
Abductive Inference in Bayesian Belief Networks
Using Swarm Intelligence

Karthik Ganesan Pillai
Department of Computer Science

Montana State University
EPS 357, PO Box 173880
Bozeman MT, 59717-3880

Email: k.ganesanpillai@cs.montana.edu

John W. Sheppard
Department of Computer Science

Montana State University
EPS 357, PO Box 173880
Bozeman MT, 59717-3880

Email: john.sheppard@cs.montana.edu

Abstract—Abductive inference in Bayesian belief networks,
also known as most probable explanation (MPE) or finding
the maximum a posterior instantiation (MAP), is the task of
finding the most likely joint assignment to all of the (non-
evidence) variables in the network. In this paper, a novel swarm
intelligence-based algorithm is introduced that efficiently finds
the k MPEs of a Bayesian network. Our swarm-based algorithm
is compared with two state-of-the-art genetic algorithms, and
the results show that the swarm-based algorithm is effective and
outperforms the two genetic algorithms in terms of computational
resources required.

Index Terms—Abductive inference, Bayesian networks, swarm
intelligence

I. INTRODUCTION

A Bayesian belief network is a directed acyclic graph
(DAG), whose nodes are the random variables in a domain
and whose edges correspond to direct influence of one node
on another [11]. If X = {X1, X2...Xn} is a set of variables
in the network, then the joint probability can be calculated as

p(X) =
∏

Xi∈X

p(Xi|Pa(Xi)), (1)

where Pa(Xi) corresponds to the parents of Xi. Bayesian
belief networks provide a sound formalism for probabilistic
reasoning under uncertainity [11]; however, one of the impor-
tant challenges in using Bayesian networks is determining the
values of unobserved variables in the domain that best explain
the evidence. The task of abductive inference corresponds to
computing the most likely joint assignment to all of the (non-
evidence) variables in a network. More precisely, if we let
M = X\E, our task is to find the most likely assignment to
the variables in M given the evidence E = e:

MAP (M, e) = argmax
m∈M

p(m|e) (2)

where, in general, argmaxxf(x) represents the value of x
for which f(x) is maximal. There can be more than one
assignment that has the highest posterior probability, and in
this case the k-MPE task is to return the set of k most
probable assignments. In [14], it has been shown that abductive
inference in Bayesian belief networks is NP-hard. Abductive
inference is a combinatorial optimization problem, and much
research has gone into the possibilities of obtaining partial or
approximate solutions.

Several authors have used genetic algorithms to approximate
solutions for abductive inference [2], [4], [13], [15]. In [4], the

state of a Bayesian network is represented by a chromosome
where each chromosome is a string of integers. Each node
in a network represents a bit position in a chromosome with
possible values of 0 or 1. Standard genetic operators (i.e.,
mutation and crossover) are applied to these chromosomes to
generate offspring from parent chromosomes. The chain rule is
then applied to evaluate a chromosome’s fitness since p(M |e)
is proportional to p(M, e). Hence to evaluate a chromosome,
|M | multiplications are needed.

In [15], a niching genetic algorithm is introduced that
utilizes the "multifractal characteristic and clustering property"
of Bayesian networks to find k-MPE. The property corre-
sponds to an observation that the joint probability distribution
represented by a Bayesian network is skewed, and there are
regions within the distribution that are highly "self-similar."
This property led the authors to organize their GA with a
novel probabilistic crowding method that biases the crossover
operator toward self-similar individuals in the population.
Otherwise, they followed the same approach as [4] to encode
a Bayesian network into chromosomes.

In [13], the authors present a genetic algorithm that uses
graphs for the chromosomes. Each chromosome encodes and
completely specifies a possible solution that is equivalent
to a complete description of a Bayesian network state. The
phenotype in the solution space is the absolute probability
of each set of assignments and constitutes an expression or
interpretation of the encoding of the chromosome. Fitness
is calculated as a transformation of the phenotype of each
individual and is used to compare individuals.

Partial abductive inference is the task of finding k MPEs
only for a subset of the network’s variables, called an ex-
planation set XE [10]. In [2], a genetic algorithm was used
to solve the partial abductive inference problem. Here, the
explanation set variables are represented as a string of integers
of length |XE |. Each position in the string contains the state of
the corresponding variable in XE . Probabilistic propagation is
then used to evaluate each chromosome, and calculations are
carried out in the corresponding junction tree of the Bayesian
network.

