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Abstract  In this paper, we are concerned with the problem of nonlinear inequalities defined
on a graph. The feasible solution set to this problem is often infinity and Laplacian eigenmap
is used as heuristic information to gain better performance in the solution. A continuous-time
projected neural network, and the corresponding discrete-time projected neural network are
both given to tackle this problem iteratively. The convergence of the neural networks are
proven in theory. The effectiveness of the proposed neural networks are tested and compared
with others via its applications in the range-free localization of wireless sensor networks.
Simulations demonstrate the effectiveness of the proposed methods.

Keywords Projected dynamic neural network - Constrained optimization -
Laplacian eigenmap - Wireless sensor networks

1 Introduction

With the development of studies on networked systems, e.g., metabolic networks [1], power
networks [2], wireless sensor networks (WSNs) [3], protein networks [4], robot networks
[5,6], many new problems, which are different from conventional problems due to the pres-
ence of topology constraints, are emerging and have posed appeals for efficient solutions.
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S. Lietal.

Among the problems defined on a graph, one class of problems can be described by a set
of nonlinear inequalities relevant to the interactions between graph nodes. Typical examples
include the range-free localization of WSNs, which is concerned with finding an estimation
of sensor node positions based on topological constraints [7]. Other application examples
include connectivity maintenance in networked robotic systems [8], tower positioning for
cellular radio networks [9], the coverage problem in sensor networks [10], etc. In this paper,
we formulate this class of problems as a constrained optimization problem with the nonlinear
constraints defined on a graph. Due to the existence of the nonlinear constraints, the analytical
solution of this problem is generally difficult to obtain and thus we aim to seek an iterative
approach to solve the problem.

Resulting from the potential of parallel implementation and high efficiency in real-time
computation, recurrent neural networks have received considerable studies in many applica-
tion fields, such as signal processing [11, 12], pattern classification [13,14], robotics [15,16],
grammatical structure learning [17], optimization [18]. In this paper, we design recurrent neu-
ral networks to tackle the formulated nonlinear inequality constrained optimization problem
defined on a graph in real time and apply the neural network model to range-free localization
of WSNs.

Without the loss of generality, in this paper, the range-free localization of WSNs is used to
test and compare the effectiveness of the proposed method with its peers. Range-free local-
ization, which localizes the blind sensor nodes in a network by purely exploiting proximity
information, is a costless by-product of wireless communication and thus has attracted inten-
sive studies. In [19], a linear matrix inequality (LMI) based method is proposed to solve the
problem. In this framework, the computation is assumed by a single base station. Therefore
this method is fragile to the failure of the base station and has a strict requirement on the
computational power of the base station. In contrast, for distributed range-free localization
methods, such as the DV-HOP method [20] and APIT method [21], computation burdens
are distributed to every nodes in the network, resulting in higher scalability to large-scale
networks and robustness against node failures. We refer the reader to paper [21] and citations
therein for a complete knowledge on range-free localization in WSNs.

In spite of the great successes of recurrent neural networks in both theory and applications
[12,22-26], difficulties still exist when the recurrent neural network is used to solve nonlinear
inequalities defined on a large scale graph in aims of a distributed solution. In our previous
work, [27] and its extension [28] consider the problem of inter-phone localization with a sim-
ilar mathematical formulation. In [27,28], the nonlinear inequality constraints are modeled
as a penalty function and gradient neural networks are employed to solve the problem. In
[29], the problem is viewed as a constrained optimization problem with no explicit objective
function and a recurrent neural network developed in this paper finds a feasible solution to
the problem. Actually, there often exists infinite number of feasible solutions for the problem
of nonlinear inequalities defined on a graph and some heuristic information is applicable to
reach a plausible better solution. On this purpose, a two stage approach is proposed in [30]
to solve the problem. In this method, the neural network approach proposed in [27] is first
applied to obtain a feasible solution and a solution improvement neural network, which is
initialized with the obtained feasible solution, is then used to refine the solution based on
the heuristic information. It is noteworthy that the dynamics of the solution improvement
neural network is confined inside the constraint sets and remains feasible along the dynamic
evolution due to the introduction of a barrier term in the neural dynamics. However, as argued
in [31,32], the final solution often deviates from the theoretical optimal one, since the barrier
term is equivalents to an extra penalty term in the objective function. To remedy this problem,
in this paper, we propose a novel combined neural network, with both its continuous-time
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version and the discrete-time version, to solve the problem by recursively projecting the
solution to the feasible set. The proposed neural network, which is in contrast to the two
neural networks, namely the feasible solution neural network and the solution improvement
neural network, proposed in [30] for the same problem, completes the tasks with theoretically
identical solution to the formulated optimization problem but with much simpler structure
compared with the networks proposed in our previous work [30].

