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Abstract— Given any positive integer r, our objective is
to develop a strategy for grouping the states of a n-node
network into r ≤ n distinct non-overlapping groups. The
criterion for this partitioning is defined as follows. First, a LQR
controller is defined for the original n-node network. Then, a
r-dimensional reduced-order network is created by imposing
a projection matrix P on the n-node open-loop network, and
a reduced-order r-dimensional LQR controller is constructed.
The resulting controller is, thereafter, projected back to its
original coordinates, and implemented in the n-node network.
The problem, therefore, is to find a grouping strategy or P that
will minimize the difference between the closed-loop transfer
matrix of the original network with the full-order controller and
that with the projected controller, in the sense of H2 norm. We
derive an upper bound on this difference in terms of P , and,
thereby propose a design for P using K-means that tightens
the bound while guaranteeing numerical feasibility.

Index Terms— Consensus, Clustering, Model Reduction.

I. INTRODUCTION

Designing control systems for stability and performance
of consensus networks has been a problem of perennial
interest in network science and engineering. Over the past
two decades, seminal papers such as [1]-[2], and references
therein, have proposed various sets of control designs for
stabilization of complex consensus networks, while those
such as [3]-[4] have proposed different optimization and
adaptation techniques to enhance their closed-loop perfor-
mance. Translating these designs to networks with very
large number of nodes in practice, however, is a rather
challenging task. For example, majority of today’s networks,
ranging from power system networks to wireless networks
to social or biological networks, consist of thousands to tens
of thousands of nodes. Designing complicated controllers for
such large networks is not only computationally taxing but
also severely limited by scalability and tractability. Network
engineers are, therefore, often interested in exploring model
reduction techniques that can help them in designing simpler
controllers by exploiting the inherent topological structure of
the network. There exists an extensive literature, developed
mostly in the 1980’s for large-scale power system networks,
on how network structure can be used for open-loop model
reduction via clustering of network nodes. The fundamental
tools used for such clustering include singular perturbation
theory [5], Krylov projections [6] and etc. Recent papers
such as [7] have presented clustering techniques using H2

N. Xue and A. Chakrabortty are with the Department of Electrical and
Computer Engineering, North Carolina State University, Raleigh, NC, 27695
USA, e-mail: nxue@ncsu.edu, achakra2@ncsu.edu

The work is supported partly by the US Department of Energy grant
DE-OE0000654

norm optimization. All of these results, however, pertain to
open-loop analysis, and not closed-loop control.

To bridge this gap, in this paper we develop a strategy
for grouping the closed-loop states of a n-node consensus
network into r ≤ n distinct non-overlapping groups, where
r > 0 is a desired number of clusters, specified by the
network administrator. The criterion for this partitioning is
defined as follows. First, we define a LQR controller for the
original n-node network under certain assumptions on Q and
R. Note that this LQR controller only needs to be defined
in theory for analyses, it does not need to be ‘designed’
in practice. The closed-loop transfer matrix (TM) of the
network output from a disturbance input under this full-order
LQR controller is defined as the benchmark TM. Then, a r-
dimensional reduced-order network is created by imposing a
projection matrix P on the n-node open-loop network, and a
reduced-order r-dimensional LQR controller is constructed
for this reduced-order system. The resulting controller is,
thereafter, projected back to its original coordinates, and
implemented in the n-node network. The problem, therefore,
is to find a grouping strategy or P that will minimize the
difference between the benchmark TM and the closed-loop
transfer matrix of the original network with the projected
controller in terms of their H2 norms. We derive an upper
bound on this difference as a function of P , and, thereby
propose a design for P using K-means that tightens the
bound while guaranteeing numerical feasibility.

Clustering of networks, in general, is accepted as a NP-
hard problem, and hence a lot of research has been de-
voted by numerical graph theorists on developing heuristic
algorithms over different types of graphs. An extensive
survey of these numerical clustering algorithms can be found
in [8]. One of such widely used algorithms is K-means
[9]. Technically speaking, any clustering algorithm, can be
used for constructing P for our problem. For the sake of
simplicity, however, in this paper we stick to only K-means.