In this paper, we introduce a new approximation algorithm
to solve the abductive inference problem based on particle
swarm optimization, which is a swarm intelligence technique
used to solve high-dimensional optimization problems. In
particular, we introduce a discrete multi-valued PSO algorithm
to find the k most probable explanations. We compare the
results of our PSO-based approach to the genetic algorithms

introduced in [4] and [15].

II. BACKGROUND

A. Bayesian Belief Networks

Bayesian networks are also known as belief networks or
causal diagrams. Bayesian networks consists of a set of propo-
sitional variables represented by nodes in a directed acyclic
graph, and each variable can assume an arbitrary number
of mutually exclusive and exhaustive values [13]. Directed
arcs between nodes represent the probabilistic relationships
between nodes. These directed arcs encode conditional inde-
pendence properties in the Bayesian network. Specifically, we
say a variables Xi is conditionally independent of its non-
descendants given its parents.

{Xi ⊥ Non-Descendant(Xi)|Pa(Xi)}

Alternatively, we can say Xi is conditionally independent of
all other variables in the network given its Markov blanket,
where the Markov blanket corresponds to Xi’s parents, chil-
dren, and children’s parents.

{Xi ⊥ (X\(Xi ∪MB(Xi)))|MB(Xi)}

Prior probabilities are specified for each state of a root node,
and conditional probabilities are specified for each possible
value of a non-root node, given the the state of its parents
[13].

Given a Bayesian network, several questions can be posed.
For example, the standard inference problem involves provid-
ing a set of evidence E and then querying for the posterior
probability given that evidence over some subset of variables
Q ⊆ X\E. As described previously, the k-MPE problem is an
extension of the inference problem whereby we not only revise
the posterior probability distribution based on the evidence
but seek out the k most probable variable assignments that
result. Given the base inference problem is NP-hard [1], its
complexity is compounded by having to solve the resulting
combinatorial optimization problem to find those k most
probable state assignments [11], [14].

B. Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a swarm intelligence
technique, introduced by James Kennedy and Russel Eberhart,
that is inspired by the social behavior of flocking birds [3].
PSO is a population-based approach where the algorithm is
initialized with random solutions (called particles), and search
applies an update process whereby the velocity vectors applied
to the particles are determined based on the fitness of states
visited by the particles. Eventually, all the particles in a
swarm will move closer to an optimum of the fitness function.
Originally, PSO was applied to optimization problems with
continuous variables; however, several adaptations have been
create to apply PSO to discrete problems, known as Discrete
Particle Swarm Optimization (DPSO) [9]. In this paper, we
use an extended version of DPSO, called discrete multi-valued
particle swarm optimization [16], and apply the result to
abductive inference problem in Bayesian networks.

1) Particle Swarm Optimization: The PSO algorithm first
initializes a swarm of particles randomly over a search space.
These particles “fly” with a certain velocity and find a position
in the search space after each iteration. On every iteration of
the algorithm, the current position of a particle is evaluated
using the fitness function. The best position is stored in a
vector called pi (personal best). Also, the position of the
particle with the best global fitness is stored in a vector called
pg (global best). At each iteration, the particle’s velocity is
updated based on the influence of the personal best position
(pi) and on the influence of the global best particle (pg).

vi = ωvi + U(0, φ1)⊗ (pi − xi) + U(0, φ2)⊗ (pg − xi)

where ⊗ is component-wise multiplication and U(0, φ) returns
a vector of uniform random numbers between 0 and φ. Then
each particle’s position is updated by this newly calculated
velocity:

xi ← xi + vi.

There are a few parameters that need to be chosen for the
PSO algorithm. The population size is chosen depending on
the problem. The parameters φ1 and φ2 determine the force of
the direction in which the particle is pulled between personal
best and global best of the particles. These parameters need to
be tuned properly for the PSO to converge. Also, the velocity
of the particle is set to a minimum and maximum limit for the
particle to control stability. To control the scope of the search,
and also to control and perhaps eliminate the limit on velocity,
an inertia weight ω is used.