The remainder of this paper is organized as follows. In Sect. 2, the problem of nonlinear
inequalities defined on a graph is modeled as an optimization problem with the heuristic
information as the objective function and the nonlinear inequalities as constraints. For the
convenience of analysis, in Sect. 3, the problem is considered in its dual space. Then, A
continuous-time recurrent neural network and a discrete-time recurrent neural network are
respectively proposed in Sects. 4 and 5 to solve the problem iteratively. Section 6 applies the
proposed approaches to the problem of distributed range-free localization of WSNs. In Sect.
7, simulation examples are given to demonstrate the effectiveness of the methods. Section 8
concludes this paper.

2 Problem Formulation

In this paper, we consider the following inequalities:
fij(xi,xj) <0 forjeN(i)U{i},VieV (1)

which is defined on a graph G(V, E) with V, E denoting the vertex set and the edge set,
N(@) = {j € V|{i, j} € E} denoting the neighbor set of vertex i, x; € R™ representing the
state variable associated with vertex 7, f;;(x;, x;) € R denoting a nonlinear convex func-
tion with respect to x; and x;. Note that we assume the accurate value of x; for k € B are
pre-known, where B represents the beacon vertex sets.

Mostly, the solution to the problem (1) is not unique. Each solution is associated with a
particular distribution meeting the topological constraints. Incorporating heuristic informa-
tion into the problem helps find the most likely solution among all the feasible ones. Actually,
the one with an uniform distribution of vertices often outperforms other distributions as it
corresponds to the maximum entropy estimation in the feasible solution set [33]. Therefore,
like in [30], heuristic information is encoded in the objective function to enforce the tendency
to uniform distribution of vertices,

n

minimize 0 X X jeniy i —x)T (i = x)) (2a)
i=1

subjectto  fij(x;, x;) <0 forj e N@) U{i},Vi eV (2b)

where ¢y > 0 is a constant. Clearly, for all ¢p > 0 the optimization problem (2) shares
the same optimal solutions and we can choose ¢y = 1 without alternating the optimality.
However, introducing cg in the objective function results in different evolving manifold for
the recurrent neural networks as will be discussed in Remark 1.

In this paper, the variable x; is defined in m-dimensional space and thus the objective
function can be expressed in a compact form as,

oY D i —xp e —x))

i=1 jeN()
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= ZCoxT(L ® Iy)x 3)

where x is the vector formed by stacking all x; from i = 1 toi = n, ie, x =
[xlT R x2T s eens an 17, I, isam x m identify matrix, ‘®’ is the Kronecker product operator
which is defined as follows for matrix A = [a;;] and matrix B,

anB --- a;,B
A®B=| @ . “

am B -+ ayn B

and L is the Laplacian matrix with the i—jth element defined as follows,

—1 for i #j and j € N(i)
Lij =10 for i #j and j ¢ N(i) 5)
— 2 keng) Lik for i=j

The quadratic expression shown in (3) is widely used as the objective function in Laplacian
eigenmap based manifold learning [34] to obtain the relative coordinates based on relative
distance measurements. The objective function in (2) thus tends to regulate x; to its true
position according to the topological constraints and on the other hand the inequalities in
(2) imposes additional constraints and further improves the estimation accuracy on x; for all
possible i.