Notation The following notations will be used throughout
this paper: 1n: a column vector of size n with all 1 entries,
Ik: the unitary marix of size k, ‖M‖F : Frobenius norm of
M , i.e. ‖M‖F =

√
tr(MM∗), |m|: absolute value of m,

|S|c: cardinality of a set S, diag(m): diagonal matrix with
the vector m on its diagonal, [Mi,j ]: a matrix whose (i, j)
element is defined by Mi,j . A transfer matrix is defined as
g(s) = C(sI − A)−1B + D, with a realization form of

g(s) =

[
A B
C D

]
. Furthermore, the H2 and H∞ norm

of a stable transfer matrix g(s) are defined by ‖g(s)‖H2 =



√∫∞
−∞ tr[g∗(t)g(t)]dt =

√
1

2π

∫∞
−∞ tr[g∗(jω)g(jω)]dω and

‖g(s)‖H∞ = supωσ̄[g(jω)], where σ̄ represents the largest
singular value.

II. PROBLEM FORMULATION

Consider a consensus network defined over an undirected
graph G containing n nodes, each defined by a scalar state
variable xi and a scalar control input ui, i = 1, . . . , n.
To formulate our problem, we define the following four
representations of this model - namely, (1) the full-order
open-loop model, (2) the full-order closed-loop model with
a full-order LQR controller, (3) the reduced-order open-loop
model for designing a reduced-order LQR controller, and
finally, (4) the full-order closed-loop model with a projected
LQR controller. To begin with, the full-order open-loop
system is defined as

ẋ(t) = Ax(t) +Bu(t) + bd(t), y(t) = Cx(t) (1)

where x(t) ∈ Rn and u(t) ∈ Rn represent the vector of state
and control variables. d(t) ∈ R is a scalar disturbance input
entering any node in the network, while b ∈ Rn is a known
non-zero vector. A = AT ∈ Rn×n is an edge-weighted graph

Laplacian defined by A(i, j) =

{
wi,j i 6= j

−
∑
i wi,j i = j

, where

wi,j is the non-negative weight of the edge connecting the
ith and the jth node, B = In and C = In (for full state
feedback). By definition, A � 0 contains a 0 eigenvalue
spanned by 1n. We also assume A to be diagonalizable. The
LQR design for system (1) is then posed as finding a full-
state feedback u(t) = −Kx(t), where K = KT � 0, to
minimize the cost function

J =

∫ ∞
0

[xT (t)Qx(t) + uT (t)Ru(t)]dt, (2)

where Q = γIn, R = υIn and γ and υ are fixed positive
scalars. To facilitate the analysis, we denote the transfer
matrices (TMs) of the plant and the controller of (1) by

G(s) := (sIn −A)−1, K(s) :=

[
0 0
0 K

]
= K. (3)

With this full-order LQR controller, we can write the closed-
loop TM from disturbance d to output y as

gc(s) := G(s)[In +K(s)G(s)]−1b = Gc(s)b. (4)

We next define a state aggregation strategy to repose the
control problem using a reduced-order controller as follows.

Definition 2.1: Given an integer r > 0, define r non-
empty, distinct, and non-overlapping sub-sets of the state
variables {x1, ..., xn}, denoted as S1, ...,Sr, such that
S1 ∪ ... ∪ Sr = {x1, ..., xn}. The aggregate state x̃ =
[x̃1, ..., x̃r]

T ∈ Rr is acquired by x̃ = Px, where the
projection matrix P ∈ Rr×n is defined by

P (i, j) :=

{
1√
|Si|c

xj ∈ Si

0 otherwise
(5)

with r ≤ n and PPT = Ir.

