedings of the 38th Annual ACM
Symposium on Theory of Computing (STOC), 2006, pp. 51–60.

470. Lutz Kettner, Reference counting in library design — optionally and with union-
find optimization, Library-Centric Software Design (LCSD’05) (San Diego, CA,
USA) (Andrew Lumsdaine and Sibylle Schupp, eds.), Department of Computer
Science, Texas A&M University, October 2005, pp. 1–10.

480 Bibliography

471. Lutz Kettner, Kurt Mehlhorn, Silvain Pion, Stefan Schirra, and Chee-Keng Yap,
Classroom examples of robustness problems in geometric computations, Proceed-
ings of the 12th Annual European Symposium on Algorithms (ESA 2004) (Su-
sanne Albers and Tomasz Radzik, eds.), LNCS, vol. 2321, Springer, Heidelberg,
2004, pp. 702–713.

472. Leonid G. Khachiyan, A polynomial algorithm in linear programming, Dokl. Akad.
Nauk SSSR 244 (1979), 1093–1096.

473. Khronos Group, OpenCL, http://www.khronos.org/opencl/, 2009.
474. Christian Klein, Controlled perturbation for Voronoi diagrams, Master’s thesis,

Universität des Saarlandes, April 2004.
475. Jon Kleinberg and Eva Tardos, Algorithm design, Pearson Education, 2006.
476. Darwin Klingman, H. Albert Napier, and Joel Stutz, NETGEN: A program for

generating large scale capacitated assignment, transportation, and minimum cost
flow network problems, Management Science 20 (1974), no. 5, 814–821.

477. Donald E. Knuth, The art of computer programming, Volume 2: Seminumerical
algorithms, 1st ed., Addison-Wesley Professional, 1969.

478. , Structured programming with go to statements, ACM Computing Surveys
6 (1974), 261–301.

479. , The WEB system of structured documentation, Stanford Computer Sci-
ence Report CS980, September 1983.

480. , Literate programming, The Computer Journal 27 (1984), no. 2, 97–111.
481. , The Stanford graphbase: A platform for combinatorial computing, ACM

Press, 1993.
482. , The art of computer programming, Volume 3: Sorting and searching, 2nd

ed., Addison-Wesley Professional, 1998.
483. , The art of computer programming, Volume 4, Fascile 1: Bitwise tricks

and techniques; binary decision diagrams, Addison-Wesley Professional, 2009.
484. Donald E. Knuth and Silvio Levy, The CWEB system of structured documenta-

tion, version 3.0, Addison-Wesley, Reading, MA, USA, 1993.
485. Johannes Köbler, Uwe Schöning, and Jacobo Toran, The graph isomorphism prob-

lem: Its structural complexity, Birkhäuser, 1993.
486. Thorsten Koch, ZIMPL user guide, ZIB Report 00-20, Zuse Institute Berlin, 2001,

Current version available at http://zimpl.zib.de/download/zimpl.pdf.
487. , Rapid mathematical programming, Ph.D. thesis, Technische Universität

Berlin, 2004, ZIB-Report 04-58.
488. , ZIMPL, http://zimpl.zib.de/, 2008.
489. Thorsten Koch and Alexander Martin, Steinlib,

ftp://ftp.zib.de/pub/Packages/mp-testdata/steinlib/index.html, 1997.
490. , Solving Steiner tree problems in graphs to optimality, Networks 33 (1998),

207–232.
491. Thorsten Koch, Alexander Martin, and Stefan Voß, SteinLib: An updated library

on Steiner tree problems in graphs, Tech. Report ZIB-Report 00-37, Konrad-Zuse-
Zentrum für Informationstechnik Berlin, Takustr. 7, Berlin, 2000.

492. Werner Koch et al., The GNU privacy guard, version 1.4.5, Source code available
at http://gnupg.org/, 2006.

493. Ekkehard Köhler, Rolf H. Möhring, and Heiko Schilling, Acceleration of shortest
path and constrained shortest path computation, Proceedings of the 4th Work-
shop on Experimental Algorithms (WEA’05) (Sotiris E. Nikoletseas, ed.), LNCS,
Springer, Heidelberg, 2005, pp. 126–138.

494. Erricos John Kontoghiorghes (ed.), Handbook of parallel computing and statistics,
Chapman & Hall/CRC, 2005.

Bibliography 481

495. Jeffrey Kotula, Source code documentation: An engineering deliverable,
TOOLS ’00: Proceedings of the Technology of Object-Oriented Languages and
Systems (TOOLS 34’00) (Washington, DC, USA), IEEE Computer Society, 2000,
p. 505.

496. L. Kou, George Markowsky, and Leonard Berman, A fast algorithm for Steiner
trees, Acta Inform. 15 (1981), 141–145.

497. Markus Kowarschik and Christian Weiß, An overview of cache optimization tech-
niques and cache-aware numerical algorithms, Algorithms for Memory Hierarchies
(Ulrich Meyer, Peter Sanders, and Jop F. Sibeyn, eds.), LNCS, vol. 2625, Springer,
Heidelberg, 2002, pp. 213–232.

498. KProf – profiling made easy, http://kprof.sourceforge.net/, 2002.
499. Balakrishnan Krishnamurthy, Constructing test cases for partitioning heuristics,

IEEE Transactions on Computers 36 (1987), no. 9, 1112–1114.
500. Sven O. Krumke and Hartmut Noltemeier, Graphentheorische Konzepte und Al-

gorithmen, B. G. Teubner, 2005.
501. Dietmar Kühl, Marco Nissen, and Karsten Weihe, Efficient, adaptable implemen-

tations of graph algorithms, Proceedings of the 1st Workshop on Algorithm En-
gineering (WAE ’97), 1997, http://www.dsi.unive.it/~wae97/proceedings/.

502. Thomas S. Kuhn, The structure of scientific revolutions, The University of
Chicago Press, 1970.

503. Vipin Kumar, Ananth Grama, Anshul Gupta, and George Karypis, Introduction
to parallel computing: Design and analysis of algorithms, Benjamin-Cummings
Publishing, 1994.

504. Anthony LaMarca and Richard E. Ladner, The influence of caches on the per-
formance of sorting, Proceedings of the 8th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), 1997, pp. 370–379.

505. , The influence of caching on the performance of sorting, Journal of Algo-
rithms 31 (1999), 66–104.

506. David Lane, Joan Lu, Camille Peres, and Emily Zitek, Online statistics: An in-
teractive multimedia course of study, http://onlinestatbook.com/index.html,
2006.

507. LAPACK: Linear Algebra PACKage, http://www.netlib.org/lapack/, 2007,
Version 3.1.1.

508. Bruno Latour, Science in action, Havard University Press, 1987.
509. Luigi Laura, Stefano Leonardi, Stefano Millozzi, Ulrich Meyer, and Jop F. Sibeyn,

Algorithms and experiments for the webgraph, European Symposium on Algo-
rithms (ESA) (Giuseppe Di Battista and Uri Zwick, eds.), LNCS, vol. 2832,
Springer, Heidelberg, 2003, pp. 703–714.

510. Ulrich Lauther, An extremely fast, exact algorithm for finding shortest paths in
static networks with geographical background, Geoinformation und Mobilität - von
der Forschung zur praktischen Anwendung, vol. 22, IfGI prints, 2004, pp. 219–230.

511. Pierre L’Ecuyer, Simulation of algorithms for performance analysis, INFORMS
Journal on Computing 8 (1996), no. 1, 16–20.

512. The LEDA user manual, http://www.algorithmic-solutions.info/leda_

manual/, 2009.
513. LEDA, Library for efficient data types and algorithms, http://www.

algorithmic-solutions.com/, 2009, Version 6.2.1.
514. Frank T. Leighton, Introduction to parallel algorithms and architectures: Arrays

- trees - hypercubes, Morgan Kaufmann, 1992.
515. Ernst L. Leiss, A programmer’s companion to algorithm analysis, Chapman &

Hall/CRC, 2006.

482 Bibliography

516. Thomas Lengauer, Combinatorial algorithms for integrated circuit layout, Wiley,
Chichester, 1990.

517. Christian Lennerz and Sven Thiel, Handling of parameterized data types in LEDA,
Tech. report, Algorithmic Solutions GmbH, 1997.

518. David Lester and Paul Gowland, Using PVS to validate the algorithms of an exact
arithmetic, Theoretical Computer Science 291 (2003), 203–218.

519. Leonid A. Levin, Universal sequential search problems, Problems of Information
Transmission 9 (1973), no. 3, 265–266.

520. Anany Levitin, Introduction to the design and analysis of algorithms, Pearson
Education, 2003.

521. Bil Lewis, Debugging backward in time, Proceedings of the 5. International
Workshop on Automated and Algorithmic Debugging AADEBUG (http://www.
lambdacs.com/debugger/debugger.html), 2003.

522. Harry R. Lewis and Christos H. Papadimitriou, Elements of the theory of com-
putation, Prentice-Hall, 1981.

523. Chen Li and Chee-Keng Yap, A new constructive root bound for algebraic ex-
pressions, Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), 2001, pp. 496–505.

524. , Recent progress in exact geometric computation, in S. Basu and L.
Gonzalez-Vega, editors, Proc. DIMACS Workshop on Algorithmic and Quantita-
tive Aspects of Real Algebraic Geometry in Mathematics and Computer Science,
March 12 - 16, 2001., 2001.