Due to the presence of the nonlinear inequality constraints in (2), it is generally difficult
to obtain the close-form solution to the problem. Instead, we seek an iterative procedure to
solve the problem asymptomatically. It is noteworthy that the so-called projected gradient
method [35] directly solves the constrained optimization problem by projecting the solution
without considering constraints into the convex constraint set. However, for the problem (2),
it is difficult to analytically derive the projection of the variables onto the constraint set.
This difficulty motivates us to consider the problem in dual space and use another iterative
procedure to approach the projection by recursively adjusting the dual variables.

3 Dual Space Transformation
In this section, we study the problem (2) equivalent in the dual space.
According to Karash—Kuhn—Tucker (KKT) conditions [35], the solution to problem (2)

satisfies,

ofii (xi xi
4co 3 jenvy (5i = x7) + di L0

Ofij (xioxj afji(xj.xi .
+ 3 ey (i L g ) = 0 i e v (6a)
=0 ;>0 . . v
fij (xi, xj) { -0 E)\Z _ 0; for j € N(i) U{i},Vi e V (6b)

where A;; € R, A;; € Rand A;; € R are all dual variables. Note that (6b) can be simplified
into the following form,

g (fij(xi, xj) + Aij) = Ajj forjeN(i)U{i},VieV @)
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with the function g (1) = [g1 (1), g2(u2), ..., gx(up)1” for u = [uy, us, ..., ux)" defined as
follows fori =1, 2, ..., k,

) uj if u; >0 @®
ST=00 0 i w <0

It is evident that (2) is a convex constrained convex programming problem by noting that
the constraints are assumed to be convex and the objective function is convex since it can
be regarded as the summation of compositions of the squared norm operation | - ||> with a
linear function (x; — x;). Accordingly, the application of KKT conditions to the problem (2)
results in an equivalent solution, i.e., the solution to (6a) and (7) is equivalent to the solution
of (2). To summarize, the solution of (2) is the solution of the following equations,

6 113 1%
4co 2 jeniy (X — X)) + i L f()fc -

I ZA,‘EN(,') ()\ij Bﬁjg;,xj + )\ji iji;);;,zl)) —0VieV (9a)
g (fij(xivxj) +Ai5) = Aij forj € NG) U{i}, Vi e V (9b)

The close-form solution to the Eq. (9) is difficult to obtain due to the presence of nonlinear
terms in it. Instead, in the following sections, we will design recurrent neural networks to
solve the problem iteratively. Concretely, a continuous-time neural network, modeled by a
ordinary differential equation and a discrete-time recurrent neural network, modeled by a
difference equation, will be presented in the following sections to solve (9).

4 Continuous-Time Neural Network Solution

In this section, the continuous-time neural network model for solving (9), or equivalently
(2), will be given and its convergence will be proved in theory.

4.1 The Continuous-Time Model

We use a continuous-time recurrent neural network to solve the variables in (9) as follows:

i (xi, x;
X = —€ | 4co Z (xi _xj)'i‘}»iiif”;):. i)
JENG) !
0fij(xi, xj) afji(xj, x;) .
+ 4 VieV
D i e
JjeN@)
hij = eg (fij(xioxj) + hij) — €hij forj € NGy | J{i). Vi e V (10)

where € > 0 is a scaling factor, co > 0 is a constant, the function g(-) is defined in (8),
Aij € R, A;; € Rand Aj; € R are dual variables associated with the edge {i, j} € E, the
vertex i, and the edge {j, i} € E, respectively.

