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Correlated Sources Over Wireless Channels:
Cooperative Source-Channel Coding

Arul D. Murugan, Praveen K. Gopala, and Hesham El Gamal, Member, IEEE

Abstract—We consider wireless sensor networks deployed to
observe arbitrary random fields. The requirement is to recon-
struct an estimate of the random field at a certain collector node.
This creates a many-to-one data gathering wireless channel. One
of the main challenges in this scenario is that the source/channel
separation theorem, proved by Shannon for point-to-point links,
does not hold anymore. In this paper, we construct novel coop-
erative source-channel coding schemes that exploit the wireless
channel and the correlation between the sources. In particular,
we differentiate between two distinct cases. The first case as-
sumes that the sensor nodes are equipped with receivers and,
hence, every node can exploit the wireless link to distribute its
information to its neighbors. We then devise an efficient deter-
ministic cooperation strategy where the neighboring nodes act
as virtual antennas in a beamforming configuration. The second,
and more challenging, scenario restricts the capability of sensor
nodes to transmit only. In this case, we argue that statistical
cooperative source-channel coding techniques still yield signifi-
cant performance gains in certain relevant scenarios. Specifically,
we propose a low complexity cooperative source-channel coding
scheme based on the proper use of low-density generator matrix
codes. This scheme is shown to outperform the recently proposed
joint source-channel coding scheme (Garcia-Frias et al., 2002)
in the case of highly correlated sources. In both the determin-
istic and statistical cooperation scenarios, we develop analytical
results that guide the optimization of the proposed schemes and
validate the performance gains observed in simulations.

Index Terms—Beamforming, cooperative transmission schemes,
correlated sources, dense sensor networks, Gaussian multiple-ac-
cess channel (GMAC), low-density generator matrix (LDGM)
codes, source-channel coding.

1. INTRODUCTION

HE INTEREST in wireless sensor networks has been

rising sharply in recent years. One of the basic challenges
in such networks is the reliable transmission of the correlated
observations available at the different sensors to one, or more,
collector nodes. This gives rise to the so called many-to-one or
reach-back channel in the case of one collector node [1], [4],
(71, [91.

Works on constructing coding schemes for this scenario have
focused primarily on the problem of distributed compression of
correlated sources. In particular, for the case of discrete sources
considered in this paper, recent works have proposed coding
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schemes that approach the Slepian-Wolf fundamental limit on
the achievable compression rates (e.g., [8], [10], and [11]). The
main limitation of these works is the assumption of dummy
noiseless channels between the set of sensors and the collector
node. This assumption leads, therefore, to the separate optimiza-
tion of source and channel coding. While this separation is well
motivated for the point-to-point case, as shown by Shannon, it
can entail significant performance losses in more general sce-
narios [2], [3]. As shown in the sequel, the many-to-one channel
considered here is one of the instances where the separation
of source and channel coding entails significant performance
losses (for a certain range of parameters).

This nonoptimality of separation-based schemes in sensor
networks motivates the fresh look, proposed here, at the design
of cooperative source-channel coding schemes that effectively
exploit the wireless medium. We use the term cooperative
source-channel coding to differentiate our schemes from avail-
able joint source-channel coding techniques inspired by the
separation principle (e.g., [5], [6], and [12]). We further dif-
ferentiate between two distinct scenarios of cooperation. The
first one assumes that the sensor nodes are equipped with
receivers which allows an arbitrary sensor node to distribute
its observations to its neighbors. We then devise an efficient
deterministic cooperation strategy where the neighboring nodes
act as virtual antennas in a beamforming configuration. As
shown in the sequel, Slepian—Wolf coding plays an integral
role in minimizing the amount of resources used to facilitate
intersensor communication here.

The second scenario considers the more challenging task
of facilitating node cooperation without relying on inter-
sensor communication. Specifically, this scenario corresponds
to the transmission of correlated sources over a Gaussian
multiple-access channel (GMAC) [3]. Here, we devise a low
complexity blind cooperation scheme based on the simulta-
neous transmission of low-density generator matrix (LDGM)
codes. As shown later, the low density of the generator matrix
of LDGM codes is an important ingredient of the proposed
scheme. In a nutshell, the two cooperation schemes strive
to map the correlation between the source observations into
correlation between the transmitted signals. In doing this, we
follow the information theoretic guidelines offered in [2]-[4]
for maximizing the capacity of the many-to-one channel. To
the best of our knowledge, this is the first attempt to construct
explicit coding schemes for statistical cooperation.

In both the deterministic and statistical cooperation scenarios,
we develop analytical results that guide the optimization of the
proposed schemes and validate the performance gains observed
in simulations. Aided by analytical and simulation results, our
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schemes are shown to outperform the joint source-channel
coding scheme recently proposed by Garcia—Frias et al. [6].
The performance gains offered by the proposed blind cooper-
ative scheme demonstrate the strict suboptimality of schemes
based on source/channel separation in certain instances of
the many-to-one channel. Although we focus mainly on the
two-source scenario in the majority of the paper, the extension
of the proposed schemes to dense sensor networks [4], [9] is
briefly discussed.

The rest of the paper is organized as follows. In Section II, we
introduce the system model along with our notation. We present
the deterministic cooperation scheme in Section III where we
also analyze its performance limits. In Section IV, we construct
the statistical cooperation scheme for source-channel coding
and develop an approximate analytical tool for optimizing the
different parameters involved in this scheme. In Section V,
we present representative numerical results demonstrating the
performance gains offered by the proposed schemes. Finally,
Section VI offers some concluding remarks.