525. Jian Liang, Rakesh Kumar, and Keith W. Ross, Understanding KaZaA, http:
//citeseer.ist.psu.edu/liang04understanding.html, 2004.

526. Gideon Lidor, Construction of nonlinear programming test problems with known
solution characteristics, Evaluating Mathematical Programming Techniques, Pro-
ceedings of a Conference held at the National Bureau of Standards, Boulder, Col-
orado, January 5–6, 1981 (John M. Mulvey, ed.), Lecture Notes in Economics and
Mathematical Systems, vol. 199, Springer, 1982, pp. 35–43.

527. Thomas Lindner, Train schedule optimization in public rail transport, Ph.D. the-
sis, Technische Universität Braunschweig, Germany, 2000.

528. Richard J. Lipton and Robert E. Tarjan, A separator theorem for planar graphs,
SIAM journal applied mathematics 36 (1979), 177–189.

529. Barbara Liskov and John Guttag, Abstraction and specification in program devel-
opment, MIT Press, Cambridge, MA, USA, 1986.

530. Literate programming, http://www.literateprogramming.com, 2009.
531. Marco E. Lübbecke and Jacques Desrosiers, Selected topics in column generation,

Operations Research 53 (2005), no. 6, 1007–1023.
532. Bin Ma, Why greed works for shortest common superstring problem, Proc. 19th

Annual Symposium on Combinatorial Pattern Matching (CPM ’08) (Paolo Fer-
ragina and Gad M. Landau, eds.), LNCS, vol. 5029, Springer, Heidelberg, 2008,
pp. 244–254.

533. Bruce M. Maggs, Lesley R. Matheson, and Robert E. Tarjan, Models of parallel
computation: A survey and synthesis, Proceedings of the 28th Hawaii Interna-
tional Conference on System Sciences, January 1995, pp. 61–70.

534. Anil Maheshwari and Norbert Zeh, I/O-efficient algorithms for graphs of bounded
treewidth, Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), ACM-SIAM, 2001, pp. 89–90.

535. , I/O-optimal algorithms for planar graphs using separators, Proceedings
of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
ACM-SIAM, 2002, pp. 372–381.

Bibliography 483

536. Andrew Makhorin, GNU linear programming kit reference manual version 4.11,
Dept. Applied Informatics, Moscow Aviation Institute, 2006.

537. Dahlia Malkhi, Moni Naor, and Davod Ratajczak, Viceroy: A scalable and dy-
namic emulation of the butterfly, Proceedings of the 21st Annual ACM Sympo-
sium on Principles of Distributed Computing, ACM Press, 2002, pp. 183–192.

538. Ernesto Queiros Martins, On a multicriteria shortest path problem, European
Journal of Operational Research 26 (1984), no. 3, 236–245.

539. Yossi Matias, Parallel algorithms column: On the search for suitable models, ACM
SIGACT News 28 (1997), no. 3, 21–29.

540. Jirí Matousěk, János Pach, Micha Sharir, Shmuel Sifrony, and Emo Welzl, Fat
triangles determine linearly many holes, SIAM Journal on Computing 23 (1994),
no. 1, 154–169.

541. Jirí Matousěk, Micha Sharir, and Emo Welzl, A subexponential bound for linear
programming, Algorithmica 16 (1996), no. 4/5, 498–516.

542. Bruce McCarl, McCarl GAMS user guide, http://www.gams.com/dd/docs/

bigdocs/gams2002/mccarlgamsuserguide.pdf, 2008.
543. Wiliam F. McColl, Scalable computing, Computer Science Today: Recent Trends

and Developments (J. van Leeuwen, ed.), vol. 1000, Springer-Verlag, 1995, pp. 46–
61.

544. William F. McColl and Alexandre Tiskin, Memory-efficient matrix multiplication
in the BSP model, Algorithmica 24 (1999), no. 3-4, 287–297.

545. Catherine C. McGeoch, Analyzing algorithms by simulation: Variance reduction
techniques and simulation speedups, ACM Computing Surveys 24 (1992), no. 2,
195–212.

546. , Challenges in algorithm simulation, INFORMS Journal on Computing 8
(1996), no. 1, 27–28.

547. , Toward an experimental method for algorithm simulation, INFORMS
Journal on Computing 8 (1996), no. 1, 1–15.

548. , Experimental analysis of algorithms, Notices of the AMS 48 (2001), no. 3,
304–311.

549. , Experimental algorithmics, Communications of the ACM 50 (2007),
no. 11, 27–31.

550. Catherine C. McGeoch and Bernard M. E. Moret, How to present a paper on
experimental work with algorithms, SIGACT News 30 (1999), no. 4, 85–90.

551. Catherine C. McGeoch, Peter Sanders, Rudolf Fleischer, Paul R. Cohen, and
Doina Precup, Using finite experiments to study asymptotic performance, in Fleis-
cher et al. [288], pp. 93–126.

552. Nimrod Megiddo, Improved asymptotic analysis of the average number of steps
performed by the self-dual simplex algorithm, Mathematical Programming 35
(1986), no. 2, 140–172.

553. Miriam Mehl, Tobias Weinzierl, and Christoph Zenger, A cache-oblivious self-
adaptive full multigrid method, Numer. Linear Algebra Appl. 13 (2006), no. 2–3,
275–291.

554. Kurt Mehlhorn, A faster approximation algorithm for the Steiner problem in
graphs, Information Processing Letters 27 (1988), 125–128.

555. Kurt Mehlhorn and Ulrich Meyer, External-memory breadth-first search with sub-
linear I/O, Proc. 10th Ann. European Symposium on Algorithms (ESA) (Rolf H.
Möhring and Rajeev Raman, eds.), LNCS, vol. 2461, Springer, Heidelberg, 2002,
pp. 723–735.

484 Bibliography

556. Kurt Mehlhorn, Rolf H. Möhring, Burkhard Monien, Petra Mutzel, Peter Sanders,
and Dorothea Wagner, Antrag auf ein Schwerpunktprogramm zum Thema Al-
gorithm Engineering, http://www.algorithm-engineering.de/beschreibung.

pdf, 2006.
557. Kurt Mehlhorn and Petra Mutzel, On the embedding phase of the Hopcroft and

Tarjan planarity testing algorithm, Algorithmica 16 (1996), no. 2, 233–242.
558. Kurt Mehlhorn and Stefan Näher, Algorithm design and software libraries: Recent

developments in the LEDA project, Algorithms, Software, Architectures, Informa-
tion Processing — Proc. IFIP Congress, vol. 1, Elsevier Science, 1992, pp. 493–
505.

559. , LEDA: A platform for combinatorial and geometric computing, CACM:
Communications of the ACM 38 (1995), 96–102.

560. , From algorithms to working programs: On the use of program checking
in LEDA, Proceedings of the 23rd International Symposium on Mathematical
Foundations of Computer Science (MFCS’98) (Lubos Brim, Jozef Gruska, and
Jirí Zlatuska, eds.), LNCS, vol. 1450, Springer, Heidelberg, 1998, pp. 84–93.

561. , LEDA: A platform for combinatorial and geometric computing, Cam-
bridge University Press, Cambridge, November 1999.

562. Kurt Mehlhorn and Peter Sanders, Algorithms and data structures - the basic
toolbox, Springer, 2008.

563. Kurt Mehlhorn and Guido Schäfer, Implementation of O(nm log n) weighted
matchings in general graphs: The power of data structures, ACM Journal of Ex-
perimental Algorithms 7 (2002), no. 4, 1–19.

564. Zdzislaw Alexander Melzak, On the problem of Steiner, Canad. Math. Bull. 4
(1961), 143–148.

565. Alberto O. Mendelzon and Peter T. Wood, Finding regular simple paths in graph
databases, SIAM Journal on Computing 24 (1995), no. 6, 1235–1258.

566. Bertrand Meyer,Design by contract, Tech. Report TR-EI-12/CO, Interactive Soft-
ware Engineering Inc., 1986.

567. , Applying ‘design by contract’, Computer 25 (1992), no. 10, 40–51.
568. , Object-oriented software construction, second ed., Prentice Hall PTR,

March 2000.
569. Ulrich Meyer, Peter Sanders, and Jop F. Sibeyn (eds.), Algorithms for memory

hierarchies, LNCS, vol. 2625, Springer, Heidelberg, 2003.
570. Scott Meyers, More effective C++, Addison-Wesley, 1996.
571. , Effective C++, 3rd ed., Addison-Wesley, 2005.
572. Victor J. Milenkovic, Verifiable implementation of geometric algorithms using

finite precision arithmetic, Artif. Intell. 37 (1988), no. 1-3, 377–401.
573. , Shortest path geometric rounding, Algorithmica 27 (2000), no. 1, 57–86.
574. Gary L. Miller, Riemann’s hypothesis and tests for primality, Journal of Computer

and System Sciences 13 (1976), 300–317.
575. Tsuyoshi Minakawa and Kokichi Sugihara, Topology oriented vs. exact arithmetic

- experience in implementing the three-dimensional convex hull algorithm, ISAAC
(Hon Wai Leong, Hiroshi Imai, and Sanjay Jain, eds.), LNCS, vol. 1350, Springer,
Heidelberg, 1997, pp. 273–282.