The proposed neural model solves the problem (2) in a distributed fashion as can be
observed that all information required to update x; comes from the vertex x; with j neigh-
boring i and the edges i — j, which bridges vertex i to its neighbor j and all the information
required to update A;;, which corresponds to the connection between an existing edge i—j
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on the graph, comes from either itself or the two connected vertices i and j. Therefore,
the proposed neural approach is scalable to a large network with a huge number of vertices
involved.

on the parameter cp, we have the following remark,

Remark I Tn the neural dynamics (10), the term —4coe > jeNG) (x; —x ;) represents the effect
of the objective function while the other terms are all introduced by the constraints in (2).
For the dynamic evolution of x; in the continuous-time neural network (10), changing the
value of ¢g varies the dynamic transient of the system.

4.2 Convergence of the Continuous-Time Model

For the convenience of analysis, the neural network dynamic (10) can be equivalently written
into a compact form,

&= —dege(L @ I)x — € (VTF(x)) A
A=ec(g(Fx)+A)—A) (11)

where x is a mn dimensional vector with n = |V| denoting the number of vertices on the
graph, m denoting the dimension of x; fori € Vand x = [xlT, sz, e an]T, L is the Lapla-
cian matrix with its i—jth element as defined in (5), F(x) € R"*" is a matrix function of x
with the ijth entry defined as follows:

ii(x;,x;) forieV,jeVandj e N(i
Fijy = | 5 fori e vy J e (12)
0 forieV,jeVandj ¢ N(@)
Similarly, A € R"*" is defined as:
Lii forieV,jeVandj € N
Ay =10 e JEnm (13)
wij fori eV, jeVand; ¢ N()

where 1;; € R and is always initialized to be zero, i.e., ;7 (0) = 0. In (11), F(x) is defined
to be a n* dimensional vector by stacking the columns of F(x) into a single column vector
and A is so defined by stacking the columns of A into a single column vector.

For a general projection neural network, the following lemma holds,

Lemma 1 ([36]) Assume that VA (x) is positive semi-definite on Q and s, (x) is convex
on 2. Then the following dynamic system (14) with any initial point (x1(0), x2(0), x3(0))
€ 2 x R.™ x R’ is stable in the sense of Lyapunov and converges exponentially to its
equilibrium point.

X| = —€ (x1 — Pg (xl — hi(x1) — (VT ha(x1))x2 — DTJC3))
X2 = —€ (x2 — g (x2 + ha(x1)))
X3 = —€(Dx; —d) (14)

where x1, x2 and x3 are state variables of the dynamic system, Pg(x) is the Euclidean pro-
jection of x onto the set 2 defined as Pq(x) = argminyeqllx — y|| with || - || denoting the
Euclidean norm, € > 0 is a scaling factor, x, xp and x3 are vector variables of appropriate
sizes, d and D are vector and matrix of appropriate sizes, respectively, g(-) is as defined in

(8).
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By choosing D =0,d = 0, h{(x) = 4co(L ® I,,)x (note that VA (x) = 4co(L ® Iy,),
which is indeed positive semi-definite), sy (x) = F(x), @ = R¥ in Lemma 1, the system
(14) reduces to the recurrent neural network (11) or (10), which is considered in this paper.
Therefore, we can state the convergence result on the neural network (10) as follows,

Theorem 1 The recurrent neural network (10), with f;; (x;, x;) convex for j € N(i) Ufil,
Vi € V, e > 0 and the initial value of 1;;(0) > O foralli € Vand j € E [J{i}, exponentially
converges to a solution of problem (1).

Proof There are two parts in the proof: B
First, By choosing D = 0,d =0, h1(x) = 4co(L ® Ly)x, ha(x) = F(x), Q2 = R, with
noting that Pq(x) = x in this case, the dynamic system (14) reduces to the following,

X1 = —4dcpe(L ® I)x — € (VTF(xl)) X2

X =€ (g(x2+ F(x1) —x2)
i3 =0 15)

The functions in the above dynamic equations follows the requirement in Lemma 1 and thus
the convergence conclusion drawn in Lemma 1 applies to system (15), or equivalently (10),
by noting that x3 has no influence to the dynamics of x; and x; in (15).