II. SYSTEM MODEL AND NOTATION

Unless otherwise stated, we consider two correlated binary
sources U and V. We denote the sequence generated by source
U as {u1,uo, ...} and that of source V as {v1, va, . . .}. We fur-
ther assume that the data generated by each of the two sources
is independent identically distributed (i.i.d.). The correlation
between the two sources is determined by Pr(u; # v;) =
p, Vi. We assume that the sources share a wireless additive white
Gaussian noise (AWGN) channel. Code constructions that ac-
count for the effects of multipath fading will be considered in
future works.

For simplicity of presentation, we use a discrete time real
model where y(j], the real signal received at the collector node
at time j, is given by

yli] = zulj] + 2o 5] + nl] M

where z,,[7] and z,[j] are the symbols transmitted at time j by
U and V, respectively, and n[j] is the zero-mean real Gaussian
noise sample at time j with variance o'2. We impose only a con-
straint on the total average power, i.e.,

E{|zu® 4 [20|*} < Pavg.- @

In (1), it is assumed that the source nodes are synchronized with
a common clock. This requirement is important since beam-
forming plays a key role in the proposed schemes as detailed
later. For the intersensor communication link, we also adopt the
same AWGN channel model and refer to the variance of the
noise impairing this link as o2, . The difference in noise vari-
ances corresponds to the difference in quality between the two
links (equivalently, one can model the difference in quality by
allowing for different attenuation factors). We define k to be the
number of bits generated by each sensor during one time slot
and NV to be the number of symbols transmitted in one time slot
(i.e., j € {1,...,N}). The total rate of transmission is, there-
fore, given by

3)

where H (U, V) refers to the joint entropy of the two sources.

As atheoretical benchmark, we consider the separation-based
scheme consisting of distributed Slepian—Wolf source coding
of the two sources followed by optimal channel coding for the
GMAC. Here, we observe that with only the sum-power con-
straint, time-division multiple access (TDMA) achieves the ca-
pacity of the GMAC [2]. It follows that the fundamental limit
on the performance of the separation-based scheme is given by
the following equivalent relations [2]:

k 1 P,
—HU,V)=R< -log|1 3 4
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c
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We note that this separation-based scheme is blind in the
sense that it does not require intersensor communication. This
scheme also does not need the synchronization assumption re-
quired for the proposed cooperative strategies. As a practical
benchmark, we consider the recently proposed scheme in [6].
This scheme employs punctured turbo codes for joint source-
channel coding by the individual sources followed by a TDMA
strategy. At the receiver, joint iterative decoding is used to re-
cover the two sources. Though this scheme is called a joint
source-channel coding scheme, one can see that it is inspired
by the separation principle (as highlighted by the use of TDMA)
and joint coding and decoding only serve to narrow the gap with
the theoretical limit given in (5).

III. INFORMED (DETERMINISTIC) COOPERATION

In this section, we propose a novel cooperation strategy that
exploits the wireless channel to facilitate intersensor communi-
cation. The proposed strategy is tailored for applications where
the distance between the sensors is much smaller than the dis-
tance between the set of sensor nodes and the collector node.
In our model, this assumption translates to 02, /02 < 1. We
remark that this assumption, in general, holds for the class of
dense sensor networks considered in [4] and [9].

Our scheme utilizes a cooperative TDMA strategy in which
a fraction f; of the time slot is devoted to intersensor com-
munication. The time allocated for intersensor communication
is divided equally among the two sensors such that at a par-
ticular instant of time, only one sensor transmits while the
other sensor listens. This exchange of information between the
sensors allows them to cooperate deterministically by trans-
mitting simultaneously in a beamforming configuration to the
collector node for the remaining fraction (1 — f1) of time. The
optimization of the parameter f; is considered in the sequel.
A schematic diagram of the proposed scheme is shown in
Fig. 1.

Let us consider the transmission of information from source
U to source V. This is the classical example of source coding
with side information where one needs only to transmit the in-
formation corresponding to the conditional entropy H(U | V)
[11]. Here, we use a regular low-density parity check (LDPC)
coding scheme, where we encode the information bits of U
using a (k, Np) systematic LDPC code. We then puncture all
the systematic bits and transmit only the 1 = (N; — k) parity
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Fig. 1. Schematic diagram of the informed cooperation scheme.
bits through the channel. The number of parity bits r; of the
LDPC code is related to the fraction f; through the relation

N N f1log, |
L= =5

where |()| is the cardinality of the constellation used for inter-
sensor communication. The same scheme is used for transmis-
sion from source V to source U. It is straightforward to see that
this scheme allows for a direct application of the Turbo principle
in the decoder where the correlation between the two sources is
used as prior information (e.g., [5] and [6]). The details of the
decoder are omitted here for brevity.

Assuming successful decoding in the first stage, the two
sensor nodes now know both U and V and hence can cooperate
in delivering the information to the collector node. Through
the simultaneous transmission of identical signals in this stage,
one can exploit the 3-dB beamforming gain. In this stage, we
again employ a similar LDPC coding/decoding scheme. In
particular, we first transmit U to the collector node using a
systematic LDPC code. Now, the transmission of V to the
collector node again reduces to the problem of source coding
with side information discussed above. It is interesting to note
that the intersensor communication in the first stage reduces
the many-to-one problem to a point-to-point communication
problem, for which the source/channel separation theorem
holds.

To further enhance the performance, we allow for using
different power levels in the two transmission stages (i.e.,
during intersensor communication, the active source transmits
at a power of P,,, whereas during the second stage each source
transmits at a power equal to P./2). We use the information
theoretic analysis in the following section to guide the choice of
f1, P., and P,,. We realize that further performance gains can
be reaped by using more sophisticated irregular LDPC codes.
In this paper, we did not pursue this direction since it amounts
to a straightforward modification of the proposed techniques
and, as such, does not contribute to additional insights. The pro-
posed scheme may also be improved by allowing the collector
node to exploit the received information during the intersensor
communication stage (observe that in wireless channels, this
information is delivered to the collector node for free). In our
work, no attempt was made to exploit this received information
in order to minimize the decoder complexity and facilitate the
theoretical analysis presented in the following section.