For example, P corresponding to a clustering strategy of
S1 = {x1, x2, x3}, S2 = {x4, x5} and S3 = {x6} can be
written as

P =

 1√
3

1√
3

1√
3

0 0 0

0 0 0 1√
2

1√
2

0

0 0 0 0 0 1

 . (6)

We next apply the projection P on the open-loop model
(1) to define an aggregate model:

˙̃x(t) = Ãx̃(t) + B̃ũ(t) + b̃d(t), ỹ(t) = C̃x̃(t) (7)

where Ã = PAPT ∈ Rr×r, B̃ = PBPT = Ir, b̃ = Pb ∈
Rr, C̃ = PCPT = Ir. ũ(t) ∈ Rr is similarly projected
by ũ(t) = Pu(t). Next, we design a reduced-order LQR
controller using ũ = −K̃x̃, Q̃ = PQPT = γIr and R̃ =
PRPT = υIr, where K̃ = K̃T ∈ Rr×r � 0, and denote the
reduced-order plant and controller, respectively, as

G̃(s) := (sIr − PAPT )−1, K̃(s) := K̃. (8)

Finally, we project the reduced-order controller to its
original coordinates, and implement it in the full-order model
using u = PT ũ = −PT K̃Px in (1), which implies
that in this case the effective feedback matrix is PT K̃P .
Therefore, the closed-loop system implemented with the
projected controller can be written as

ĝc(s) := G(s)[In + PT K̃(s)PG(s)]−1b = Ĝc(s)b. (9)

Using these definitions, we next state our problem of H2-
clustering for closed-loop consensus network as follows:

Problem Statement: Given system (1) and an integer
r > 0, find a clustering strategy S1, ...,Sr such that the
corresponding P matrix in (5) minimizes ‖gc(s)− ĝc(s)‖H2

.
However, this minimization is, unfortunately, non-convex.
Our main contribution in this paper, therefore, is to derive an
upper bound for ‖gc(s)− ĝc(s)‖H2

as a function of P , and
thereafter design P using K-means to minimize the bound.
Two advantages of our design are:

1) One only needs to design a r-dimensional LQR con-
troller instead of n.

2) The recovered feedback matrix PT K̃P has same en-
tries corresponding to the nodes assigned to a cluster.
That means we only need to compute one control
signal for every node inside a cluster, which simplifies
the implementation of the controller, especially when
n� r.

III. RECAP OF H2-CLUSTERING FOR OPEN-LOOP
CONSENSUS NETWORK

H2-clustering for a positive system, namely A � 0 being
a Metzler matrix, has recently been presented in [7]. Since a
Laplacian matrix is also Metzler, we recall the main theorem
from [7] here.

Theorem 3.1: Given G(s) in (3) and G̃(s) in (8), define
Φ := Φ

1
2 Φ

T
2 = WT

∫∞
0
eWAWT τeWATWT τdτW , where

W is the complement of 1Tn/
√
n. It follows

‖G(s)− PT G̃(s)P‖H2
≤ ‖Ξ(s)‖H∞θ, (10)



where Ξ(s) is stable and

Ξ(s) := PT (sIr − PAPT )−1PA+ In,

θ := ‖PTPΦ
1
2 − Φ

1
2 ‖F .

Theorem 3.1 provides a metric for clustering an open-
loop system, where ‖G(s)−PT G̃(s)P‖H2 is upper bounded
by a function of θ. θ represents the K-means error of Φ

1
2 .

Therefore, P in (7) was found by providing Φ
1
2 as an input to

K-means algorithm. This approach, however, is not directly
applicable for our problem as explained in the following.

Since A = AT , a straightforward expression for gc(s) −
ĝc(s) from (4) and (9) can be written as

gc(s)− ĝc(s) = Ĝc(s)[P
T K̃(s)P −K(s)]Gc(s)b, (11)

which further yields the inequality

‖gc(s)−ĝc(s)‖H2
≤ ‖PT K̃P−K‖F ‖Ĝc(s)‖H∞‖gc(s)‖H∞ . (12)

Since gc(s) and Ĝc(s) are stable or, equivalently, ‖gc(s)‖H∞
and ‖Ĝc(s)‖H∞ are both bounded, the H2 norm of gc(s)−
ĝc(s) is linearly bounded by ‖PT K̃P −K‖F . Therefore, by
Theorem 3.1 a natural choice for P could have followed from
minimizing ‖PT K̃P − K‖F with respect to P . However,
different from (10), the difficulty of this problem lies in the
fact that a direct projection P only applies from (1) to (7)
but not from K to K̃. In other words, Theorem 3.1 cannot
quantify the relationship between P and ‖PT K̃P − K‖F .
Hence, in the following section, we present an alternative ap-
proach for solving the problem by constructing a new bound
on ‖gc(s)−ĝc(s)‖H2

, which reveals the rule for selecting P .