2) Discrete Particle Swarm Optimization: For particles
with binary-valued solution elements, the DPSO algorithm
was developed by Kennedy and Eberhart [9]. In the DPSO
algorithm, the position of each particle is represented by a
vector from the d-dimensional binary solution space xi ∈
{0, 1}d, and velocity is a vector vi = (vi1, vi2, ...vid) of the d-
dimensional continuous space, vi ∈ <d. Here the velocity term
indicates the probability of the particle assuming a value of
0 or 1 in the next iteration. Specifically, the value vij equals
the probability that xij , will take on the value of 1 in the
next iteration. To assign a new position value to a particle i,
each position variable xij is randomly set with probability of
selecting a value of 1 given by the sigmoid function:

p(xij = 1) =
1

1 + exp(−vij)

The DPSO algorithm is limited only to discrete problems with
binary valued solution elements [9].

In [16], the discrete multi-valued PSO (DMVPSO) algo-
rithm is introduced. In this method the discrete variables’
values fall in the range [0,M − 1], where M corresponds to
the cardinality of each state variable. The same velocity update
and particle representation are used in this method as in DPSO.
The position update equation for a particle is modified in the
following manner. Using the following sigmoid transformation
the velocity is transformed into a number between [0,M]:

Sid =
M

1 + exp(−vid)
.

Given the fairly restricted range of values for vid, the resulting
curve is nearly linear. Thus, a new state value is determined
by generating a random number according to the Gaussian

distribution, Xid ∼ N (Sid, σ × (M − 1)), and rounding the
result. Then to ensure the resulting value is legal, we truncate
such that

Xid =


M − 1 Xid > M − 1
0 Xid < 0
Xid otherwise.

This ensures the resulting positions of the particles remain
discrete values between [0,M − 1]. Notice that, for any given
Sid there is a non-zero probability for choosing any value
between [0,M−1]; however, because the Gaussian distribution
is centered on Sid, the probability for selecting a given value
decreases based on its distance from the current value of Sid.

III. EXPERIMENTAL DESIGN

To solve the k-MPE problem using a PSO-based approach,
we need to represent a candidate solution in the population as
a particle in the corresponding swarm. In our case, a solution
corresponds to a state assignment for all of the non-evidence
variables within the Bayesian network. Thus we map this state
vector to a particle by the following procedure.

The nodes in the network are assigned to individual state
variables in an individual particle following a topological
ordering of the network. The ordering is specified by beginning
with root nodes and proceeding in a breadth-first fashion from
left to right. This encoding is the same representation as the
one used in [4]. We then need to define a fitness function so
that we can evaluate each particle in the population during
a given iteration. The objective of abductive inference is to
find the most likely assignment to the variables in M given
the evidence E = e (see Equation 2). Therefore, we use
the joint probability p(m, e) as the fitness function with the
goal of maximizing this probability. We justify this since
p(m|e) = p(m, e)/p(e) and p(e) = 1. This can be computing
using Equation 1.

We compared our DMVPSO algorithm to two genetic
algorithms in the literature that have been demonstrated to
yield strong results on the abductive inference problem. The
first algorithm is a basic adaptation of the standard genetic
algorithm to the abductive inference problem and is described
in [4]. Specifically, the chromosome in the genetic algorithm
is a simple vector of state values for each of the variables in
the network. For a Boolean network, this can be represented as
a simple bit string; however, it is straightforward to generalize
to any number of state values. The GA in [4] then uses
fitness-proportionate selection with steady-state replacement.
The genetic operators consist of simple mutation of individual
states (except for evidence variables) and two-point crossover.

The GA in [4] was shown to perform well on the basic
abductive inference problem; however, this was limited to the
single best explanation. To handle the general k-MPE problem,
we adapted their method by maintaining a priority queue of the
k best explanations seen throughout the evolutionary process.