Second, note that problem (1) is a convex constrained convex programming problem and
the KKT condition results in an equivalent solution to the problem. Thus, the equilibrium
point (10), which is identical to the solution of (9) is indeed the solution to problem (1).

Together, we conclude that the recurrent neural network (10), with the initial value of
%ij(0) > Oforalli € Vand j € E|J{i}, exponentially converges to its equilibrium point,
which is also the solution of problem (1). This completes the proof. O

5 Extension: Discrete-Time Neural Network Solution

In this section, the discrete-time neural network model for solving (9), or equivalently (2),
will be given and its convergence will be proved in theory.

5.1 The Discrete-time Model

In this part, we use a discrete-time recurrent neural network to solve the variables in (9) as
follows:

afii (x!, xh)
xf“ =x/ —€' | 4co Z (x] —x;-) +A5i%
JjeNG) i
fij(xf, xt) afji(xt, x})
t 0 t J' .
+ ) (/\,.j ot Viev
JjeN() i i
)\;j“ =g (e’f,-j(x;, x5+ Af._,) for j € N(i) U{i}, VieV (16)

where the superscript 7 and ¢ + 1 represent the time step, €/ > 0 is the step length at time 7.
the function g(-) is defined in (8), A;; € R, A;; € Rand X j; € R are dual variables associated
with the edge {i, j} € E, the vertex i, and the edge {j, i} € E, respectively.
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The proposed discrete-time neural model also solves the problem (2) in a distributed
fashion as all information required to update x; and A;; both come from their neighborhood.

On the difference between the proposed discrete-time neural network (16) and the pro-
jected gradient descending method for problem (2), we have the following remark,

Remark 2 1t is noteworthy that the so-called projected gradient method [35] directly solves
the constrained optimization problem by projecting the solution into the convex constraint
set and the convergence can be guaranteed under some mild conditions. However, for prob-
lem (2), it is difficult to obtain an analytical expression of the projection onto the nonlinear
constraints. Differently, by introducing the dual variables and considering the problem in
dual space, the problem is converted to a projected optimization problem onto a bounded
region and can be solved recursively by the discrete-time neural network (16) (the nonlinear
function g(-) corresponds to the projection onto a bounded region).

5.2 Convergence of the Discrete-Time Model

For the convenience of analysis, the neural network dynamic (16) can be equivalently written
into a compact form,

VLS S (4c0(L ® In)x' + (VTF(xt)) [\t)
R _ . (e’F(x[) +1‘\t) 17

where the superscript ¢ and ¢ + 1 denote the time step, €’ is the step length at time 7, x” is a mn
dimensional vector with n = |V| denoting the number of vertices on the graph, m denoting
the dimension of x! fori € Vand x’ = [x{T, x4", ..., x!T]T, L is the Laplacian matrix with
its i — jth element as defined in (5), F(x') € R"*" is a matrix function of x as defined in
(12), A € R™ " is as defined in (13).

Noticing that the function g(-) actually is a projection operator onto non-negative coordi-
nates, the updating law in the iterative Eq. (17) is consistent with the the subgradient iteration

of the following saddle-point problem proposed in [37],
minyegmn Max; cgmns 260X 7 (L ® Ly)x + AT F(x) (18)

where R = {x = [x1, X2, ..., Xmn] € R™ , x; > 0Vi = 1,2, ..., mn}. As addressed in
[37], (16) converges to a bounded region centered at the saddle point of (18), or the equilib-
rium point of (16) by choosing a constant step size €’ = € and thus can be used to approximate
the saddle point. As argued in [37], an adaptive diminishing step size €’ that varies with ¢
can be used to get better convergence accuracy.