IV. H2-CLUSTERING FOR CLOSED-LOOP CONSENSUS
NETWORK

To circumvent the problem of relating (PT K̃P −K) to
P , we introduce an intermediate TM g̃c(s), which is defined
as the TM from d to PT ỹ as

g̃c(s) := PT G̃(s)[Ir + K̃(s)G̃(s)]−1Pb = G̃c(s)b, (13)

and rewrite the LHS of (12) as

‖gc(s)−ĝc(s)‖H2
= ‖gc(s)− g̃c(s) + g̃c(s)− ĝc(s)‖H2

≤ ‖gc(s)− g̃c(s)‖H2
+ ‖g̃c(s)− ĝc(s)‖H2

. (14)

The LHS is bounded by the H2 norms of two error systems,
namely, gc(s)− g̃c(s), which is the error between full-order
and reduced-order closed-loop systems, and g̃c(s) − ĝc(s),
which is the error between implementing the same controller
on reduced-order and full-order open-loop systems. In the
following two subsections, we will detail the derivation of
these two error terms separately, and then combine them
together to form the algorithm for selecting P .

A. Upper Bound on ‖g̃c(s)− ĝc(s)‖H2

Theorem 4.1: Given the aggregated model (7) and the
LQR feedback controller K̃(s) in (8), when the recovered
controller PT K̃(s)P is applied to the open-loop system (1),
then the closed-loop TM ĝc(s) will satisfy

‖g̃c(s)− ĝc(s)‖H2 ≤ ψθ, (15)

where ψ = ‖Ψ1(s)‖H∞‖Ψ2(s)‖H∞ and

Ψ1(s) = PT [Ir + K̃(s)G̃(s)]−TP [In − Ξ(s)]− In,
Ψ2(s) = [In + PT K̃(s)PG(s)]−1b,

are stable, with the same θ and Ξ(s) as in Theorem 3.1.
Proof: (I): Define U as the complement of P , say[

PT UT
]T

is unitary, then

g̃c(s)− ĝc(s) = PT G̃(s)PPT [Ir + K̃(s)G̃(s)]−1︸ ︷︷ ︸
T−1
1

Pb

−G(s) [In + PT K̃(s)PG(s)]−1︸ ︷︷ ︸
T−1
2

b

= PTT−T1 PPT G̃(s)PT2T
−1
2 b− PTT−T1 PPTT1PG(s)T−1

2 b

− UTUG(s)T−1
2 b

= PTT−T1 P [PT G̃(s)P − PTPG(s)]T−1
2 b− UTUG(s)T−1

2 b

= PTT−T1 P [In − Ξ(s)]UTUG(s)T−1
2 b− UTUG(s)T−1

2 b

= {PTT−T1 P [In − Ξ(s)]− In}UTUG(s)T−1
2 b.

Taking norm on both sides, and using ‖UTUG(s)‖H2
=

‖UTUΦ
1
2 ‖F = θ from Theorem 3.1 proves (15).

(II): The stability of Ψ1(s) and Ψ2(s) is equivalent to the
stability of T−1

1 and T−1
2 . Since Ξ(s) is stable by Theorem

3.1, T−1
1 and T−1

2 can be written as

T−1
1 = −K̃(sIr − Ã+ K̃)−1 + Ir, (16)

T−1
2 = −PT K̃P (sIn −A+ PT K̃P )−1 + In, (17)

where Ã − K̃ ≺ 0. The negativeness of A − PT K̃P ≺ 0
holds if and only if any non-zero vector v ∈ Rn satisfies

vT (A− PT K̃P )v = vTAv − vTPT K̃Pv < 0,

where vTAv ≤ 0 and −vTPT K̃Pv ≤ 0. Note that vTAv =
0 if and only if v ∈ span{1n} while −vPT K̃PvT = 0
if and only if vT ∈ span{WT }. Therefore, it follows that
A− PT K̃P ≺ 0.

Remark 4.2: For the interest of this paper, the controller
K̃(s) is limited to only LQR feedback. However, (15) holds,
for any arbitrary controller K̃(s) as long as K̃(s) = K̃T (s),
and g̃c(s) and ĝc(s) are internally stable.