Another approach that has been developed to address the
need to find multiple highly-fit individuals in a population is
the niching genetic algorithm. Sriwachirawat and Auwatana-
mongkol propose and evaluate such an algorithm to solve the
k-MPE problem [15]. Their "probabilistic restricted mating
genetic algorithm" (PRMGA) adapts a probabilistic crowding
procedure to promote crossover between similar individuals
that also belong to the same cluster that happen to contain

Algorithm 1 Probabilistic Restricted Mating GA
for i← 1 to numGen do

for j ← 1 to popSize/2 do
p1 ← RandSelect(), p2 ← RandSelect()
pdist← HammingDist(p1,p2)/`
if (pdist ≤ U(0, 1)) or (Xover(p1)|Xover(p2)) then
{c1, c2} ← Crossover(p1,p2)
c1 ← Mutate(p1), c2 ← Mutate(p2)
dist[1]← HammingDist(c1,p1)/`
dist[2]← HammingDist(c2,p2)/`
dist[3]← HammingDist(c1,p2)/`
dist[4]← HammingDist(c2,p1)/`
if max(dist[1 : 4] ≤ θ) then
Xover(c1)← Xover(c2)← True

else
Xover(c1)← Xover(c2)← False

end if
if dist[1] + dist[2] ≤ dist[3] + dist[4] then

if (U(0, 1) ≤ fit(c1)/(fit(c1) + fit(p1))) then
Replace p1 with c1

end if
if (U(0, 1) ≤ fit(c2)/(fit(c2) + fit(p2))) then

Replace p2 with c2
end if

else
if (U(0, 1) ≤ fit(c1)/(fit(c1) + fit(p2))) then

Replace p2 with c1
end if
if (U(0, 1) ≤ fit(c2)/(fit(c2) + fit(p1))) then

Replace p1 with c2
end if

end if
else
c1 ← Mutate(p1), c2 ← Mutate(p2)
if (U(0, 1) ≤ fit(c1)/(fit(c1) + fit(p1))) then

Replace p1 with c1
end if
if (U(0, 1) ≤ fit(c2)/(fit(c2) + fit(p2))) then

Replace p2 with c2
end if

end if
end for

end for

other high-fitness individuals (Algorithm 1). They also use a
priority queue to keep track of the k best explanations, which
provides a computational advantage over the simple GA.

This algorithm works as follows. For all intents and pur-
poses, the algorithm operates identically to the simple GA
except for selection. Specifically, PRMGA uses the same type
of mutation and can use any traditional crossover scheme
(such as the two-point crossover used above). It also uses a
generational replacement scheme (i.e., the entire population
is replaced in each generation). For selection, however, two
parents are simply selected randomly (without replacement)
according to a uniform distribution. The similarity of the two
parents (normalized by the length of the chromosome) is then
determined and a random number is generated between 0 and
1. If either the distance between the parents is found to be

Figure 1. Bipartite Bayesian networks used for experiments

less than this randomly generated threshold, or at least one
of the two parents has their crossover flag set to true, then
a crossover process begins. Otherwise, the parents simply
undergo mutation.

Following mutation and crossover, the replacement process
is based on the relative distances of parents and children as
well as the relative fitness of parents and children. Specifically,
the most similar parent-child pairs are determined, and their
respective fitnesses are compared to determine whether the
parent or the child survives. Limiting the replacement has
the effect of limiting the reproduction/recombination process
to those individuals and offspring that are most similar, thus
creating the niches in the population.

To test the DMVPSO-based k-MPE algorithm, we used
three different bipartite Bayesian networks (Figure 1) which
we designate Network A, Network B, and Network C re-
spectively. These networks are taken from [14]; however, the
networks in [14] were specified using a noisy-OR model
for the probabilities. Note that Cooper also proves the NP-
hardness of inference, even with bipartite networks (including
planar bipartite networks) [1]. Heckerman, on the other hand,
provided an exact inference algorithm for bipartite noisy-
OR networks (i.e., BN20 networks [8]) that is polynomial
in the number of negative findings and exponential in the
number of positive findings [6]. In our study, we decided to
complicate the problem by assuming a traditional Bayesian
network semantic rather than limiting the problem to the noisy-
OR case.