(6)
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A. Information Theoretical Analysis

In this section, we compute the information theoretic limit
that bounds the performance of the proposed scheme. We
further use this analysis to find the information theoretic op-
timal values of fy, P., and P,,,, and characterize the scenarios
where the proposed cooperative TDMA scheme outperforms
techniques based on the separate optimization of source and
channel coding. We note that the optimality implied by our
analysis only holds when capacity-achieving codes are used
and need not necessarily carry over to practical implementa-
tions. However, the optimal values obtained using the capacity
achieving codes serve as good approximations to those obtained
for LDPC codes.

From the previous discussion of the proposed cooperative
TDMA scheme, one can see that successful intersensor com-
munication is possible only if ! [2]

EH(U|V)  EkH(p)
N N

fl 1 Puv
=] =1 1 .
< 2 )2\t o2,

Hence, the power P, required for intersensor communication
is lower bounded by

IA

2
Puv >0

—_ uv

4k H(p)
(2 h

Similarly, the communication to the collector node will be
successful only if

EH(U,V) k(14 H(p))
N - N
<(1- fl)élog (1 + 2;}) :

c

- 1) . o)

The factor of 2 in the log term is due to beamforming (since
each source transmits with power (P./2), and the signals add
coherently, the received power is 2F,). Hence, the total power
P, allocated for communication with the collector node should
satisfy

2/
P> <2—55?T—1§<f>” - 1) . ®)

I'This capacity can be achieved only for Gaussian inputs but it serves as a good
approximation of the achievable rate for other constellations at low signal-to-
noise ratio (SNR).
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The value f; that minimizes the average power

Pavg:Puv(f1)+Pc(1_f1) (9)

can be found by numerically solving the following equation:

2 2 4k H(p)
1— 201“; + ZUUm 2 Nfl* 1— 4kH(p) 111(2)
o2 o2 Nff

¢ Mc<2k(l +H(p))In(2) 1) =0. (10)

+9 NO=TD
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The minimum power levels P, and P} corresponding to ff
can be obtained by imposing equality in (7) and (8), respectively.
It is interesting to note that these optimal power levels not only
depend on the correlation between the sensors, but also on the
quality of the intersensor communication channel.

One can now argue for the asymptotic optimality of the pro-
posed scheme as follows. In the case of p — O and/or o2, /0% —
0, one can see that the proper fraction of time assigned for in-
tersensor communication will be fi — 0. This means that the
proposed scheme will achieve the maximum 3-dB gain over sep-
aration-based schemes [this 3-dB gain can be seen by letting
f1 = 0in (8) and (9), and comparing the result with (5)].

B. Generalization to Dense Sensor Networks

We now extend the deterministic cooperation scheme to the
scenario of dense sensor networks with n nodes. The corre-
lated random sequences corresponding to the observations of
the n sensors will be referred to as Uy, Usz,...,U,. For a
particular realization, the output of sensor Uj is denoted by
w = {u;1,...,u;r}. We assume the following correlation
model between the outputs of the sensor nodes. The output of the
first source is denoted as u; = ey, where e; is ani.i.d. sequence
with Pr(e;; = 0) = Pr(e1; = 1) = (1/2), Vl. The output of
source Uj is given with respect to the output of source U;_; as
w; = u;_1 P e;, where e; (4 € {2,...,n}) is an i.i.d.sequence
with Pr(e;; = 1) = (p/n),Pr(e;y = 0) = (1 — (p/n)), V.
This assignment ensures that the correlation between adjacent
sensors increases as the number of sensors “n” increases. The
correlation parameter between the streams U; and Uj is denoted
by p; ;. We adopt an AWGN channel model for the intersensor
links. We denote the noise variance of the channel between the
sensors U; and Uj by o7;. We assume that these noise vari-
ances follow the model o7; = ((|¢ — j|/n))”, where v > 0.
These models for the correlation and the intersensor channels
are intended to correspond to the case where the geographical
area of the network is fixed? and, hence, increasing the number
of sensors results in an increase in the density. This increase
in density, subsequently, results in a higher correlation between
the data streams generated at adjacent nodes and also a better
channel between adjacent sensors. Here, we fix the transmission
rate and characterize the scaling law of the minimum average
power Py, required by the cooperation scheme as the number
of sensors grows (i.e., as n — o0). The gain offered by the pro-
posed scheme will be illustrated by comparing this scaling law
with the corresponding one in the separation-based scheme.

In the proposed scheme, we divide the n sensors into groups
of n® each, where 0 < a < 1. As before, we adopt a TDMA

2Here, we have chosen a one-dimensional model to simplify the analysis.

strategy wherein time slots are allocated to the different groups
periodically. Within a fraction f; of their allocated time slot,
the sensors in the designated group exchange their informa-
tion. This exchange of information allows the sensors within
the group to cooperate deterministically by transmitting simul-
taneously in a beamforming configuration to the collector node
for the remaining fraction (1 — f7) of their time slot. As before,
we allow for using different power levels in the two transmis-
sion stages (i.e., during intersensor communication, the active
source Uj transmits at a power of P;, whereas during commu-
nication with the collector node, each source within the group
transmits at a power of (P./n%)).

Without loss of generality, we consider the transmission of
the first group of sensor nodes Uy, Ug, ..., Uye. The effective
transmission rate is given by

kH(U1,Ug,...,Upa)
N .