576. Bhubaneswar Mishra, Algorithmic algebra, Texts and Monographs in Computer
Science, Springer, 1993.

577. Joseph S. B. Mitchell, Guillotine subdivisions approximate polygonal subdivisions:
A simple polynomial-time approximation scheme for geometric TSP, k-MST, and
related problems, SIAM Journal on Computing 28 (1999), no. 4, 1298–1309.

Bibliography 485

578. , A PTAS for TSP with neighborhoods among fat regions in the plane,
Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), 2007, pp. 11–18.

579. Rolf H. Möhring, Verteilte Verbindungssuche im öffentlichen Personenverkehr
– Graphentheoretische Modelle und Algorithmen, Angewandte Mathematik, ins-
besondere Informatik – Beispiele erfolgreicher Wege zwischen Mathematik und
Informatik (Patrick Horster, ed.), Vieweg, 1999, pp. 192–220.

580. Rolf H. Möhring and Matthias Müller-Hannemann, Complexity and modeling as-
pects of mesh refinement into quadrilaterals, Algorithmica 26 (2000), 148–171.

581. Rolf H. Möhring, Matthias Müller-Hannemann, and Karsten Weihe, Mesh re-
finement via bidirected flows: Modeling, complexity, and computational results,
Journal of the ACM 44 (1997), 395–426.

582. Rolf H. Möhring, Heiko Schilling, Birk Schütz, Dorothea Wagner, and Thomas
Willhalm, Partitioning graphs to speed up Dijkstra’s algorithm, Proceedings of
the 4th Workshop on Experimental Algorithms (WEA’05) (Sotiris E. Nikoletseas,
ed.), LNCS, Springer, Heidelberg, 2005, pp. 189–202.

583. Mohamed F. Mokbel, Walid G. Aref, and Ibrahim Kamel, Analysis of multi-
dimensional space-filling curves, Geoinformatica 7 (2003), no. 3, 179–209.

584. Bernard M. E. Moret, Towards a discipline of experimental algorithmics, Data
Structures, Near Neighbor Searches, and Methodology: Fifth and Sixth DIMACS
Implementation Challenges (Michael H. Goldwasser, David S. Johnson, and
Catherine C. McGeoch, eds.), DIMACS Monographs, vol. 59, American Math-
ematical Society, 2002, pp. 197–213.

585. Bernard M. E. Moret and Henry D. Shapiro, Algorithms and experiments: The
new (and old) methodology, Journal of Universal Computer Science 7 (2001),
no. 5, 434–446.

586. Bernhard M.E. Moret and Henry D. Shapiro, An empirical assessment of al-
gorithms for constructing a minimal spanning tree, Computational Support for
Discrete Mathematics, DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, vol. 15, 1994, pp. 99–117.

587. Pat Morin, Coarse grained parallel computing on heterogeneous systems, Proc.
1998 ACM Symp. on Applied Computing (SAC’98), ACM Press, 1998, pp. 628–
634.

588. Donald R. Morrison, PATRICIA: Practical algorithm to retrieve information
coded in alphanumeric, Journal of the ACM 15 (1968), 514–534.

589. Rajeev Motwani and Pabhakar Raghavan, Randomized algorithms, Cambridge
University Press, 1995.

590. David M. Mount, ANN programming manual, http://www.cs.umd.edu/~mount/
ANN, 2006.

591. MPFI, Multiple precision floating-point interval library, http://gforge.inria.
fr/projects/mpfi/, 2006, Version 1.3.4-RC3.

592. MPFR, A multiple precision floating-point library, http://www.mpfr.org/, 2005,
Version 2.2.0.

593. MTL: The matrix template library, http://www.osl.iu.edu/research/mtl/,
2005, Version 2.1.2-22.

594. Matthias Müller–Hannemann and Mathias Schnee, Finding all attractive train
connections by multi-criteria Pareto search, Algorithmic Methods for Railway
Optimization (Frank Geraets, Leo G. Kroon, Anita Schöbel, Dorothea Wagner,
and Christos D. Zaroliagis, eds.), LNCS, vol. 4359, Springer, Heidelberg, 2007,
pp. 246–263.

486 Bibliography

595. Matthias Müller–Hannemann and Karsten Weihe, Pareto shortest paths is of-
ten feasible in practice, Proceedings of the 5th International Workshop on Algo-
rithm Engineering (WAE’01) (Gerth Stølting Brodal, Daniele Frigioni, and Al-
berto Marchetti-Spaccamela, eds.), LNCS, vol. 2141, Springer, Heidelberg, 2001,
pp. 185–197.

596. Matthias Müller-Hannemann, High quality quadrilateral surface meshing without
template restrictions: A new approach based on network flow techniques, Interna-
tional Journal of Computational Geometry and Applications 10 (2000), 285–307.

597. Matthias Müller-Hannemann and Sven Peyer, Approximation of rectilinear
Steiner trees with length restrictions on obstacles, 8th Workshop on Algorithms
and Data Structures (WADS 2003) (Frank K. H. A. Dehne, Jörg-Rüdiger Sack,
and Michiel H. M. Smid, eds.), LNCS, vol. 2748, Springer, Heidelberg, 2003,
pp. 207–218.

598. Matthias Müller-Hannemann and Alexander Schwartz, Implementing weighted b-
matching algorithms: Insights from a computational study, ACM Journal of Ex-
perimental Algorithms 5 (2000), 8.

599. Ketan Mulmuley, Umesh V. Vazirani, and Vijay V. Vazirani, Matching is as easy
as matrix inversion, Combinatorica 7 (1987), no. 1, 105–113.

600. Kameshwar Munagala and Abhiram Ranade, I/O-complexity of graph algorithms,
Proceedings of the 10th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), 1999, pp. 687–694.

601. Bruce A. Murtagh, Advanced linear programming, McGraw-Hill, 1981.
602. David R. Musser, Introspective sorting and selection algorithms, Software: Prac-

tice and Experience 27 (1997), no. 8, 983–993.
603. S. Muthu Muthukrishnan, Data streams: Algorithms and applications, Founda-

tions and Trends in Theoretical Computer Science, vol. 1 (2), NOW, 2005.
604. Ion I. Mǎndoiu, Vijay V. Vazirani, and Joseph L. Ganley, A new heuristic for

rectilinear Steiner trees, ICCAD ’99: Proceedings of the 1999 IEEE/ACM in-
ternational conference on Computer-aided design (Piscataway, NJ, USA), IEEE
Press, 1999, pp. 157–162.

605. Nathan C. Myers, Traits: A new and useful template technique, C++ Report 7
(1995), no. 5, 32–35.

606. Stefan Näher, Delaunay triangulation and other computational geometry exper-
iments, http://www.informatik.uni-trier.de/~naeher/Professur/research/
index.html, 2003.

607. Stefan Näher and Oliver Zlotowski, Design and implementation of efficient data
types for static graphs, ESA 2002 (Rolf H. Möhring and Rajeev Raman, eds.),
LNCS, vol. 2461, Springer, Heidelberg, 2002, pp. 748–759.

608. Aleksandar Nanevski, Guy Blelloch, and Robert Harper, Automatic generation of
staged geometric predicates, Higher-Order and Symbolic Computation 16 (2003),
379–400.

609. Giacomo Nannicini, Daniel Delling, Leo Liberti, and Dominik Schultes, Bidirec-
tional A* search for time-dependent fast paths, Proceedings of the 7th Workshop
on Experimental Algorithms (WEA’08) (Catherine C. McGeoch, ed.), LNCS, vol.
5038, Springer, Heidelberg, 2008, pp. 334–346.

610. Moni Naor and Udi Wieder, Novel architectures for P2P applications: The
continuous-discrete approach, SPAA 2003: Proceedings of the Fifteenth Annual
ACM Symposium on Parallel Algorithms, 2003, pp. 50–59.

611. George L. Nemhauser and Laurence A. Wolsey, Integer and combinatorial opti-
mization, John Wiley & Sons, New York, NY, USA, 1988.

Bibliography 487

612. , Integer programming, Optimization (George L. Nemhauser et al., ed.),
Elsevier North-Holland, Inc., New York, NY, USA, 1989, pp. 447–527.

613. Nicholas Nethercote and Julian Seward, Valgrind: A program supervision frame-
work, Electronic Notes in Theoretical Computer Science 89 (2003), no. 2, 44–66.

614. Benne K. Nielsen, Pawel Winter, and Martin Zachariasen, An exact algorithm
for the uniformly-oriented Steiner tree problem, ESA 2002 (Rolf H. Möhring and
Rajeev Raman, eds.), LNCS, vol. 2461, Springer, 2002, pp. 760–772.

615. Mark H. Nodine, Michael T. Goodrich, and Jeffrey S. Vitter, Blocking for external
graph searching, Algorithmica 16(2) (1996), 181–214.

616. Mark H. Nodine and Jeffrey S. Vitter, Deterministic distribution sort in shared
and distributed memory multiprocessors, Proceedings of the 5th annual ACM Sym-
posium on Parallel Algorithms and Architectures (1993), 120–129.