B. Two Supporting Lemmas

Before delving into the LQR theory, we first give the
definition of Cauchy matrix, and provide two lemmas which
will help us in deriving the bound on ‖gc(s)− g̃c(s)‖H2

.
Definition 4.3: Given Λ=diag([λ1, ..., λn]) and M =

diag([µ1, ..., µr]), a Cauchy matrix CΛ,M is defined by
[− 1

λi+µj
], where λi + µj 6= 0 for i = 1, ..., n, j = 1, ..., r.

The first lemma guides us in constructing the controllabil-
ity Gramian:

Lemma 4.4: Consider matrices Ā ∈ Rn×n, b̄ ∈ Rn with
Ā ≺ 0. Let the eigenvalue decomposition of Ā be written
as Ā = V ΛV −1, then the controllability Gramian Φ̄ :=∫∞

0
eĀτ b̄b̄T eĀ

T τdτ can be found through Φ̄ = RCΛ,ΛRT ,
where the residue matrix R := V · diag(V −1b̄).
The proof follows from the basic definition of controllability
Gramian and can be found in [10]. For the same matrices
Ā and b̄ where Ā ≺ 0, the next lemma states a general



expression for the H2 norm of the error between two stable
systems.

Lemma 4.5: Given P as defined in (5), and stable TMs
g1(s) = (sIn− Ā)−1b̄ and g2(s) = PT (sIr−PĀPT )−1P b̄,
the H2 norm of the error system g1 − g2 is given by

‖g1(s)− g2(s)‖2H2
= trace(R1CΛ1,Λ1

RT1 −R1CΛ1,Λ2
RT2

−R2CΛ2,Λ1
RT1 +R2CΛ2,Λ2

RT2 ), (18)

where R1 = V1 · diag(V −1
1 b̄) and R2 = PTV2 ·

diag(V −1
2 P b̄), with the eigenvalue decompositions Ā =

V1Λ1V
−1
1 and PĀPT = V2Λ2V

−1
2 .

Proof: See Appendix.

C. Upper Bound on ‖gc(s)− g̃c(s)‖H2

Since gc(s) and g̃c(s) are both equipped with LQR con-
trollers, we first state a few results from LQR theory that
will help us derive the bound on ‖gc(s) − g̃c(s)‖H2

. The
algebraic Riccati equation (ARE) corresponding to (2) is

ATX +XA+Q−XBR−1BTX = 0, (19)

where K = R−1BTX and X � 0. The Hamiltonian matrix
corresponding to (19) can be written as

H =

[
A −BR−1BT

−Q −AT
]

=

[
A − 1

υ In
−γIn −A

]
. (20)

Suppose the columns of the matrix
[
Z1

Z2

]
2n×n

span the stable

invariant subspace of H , i.e.

H

[
Z1

Z2

]
=

[
Z1

Z2

]
Λ− (21)

where Λ−=diag(
[
λ−1 · · · λ−n

]
) ≺ 0. The stabilizing

solution of the ARE can then be found by X = Z2Z
−1
1

[11]. The important property of Hamiltonian is that Λ− and
normalized Z1, are the eigenvalue and right eigenspace of
A−BK. Hence,

A−BK = Z1Λ−Z−1
1 . (22)

For the reduced-order system (7), the corresponding LQR
design is posed by the following ARE

PATPT X̃ + X̃PAPT + PQPT − X̃PBR−1BTPT X̃ = 0,

and the Hamiltonian matrix H̃ =

[
P

P

]
H

[
PT

PT

]
can be similarly written as

H̃

[
Z̃1

Z̃2

]
=

[
Z̃1

Z̃2

]
Λ̃−, (23)

where Λ̃−=diag(
[
λ̃−1 · · · λ̃−r

]
) ≺ 0. Here we denote the

eigenvalue decomposition of A and Ã by

A = zΛAzT , Ã = z̃Λ̃Az̃T , (24)

where ΛA=diag([λA1 · · ·λAn ]) and Λ̃A=diag([λ̃A1 · · · λ̃Ar ])
are both semi-stable. Hence, we are able to write the Λ−

and Z1 from H in terms of eigenvalues and eigenvectors of
A explicitly as follows.