During intersensor communication, each sensor in the group
is allocated a fraction ((f1/n®)) of the time slot. During this
fraction, the designated sensor node must provide enough in-
formation to the other members of the group such that all these
other sensors can recover its observation. To minimize com-
plexity, we propose a suboptimal strategy where the designated
sensor node sends only one stream with enough rate such that
the sensor with the least correlated observation in the group
can recover the observations of the transmitting sensor (as-
suming successful decoding of the transmitted stream). Using
the standard random binning argument, one can see that all
the sensors in the group can also recover the observations
of the transmitting sensor assuming correct decoding of this
stream. To ensure successful decoding by all receiving sensors,
enough transmit power should be allocated such that the re-
ceiving sensor which experiences the worst channel can decode
successfully. These two arguments imply the following limit
on the proposed intersensor communication strategy (assuming
the use of capacity-achieving channel codes)

kH (p:) (T{_i)%bg(H P), vie{l,...,n"}

i
——= < 52
%

R =

NS
or equivalently

2kn® H(p;)

PL-Z&,?(Z N —1>./ Vie{1,...,n*} (11

where

67 =

2 A
= max [ Pi =
Yje{lme N i
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At the end of the intersensor communication stage, all the sen-
sors in the group know all the corresponding observations and,
hence, can cooperate deterministically. The communication to
the collector node will then be successful if (again assuming the
use of capacity-achieving codes)

kH(Uyg,Us,...,Upbe) 1, neP,
N S(l—fl)glog 1+ pe

or equivalently

0-2 2kH(Uy,U2,...,.U o)
P.> —(C, 2 NO=71) —-1].
n

12)
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The minimum required average power P,

avg 1S, hence, given by

avg — +P;“‘)+(1_ff)Pc*

2kH(Uy,Up,...,U a)
) <2~u—f;> N 1)
2kn® 2kn® H(p;)
Z < N —1>. (13)

From the assumptions on the correlation model and the inter-
sensor channel, one can easily see that

A2< na "/_ 1
i<\ ) T aaen

Vi € {1,...,n%}. Combining these upper bounds with (13)
yields the following upper bound on the minimum required av-
erage power

*) 2 2
Y (g Y
n(}‘
f* 2Rn® H(py o)
+ < (11(1),),) 2H(U1.U2 ..... Una)ff _ 11. (14)
n

For large n, we have

1+(n“— 1) H (&)

which yields

P* = (1 — fik)ffz
avg ne

and H(ﬁz) < H(pl,n")

weHp) (5
H(Uy,Us,...Uns)

op . 1
< ——2a) <édbp, ifa< 3
where 4 is chosen such that H(q) < 8¢ for all ¢ < p. Using this
in (14), we get [for large n and o < (1/2)]

P:vg <(1 ——ff)(72> (2% — 1)
ne
* 2RSp

It is now evident from (15) that for a fixed and finite rate R,
the required average transmission power Py, of the proposed
scheme scales as

1
nmin{a,(l—a)w}

P, <O ( ) , witha < % (16)
as the number of sensor nodes n grows to infinity.? From (4), it
can be shown that Py, = O(1) for the separation-based scheme
as n — oo and the transmission rate is fixed. Comparing these
two scaling laws, one can see the significant power savings of-
fered by the deterministic cooperation scheme in dense sensor

networks.

IV. BLIND (STATISTICAL) COOPERATION

In this section, we consider the more challenging scenario
where the sensor nodes are restricted to transmit only. This con-
straint only allows the sensors to cooperate statistically. Similar

3We observe that this result is also valid for more general correlation models
than the one assumed here.

to Section III, we first focus on the case of two sensor nodes
and then briefly outline the extension of the proposed scheme
to dense sensor networks with large number of nodes. In fact,
this is the well-known multiple-access channel with correlated
sources problem which has been studied in [3] and the proposed
cooperation scheme attempts to capitalize on the information
theoretic insights offered in [2] and [3].

More precisely, our scheme is inspired by the following in-
sightful observation from [2] “To maximize the capacity of the
GMAC, one should preserve the correlation between the inputs
of the channel. Slepian—Wolf encoding, on the other hand, gets
rid of the correlation.” The simplest way to illustrate the idea
is to consider, again, the asymptotic case with p = 0. In this
case, the separation-based scheme would involve transmission
from only one source (say U) since the other source does not
generate any novel information (i.e., H(V |U) = 0). The op-
timal cooperative scheme, however, is to transmit the identically
encoded streams from both sources simultaneously (the corre-
lation coefficient between the two transmitted signals is one).
One can easily see that, in this toy example, the optimal coop-
erative scheme will attain the beamforming 3-dB gain over the
separation-based scheme. In fact, the main objective of the de-
terministic cooperation scheme proposed earlier is to facilitate
this beamforming for arbitrary p # 0 by exploiting the inter-
sensor communications capability. In the current blind scenario,
a different solution for handling p # 0 is needed.

To simplify the presentation and analysis, we restrict our-
selves to binary phase-shift keying (BPSK) modulation in this
section. The proposed scheme (for arbitrary p) relies on the
simultaneous transmission of two identical systematic LDGM
codes, as shown in Fig. 2, to facilitate statistical cooperation.
The generator matrix of the LDGM code can be represented as

G = (Ixxx | G')

where G’ is aregular sparse matrix with d,, ones in each row and
d. ones in each column. First, it is easy to see that the correlation
between the transmitted signals is preserved in the systematic
part of the code word. The low density of the generator matrix
of LDGM codes is intended to map the correlation between the
two observed streams into correlation between the two parity
sequences as argued next. The £th parity bit for the first source
(i.e., p¢) is given by

pe = ug, Dug, ® - Dug,,

where {ug,: ¢ = 1,...,d.} are the information bits corre-
sponding to ones in the £th column of G'. If p¢ and p¢ are the
&th parity bits of sources U and V, respectively, then

1—(1—2p)

5 forp < 1.