617. NVIDIA Corporation, CUDA zone – the resource for CUDA developers, http:
//www.nvidia.com/cuda/, 2009.

618. OGDF — open graph drawing framework, http://www.ogdf.net, 2008.
619. Yasuaki Oishi and Kokichi Sugihara, Topology-oriented divide-and-conquer algo-

rithm for Voronoi diagrams, CVGIP: Graphical Model and Image Processing 57
(1995), no. 4, 303–314.

620. Chris Okasaki, Red-black trees in a functional setting, Journal of Functional Pro-
gramming 9 (1999), no. 4, 471–477.

621. Richard P. O’Neill, A comparison of real-world linear programs and their randomly
generated analogs, Evaluating Mathematical Programming Techniques, Proceed-
ings of a Conference held at the National Bureau of Standards, Boulder, Colorado,
January 5–6, 1981 (John M. Mulvey, ed.), Lecture Notes in Economics and Math-
ematical Systems, vol. 199, Springer, 1982, pp. 44–59.

622. James B. Orlin, On experimental methods for algorithm simulation, INFORMS
Journal on Computing 8 (1996), no. 1, 21–23.

623. Mark H. Overmars and A. Frank van der Stappen, Range searching and point
location among fat objects, Journal of Algorithms 21 (1996), no. 3, 629–656.

624. Sam Owre, Natarajan Shankar, and John M. Rushby, PVS: A prototype veri-
fication system, Proceedings of the 11th Conference on Automated Deduction
(Deepak Kapur, ed.), LNCS, vol. 607, Springer, Heidelberg, 1992, pp. 748–752.

625. The Oxford BSP toolset, http://www.bsp-worldwide.org/implmnts/oxtool/,
1998, Version 1.4.

626. Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd, The Page-
Rank citation ranking: Bringing order to the web, http://ilpubs.stanford.edu:
8090/422/1/1999-66.pdf, 1999.

627. Victor Y. Pan, Yanqiang Yu, and C. Stewart, Algebraic and numerical techniques
for the computation of matrix determinants, Computers and Mathematics with
Applications 34 (1997), no. 1, 43–70.

628. Christos H. Papadimitriou and Kenneth Steiglitz, Combinatorial optimization,
Dover Publications, Inc., 1998.

629. David Lorge Parnas and Paul C. Clements, A rational design process: How and
why to fake it, IEEE Trans. Softw. Eng. 12 (1986), no. 2, 251–257.

630. Mike Paterson and F. Frances Yao, Efficient binary space partitions for hidden-
surface removal and solid modeling, Discrete & Computational Geometry 5
(1990), 485–503.

631. David A. Patterson and John L. Hennessy, Computer organization and design.
The hardware/software interface, 3rd ed., Morgan Kaufmann Publishers Inc.,
2005.

488 Bibliography

632. Wolfgang J. Paul, Peter Bach, Michael Bosch, Jörg Fischer, Cédric Lichtenau, and
Jochen Röhrig, Real PRAM programming, Euro-Par ’02: Proc. 8th International
Euro-Par Conference on Parallel Processing, Springer-Verlag, 2002, pp. 522–531.

633. PBGL: The parallel boost graph library, http://www.osl.iu.edu/research/

pbgl/, 2009, version 0.7.0.
634. Space-filling curve, http://en.wikipedia.org/wiki/Space-filling_curve (last

visited 15.2.2009).
635. Giuseppe Peano, Sur une courbe qui remplit toute une aire plane, Math. Annalen

36 (1890), 157–160.
636. Andrea Pietracaprina, Geppino Pucci, and Francesco Silvestri, Cache-oblivious

simulation of parallel programs, Proc. 8th Workshop on Advances in Parallel and
Distributed Computational Models (CD), IEEE Computer Society, 2006.

637. Sylvain Pion and Chee-Keng Yap, Constructive root bound for k-ary rational input
numbers, Proceedings of the 19th ACM Symposium on Computational Geometry,
ACM Press, 2003, San Diego, California, pp. 256–263.

638. David Pisinger, Algorithms for knapsack problems, Ph.D. thesis, University of
Copenhagen, Dept. of Computer Science, 1995.

639. Maurizio Pizzonia and Giuseppe Di Battista, Object-oriented design of graph
oriented data structures, ALENEX ’99: Selected papers from the International
Workshop on Algorithm Engineering and Experimentation (Michael T. Goodrich
and Catherine C. McGeoch, eds.), LNCS, vol. 1619, Springer, Heidelberg, 1999,
pp. 140–155.

640. P. J. Plauger, Alexander A. Stepanov, Meng Lee, and David R. Musser, The C++
Standard Template Library, Prentice-Hall, 2000.

641. Ira Pohl, Bi-directional search, Proceedings of the Sixth Annual Machine Intel-
ligence Workshop (Bernard Meltzer and Donald Michie, eds.), vol. 6, Edinburgh
University Press, 1971, pp. 124–140.

642. Tobias Polzin and Siavash V. Daneshmand, Primal-dual approaches to the Steiner
problem, Approximation Algorithms for Combinatorial Optimization (APPROX
2000) (K. Jansen and S. Khuller, eds.), LNCS, vol. 1913, Springer, Heidelberg,
2000, pp. 214–225.

643. , A comparison of Steiner relaxations, Discrete Applied Mathematics 112
(2001), 241–261.

644. , Improved algorithms for the Steiner problem in networks, Discrete Ap-
plied Mathematics 112 (2001), 263–300.

645. , Practical partitioning-based methods for the Steiner problem, Experimen-
tal Algorithms: 5th International Workshop (WEA 2006) (Carme Àlvarez and
Maria J. Serna, eds.), LNCS, vol. 4007, Springer, Heidelberg, 2006, pp. 241–252.

646. Vaughan R. Pratt, Every prime has a succinct certificate, SIAM Journal of Com-
puting 4 (1975), 214–220.

647. Lutz Prechelt, An empirical comparison of seven programming languages, Com-
puter 33 (2000), no. 10, 23–29.

648. Douglas M. Priest, On properties of floating point arithmetics: Numerical stability
and the cost of accurate computations, Ph.D. thesis, University of California at
Berkeley, 1992.

649. Octavian Procopiuc, Pankaj K. Agarwal, Lars Arge, and Jeffrey S. Vitter, Bkd-
tree: A dynamic scalable kd-tree, 8th International Symposium on advances in
Spatial and Temporal Databases, SSTD (2003), 46–65.

650. Harald Prokop, Cache-oblivious algorithms, Master’s thesis, Massachusetts Insti-
tute of Technology, 1999.

Bibliography 489

651. Evangelia Pyrga, Frank Schulz, Dorothea Wagner, and Christos Zaroliagis, Ex-
perimental comparison of shortest path approaches for timetable information,
Proceedings of the 6th Workshop on Algorithm Engineering and Experiments
(ALENEX’04), SIAM, 2004, pp. 88–99.

652. , Towards realistic modeling of time-table information through the time-
dependent approach, Proceedings of ATMOS Workshop 2003, 2004, pp. 85–103.

653. , Efficient models for timetable information in public transportation sys-
tems, ACM Journal of Experimental Algorithmics 12 (2007), Article 2.4.

654. Sigal Raab and Dan Halperin, Controlled perturbation for arrangements
of polyhedral surfaces, http://acg.cs.tau.ac.il/danhalperin/publications/
dan-halperins-publications, 2002.

655. Michael O. Rabin, Mathematical theory of automata, Proceedings of the 19th
ACM Symposium in Applied Mathematics, 1966, pp. 153–175.

656. , Probabilistic algorithm for testing primality, Journal of Number Theory
12 (1980), 128–138.

657. Naila Rahman, Richard Cole, and Rajeev Raman, Optimized predecessor data
structures for internal memory, Proc. 3rd Workshop on Algorithm Engineer-
ing (Gerth Stølting Brodal, Daniele Frigioni, and Alberto Marchetti-Spaccamela,
eds.), LNCS, vol. 2141, Springer, Heidelberg, 2001, pp. 67–78.

658. Naila Rahman and Rajeev Raman, Analysing the cache behaviour of non-uniform
distribution sorting algorithm, Algorithms - ESA 2000 (Mike Paterson, ed.),
LNCS, vol. 1879, Springer, Heidelberg, 2000, pp. 380–391.

659. Sridhar Rajagopalan and Vijay V. Vazirani, On the bidirected cut relaxation for
the metric Steiner tree problem, Proceedings of the 10th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), 1999, pp. 742–751.

660. Sanguthevar Rajasekaran and John Reif (eds.), Handbook of parallel computing:
Models, algorithms and applications, Chapman & Hall CRC Computer & Infor-
mation Science, CRC Press, 2007.

661. Vijaya Ramachandran, Parallel algorithm design with coarse-grained synchroniza-
tion, International Conference on Computational Science (2), 2001, pp. 619–627.

662. Norman Ramsey, Literate programming simplified, IEEE Softw. 11 (1994), no. 5,
97–105.

663. Ronald L. Rardin and Benjamin W. Lin, Test problems for computational ex-
periments – issues and techniques, Evaluating Mathematical Programming Tech-
niques, Proceedings of a Conference held at the National Bureau of Standards,
Boulder, Colorado, January 5–6, 1981 (John M. Mulvey, ed.), Lecture Notes in
Economics and Mathematical Systems, vol. 199, Springer, 1982, pp. 8–15.

664. Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott
Schenker, A scalable content-addressable network, Proceedings of the ACM SIG-
COMM, ACM Press, August 2001, pp. 161–172.

665. Helmut Ratschek and Jon Rokne, Exact computation of the sign of a finite sum,
Applied Mathematics and Computation 99 (1999), 99–127.

666. Eric S. Raymond, The art of UNIX programming, Pearson Education, 2003.
667. James Reinders, Intel threading building blocks: Outfitting C++ for multi-core

processor parallelism, O’Reilly Media, Inc., 2007.
668. Gerhard Reinelt, TSPLIB—a traveling salesman problem library, ORSA Journal

on Computing 3 (1991), no. 4, 376–384.
669. Gabriel Dos Reis, Bernard Mourrain, Fabrice Rouillier, and Philippe Trébuchet,

An environment for symbolic and numeric computation, International Congress
of Mathematical Software ICMS’2002, April 2002.

490 Bibliography

670. Craig W. Reynolds, Flocks, herds, and schools: A distributed behavioral model,
Computer Graphics 21 (1987), no. 4, 25–34.

671. John R. Rice, A theory of condition, SIAM J. Num. Anal. 3 (1966), 287–310.
672. Daniel Richardson, How to recognize zero, Journal of Symbolic Computation 24

(1997), no. 6, 627–645.
673. Anthony P. Roberts and Ed J. Garboczi, Elastic moduli of model random three-

dimensional closed-cell cellular solids, Acta Materialia 49 (2001), no. 2, 189–197.
674. Neil Robertson, Daniel P. Sanders, Paul Seymour, and Robin Thomas, Efficiently

four-coloring planar graphs, Proceedings of the 28th ACM Symposium on Theory
of Computing (STOC), ACM Press, 1996, pp. 571–575.

675. Neil Robertson and Paul D. Seymour, Graph minors. XIII: The disjoint paths
problem, J. Comb. Theory Ser. B 63 (1995), no. 1, 65–110.

676. , Graph minors. XX. Wagner’s conjecture, J. Comb. Theory Ser. B 92
(2004), no. 2, 325–357.

677. Gabriel Robins and Alexander Zelikovsky, Improved Steiner tree approximation
in graphs, Proceedings of the 11th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), 2000, pp. 770–779.

678. , Tighter bounds for graph Steiner tree approximation, SIAM Journal on
Discrete Mathematics 19 (2005), no. 1, 122–134.

679. Heiko Röglin and Berthold Vöcking, Smoothed analysis of integer programming,
Proceedings of the 11th International Conference on Integer Programming and
Combinatorial Optimization (IPCO) (Michael Jünger and Volker Kaibel, eds.),
LNCS, vol. 3509, Springer, Heidelberg, 2005, pp. 276–290.

680. Francesca Rossi, Constraint (logic) programming: A survey on research and ap-
plications, Selected papers from the Joint ERCIM/Compulog Net Workshop on
New Trends in Constraints (London, UK), Springer-Verlag, 2000, pp. 40–74.

681. Francesca Rossi, Charles Petrie, and Vasant Dhar,On the equivalence of constraint
satisfaction problems, ECAI’90: Proceedings of the 9th European Conference on
Artificial Intelligence (Stockholm) (Luigia Carlucci Aiello, ed.), Pitman, 1990,
pp. 550–556.

682. Francesca Rossi, Peter van Beek, and Toby Walsh (eds.), Handbook of constraint
programming, Elsevier, 2006.

683. Antony Rowstron and Peter Druschel, Pastry: Scalable, decentralized object loca-
tion, and routing for large-scale peer-to-peer systems, Middleware 2001 (Rachid
Guerraoui, ed.), LNCS, vol. 2218, Springer, Heidelberg, 2001, pp. 329–350.

684. Siegfried M. Rump, Takeshi Ogita, and Shin’ichi Oishi, Accurate floating-point
summation part I: Faithful rounding, SIAM Journal on Scientific Computing 31
(2008), no. 1, 189–224.

685. , Accurate floating-point summation part II: Sign, K-fold faithful and
rounding to nearest, SIAM Journal on Scientific Computing 31 (2008), no. 2,
1269–1302.

686. Yousef Saad, Iterative methods for sparse linear systems, 2nd ed., Society for
Industrial and Applied Mathematics, April 2003.

687. Hans Sagan, Space-filling curves, Springer-Verlag, 1994.
688. David Salesin, Jorge Stolfi, and Leonidas J. Guibas, Epsilon geometry: building

robust algorithms from imprecise computations, Proceedings of the 5th Annual
ACM Symposium on Computational Geometry (New York, NY, USA), ACM
Press, 1989, pp. 208–217.

689. Andrea Saltelli, Stefano Tarantola, Francesca Campolongo, and Marco Ratto,
Sensitivity analysis in practice: A guide to assessing scientific models, John Wiley
& Sons, 2004.

Bibliography 491

690. Hanan Samet, The quadtree and related hierarchical data structures, ACM Com-
puting Surveys 16 (1984), no. 2, 187–260.

691. Johannes Sametinger, Software engineering with reusable components, Springer,
1997.

692. Laura A. Sanchis, On the complexity of test case generation for NP-hard problems,
Information Processing Letters 36 (1990), no. 3, 135–140.

693. Peter Sanders, Presenting data from experiments in algorithmics, in Fleischer
et al. [288], pp. 181–196.

694. , Algorithm engineering - an attempt at a definition, Efficient Algorithms
(Susanne Albers, Helmut Alt, and Stefan Näher, eds.), LNCS, vol. 5760, Springer,
Heidelberg, 2009, pp. 321–340.

695. , Algorithm engineering — an attempt at a definition using sorting as
an example, ALENEX10 (Philadelphia) (Guy Blelloch and Dan Halperin, eds.),
SIAM, 2010, pp. 55–61.

696. Peter Sanders, Sebastian Egner, and Jan H. M. Korst, Fast concurrent access
to parallel disks, Proceedings of the 11th ACM-SIAM Symposium on Discrete
Algorithms (SODA), 2000, pp. 849–858.

697. Peter Sanders and Dominik Schultes, Highway hierarchies hasten exact shortest
path queries, Proceedings of the 13th Annual European Symposium on Algorithms
(ESA’05) (Gerth Stølting Brodal and Stefano Leonardi, eds.), LNCS, vol. 3669,
Springer, Heidelberg, 2005, pp. 568–579.

698. , Engineering highway hierarchies, Proceedings of the 14th Annual Eu-
ropean Symposium on Algorithms (ESA’06) (Yossi Azar and Thomas Erlebach,
eds.), LNCS, vol. 4168, Springer, Heidelberg, 2006, pp. 804–816.

699. Peter Sanders, Dominik Schultes, and Christian Vetter, Mobile route planning,
Proceedings of the 16th Annual European Symposium on Algorithms (ESA’08)
(Dan Halperin and Kurt Mehlhorn, eds.), LNCS, vol. 5193, Springer, Heidelberg,
September 2008, pp. 732–743.

700. John E. Savage, Models of computation, exploring the power of computing, Addi-
son Wesley, 1998.

701. John E. Savage and Mohammad Zubair, A unified model for multicore architec-
tures, Proceedings of the 1st International Forum on Next-Generation Multicore/-
Manycore Technologies, IFMT 2008, Cairo, Egypt, 2008, p. 9.

702. Stefan Schamberger and Jens M. Wierum, A locality preserving graph ordering
approach for implicit partitioning: Graph-filling curves, Proc. 17th Intl. Conf. on
Parallel and Distributed Computing Systems, (PDCS’04), ISCA, 2004, pp. 51–57.

703. Stefan Schirra, A case study on the cost of geometric computing, Selected Papers
from the International Workshop on Algorithm Engineering and Experimentation
(ALENEX’99) (Michael T. Goodrich and Catherine C. McGeoch, eds.), LNCS,
vol. 1619, Springer, Heidelberg, 1999, pp. 156–176.

704. , Robustness and precision issues in geometric computation, Handbook of
Computational Geometry (Jörg Rüdiger Sack and Jorge Urrutia, eds.), Elsevier,
Amsterdam, The Netherlands, January 2000, pp. 597–632.

705. , Real numbers and robustness in computational geometry, 6th Conference
on Real Numbers and Computers, Schloss Dagstuhl, Germany, November 2004,
Invited Lecture.

706. Walter Schmitting, Das Traveling-Salesman-Problem - Anwendungen und heuris-
tische Nutzung von Voronoi-/Delaunay-Strukturen zur Lösung euklidischer,
zweidimensionaler Traveling-Salesman-Probleme, Ph.D. thesis, Heinrich-Heine-
Universität Düsseldorf, 1999.

492 Bibliography

707. Steve Schneider, The B-method: An introduction, Palgrave, 2002.
708. Peter Schorn, Robust algorithms in a program library for geometric computation,

Ph.D. thesis, ETH: Swiss Federal Institute of Technology Zürich, 1991, Diss. ETH
No. 9519.

709. , An axiomatic approach to robust geometric programs, J. Symb. Comput.
16 (1993), no. 2, 155–165.

710. Alexander Schrijver, Theory of linear and integer programming, John Wiley &
Sons, Inc., 1998.

711. Dominik Schultes, Route planning in road networks, Ph.D. thesis, Universität
Karlsruhe (TH), Fakultät für Informatik, February 2008.