gs(s) g̃s(s)

gc(s) g̃c(s)

Direct projection from

(Z1Λ−ZT
1 , b) to (PZ1Λ−ZT

1 P
T , Pb)

No direct projection from

(zΛ−zT , b) to (z̃Λ̃−z̃T , Pb)

Λ− scaled by α2 Λ̃− scaled by α̃2

Fig. 1: Relations between gc(s), g̃c(s), gs(s) and g̃s(s)

Proposition 4.6: For H and A defined above, the stable
eigenvalues of H satisfy:

(λAi )2 − (λ−i )2 = −γ
υ

(25)

Furthermore Z1 = zα and Z2 = zβ, with α2 +
β2 = In, where α = diag(

[
α1 · · · αn

]
), β =

diag(
[
β1 · · · βn

]
), and for i = 1, ..., n

αi =

√
1
υ2

1
υ2 + (λAi − λ

−
i )2

, βi =

√
(λAi − λ

−
i )2

1
υ2 + (λAi − λ

−
i )2

. (26)

Proposition 4.6 also applies to (H̃, Ã, α̃, β̃), where Z̃1 =
z̃α̃, Z̃2 = z̃β̃, by substituting (λAi , λ

−
i ) in (26) with

(λ̃Aj , λ̃
−
j ) from j = 1, ..., r. With these notations, we can

rewrite gc(s) and g̃c(s) by{
gc(s) = (sIn − zΛ−zT )−1b

g̃c(s) = PT (sIr − z̃Λ̃−z̃T )−1Pb
. (27)

However, from (27), there is still no direct projection between
zΛ−zT and z̃Λ̃−z̃T . To quantify the error between gc(s) and
g̃c(s), we next introduce two slack TMs gs(s) and g̃s(s) as

gs(s):=(sIn − Z1Λ−ZT1 )−1b = (sIn − zαΛ−αzT )−1b, (28)

g̃s(s):=P
T (sIr−Z̃1Λ̃−Z̃T1 )−1Pb=PT (sIr−z̃α̃Λ̃−α̃z̃T )−1Pb

= PT (sIr − PZ1Λ−ZT1 P
T )−1Pb. (29)

By definition, gs(s) and g̃s(s) are directly constructed from
stable eigenvalues and eigenspace of H and H̃ respectively.
Therefore, g̃s(s) can be projected from gs(s) by the projec-
tion matrix P , with the corresponding projection error given
by Theorem 3.1. Furthermore, the eigenvalues of gs(s) are
the scaled eigenvalues of gc(s), and similarly those of g̃s(s)
are the scaled eigenvalues of g̃c(s). Using this property, we
can approximate ‖gc(s)− g̃c(s)‖H2 by the next theorem.

Theorem 4.7: Given gc(s), g̃c(s), gs(s) and g̃s(s), with
R1 = z ·diag(zT b), R2 = PT z̃ ·diag(z̃TPb), gc(s)− g̃c(s)
satisfies

‖gc(s)− g̃c(s)‖H2
≤
√
|‖Ξs(s)‖2H∞θ2

s − trace(ξ)|, (30)

where, θs:=‖PTPΦ
1
2
s −Φ

1
2
s ‖F ,

Φs := Φ
1
2
s Φ

T
2
s =

∫ ∞
0

eZ1Λ−ZT
1 τ bbT eZ1Λ−ZT

1 τdτ,

Ξs(s) := PT (sIr−PZ1Λ−ZT1 P
T )−1PZ1Λ−ZT1 +In,

ξ := R1O1RT1 −R1O2RT2 −R2O
T
2 RT1 +R2O3RT2



and O1, O2, O3 denote

O1 =

[
−

β2
i λ
−
i + β2

jλ
−
j

(α2
iλ
−
i + α2

jλ
−
j )(λ−i + λ−j )

]
,

O2 =

[
−

β2
i λ
−
i + β̃2

j λ̃
−
j

(α2
iλ
−
i + α̃2

j λ̃
−
j )(λ−i + λ̃−j )

]
,

O3 =

[
−

β̃2
i λ̃
−
i + β̃2

j λ̃
−
j

(α̃2
i λ̃
−
i + α̃2

j λ̃
−
j )(λ̃−i + λ̃−j )

]
.