Until now, we have shown that the convergence property of the proposed discrete-time
neural network based on the work [37]. We next show that the equilibrium point of (16),
i.e., the saddle point of (18), is identical to the solution of problem (2), or equivalently the
solution of (9). By comparing the equations for the equilibrium points of (16) with (9), it is
evident that we only need to show that the equation A;; = g ( Sij (i, xj) + A j) is equivalent
toAij = g (e fij(xi,xj) + A,-j) for €’ > 0 to conclude the result. Noticing that this first
equation is equivalent to (6b) and the second one is equivalent to the following one,

=0 (Et)\ij > O)

FiGi x| 2o e —0) for j € NG) | J{i}. Vi e v (19)

Together with the fact that €/ > 0, we find (19) is identical to (6b) and thus suffices the
conclusion that the the equilibrium point of (16) is the solution of the problem (2).
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6 Range-Free Localization of WSNs with the Proposed Methods

To demonstrate the effectiveness of the proposed neural network, we apply this model to solve
the range-free localization problem in WSNs. This problem can be expressed mathematically
as follows [19]:

llxi —xjll < R forj e N() (20)

where R is the maximum communication range, x;, x; are the position of node i and node
J, respectively, Iy is a k x k identity matrix with k representing the dimension of variable x.

This model is widely investigated in the past years to localize wireless sensors in a network
without distance measurement [21,38—41]. It is evident that (20) falls into the framework of
problem (1) by defining f;; (x;, x;) = (x; — x;)T (x; — x;) — R? for j € N(i), Vi € V and
fii(xi, x;) = 0forVi € V and thus can be solved by using the proposed iterative approaches.
Specifically, we have the following continuous-time recurrent neural network model to solve
the distributed range-free localization problem (20) by substituting the particular expression
of f;; for this problem inside (10),

K= —€ > (4co+2hij +2hj))(x; —x;) Vi eV
JEeN()
s T 2 i | | ]
Aij = €g ((x,- —xj)" (xi —x;) — R +)»ij) —ehij forj e NG (Jti},vie v
(1)

The discrete-time recurrent neural network model for solving the distributed range-free
localization problem (20) writes as follows,

Xt =xl =€ D" (oo + 20 + 20 ) (xf —xh) VieV
JEN()
M =g (ef ((x; — T — 2t — R2) n A;,.) for j € N() | (i}, Vi € ¥
(22)
Apparently, the function f;; (x;, x;) = (x; —xj)T(xi —xj)—R2 isconvex for j € N(i),Vi € V

and the convergence conclusions drawn in the previous sections apply to both the continu-
ous-time neural network (21) and the discrete-time neural network (22).

7 Numerical Investigation

In this section, we consider a two 2-dimensional localization problem with blind nodes ran-
domly deployed to show the effectiveness of the proposed approaches.

7.1 Simulation Setup

In this set of experiments, 202 blind nodes are randomly deployed to a normalized 1 x 1
square with 28 beacon nodes uniformly positioned around the perimeter. The maximum sen-
sor range is set to be R = 0.13, the scaling factor ¢ = 10° and the weighting coefficient
co = 1 for the neural network. The layout of the sensor network considered in this simulation
is as shown in Fig. 1.
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Fig. 1 True positions of nodes in
the WSN and the communication
topology in the simulation
example. In this figure, the green
line, the blue circle and the blue
star represent the communication
link, blind nodes and the beacon
nodes, respectively. Color figure
online

Fig. 2 Position estimation
results by the proposed
continuous-time neural network.
In the figure, the red circle, the
blue circle and the blue star
represent the position estimation,
the true position of blind nodes
and the position of beacon nodes,
respectively. Color figure online

7.2 Performance with the Proposed Continuous-Time Neural Network

Figure 2 shows the estimated positions of blind sensor after running the neural network for
10™*s. The transient of estimated positions in x and y directions are plotted in Figs. 3 and 4,
respectively. Note that the quantity ﬁ > jeN; iev max (||x; —x; 12, 0) (Niink represents the
total number of communication links) measures to what extent the inequality constraints are
violated since it equals zero if all the constraints are satisfied. Figure 5 shows the evolution
f ﬁ 2 jen;iev max(llx; — x; 2, 0) with time. which is an quantitive evaluation of the
feasibility of the solution to the WSN localization problem (20). The value starts from 0.3649
and drops to 3.27 x 10~* at the end of the simulation, which demonstrates that the inequality
constraints are approximately satisfied by the ultimate output of the neural network.