For each of these networks, parameters for root nodes were
generated randomly and parameters for non-root nodes were
generated based on their parents and stored in tables. For
each of these networks two different sets of parameters are
generated. In the first parameter set, each node in the network
has two states, and in the second parameters set, each node in
the network has three states. As shown in Figure 1, Network A
has six root nodes and five child nodes. Nodes s1 and s2 each
have three parents while the remaining child nodes only have

Table I
SEARCH SPACE PARAMETERS FOR FOR THE SIMPLE GA

states evidence nodes card npop nsamp
2 2 A:11 512 8 24

B:13 2048 32 96
C:15 8192 128 384

4 A:11 128 4 6
B:13 512 8 24
C:15 2048 32 96

3 2 A:11 19683 308 924
B:13 177147 2768 8304
C:15 1595323 24911 74733

4 A:11 2187 34 102
B:13 19683 308 924
C:15 177147 2768 8304

two parents. Network B has seven root nodes and six child
nodes where s1, s2, s4, and s5 all have three parents. Finally
Network C has eight root nodes and seven child nodes, and
nodes s1, s2, s4, s5, and s7 all have three parents.

For each network and parameter set, twelve experiments
were performed, based on the number of evidence nodes
selected and number of k-MPEs. Separate experiments are run
with two and four evidence variables set (where the evidence
variables and their states are selected randomly). In addition,
genetic algorithms, similar to one presented in [4] and [15],
are used as a benchmarks for comparing the performance of
DMVPSO [16]. For each network and set of evidence, we
evaluated these three algorithms with k set to 2, 4, 6, and 8
respectively.

For both genetic algorithms, initial populations are gen-
erated by the following approach. Using probabilistic logic
sampling [7], a configuration of all the variables in the network
is generated by first setting the evidence variables Xe to their
corresponding values. Note that any node in the network can
serve as evidence using this method. For each non-evidence
root node, that node’s marginal probability is used to generate
a state value, and for the remaining non-evidence nodes, their
conditional probabilities are used to generate their state values
based on the states of their parents. Thus a form of "forward
sampling" is used to generate the state of each member of the
population.

Table I shows the cardinality, population size, and total
sample size for the two different parameter sets for the genetic
algorithm of [4]. In this table, card is the cardinality of
the search space (excluding evidence nodes), npop is the
number of individuals in the population, and nsamp is the
total number of individuals (including those in the initial
population) explored during the entire genetic search process.
The population size and number of samples are generated
based on the cardinality of the search space. Specifically,
npop = round(card/64) and nsamp = card/16−npop. The
latter does not count the initial population. The parameters
shown in this table were selected to be consistent with the
approach taken in [4].

As in [4], we use two-point crossover and point mutation
for the search operators. The population is updated using a
steady-state replacement mechanism. In each generation two
individuals are selected using fitness-proportionate selection.
Of the two individuals created, one is selected randomly and
subjected to mutation with a probability of 0.2. At the end of
the reproduction cycle, as long as the resulting offspring does
not match another member of the population, that offspring

replaces the least fit individual in the population and a new
reproduction cycle is started. The GA terminates when nsamp
individuals have been explored [4].

For the niching GA (NGA), the population was set to have
50 individuals. The mutation rate was set to 0.06, and the
maximum number of generations was limited to 600. These
parameters were used for both the 2-state and 3-state problems.
The use of a static set of parameters for all problems is
consistent with the approach taken in [15].

For DMVPSO, the evidence and initial population of par-
ticles are generated identically to the genetic algorithm popu-
lations. For all the experiments, the number of particles is set
to 20, the maximum number of iterations is set to 100, and σ
is set to 0.2.

The k-MPE solutions are generated similarly to the ap-
proach used in [15]. For each generation, the k best solutions
are maintained in a priority queue. If a newly created indi-
vidual does not exist in the queue and its fitness is higher
than the lowest one in the queue, the lowest one is removed
from the queue and the new individual is inserted into the
queue instead. Each case (consisting of a network, a number
of evidence nodes, and a value for k) is run 10 times, and the
k most fit at the end of each of the 10 runs are returned as
the recommended explanations.

IV. RESULTS AND DISCUSSION

The sums of joint probabilities of the {2, 4, 6, 8}-MPEs and
time taken for two genetic algorithms and DMVPSO is shown
in Tables II and III respectively. Note that these tables do not
show results for Network A when the number of states for
each variable is limited to 2 and there are 4 evidence nodes.
This is because “nsamp” is extremely small relative to the
number of explanations being sought. In particular, “nsamp” =
6 while k ∈ {2, 4, 6, 8}. Thus in the best case, one third of the
population will comprise the "best explanation." In one case,
all of the members of the population must be used, and in
one case, there are insufficient instances to cover the required
number of explanations.