Proof: The proof follows directly from Lemma 4.5,

‖gc(s)− g̃c(s)‖2H2
= ‖gs(s)− g̃s(s)‖2H2

− trace(ξ), (31)

where

ξ = R1(CαΛα,αΛα − CΛ,Λ)RT1 −R1(CαΛα,α̃Λ̃α̃ − CΛ,Λ̃)RT2
−R2(Cα̃Λ̃α̃,αΛα − CΛ̃,Λ)RT1 +R2(Cα̃Λ̃α̃,α̃Λ̃α̃ − CΛ̃,Λ̃)RT2 .

Applying Theorem 3.1 to ‖gs(s) − g̃s(s)‖H2 , and then
expanding the RHS of (31) yields (30).
From Theorem 4.7, the error ξ is governed by α, α̃, β and
β̃, which, as expressed in (26), are functions of (λAi −λ

−
i ) or

(λ̃Ai −λ̃
−
i ). However, it shows in (25) that the square value of

an open-loop eigenvalue λAi is increased by γ
υ after applying

this particular LQR feedback, which means (λAi − λ
−
i ) and

(λ̃Ai − λ̃
−
i ) can be at most

√
γ
υ . And if for any i λAi has a

large negative value, this value would be very close to λ−i .
Therefore, we can push the entries in O1, O2 and O3 to 0
by choosing γ and υ such that 1

υ �
γ
υ , that is by choosing

γ � 1, which guarantees trace(ξ) ≈ 0.

D. Design of Clustering Matrix P

Combining (15) and (30), we get our final result:

‖gc(s)− ĝc(s)‖H2 ≤
√
|‖Ξs(s)‖2H∞θ2

s − trace(ξ)|+ ψθ.

(32)

We choose γ � 1 such that trace(ξ) ≈ 0, in which case
(32) can be written as,

‖gc(s)− ĝc(s)‖H2
≤ ‖Ξs(s)‖H∞θs + ψθ. (33)

The magnitude of the RHS of (33) depends on θ and θs.
Hence, we can put weights on Φ

1
2 and Φ

1
2
s , and form

Φinp :=
[
(1− ρ)Φ

1
2
s ρΦ

1
2

]
, 0 ≤ ρ ≤ 1 (34)

as the input to a K-means algorithm. Since we are interested
in closed-loop clustering, ideally one should choose ρ =
0. The trade-off is that the resulting P has no correlation
with the structure of open-loop network, which, depending
on situations, may or may not be favorable for the control
design. Hence, in general, it is advisable to include both Φ

1
2
s

and Φ
1
2 in Φinp. The corresponding K-means error θinp :=

‖PTPΦinp − Φinp‖F will satisfy

θinp =
√

(1− ρ)2θ2
s + ρ2θ2. (35)

Thus by minimizing θinp, θ and θs will both be reduced, but
in different proportions. For a standard K-means algorithm,

Φ
1
2
s should be provided along with the number of clusters

r. Hence, r and ρ can be both tuned with respect to the
refineness of the clustering results. The clustering algorithm
is summarized in Algorithm 1. Note that when ρ = 1,
Algorithm 1 is equivalent to the open-loop clustering.

Algorithm 1: Algorithm for finding H2 closed-loop
clustering matrix P

Input : A, b, Q (γ), R (υ), r and ρ
1 Compute eigenvalue ΛA and eigenspace z from A;
2 Compute Φ from Theorem 3.1 and Lemma 4.4;
3 Compute closed-loop eigenvalue Λ−;
4 Calculate α from (26);
5 Compute Φs from Theorem 4.7 and Lemma 4.4;

6 Find Φ
1
2 and Φ

1
2
s through LDL decomposition, and

form Φinp with ρ from (34);
7 Input Φinp with r to K-means algorithm;
8 With clustering labels from the K-means results,

construct P based on Definition 2.1.
Output: P

V. SIMULATION RESULTS

We verify our results by simulating a 51-node consensus
network, whose structure is shown in Fig. 4. We assume the
disturbance to enter from node 4, i.e., b is the 4th column
of I51. As we have discussed in Proposition 4.6, the value
of γ