7.3 Performance Comparison with Other Methods

Note that by choosing the weighting parameter cg = 0 in (18), the problem reduces to the
feasible solution problem without imposing heuristic information [19,27-29] and thus the
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‘ E%f

0 0.2 0.4 0.6 0.8 1

time/s x10™*

Fig. 4 Transient of the position in y direction estimated by the proposed continuous-time neural network

solution generated by the neural network with ¢o in (11) is representative to the solutions
generated by the methods proposed in [19,27-29]. In this part, we compare the simulation
results with ¢g > 0 in (11), which considers the heuristic information and the scenario with
co = 01in (11). With ¢g = 0 and the other parameters set up in the same value, the position
estimated by the neural network is shown in Fig. 6. Comparing the result shown in Fig. 6 and
the result shown in Fig. 2, the latter one clearly stretches the position estimation to a more
evenly distribution due to the introduction of the heuristic information. In quantity, we use

the estimation error defined as E = \/ 27:1 (xi —x] )T(x,- —x7)/n with x! denoting the

real position of the ith blind sensor node, to evaluate the localization accuracy. By running
Monte Carlo simulation for the neural networks with both ¢ = 0 and ¢g = 1 for 50 times,
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Nink Y- maz(||z; — z;||* — R%,0) v.s. time

10 T T T T

_2

Y maz(||z; — x| — R2,0)
-
)
.

10 H E

1

Niink

107 ' : ' :
0 02 0.4 0.6 0.8 1

time/s x107*

Fig. 5 Time evolution of ﬁ > jeN; ieV max(||lx; — x;j ||2 — R?, 0) for estimation made by the proposed
continuous-time neural network

Fig. 6 Position estimation 1 5 = i >
results by setting ¢y = 0 in the Ul e e | i o o £°
neural network, the solution of o\ 08 éﬁi" o oG
which is representative to the 08| O% © OGZ
i i ® \8 V] P o S}
feasible solution problem NRE 4 o
investigated in [19,27-29]. In the S P e
figure, the red circle, the blue 06 o 2 ORO © %y fo - B
. = ©
circle and the blue star represent o= © o R B0
the position estimation, the true > ®o Y &% 8% o
.. . Q —
position of blind nodes and the 04 f%@ ® Cg?éjo @ o o °
position of beacon nodes, & 7 ) &S ;’ g ° oo
respectively. Color figure online o %Z ° %@Q o SN .
7 & o
e $AT » “Se ©o
> 4 YUHb ° !
b5 /16 ORG oBe
) fp e o 9 0o
0 (<] 3 6 o C‘x \
0 0.2 0.4 0.6 0.8 1
X

the averaged estimation error E for the 50 simulations are 0.0856 and 0.0580 respectively,
showing a clear improvement in performance the by introducing the heuristic information
(more than 30 % reduction in error E). Table 1 briefly summarize the comparisons between
the proposed continuous-time neural network and the methods investigated in [19,27-29].

8 Conclusions
In this paper, the problem of nonlinear constraints defined on a graph is considered and recur-
rent neural network solutions, incorporated with Laplacian eigenmap as heuristic information

for a plausible better solutions, are supplied to solve the problem recursively in a distributed
fashion. The convergence of the proposed neural networks are proven in theory. The neural
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Table 1 Comparisons between methods to solve the problem of range-free localization of wireless sensor
networks

LMI based Feasible solution Two neural network The proposed
method [19] neural network method [29] method
method [27,28]

Centralized vs.  Centralized Distributed Distributed Distributed
distributed
Analytical vs. Iterative (via Iterative Iterative Iterative
iterative semi-definite
programming)
Heuristic No No Yes Yes
information?

network approaches are applied to WSN localization in a distributed, routing-free, range-free
way. Finally, simulations demonstrate efficiency and accuracy of the method.
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