From Table III, we can observe as the network size and
number of states increases, the time taken to run each of
the genetic algorithms is significantly greater than the time
required for DMVPSO. However, all three algorithms per-
form equally well on the sum of joint probabilities of the
{2, 4, 6, 8}-MPEs.

V. CONCLUSIONS AND FUTURE WORK

Our DMVPSO-based algorithm is an effective alternative
for computing k-MPE efficiently. Specifically, we found the
DMVPSO method is able to discover the k most probable
explanations for our test networks that were statistically in-
distinguishable from the GA-based methods in the literature.
Furthermore, our method was able to find these explanations in
time that appears to scale linearly with the number of nodes
in the network, independent of the number of explanations
required. Furthermore, the corresponding times are dramati-
cally superior to the GA whenever fewer evidence nodes have
been set (corresponding to fewer constraints resulting from
inference) and are superior to the NGA algorithm in all cases,
even though the corresponding complexity appears to be linear
in the number of explanations required. Effectiveness of the

Table II
PROBABILITIES OF THE k MOST PROBABLE EXPLANATIONS

Net States Evidence KPE DMVPSO GA NGA
A 2 2 2 0.0687 0.0687 0.0687

4 0.1215 0.1215 0.1215
6 0.1624 0.1624 0.2138
8 0.2011 0.2011 0.2061

4 2 0.1572 N/A 0.2201
4 0.3394 N/A 0.3774
6 0.3594 N/A 0.4975
8 0.4876 N/A 0.4876

3 2 2 0.0079 0.0080 0.0060
4 0.0149 0.0147 0.0115
6 0.0177 0.0177 0.0126
8 0.0241 0.0255 0.0193

4 2 0.0197 0.0197 0.0197
4 0.0482 0.0482 0.0482
6 0.0670 0.0670 0.0635
8 0.0836 0.0836 0.0808

B 2 2 2 0.0401 0.0401 0.0401
4 0.0665 0.0665 0.0065
6 0.0950 0.0950 0.0950
8 0.1116 0.1116 0.1078

4 2 0.0715 0.0715 0.0572
4 0.1318 0.1318 0.1318
6 0.1696 0.1696 0.1696
8 0.2047 0.2047 0.2047

3 2 2 0.0011 0.0011 0.0006
4 0.0019 0.0022 0.0013
6 0.0024 0.0030 0.0022
8 0.0032 0.0039 0.0022

4 2 0.0042 0.0042 0.0038
4 0.0077 0.0078 0.0068
6 0.0113 0.0114 0.0083
8 0.0145 0.0147 0.0128

C 2 2 2 0.0190 0.0190 0.0190
4 0.0323 0.0323 0.0323
6 0.0440 0.0440 0.0335
8 0.0544 0.0544 0.0496

4 2 0.0386 0.0386 0.0386
4 0.0513 0.0513 0.0502
6 0.0878 0.0898 0.0771
8 0.1110 0.1110 0.0998

3 2 2 0.0002 0.0002 0.0001
4 0.0003 0.0005 0.0003
6 0.0004 0.0007 0.0002
8 0.0005 0.0007 0.0002

4 2 0.0006 0.0007 0.0006
4 0.0015 0.0015 0.0011
6 0.0018 0.0020 0.0011
8 0.0025 0.0029 0.0012

newly introduced algorithm is expected to increase on larger
Bayesian networks.

For future work, we will compare the results of these
algorithms, both in terms of accuracy and computational
burden, with more traditional k-MPE algorithms. we will also
consider larger networks as well as networks that are not
restricted to being bipartite. Finally, recent work by Haberman
and Sheppard [5] as well as Ganesan Pillai and Sheppard [12]
in applying overlapping swarm-based methods will be adapted
to determine if even better results in terms of accuracy and
computational efficiency can be obtained.

REFERENCES

[1] G. F. Cooper. The computational complexity of probabilistic inference
using Bayesian belief networks. Artificial Intelligence, 42:393–405,
1990.

[2] L.M. de Campos, J.A. Gamez, and S.Moral. Partial abductive infer-
ence in Bayesian belief networks using a genetic algorithm. Pattern
Recognition Letters, 20:1211–1217, 1999.