712. Dominik Schultes and Peter Sanders, Dynamic highway-node routing, Proceedings
of the 6th Workshop on Experimental Algorithms (WEA’07) (Camil Demetrescu,
ed.), LNCS, vol. 4525, Springer, Heidelberg, 2007, pp. 66–79.

713. Frank Schulz, Timetable information and shortest paths, Ph.D. thesis, Universität
Karlsruhe (TH), Fakultät für Informatik, 2005.

714. Frank Schulz, Dorothea Wagner, and Karsten Weihe, Dijkstra’s algorithm on-
line: An empirical case study from public railroad transport, Proceedings of the
3rd International Workshop on Algorithm Engineering (WAE’99) (Jeffrey Scott
Vitter and Christos D. Zaroliagis, eds.), LNCS, vol. 1668, Springer, Heidelberg,
1999, pp. 110–123.

715. , Dijkstra’s algorithm on-line: An empirical case study from public railroad
transport, ACM Journal of Experimental Algorithmics 5 (2000).

716. Frank Schulz, Dorothea Wagner, and Christos Zaroliagis, Using multi-level graphs
for timetable information in railway systems, Proceedings of the 4th Workshop
on Algorithm Engineering and Experiments (ALENEX’02) (David M. Mount and
Clifford Stein, eds.), LNCS, vol. 2409, Springer, Heidelberg, 2002, pp. 43–59.

717. Robert Sedgewick, Implementing quicksort programs, Communications of the
ACM 21 (1978), no. 10, 847 – 857.

718. Michael Seel, Eine Implementierung abstrakter Voronoidiagramme, Master’s the-
sis, Universität des Saarlandes, 1994.

719. Mark Segal, Using tolerances to guarantee valid polyhedral modeling results, SIG-
GRAPH ’90: Proceedings of the 17th annual conference on Computer graphics
and interactive techniques (New York, NY, USA), ACM Press, 1990, pp. 105–114.

720. Mark Segal and Carlo H. Séquin, Consistent calculations for solids modeling,
Proceedings of the 1st Annual ACM Symposium on Computational Geometry
(New York, NY, USA), ACM Press, 1985, pp. 29–38.

721. Raimund Seidel, Constrained Delaunay triangulations and Voronoi diagrams, Re-
port 260 IIG-TU Graz (1988), 178–191.

722. , The nature and meaning of perturbations in geometric computing, STACS
’94: Proceedings of the 11th Annual Symposium on Theoretical Aspects of Com-
puter Science (Patrice Enjalbert, Ernst W. Mayr, and Klaus W. Wagner, eds.),
LNCS, vol. 775, Springer, Heidelberg, 1994, pp. 3–17.

723. Sriram Sellappa and Siddhartha Chatterjee, Cache-efficient multigrid algorithms,
Int. J. High Perform. Comput. Appl. 18 (2004), no. 1, 115–133.

724. Sandeep Sen and Siddhartha Chatterjee, Towards a theory of cache-efficient algo-
rithms, Proceedings of the 11th ACM-SIAM Symposium on Discrete Algorithms
(SODA), 2000, pp. 829–838.

725. Saurabh Sethia, Martin Held, and Joseph S. B. Mitchell, PVD: A stable imple-
mentation for computing Voronoi diagrams of polygonal pockets, ALENEX ’01:

Bibliography 493

Revised Papers from the Third International Workshop on Algorithm Engineer-
ing and Experimentation (Adam L. Buchsbaum and Jack Snoeyink, eds.), LNCS,
vol. 2153, Springer, Heidelberg, 2001, pp. 105–116.

726. Seti@home, http://setiathome.berkeley.edu, 2006.
727. Website of SGI’s STL implementation, http://www.sgi.com/tech/stl/, 2006.
728. Michael I. Shamos and Dan Hoey, Closest-point problems, Proceedings of the 16th

Annual IEEE Symposium on Foundations of Computer Science (FOCS), IEEE
Computer Society, 1975, pp. 151–162.

729. David J. Sheskin, Handbook of parametric and nonparametric statistical proce-
dures, CRC Press, 2007.

730. Jonathan Richard Shewchuk, Companion web page to [731], http://www.cs.cmu.
edu/~quake/robust.html.

731. , Adaptive precision floating-point arithmetic and fast robust geometric
predicates, Discrete and Computational Geometry 18 (1997), 305–363.

732. Douglas R. Shier, On algorithm analysis, INFORMS Journal on Computing 8
(1996), no. 1, 24–26.

733. Jop F. Sibeyn, From parallel to external list ranking, 1997, Technical Report MPI-
I-97-1-021, Max-Planck Institut für Informatik.

734. Jop F. Sibeyn and Michael Kaufmann, BSP-like external memory computation,
Proc. 3rd Italian Conf. Algorithms and Complexity (Gian Carlo Bongiovanni,
Daniel P. Bovet, and Giuseppe Di Battista, eds.), LNCS, vol. 1203, Springer,
Heidelberg, 1997, pp. 229–240.

735. Sidney Siegel, Nonparametric statistics for the behavioral sciences, McGraw-Hill,
1956.

736. Jeremy G. Siek, L. Lee, and Andrew Lumsdaine, The Boost graph library,
Addison-Wesley, 2002.

737. Jeremy G. Siek and Andrew Lumsdaine, The matrix template library: A generic
programming approach to high performance numerical linear algebra, Proceedings
of Computing in Object-Oriented Parallel Environments: Second International
Symposium, ISCOPE 98 (Denis Caromel, R. R. Oldehoeft, and Marydell Thol-
burn, eds.), LNCS, vol. 1505, Springer, Heidelberg, 1998, pp. 59–70.

738. Edleno Silva de Moura, Gonzalo Navarro, Nivio Ziviani, and Ricardo Baeza-Yates,
Fast and flexible word searching on compressed text, ACM Transactions on Infor-
mation Systems 18 (2000), no. 2, 113–139.

739. Johannes Singler, Graph isomorphism implementation in LEDA 5.1, http://www.
algorithmic-solutions.de/bilder/graph_iso.pdf, 2006, Version 2.0.

740. Johannes Singler, Peter Sanders, and Felix Putze, MCSTL: The Multi-Core Stan-
dard Template Library, Euro-Par 2007: Parallel Processing (Anne-Marie Kermar-
rec, Luc Bougé, and Thierry Priol, eds.), LNCS, vol. 4641, Springer, Heidelberg,
2007, pp. 682–694.

741. Steven Skiena, Who is interested in algorithms and why? Lessons from the Stony
Brook algorithms repository, Algorithm Engineering (Kurt Mehlhorn, ed.), Max-
Planck-Institut für Informatik, 1998, pp. 204–212.

742. Steven S. Skiena, The algorithm design manual, second ed., Springer Verlag, New
York, 2008.

743. David B. Skillicorn and Domenico Talia, Models and languages for parallel com-
putation, ACM Computing Surveys 30 (1998), no. 2, 123–169.

744. Daniel D. Sleator and Robert E. Tarjan, Amortized efficiency of list update and
paging rules, Communications of the ACM 28 (1985), no. 2, 202–208.

745. Steve Smale, On the average number of steps of the simplex method of linear
programming, Mathematical Programming 27 (1983), 241–262.

494 Bibliography

746. Warren D. Smith, How to find Steiner minimal trees in Euclidean d-space, Algo-
rithmica 7 (1992), 137–177.

747. Marc Snir and Steve Otto, MPI – the complete reference: The MPI core, 2nd ed.,
MIT Press, 1998.

748. Ian Sommerville, Software engineering, 8th ed., International Computer Science
Series, vol. -, Addison-Wesley, New York - Amsterdam - Bonn, 2006.

749. Daniel A. Spielman and Shang-Hua Teng, Smoothed analysis of algorithms: Why
the simplex algorithm usually takes polynomial time, Journal of the ACM 51
(2004), no. 3, 385–463.

750. Paul G. Spirakis and Christos D. Zaroliagis, Distributed algorithm engineering,
Experimental Algorithmics. From Algorithm Design to Robust and Efficient Soft-
ware (Rudolf Fleischer, Bernard M. E. Moret, and Erik Meineche Schmidt, eds.),
LNCS, vol. 2547, Springer, Heidelberg, 2002, pp. 197–228.

751. Splint – secure programming lint, http://splint.org/, 2007, Version 3.1.2.
752. Joel Spolsky, User interface design for programmers, Apress, Berkeley, CA, USA,

2001.
753. Peter Sprent and N. C. Smeeton, Applied nonparametric statistical methods,

Chapman & Hall/CRC, 2001.
754. Richard M. Stallman et al., GCC, the GNU compiler collection, version 4.3.3,

Source code available at http://gcc.gnu.org/, 2009.
755. Alexander A. Stepanov and Meng Lee, The standard template library, Tech. Re-

port HPL-95-11, Hewlett Packard, November 1995.
756. Website of STLport, http://www.stlport.org/, 2006.
757. Ion Stoica, Robert Morris, David Karger, Frans Kaashoek, and Hari Balakrishnan,

Chord: A scalable peer-to-peer lookup service for internet applications, Proceedings
of the 2001 ACM SIGCOMM Conference, 2001, pp. 149–160.