Pr(pf # pg) =

So by choosing small values for d.., one can increase the cor-
relation between the parity sequences. On the other hand, it
is well known that decreasing d. degrades the performance of
the stand-alone LDGM code (e.g., [6]). Therefore, one would
expect the existence of a value for d., which strikes the op-
timal tradeoff between these two goals for every value of p.
Experimentally, we have found d. = 4 to achieve near optimal

~ d.p,
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Fig. 2. Schematic diagram of the blind cooperation scheme.

performance for the values of p of interest (highly correlated
sources).

Unfortunately, the simultaneous transmission stage by itself
is not sufficient for successful decoding, as demonstrated by the
following argument. Consider the simultaneous transmission of
the systematic bits. If u; # vy, then the corresponding received
signal at the /th time instant is just the Gaussian noise. More-
over, it is easy to see that, for small values of p, all the check
equations in which wu; and v; participate will result in different
parity bits for the two encoded streams and, hence, the corre-
sponding received signals will again be just Gaussian noise.
This gives rise to decoder ambiguity in those bits (i.e., the prob-
ability that u; = 1,v; = 0 is the same as u; = 0,v; = 1). Tore-
solve this ambiguity, we require both sources to send additional
parity bits separately (i.e., we use a TDMA protocol, where
every source is assigned an equal interval to send its unique
parity sequence). We refer to this part of the code word as the
separate transmission to differentiate it from the earlier simulta-
neous transmission part. Since in this separate transmission part,
the sources do not benefit from the beamforming gain, we allow
for a different power allocation. In the simultaneous transmis-
sion part, each source transmits at a power of (P./2), whereas
during separate transmission, the active source transmits at a
power of mP,.. It is now clear that there are several parameters
to be optimized in the proposed scheme [e.g., power allocation
(i.e., m), the connectivity of the generator matrix, and the ratio
of the simultaneous transmission part length to the separate part
length]. In the following section, we develop an approximate an-
alytical tool for guiding the optimization of these different pa-
rameters. Finally, we note that ambiguity bits are a feature of our
scheme that resulted from our attempt to maximize the coopera-
tive (beamforming) gain in the simultaneous transmission stage
when the symbols are identical (i.e., using identical codes and
equal power for the two sources). In the proposed scheme, we
resolved these ambiguity bits through the separate transmission
stage. More fundamentally, one can argue that there is a tradeoff
between the cooperative gain, when the transmitted symbols

are identical, and the cancellation loss, when the symbols are
different. The door is still open for constructing schemes that
realize the optimal tradeoff between these two effects.

We conclude the discussion of the proposed scheme by
giving a brief description of the decoding strategy. To minimize
complexity, we adopt a two-stage decoding strategy. In the first
stage, the received signal during the simultaneous transmission
phase is used to decode the bits in which U and V are identical.
For iterative decoding, the log-likelihood ratios (LLRs) are

initialized using the rule
P, s
—44/ 5 yli]
o2 )

One can see that this suboptimal initialization rule ignores
the presence of erased symbols, and hence, the iterative decoder
only attempts to identify the bits in which w; = v;. In the second
stage, decoding is done separately for each source. Iterative
decoding in this stage utilizes the LLR values obtained from
the first stage of decoding and the LLR values of the additional
parity bits that are transmitted separately by the sources. As
expected, this stage strives to identify the ambiguous bits that
are ignored in the first stage. It is important to observe that
this decoder does not exploit the a priori information about
the correlation between the two sources. We realize that more
sophisticated approaches, that exploit this information, can
be employed. We, however, restricted our attention to this ap-
proach to minimize the decoder complexity. The independence
of the decoding procedure on the correlation between the two
sources is also desirable in certain applications that require
robust decoding algorithms.

q5,0 =

A. Approximate Analysis

Here, we develop an approximate analytical tool for opti-
mizing the different parameters that govern the performance of
the proposed blind cooperation scheme. In addition, this tool
offers approximate estimates of the fundamental limits of the
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proposed scheme. It should be noted that the analysis presented
here will be mainly used to optimize the performance of the
proposed blind cooperation scheme, and does not give the
achievable rate for the GMAC with correlated sources.

Analogous to Section III, we let Ny = N(1 — f;) be the
number of bits transmitted simultaneously, and 71 = (N f1/2)
be the number of additional parity bits transmitted by each
source separately. Although the two sources transmit N
bits simultaneously, the first-stage decoder only attempts to
identify the bits for which w; = wv; from only the un-erased
received symbols. Hence, the effective rate of the code used
in the first stage is Ry = (k(1 —p))/(Ns(1 —p')), where
p" = (kp+ (Ns — k)d.p)/(Ns) is the average erasure proba-
bility (the averaging takes into account the fact that the erasure
probability is different in the systematic and nonsystematic
parts). Noting that the received SNR in the simultaneous trans-
mission part is (2P./c?2), we obtain the following approximate
condition for successful decoding:

E(1-p) 1 2P,
— =~ -1 14+ —.
N.(l—p) 2 °g< - a?)

C

a7)

After the first decoding stage, the resulting k-bit sequences of
the two sources will contain (kp/2) errors each (assuming we
flip a coin in the erased positions). Alternatively, one can treat
those unidentified bits as erasures and obtain slightly more op-
timistic results. Our experimental results, however, show that
modeling those bits as errors gives more accurate predictions.
For successful decoding in the second stage, we have

kH (g) ~ %llog <1+ 71212’() .