[3] R.C. Eberhart and J. Kennedy. Particle swarm optimization. In
Proceedings of the 1995 IEEE International Conference on Neural
Networks, volume IV, pages 1942–1948, 1995.

Table III
TIME IN MSEC FOR EACH ALGORITHM TO TERMINATE WITH THE k MOST

PROBABLE EXPLANATIONS

Net States Evidence KPE DMVPSO GA NGA
A 2 2 2 74 12 2495

4 65 7 2748
6 65 4 2753
8 63 6 2803

4 2 54 N/A 3119
4 56 N/A 3688
6 55 N/A 3143
8 56 N/A 3122

3 2 2 73 1701 2230
4 68 1781 2224
6 67 1757 2208
8 66 1630 2214

4 2 58 32 2174
4 58 31 2192
6 55 30 2179
8 57 27 2212

B 2 2 2 78 39 2402
4 77 40 2792
6 78 38 3389
8 77 37 3674

4 2 67 5 2352
4 67 4 2508
6 68 5 2799
8 68 5 3663

3 2 2 95 119608 2419
4 82 129935 2994
6 81 117968 2436
8 82 118204 2409

4 2 68 1420 2419
4 67 1356 2372
6 69 1287 2475
8 70 1350 2378

C 2 2 2 89 556 2556
4 89 489 2565
6 90 499 2563
8 89 502 2563

4 2 80 33 2540
4 80 36 2647
6 80 33 2649
8 81 34 2573

3 2 2 94 12492893 2589
4 95 11829822 2595
6 96 11961393 2603
8 96 11557441 2605

4 2 86 130362 2560
4 86 126711 2571
6 86 122218 2554
8 85 125177 3051

[4] E.S Gelsema. Abductive reasoning in Bayesian belief networks using a
genetic algorithm. Pattern Recognition Letters, 16:865–871, 1995.

[5] B. Haberman and J. Sheppard. Overlapping particle swarms for energy-
efficient routing in sensor networks. Wireless Networks, 18(4):351–363,
2012.

[6] D. Heckerman. A tractable inference algorithm for diagnosing multiple
diseases. In Proceedings of the Fifth Conference on Uncertainty in
Artificial Intelligence, pages 174–181, 1989.

[7] M. Henrion. Propagating uncertainty in Bayesian networks by proba-
bilistic logic sampling. In J. Lemmer and L. Kanal, editors, Proceedings
of the Second Conference on Uncertainty in Artificial Intelligence, pages
149–163, 1986.

[8] M. Henrion and M. Druzdel. Qualitative propagation and scenario-
based explanation of probabilistic reasoning. In Proceedings of the Sixth
Conference on Uncertainty in Artificial Intelligence, pages 10–20, 1990.

[9] J. Kennedy and R. Eberhart. A discrete binary version of the particle
swarm algorithm. In Proceedings of the IEEE Conference on Systems,
Man, and Cybernetics, volume 5, pages 4104–4108, 1997.

[10] R. E. Neopolitan. Probabilistic Reasoning in Expert Systems. Theory
and Algorithms. Wiley/Interscience, 1990.

[11] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. Morgan Kaufmann Publishers Inc. San Francisco,
CA, 1988.

[12] K. Ganesan Pillai and J. Sheppard. Overlapping swarm intelligence for

training artificial neural networks. In Proceedings of the IEEE Swarm
Intelligence Symposium, April 2011.

[13] C. Rojas-Guzman and M. Kramer. An evolutionary computing approach
to probabilistic reasoning in Bayesian networks. Evolutionary Compu-
tation, 4:57–85, 1996.

[14] S.E. Shimony. Finding MAPs for belief networks is NP-hard. Artificial
Intelligence, 68:399–410, 1994.

[15] N. Sriwachirawat and S. Auwatanamongkol. On approximating k-MPE
of Bayesian networks using genetic algorithm. In Cybernetics and
Intelligent Systems, 2006 IEEE Conference, pages 1–6, June 2006.

[16] K. Veeramachaneni, L. Osadciw, and G. Kamath. Probabilistically driven
particle swarms for optimization of multi- valued discrete problems:
Design and analysis. In Proceedings of the IEEE Swarm Intelligence
Symposium, pages 141–149, 2007.

