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Abstract—We introduce two mechanisms for interference mit-
igation, inspired by evolutionary game theory and machine
learning to support the coexistence of a macrocell network
underlaid with self-organized femtocell networks. In the first
approach, stand-alone femtocells choose their strategies, observe
the behavior of other players, and make the best decision based
on their instantaneous payoff, as well as the average payoff
of all other femtocells. We formulate the interactions among
selfish femtocells using evolutionary games and demonstrate how
the system converges to an equilibrium. In contrast, in the
Reinforcement-Learning (RL) approach, information exchange
among femtocells is no longer possible and hence each femtocell
adapts its strategy and gradually learns by interacting with its
environment (i.e., neighboring interferers) through trials-and-
errors. Our investigations reveal that through learning, femtocells
are able to self-organize by relying only on local information,
while mitigating the interference towards the macrocell network.
Besides, a trade-off exists where faster convergence is obtained
in the evolutionary case as compared to the RL approach,
at the expense of more side information. Finally, it is shown
that femtocells face an interesting tradeoff of exploration versus
exploitation in their learning processes.

I. INTRODUCTION

Recently, a new type of indoor Base Station (BS), called
femtocell, has gained the attention of the industry [1], [6].
A femtocell is a low-cost and low-power BS deployed by
the end-users, designed to extend indoor coverage. Femtocells
are connected to the network of the operator over a backhaul
connection such as Digital Subscriber Line (DSL) or optical
fiber. Meanwhile, femtocells also provide coverage to the end
customers using a cellular network standard, e.g., Universal
Mobile Telecommunication System (UMTS), Wireless Inter-
operability for Microwave Access (WiMAX), and Long-Term
Evolution (LTE).

Femtocells aim to enhance the poor indoor coverage, boost
the overall spectral efficiency, and offload the overlay macro-
cell traffic [4]. Although femtocells provide significant benefits
for mobile operators, their introduction comes with many
challenges. Among these is the cross-tier interference between
macro- and femtocells, as well as co-tier interference arising
among femtocells. This calls for effective interference manage-
ment strategies, such as distributed power allocation, resource
partitioning, and other interference avoidance techniques. Un-
doubtedly, interference avoidance has never been a trivial task
neither in macrocell deployments nor in femtocell networks.
Due to the selfish nature of femtocells and uncertainty on

Fig. 1. Network topology with one macrocell underlaid with three femtocell
networks. MUE and FUE stand for macro/femtocell user equipment, respec-
tively. MBS and FBS stand for macro and femtocell base station, respectively.

their number and locations, operators must use optimal and
dynamic approaches rather than the classical static network
planning and optimization to avoid interference. In order to
successfully react to the changes of the traffic, and minimize
interference in femtocell deployments, the use of sophisticated
self-organization techniques is paramount. Self-organization
will allow femtocells to integrate themselves into the network
of the operator, learn about their environment (such as neigh-
boring femtocells and local interference map) and tune their
parameters (transmit power and carrier frequency) accordingly.

A. Related work

different self-organization strategies for femtocells have
been introduced within the framework of femtocell networks.
In [2], a power control method was proposed for pilot and
data channels in UMTS networks that ensures a constant
coverage femtocell radius. Each femtocell sets the transmit
power such that on average it is equal to the power received
from the closest macrocell at a target femtocell radius. In [3],
a method was presented for coverage adaptation for UMTS
networks using information on mobility events of outdoor
passing and indoor users. Each femtocell sets its power to a
value that on average minimizes the total number of attempts
of outdoor passing users to connect to such femtocell. In
[5], a distributed utility-based signal to interference plus noise



ratio (SINR) adaptation at femtocells was proposed in order to
alleviate cross-tier interference at the macrocell from cochan-
nel femtocells. In [6], interference avoidance using a time-
hopped Code Division Multiple Access (CDMA) physical
layer and sectorial antennas is investigated. These approaches
are mostly based on wide-band code division multiple Access
(WCDMA) networks, and do not mitigate interference through
sub-channel allocation, which is a very important feature
of current Orthogonal Frequency Division Multiple Access
(OFDMA) systems. Recent works investigating interference
mitigation for OFDM femtocell networks can be found in [17],
[19] for frequency resource partitioning, and [14] [18] using
tools from game theory.

Existing research on Reinforcement-Learning (RL) [13]
have been carried out in cognitive radio networks (e.g., see
[22], [23], [16], [21]). In [22], the authors focused on the
resource competition in a spectrum auction system, where the
channel allocation is determined by the spectrum regulator,
which is different from this paper in which no regulator
exists. In [23], a distributed opportunistic spectrum access
for cognitive radio using correlated equilibrium and no-regret
learning was studied in which mutual communication among
secondary users is assumed. A Q-learning based algorithm
was investigated in [16] and [21] in the context of network
selection for heterogeneous wireless networks, and channel
selection in multi-user cognitive radios, respectively.