C

(18)

From (17) and the relation (k/Ns) = (d./(d, +d.)), we get

( d, > 1—p L <1+2Pc)
~ —log —_—

df‘ d’l/ 1 dv 2 2

a 1 —pd. (dp—:-du> 7e

d.(1-p)
1 log (1+2';

o

) —d.(1—p)

dy =~ ° 1
= T (19)
Using the fact that (k/N) = (k)/(Ns + 2r1), we get

k 2

LA — (20)

1

N _ [ dutde
k d.

From (18) and (20)

2 P 1 mP,
N (du-i-dc) i (5) = §1Og <1 + o2 ) - @D
k d

c

For a particular value of P., the value of d, can be obtained
from (19). Also, from the known value of (k/N'), m can now be
found from (21). One can then obtain the average power P,
as

(22)

Pag = P. (M) .

N

The optimal value P is the one which minimizes the average
power for given k, N, and p. The corresponding optimal values
of d,, and m can be obtained from (19) and (21), respectively.
Here, we find these optimal values numerically.

B. Generalization to Dense Sensor Networks

We now extend the blind cooperation scheme to the scenario
of dense sensor networks with n nodes. We adopt the same cor-
relation model used in Section ITI-B. It is worth noting that there
is no need here to invoke any path loss model for the intersensor
channels since intersensor communication is assumed to be in-
feasible. Analogous to Section III-B, our goal is to characterize
the scaling law of the minimum average power required by the
blind cooperation scheme as the number of sensors grows to
infinity.

Again, we divide the n sensors into groups of n® each,
where 0 < o < 1. The sensors within each group cooperate
statistically to transmit their information to the collector node.
Within each group, the sensors first transmit simultaneously
using systematic LDGM codes, and then each sensor transmits
additional information separately to resolve the ambiguity
of the unidentified bits. Since we are primarily interested
in finding a lower bound on the efficiency of the proposed
approach, the total transmission power (i.e., F.) is assumed to
be the same for both simultaneous and separate transmissions.
Thus, the output of each sensor is divided into blocks of k bits
each, and each block is encoded to a codeword of NN, bits.
These codewords are then transmitted simultaneously by all the
sensors within the group. Let p. be the probability of error for
each source after decoding in the first stage. Now, each source
has to transmit kH (p.) bits of information separately to the
collector node. These &k H (p. ) bits are encoded into a codeword
of r1 bits. Again inspired by the desire to obtain a lower bound,
we assume that during simultaneous transmission only those
bits which are the same for all the sensors within the group will
be decoded correctly and the rest are considered as errors.

Let the encoded vector of source i be given by x; (i €
{1,...,n}). Then, the encoded outputs of source (i—1)
and source ¢ are related by x; = X;_1 @ g;, where
gi (1 € {2,...,n%}) is an Ns-length sequence with
Pr(g;y = 1) < (dcp/n) VI. To simplify notation, we let
p1 = d¢p. Thus, the encoded sequence x; can be expressed as

Xi =X1Dg2Dg3D--- D gi- (23)

By letting f; = 2222 gj, we get x; = x1 @ f;. Now, using the
union bound, the probability Pr(f; ; = 1) can be upper bounded
as

('i - 1)p1

Pr(fii=1) <> Pr(ga=1)< ——. (24)
j=2

n

Let p. be the probability that the /th bit is the same for all u;
in the group, which occurs when e;; = 0 fori € {2,...,n%},
and similarly, p., be the probability that the [th bit is the same
for all x;, which occurs when g;; = 0 fori € {2,...,n%}.

Thus

(n*—1) (n*—1)
r=(1-2) and p,, > (1-2)7 L @)
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Since the suboptimal decoder used in our scheme for simulta-
neous transmission attempts to decode only those bits for which
all the source outputs are the same, the effective code rate (with
respect to the bits for which all g; ;’s are zero) is (kp./Nspe, ).
One can then argue that successful decoding for the common in-
formation is possible only if

1 ap,
g§10g<1+" )

ol

kpe
Npe,

(26)

For separate transmission, the corresponding condition is
given by

kH (p. 1 P,
(p)§—10g<1—|——2>. 27)
71 2 o
The effective rate of transmission is
k(L+ (n— DH (2))
R = nez, 28
N (28)
From (26) and (27), we have
N N, L+ nry
E ok k
a .
At e e Y
ilog(l—}-"ag”) §log(1+é)

where 3 = (p./p., ). Since we are concerned with the funda-
mental performance limit, the inequalities in (26) and (27) are
taken as equalities in (29).

The relation between the transmission power P, and the rate
of transmission R can be obtained from (28) and (29) as
1+ (n*—1)H (£)

n

R =

(30)

n*H(pe
g - + (pe)
%log (1+n0—2pc) % log (1+f—.§>

Now, we wish to characterize the scaling law of the power
gain allowed by statistical cooperation for any fixed, and finite,
transmission rate R as n — oo. A first step is to see (using
standard arguments) that 8 = (p./pe,) — 1 asn — oo.

Next, we need to find p. (or an upper bound on p.) and its
scaling with respect to n. Since successful decoding occurs only
when the bits transmitted from all the sources are the same (i.e.,
when all f;;’s are 0), we can use the union bound to get the
following upper bound on p:

ne

, — 1
p. = Pr(atleastone f; = 1) < E (i=1p
n
i=2

n*(n

= pe <

< o - &1y

Now, consider the term n® H (p, ). This can be upper bounded
by

D1

nﬂH<pe) < ’Vnnpe S ’Ym (32)

where v is chosen such that H(q) < ~q for all ¢ < p;. Then,
n®H (p.) — 0 for large n and o < (1/3).