758. Volker Strassen, Gaussian elimination is not optimal, Numerische Mathematik
13 (1969), 354–356.

759. Bjarne Stroustrup, The C++ programming language, special edition, Addison-
Wesley, 2000.

760. , A brief look at C++0x, http://www.artima.com/cppsource/cpp0x.

html, January 2006.
761. STXXL: Standard template library for extra large data sets, http://stxxl.

sourceforge.net/, 2008, version 1.2.1.
762. Kokichi Sugihara, A robust and consistent algorithm for intersecting convex poly-

hedra, Comput. Graph. Forum 13 (1994), no. 3, 45–54.
763. Kokichi Sugihara and Masao Iri, A solid modelling system free from topological

inconsistency, J. Inf. Process. 12 (1989), no. 4, 380–393.
764. , A robust topology-oriented incremental algorithm for Voronoi diagrams,

Int. J. Comput. Geometry Appl. 4 (1994), no. 2, 179–228.
765. Kokichi Sugihara, Masao Iri, Hiroshi Inagaki, and Toshiyuki Imai, Topology-

oriented implementation - an approach to robust geometric algorithms, Algorith-
mica 27 (2000), no. 1, 5–20.

766. Wijnand J. Suijlen, BSPonMPI, http://bsponmpi.sourceforge.net/, 2006.
767. Xian-He Sun and Lionel M. Ni, Another view on parallel speedup, Supercomputing

’90: Proc. ACM/IEEE Conf. on Supercomputing, IEEE Computer Society, 1990,
pp. 324–333.

768. Geoff Sutcliffe and Christian B. Suttner, The TPTP problem library - CNF release
v1.2.1, Journal of Automated Reasoning 21 (1998), no. 2, 177–203.

769. Z. Sweedyk, A 2 1

2
-approximation algorithm for shortest superstring, SIAM Jour-

nal on Computing 29 (1999), no. 3, 954–986.

Bibliography 495

770. Roberto Tamassia and Luca Vismara, A case study in algorithm engineering for
geometric computing, International Journal of Computational Geometry Applica-
tions 11 (2001), no. 1, 15–70.

771. Robert E. Tarjan, Efficiency of a good but not linear set union algorithm, J. ACM
22 (1975), no. 2, 215–225.

772. , Updating a balanced search tree in O(1) rotations, Information Processing
Letters 16 (1983), no. 5, 253–257.

773. , Amortized computational complexity, SIAM Journal on Algebraic and
Discrete Methods 6 (1985), no. 2, 306–318.

774. A. H. Taub (ed.), John von Neumann collected works, vol. V, Design of Computers,
Theory of Automata and Numerical Analysis, Pergamon, Oxford, 1963.

775. Siamak Tazari, Matthias Müller-Hannemann, and Karsten Weihe, Workload bal-
ancing in multi-stage production processes, Experimental Algorithms, 5th Inter-
national Workshop, WEA 2006, Cala Galdana, Menorca, Spain, May 24-27, 2006,
Proceedings (Carme Àlvarez and Maria J. Serna, eds.), LNCS, vol. 4007, Springer,
Heidelberg, 2006, pp. 49–60.

776. Siamak Tazari and Matthias Müller-Hannemann, Dealing with large hidden con-
stants: Engineering a planar Steiner tree PTAS, ALENEX 2009, SIAM, Philadel-
phia, 2009, pp. 120–131.

777. Robert D. Tennent, Specifying software, Cambridge University Press, 2002.
778. The BlueGene/L Team, An overview of the BlueGene/L supercomputer, Proc.

ACM/IEEE Conf. on Supercomputing, 2002, pp. 1–22.
779. Sven Thiel, The LEDA memory manager, Tech. report, Algorithmic Solu-

tions GmbH, August 1998, http://www.algorithmic-solutions.info/leda_

docs/leda_memmgr.ps.gz.
780. Mikkel Thorup, Integer priority queues with decrease key in constant time and the

single source shortest paths problem, Journal of Computer and System Sciences
69 (2004), no. 3, 330–353.

781. Sivan Toledo, A survey of out-of-core algorithms in numerical linear algebra, Ex-
ternal memory algorithms, American Mathematical Society, 1999, pp. 161–179.

782. TPIE: A transparent parallel I/O environment, http://www.cs.duke.edu/TPIE/,
2005, version from September 19, 2005.

783. Lloyd N. Trefethen and David Bau, III (eds.), Numerical linear algebra, Soci-
ety for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1997. MR
MR1444820 (98k:65002)

784. Edward R. Tufte, The visual display of quantitative information, Graphics Press,
1983.

785. John W. Tukey, Exploratory data analysis, Reading, MA, Addison-Wesley, 1977.
786. Alan M. Turing, Rounding-off errors in matrix processes, Quarterly Journal of

Mechanics and Applied Mathematics 1 (1948), 287–308, reprinted in [787] with
summary and notes (including corrections).

787. , Pure mathematics, Collected Works of A. M. Turing, North-Holland, Am-
sterdam, The Netherlands, 1992, Edited and with an introduction and postscript
by J. L. Britton and Irvine John Good. With a preface by P. N. Furbank.

788. The universal protein resource (UniProt), http://www.uniprot.org/, 2007.
789. Leslie G. Valiant, A bridging model for parallel computation, Commun. ACM 33

(1990), no. 8, 103–111.
790. , General purpose parallel architectures, Handbook of Theoretical Com-

puter Science, Volume A: Algorithms and Complexity (A), Elsevier, 1990,
pp. 943–972.

496 Bibliography

791. , A bridging model for multi-core computing, Proceedings of 16th Annual
European Symposium on Algorithms (ESA) (Dan Halperin and Kurt Mehlhorn,
eds.), vol. 5193, Springer, 2008, pp. 13–28.

792. Gabriel Valiente, Algorithms on trees and graphs, Springer, 2002.
793. A. Frank van der Stappen, Motion planning amidst fat obstacles, Ph.D. thesis,

Department of Computer Science, Utrecht University, March 1994.
794. Peter van Emde Boas, Preserving order in a forest in less than logarithmic time

and linear space, Information Processing Letters 6 (1977), 80–82.
795. Peter van Emde Boas, R. Kaas, and E. Zijlstra, Design and implementation of an

efficient priority queue, Mathematical Systems Theory 10 (1977), 99–127.
796. Dimitri van Heesch, The Doxygen website, http://www.stack.nl/~dimitri/

doxygen/, 2009.
797. J. A. van Hulzen, Ben J. A. Hulshof, Barbara L. Gates, and M. C. van Heer-

waarden, A code optimization package for REDUCE, Proceedings of the ACM-
SIGSAM 1989 International Symposium on Symbolic and Algebraic Computa-
tion, 1989, pp. 163–170.

798. Jan van Leeuwen (ed.), Handbook of theoretical computer science, volume A: Al-
gorithms and complexity, Elsevier and MIT Press, 1990.

799. Marc A. van Leeuwen, Literate programming in C: CWEBx manual, Report AM-
R9510, Centrum voor Wiskunde en Informatica, Department of Analysis, Algebra
and Geometry, Stichting Mathematisch Centrum, Amsterdam, The Netherlands,
1995.

800. David Vandervoorde and Nicolai M. Josuttis, C++ templates: the complete guide,
Addison-Wesley, 2003.

801. Todd L. Veldhuizen, Expression templates, C++ Report 7 (1995), no. 5, 26–31.
802. , Arrays in Blitz++, Proceedings of the 2nd International Scientific Com-

puting in Object-Oriented Parallel Environments (ISCOPE’98) (Denis Caromel,
R. R. Oldehoeft, and Marydell Tholburn, eds.), LNCS, vol. 1505, Springer, Hei-
delberg, 1998, pp. 223–230.

803. Bill Venners, Joshua Bloch: A conversation about design (An inter-
view with effective Java author, Josh Bloch by Bill Venners), First
Published in JavaWorld, http://www.javaworld.com/javaworld/jw-01-2002/

jw-0104-bloch.html, January 2002.
804. Roman Vershynin, Beyond Hirsch conjecture: walks on random polytopes and

smoothed complexity of the simplex method, Proceedings of the 47th Annual IEEE
Symposium on Foundations of Computer Science (FOCS), 2006, pp. 133–142.

805. Sebastiano Vigna, Broadword implementation of rank/select queries, WEA
(Catherine C. McGeoch, ed.), LNCS, vol. 5038, Springer, Heidelberg, 2008,
pp. 154–168.

806. Uzi Vishkin, George C. Caragea, and Bryant C. Lee, Handbook of parallel comput-
ing: Models, algorithms and applications, ch. Models for Advancing PRAM and
Other Algorithms into Parallel Programs for a PRAM-On-Chip Platform, CRC
Press, 2007.

807. Visone: Analysis and visualization of social networks, http://visone.info/,
2008, Version 2.3.5.

808. Jeffrey S. Vitter, External memory algorithms and data structures: Dealing with
massive data, ACM Computing Surveys 33(2) (2001), 209–271.

809. Jeffrey S. Vitter, Algorithms and data structures for external memory, Founda-
tions and Trends in Theoretical Computer Science, NOW Publishers, 2008.

810. Jeffrey S. Vitter and Elizabeth A. M. Shriver, Algorithms for parallel memory I:
Two level memories, Algorithmica 12 (1994), no. 2–3, 110–147.