υ will decide the eigenvalues of the closed-loop system.
Hence, considering a fixed ratio of γ

υ = 100, we choose
four pairs of LQR specifications based on the value of 1

υ
in a descending order as {γ = 10−3, υ = 10−5}, {γ =
1, υ = 10−2}, {γ = 10, υ = 0.1} and {γ = 100, υ = 1}.
The corresponding approximation errors trace(ξ) are shown
in Fig. 2. As r, the specified number of clusters, increases
to n trace(ξ) for all the cases move to 0. But it is also
clear that for this fixed value of γ

υ , as γ decreases, trace(ξ)
becomes sufficiently small, which makes ‖gs(s)− g̃s(s)‖H2

a good approximation for ‖gc(s) − g̃c(s)‖H2 . Therefore, in
the remaining simulations, we apply {γ = 10−3, υ = 10−5}
as the design parameter for LQR.

To cluster this 51-node network, the weight ρ is provided
as an input to Algorithm 1. Fig. 3 shows the ratio ‖gc(s)−
ĝc(s)‖H2

/‖gc(s)‖H2
for different values of ρ with respect

to the resulting P matrices. When ρ = 0, i.e., the input
to the K-means is only Φ

1
2
s , the resulting clustering strategy

outperforms all the other scenarios in approaching the closed-
loop H2 performance of gc(s). This means that one can
achieve H2 performance close to that of full-order LQR
by only designing a much smaller dimensional controller.
In contrast, the worst-case scenario given by ρ = 1 shows
that by applying a LQR controller designed from a model
clustered only by open-loop structure, ‖gc(s)− ĝc(s)‖H2 is
significantly larger than 0 for a small r (r ≤ 20).

To illustrate the difference of our closed-loop clustering
strategy from the open-loop clustering of the system, we
draw the network graph for ρ = 0 and ρ = 1 with r = 5
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Fig. 2: Values of trace(ξ) with respect to four LQR specifications
for a 51-node network
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clusters as shown in Fig. 4. The natural clustering of this
network following from coherency [5] is defined by the nodes
set {1−10}, {11−19}, {20−28}, {29−39} and {40−51}.
The clusters for ρ = 1 coincide exactly with these sets. The
sets for ρ = 0, however, are very different as clearly visible
from Fig. 4. This shows that the similarity of nodes in our
problem is not based on coherency, but is rather related to the
controllability subspace. It should be noted, however, that the
A matrix in (1) does not need to have any natural clustering
for our results to be applicable.

VI. CONCLUSION

In this paper we proposed an algorithm to find a clustering
matrix for a consensus network such that the LQR controller
designed from the clustered model can approximate the full-
order LQR in closed-loop performance. Simulations show
that the controller resulting from the clustering when pro-
jected on the full-order system, significantly outperforms the
controller designed from the open-loop clustering.
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Fig. 4: Clustering of a 51-node network with r = 5 and ρ = 0
(marked by colors).

APPENDIX
Proof of Lemma 4.5:

g1(s)− g2(s) =
[
I −PT

]︸ ︷︷ ︸
Ce

(sI −
[
Ā

P ĀPT

]
︸ ︷︷ ︸

Ae

)−1

[
b̄
P b̄

]
︸ ︷︷ ︸
be

.

The following eigenvalue decomposition is easily found,

Ae = VeΛeV
−1
e =

[
V1

V2

] [
Λ1

Λ2

] [
V −1

1

V −1
2

]
. (36)

Hence, ‖g1(s) − g2(s)‖2H2
= trace(CeΦeC

T
e ), where Φe :=∫∞

0
eAeτ beb

T
e e

AT
e τdτ and according to Lemma 4.4,

CeΦeC
T
e =

[
R1 −R2

] [CΛ1,Λ1 CΛ1,Λ2

CΛ2,Λ1 CΛ2,Λ2

] [
RT1
−RT2

]T
. (37)

Expanding (37) yields CeΦeCTe = R1CΛ1,Λ1RT1 −R1CΛ1,Λ2RT2 −
R2CΛ2,Λ1RT1 +R2CΛ2,Λ2RT2 , which completes the proof. �
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