From (30) and (32), we have for large values of n

1
R =1,

3 log (1 + —";f)

1
for a < 3 (33)

Therefore, for a fixed rate R, the minimum average transmission

power P, can be expressed as
2 22R -1
P:Vg _ Pc _ Uc( ) (34)
na

for large n if &« < (1/3). Hence, for a fixed rate of transmis-
sion R, the required transmission power P}, of the proposed
scheme scales as Pj,, = O(1/(nY/®7¢)) if the number of
nodes in a group is chosen to be n(1/3)=¢. Similar to the de-
terministic cooperation scheme, one can now see the significant
savings in power offered by the proposed statistical cooperation
scheme, compared with the separation-based scheme, in dense
sensor networks.

V. NUMERICAL RESULTS

In this section, we present numerical results quantifying the
performance of the proposed cooperation schemes in certain
representative scenarios. Throughout this section, we restrict
ourselves to the case with only two sensor nodes. In our simula-
tions, we choose k£ =9500 and N =40 000 as in [6]. The bit-error
rate was averaged over 1000 frames per source. The simulation
threshold is defined as the value of Payg /02 corresponding to a
bit error rate of 1077,

A. Informed Cooperation

1) Analytical Results: Using the analytical steps sketched
in Section III-A, the average transmitted power P,y can be
found for a given fraction f;. The values of P,., for different
values of f; are reported in Fig. 3 for different values of 02, /02
and p = 0.01. As is evident from the figure, the deterministic
cooperation scheme performs better than the separation-based
scheme even when the noise variance of the intersensor channel
is comparable with that of the channel between the sensors and
the receiver (i.e., 02,/02 = 1).

A detailed comparison of the theoretical limits (P%,,/0?)
for the proposed informed cooperation scheme and the sepa-
ration-based scheme is provided in Table I. It is evident from
the table that the proposed cooperative scheme always performs
better than the separation scheme, irrespective of the value of the
correlation parameter p, when the intersensor channel is very
good (i.e., 02, /02 < 0.1).

2) Simulation Results: We used LDPC codes with d, = 3
throughout our simulations. For intersensor communication, a
(9500, 13500) LDPC code was used and only the 4000 parity
bits were modulated and transmitted through the channel. The
modulation scheme used for intersensor communication was
16-PAM with Gray mapping. The motivation of using a higher
order constellation here is to exploit the better quality of the in-
tersensor channel. For communication with the collector node,
we used a (9500, 28 500) LDPC code for the transmission of
U. After U is decoded at the collector node, we used a (9500,
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—— Our scheme (g=0.01)
— = Our scheme (g=0.1)
8 — - Our scheme (g=1) N
- Separation based scheme

(in dB)

avg

Required P

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Fraction f,

Fig. 3. Theoretical limits of the informed cooperation scheme and the
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COMPARISON OF THE INFORMED COOPERATION SCHEME AND GZZ SCHEME

(SIMULATION RESULTS)

Informed Cooperation GzZZ
scheme scheme
2

Tup p R | Threshold | Threshold | Threshold | Gain

(theory) (sim) (sim)
0.01 | 0.025 | 0.28 | -6.18 dB -3.92 dB -1.56 dB | 2.36 dB
0.01 0.01 0.26 | -6.65dB -4.33 dB -1.72dB | 2.61 dB
0.1 0.025 | 0.28 | -5.86 dB -2.81 dB -1.56 dB | 1.25 dB
0.1 0.01 0.26 | -6.48 dB -3.99 dB -1.72dB | 2.27 dB

p=0.01

separation-based scheme for different values of ¢ = o

uv

2,/ forp =0.01.

TABLE 1
COMPARISON OF THE INFORMED COOPERATION SCHEME AND THE
SEPARATION-BASED SCHEME (THEORETICAL LIMITS)

T T T
—— Blind Cooperation Scheme

— - Separation Scheme (Threshold)
— - Blind Cooperation (Threshold)

(in dB)

-3

Separation Informed Cooperation scheme
P R scheme o2, /o2 =0.01 a2 /o2 =0.1
Threshold Threshold | Gain Threshold | Gain
0.5 0.475 -0.31 dB -2.53 dB 2.22 dB -1.17 dB 0.86 dB
0.2 0.41 -1.18 dB -3.65 dB 2.47 dB -2.58 dB 1.40 dB
0.1 0.35 -2.06 dB -4.74 dB 2.68 dB -3.97 dB 191 dB
0.05 0.31 -2.78 dB -5.59 dB 2.81 dB -5.08 dB 2.30 dB
0.025 0.28 -3.29 dB -6.18 dB 2.89 dB -5.86 dB 2.57 dB
0.01 0.26 -3.69 dB -6.65 dB 2.96 dB -6.48 dB 2.79 dB

19 000) LDPC code for the transmission of V and transmitted
only the 9500 parity bits through the channel.

For p = 0.01, our simulation results show that when
02, /o? = 0.01, the threshold value of the informed coopera-
tion scheme is —4.33 dB, which is about 2.32 dB away from
the theoretical limit, and shows an improvement of 2.61 dB
over the coding scheme proposed by Garcia—Frias , Zhong, and
Zhao (GZZ) in [6].* The informed cooperation scheme also
shows an improvement of 0.35 dB over the blind cooperation
scheme reported in the next subsection. For p = 0.025, the
threshold value of the informed cooperation scheme when
o2,/02 = 0.011s —3.92 dB, which is about 2.26 dB away from
the theoretical limit and offers an improvement of 2.36 dB over
GZZ scheme [6]. The informed cooperation scheme also offers
an improvement of 1.1 dB over the blind cooperation scheme.
As expected, when 02, /o2 = 0.1 there is a decrease in the
gain obtained by the informed cooperation scheme over GZZ
scheme. The results are summarized in Table II.