Bibliography 497

811. , Algorithms for parallel memory, I/II, Algorithmica 12 (1994), no. 2/3,
110–169.

812. Jules Vleugels, On fatness and fitness – realistic input models for geometric algo-
rithms, Ph.D. thesis, Department of Computer Science, Utrecht University, March
1997.

813. John von Neumann and Herman H. Goldstine, Numerical inverting of matrices
of high order, Bull. Amer. Math. Soc. 53 (1947), 1021–1099, Reprinted in [774,
pp. 479–557].

814. Joachim von zur Gathen and Jürgen Gerhard, Modern computer algebra, 2nd ed.,
Cambridge University Press, 2003.

815. Georgy Voronoi, Nouvelle applications des paramètres continus à la theorie des
formes quadratiques, J. Reine Angew. Math. 134 (1908), 198–287.

816. Dorothea Wagner and Thomas Willhalm, Geometric speed-up techniques for find-
ing shortest paths in large sparse graphs, Proceedings of the 11th Annual European
Symposium on Algorithms (ESA’03) (Giuseppe Di Battista and Uri Zwick, eds.),
LNCS, vol. 2832, Springer, Heidelberg, 2003, pp. 776–787.

817. Dorothea Wagner, Thomas Willhalm, and Christos Zaroliagis, Dynamic shortest
path containers, Proceedings of ATMOS Workshop 2003, 2004, pp. 65–84.

818. , Geometric containers for efficient shortest-path computation, ACM Jour-
nal of Experimental Algorithmics 10 (2005), 1.3.

819. Peter J. L. Wallis (ed.), Improving floating-point programming, Wiley, London,
1990.

820. Jie Wang, Average-case computational complexity theory, Complexity Theory Ret-
rospective, in Honor of Juris Hartmanis on the Occasion of His Sixtieth Birthday,
July 5, 1988 (Alan L. Selman, ed.), vol. 2, Springer, 1997.

821. David M. Warme, A new exact algorithm for rectilinear Steiner minimal trees,
Tech. report, System Simulation Solutions, Inc., Alexandria, VA 22314, USA,
1997.

822. , Spanning trees in hypergraphs with applications to Steiner trees, Ph.D.
thesis, Computer Science Dept., The University of Virginia, 1998.

823. David M. Warme, Pawel Winter, and Martin Zachariasen, Exact algorithms for
plane Steiner tree problems: A computational study, Tech. Report TR-98/11,
DIKU, Department of Computer Science, Copenhagen, Denmark, 1998.

824. , GeoSteiner 3.1, DIKU, Department of Computer Science, Copenhagen,
Denmark, http://www.diku.dk/geosteiner/, 2003.

825. Josef Weidendorfer, Performance analysis of GUI applications on Linux, KDE
Contributor Conference, 2003.

826. Karsten Weihe, A software engineering perspective on algorithmics, ACM Com-
puting Surveys 33 (2001), no. 1, 89–134.

827. Karsten Weihe, Ulrik Brandes, Annegret Liebers, Matthias Müller-Hannemann,
Dorothea Wagner, and Thomas Willhalm, Empirical design of geometric algo-
rithms, Proceedings of the 15th Annual ACM Symposium on Computational Ge-
ometry, 1999, pp. 86–94.

828. Maik Weinard and Georg Schnitger, On the greedy superstring conjecture, SIAM
Journal on Discrete Mathematics 20 (2006), no. 2, 502–522.

829. Richard Clint Whaley, Antoine Petitet, and Jack J. Dongarra, Automated em-
pirical optimization of software and the ATLAS project, Parallel Computing 27
(2001), no. 1–2, 3–35.

830. Wikipedia, http://en.wikipedia.org/wiki/Wikipedia:Modelling_Wikipedia’
s_growth, 2010.

498 Bibliography

831. James H. Wilkinson, Rounding errors in algebraic processes, IFIP Congress, 1959,
pp. 44–53.

832. , Error analysis of floating-point computation, Numer. Math. 2 (1960),
319–340.

833. , Rounding errors in algebraic processes, Notes on Applied Science, No. 32,
Notes on Applied Science No. 32, Her Majesty’s Stationery Office, London, 1963,
Also published by Prentice-Hall, Englewood Cliffs, NJ, USA, 1964, translated
into Polish as Bledy Zaokragleń w Procesach Algebraicznych by PWW, Warsaw,
Poland, 1967 and translated into German as Rundungsfehler by Springer-Verlag,
Berlin, Germany, 1969. Reprinted by Dover Publications, New York, 1994.

834. James H. Wilkinson and Christian H. Reinsch (eds.), Handbook for automatic
computation, Vol. 2, Linear Algebra, Springer-Verlag, Berlin, Heidelberg, New
York, Tokyo, 1971.

835. Ross Williams, FunnelWeb user’s manual, ftp.adelaide.edu.au in /pub/

compression and /pub/funnelweb, University of Adelaide, Adelaide, South Aus-
tralia, Australia, 1992.

836. Tiffani L. Williams and Rebecca J. Parsons, The heterogeneous bulk synchronous
parallel model, Proc. 15th Intl. Parallel and Distributed Processing Symp.
(IPDPS’00), Workshops on Parallel and Distr. Processing, Springer-Verlag, 2000,
pp. 102–108.

837. Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David Boles, Dynamic
storage allocation: A survey and critical review, IWMM ’95: Proceedings of the
International Workshop on Memory Management (Henry G. Baker, ed.), LNCS,
vol. 986, Springer, Heidelberg, 1995, pp. 1–116.

838. Pawel Winter, An algorithm for the Steiner problem in the Euclidean plane, Net-
works 15 (1985), 323–345.

839. Pawel Winter and Martin Zachariasen, Euclidean Steiner minimum trees: An
improved exact algorithm, Networks 30 (1997), 149–166.

840. Laurence A. Wolsey, Integer programming, John Wiley & Sons, 1998.
841. Richard T. Wong, A dual ascent approach for Steiner tree problems on a directed

graph, Mathematical Programming 28 (1984), 271–287.
842. Jim C. P. Woodcock and Jim Davies, Using Z: Specification, proof and refinement,

Prentice Hall International Series in Computer Science, 1996.
843. Li Xiao, Xiaodong Zhang, and Stefan A. Kubricht, Improving memory perfor-

mance of sorting algorithms, ACM Journal of Experimental Algorithmics 5(3)
(2000).

844. Chee-Keng Yap, A geometric consistency theorem for a symbolic perturbation
scheme, J. Comput. Syst. Sci. 40 (1990), no. 1, 2–18.

845. , Symbolic treatment of geometric degeneracies, J. Symb. Comput. 10
(1990), no. 3-4, 349–370.

846. , Towards exact geometric computation, Comput. Geom. Theory Appl. 7
(1997), no. 1-2, 3–23.

847. , Fundamental problems of algorithmic algebra, Oxford University Press,
2000.

848. , Robust geometric computation, Handbook of Discrete and Computational
Geometry (Jacob E. Goodman and Joseph O’Rourke, eds.), Chapmen & Hal-
l/CRC, Boca Raton, FL, 2nd ed., 2004, pp. 927–952.

849. Chee-Keng Yap and Kurt Mehlhorn, Towards robust geometric computation, Fun-
damentals of Computer Science Study Conference (Washington DC), July 25-27
2001.

Bibliography 499

850. Tzuoo-Hawn Yeh, Cheng-Ming Kuo, Chin-Laung Lei, and Hsu-Chun Yen, Com-
petitive analysis of on-line disk scheduling, Theory of Computing Systems 31
(1998), 491–506.

851. Jay Yellen and Jonathan L. Gross, Graph theory and its applications, CRC Press,
1998.

852. Mehmet C. Yildiz and Patrick H. Madden, Preferred direction Steiner trees,
GLSVLSI ’01: Proceedings of the 11th Great Lakes symposium on VLSI (New
York, NY, USA), ACM Press, 2001, pp. 56–61.

853. Sung-Eui Yoon and Peter Lindstrom, Mesh layouts for block-based caches, IEEE
Trans. Visualization and Computer Graphics 12 (2006), no. 5, 1213–1220.

854. Edward Yourdon, Flashes on maintenance from techniques of program structure
and design, Techniques of Program Structure and System Maintenance, QED
Information Science, 1988.

855. Martin Zachariasen, Rectilinear full Steiner tree generation, Tech. Report TR-
97/29, DIKU, Department of Computer Science, Copenhagen, Denmark, 1997.

856. Martin Zachariasen and Andre Rohe, Rectilinear group Steiner trees and applica-
tions in VLSI design, Mathematical Programming 94 (2003), 407–433.

857. Alexander Z. Zelikovsky, An 11/6-approximation algorithm for the network
Steiner problem, Algorithmica 9 (1993), 463–470.

858. Andreas Zeller, Why programs fail – a guide to systematic debugging, second ed.,
Dpunkt, 2009.

859. ZIB optimization suite, http://zibopt.zib.de/, 2009.
860. Joachim Ziegler, The LEDA tutorial, http://www.leda-tutorial.org/, 2006.
861. David Zokaities, Writing understandable code, Software Development (2001), 48–

49.
862. Gerhard Zumbusch, Parallel multilevel methods. Adaptive mesh refinement and

loadbalancing, Teubner, 2003.