4To the best of the authors” knowledge, the performance of this scheme rep-
resents the current state of the art for this scenario.

avg

Required P
|
IS
T
L

Fig. 4. Comparison of the analytical performance of the proposed blind
cooperation scheme and the separation-based scheme for p = 0.01.

B. Blind Cooperation

1) Analytical Results: From the analytical steps illustrated
in Section IV-A, the average transmitted power P, can be
found for a given power P, allocated for the simultaneous trans-
mission stage. The values of P,,, for different values of P, are
plotted in Fig. 4 for p = 0.01. From the figure, it is clear that
there exists a value of P, (and corresponding values of d,, and
m) for which P,,, is minimized. The proposed scheme per-
forms best at this point, and the analytical threshold Py, / o2
is computed using this value.

A detailed comparison of the theoretical limits for the
proposed blind cooperation scheme and the separation-based
scheme is given in Table III for different values of p.

2) Simulation Results: Weused an LDGM code withd,. = 4
for the simultaneous transmission part. We have found experi-
mentally that this value for d.. strikes a near optimal tradeoft. For
the separate transmission part, an LDGM code with (d,, d.) =
(31,50) is used throughout our experiments. For p = 0.01,
the approximate analysis in Section IV-A predicts that the best
performance of the proposed scheme is achieved with d, =~
11 and m = 1.36. Experimentally, we found d, = 8 and
m = 1.25 to achieve optimal performance. Using these param-
eters, the threshold value of the proposed scheme is —3.98 dB,
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TABLE III
COMPARISON OF THE BLIND COOPERATION SCHEME AND THE
SEPARATION-BASED SCHEME (THEORETICAL LIMITS)

Separation | Blind Cooperation
scheme scheme
P R Threshold Threshold Gain
(theory) (theory)

0.168 | 0.39 -1.4 dB -1.4 dB 0 dB
0.15 | 038 | -1.55dB -1.7 dB 0.15 dB
0.1 0.35 | -2.06 dB -2.72 dB 0.66 dB
0.05 | 0.31 -2.78 dB -4.24 dB 1.46 dB

0.025 | 028 | -3.28 dB -532 dB 2.05 dB
0.01 | 0.26 | -3.69 dB -6.21 dB 2.52 dB

TABLE IV

COMPARISON OF THE BLIND COOPERATION SCHEME AND GZZ SCHEME
(SIMULATION RESULTS)

Blind Cooperation GZZ
P R scheme scheme Gain
Threshold | Threshold Gap Threshold
(theory) (sim) (sim)
0.025 | 0.28 -5.32 dB -2.82 dB 2.5 dB -1.56 dB 1.26 dB
0.01 0.26 -6.21 dB -3.98 dB 2.23 dB -1.72 dB 2.26 dB

which is about 2.23 dB away from the theoretical limit pre-
dicted by our approximate analysis, and offers an improvement
of 2.26 dB over GZZ coding scheme [6]. We note that the sim-
ulation threshold of the proposed scheme is better than the the-
oretical limit of separation-based schemes in this case (0.29-dB
gain). This is a strong evidence supporting our claim on the
gain possible through cooperation. For p =0.025, the theoret-
ical analysis predicts the optimal values of d, ~ 9 and m =
1.32, while experimentally optimal performance was achieved
with d, = 8 and m = 1.15. The threshold value of the pro-
posed scheme is —2.82 dB, which is about 2.5 dB away from
the approximate theoretical limit and shows an improvement of
1.26 dB over GZZ scheme [6]. The results are summarized in
Table IV.

It is clear that as p increases, the number of bits which are
erased in the simultaneous transmission part increases, and
hence, the performance of the proposed scheme degrades. One
would, therefore, expect the existence of a threshold value for
p at which the separation-based scheme starts to outperform
the proposed scheme. Our theoretical analysis predicts that this
threshold is p = 0.168 for this set of system parameters. Exper-
imentally, however, we have found GZZ scheme to outperform
the proposed blind cooperation scheme for p > 0.05. Finally,
we observe that the gap between theoretical and simulation
results, in both the deterministic and statistical cooperation
scenarios, is expected. One can further work toward minimizing
the gap by constructing more powerful component codes, in-
creasing the block length, and employing more sophisticated

decoding algorithms. Our results, however, still serve the pur-
pose of highlighting the power of cooperative source-channel
coding schemes.

VI. CONCLUDING REMARKS

In this paper, we proposed novel cooperative source-channel
coding techniques for the transmission of correlated sources
over wireless channels. The proposed techniques utilize the
correlation between the sources to maximize the capacity of the
many-to-one channel. When possible, we exploit intersensor
communication to facilitate deterministic cooperation between
the sources. When intersensor communication is prohibited,
we devised a statistical cooperation scheme for source-channel
coding. The proposed scheme is based on the simultaneous
transmission of identical LDGM codes from the sources to the
collector node. Throughout the paper, we guided our design
with information theoretic insights and analysis. Finally, nu-
merical results were presented to establish the gain allowed by
the proposed schemes over schemes inspired by the separation
principle in certain representative scenarios. Our objective in
this work was mainly to demonstrate the power of cooperative
source-channel coding techniques that efficiently exploit the
correlation between the sources. We hope that this paper will
motivate further work in this exciting area. For example, the
design of optimal component codes for the statistical coopera-
tion strategy is an interesting open problem. The LDGM codes
used here strike a very desirable balance between preserving
the correlation between the transmitted signals and the power
of the stand-alone code but, in our view, further research can
potentially yield more powerful codes.
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