B. Contributions
The contributions of this paper can be summarized as

follows:
• The strategic coexistence between the macrocell and

femtocell networks is modeled and analyzed using tools
from machine learning and evolutionary game theory,
under different information assumption knowledge.

• Distributed algorithms relying on either local information
or information exchange are proposed for different fem-
tocell learning strategies, so as to mitigate interference
towards the macrocell network.

• A comparison is provided between different strategic
learning approaches, namely Q-learning, evolutionary-
based approach.

The rest of the paper is organized as follows: Section II
outlines the system model. Section III describes the investi-
gated learning based mechanism, namely the Q-learning and
evolutionary learning approach. Numerical results are given in
Section IV and conclusions are drawn in Section V.

II. SYSTEM MODEL

We consider a wireless network consisting of one macrocell
base station (MBS), and Nf femtocell base stations (FBSs)
transmitting over Nsub subcarriers. In each time-slot, orthogo-
nal downlink signaling is assumed, i.e., 1 user/slot/cell. Figure
1 depicts an illustration of the considered network topology
where 1 MBS is underlaid with Nf = 3 FBSs. Let p(n)

0 denote
the macrocell’s transmit power on subcarrier n towards its
user. Likewise, the transmit power of FBS i in subcarrier n is

denoted by p(n)
i . Let |h(n)

i,j |2 denote the channel gain between
base station i and user j on subcarrier n, where |h(n)

0,0 |2 is
the channel gain between the MBS and its associated Macro
User Equipment (MUE) in subcarrier n. Moreover, let σ2

n be
the variance of Additive White Gaussian Noise (AWGN) at
MUE, which is assumed to be constant over all subcarriers.
At each time interval each FBS serves one FUE over one or
a subset of the available subcarriers following a time division
multiple access (TDMA) policy.

The signal to interference plus noise ratio of MBS at MUE
(assuming Gaussian signalling) is given as:

γ(n)
0 =

|h(n)
0,0 |2p

(n)
0

σ2 +
∑

i

|h(n)
i,0 |

2p(n)
i

︸ ︷︷ ︸
femtocells

. (1)

In this paper, the goal is to guarantee that the macrocell user
meets its Quality of Service (QoS) requirement, that is R0 ≥
Γ0, where Γ0 is the MUE’s target data rate. Similarly, the
signal to interference plus noise ratio of FBS i ∈ {1, ..., Nf}
serving its FUE is given as:

γ(n)
i =

|h(n)
i,i |2p

(n)
i

σ2 + |h(n)
0,i |

2p(n)
0︸ ︷︷ ︸

macrocell

+
∑

j !=i

|h(n)
j,i |

2p(n)
j

︸ ︷︷ ︸
femtocells

. (2)

III. DISTRIBUTED LEARNING APPROACHES FOR
MACRO-FEMTOCELL COEXISTENCE

In this section, two strategic learning mechanisms for
interference mitigation towards the macrocell network are
investigated, namely the evolutionary and Q-learning based
approaches.

A. Evolutionary-based approach
The first learning mechanism for interference mitigation is

based on the concept of evolutionary game theory, where each
FBS chooses its strategy against other FBSs within the same
network. FBSs observe the behavior of other competitors, learn
from the observations, and make the best decision based on
their instantaneous payoff, as well as the average payoff of all
other femtocells. The game theoretic model is formulated as
follows:

• Players FBS i, ∀i ∈ {1, ..., Nf}.
• Action Ai = {a(n)

i }n∈{1,...,Nsub} where a(n)
i is the

transmit power level used by FBS i in subcarrier n.
• Payoff Ri = 1(Γ0−R0)

∑
n log2

(
1+γ(n)

i

)
is the reward

of FBS i transmitting in subcarrier n. Moreover, the
average payoff of the entire population is defined as
R̄ =

∑
i Ri

Nf
.

In the aforementioned mechanism, an entity, which is re-
ferred to as home-eNodeB Gateway [1], collects the payoffs
for all femtocells and calculates the average rate of the entire
femtocell network. At time t, the payoff Ri(t) of FBS i is



then compared with the average payoffs R̄(t) and in the case
when it is less that the average rate of the femtocell network,
a random strategy is chosen and the whole process is repeated
again. Algorithm 1 describes the proposed evolutionary-based
interference mitigation mechanism.

Let ζ(n)
a (t) =

∑Nf

i=1 1
{

p(n)
i (t)=a(n)

i

} represent the total

number of femtocells using strategy a ∈ A, and xa(t) =
ζ(n)

a (t)
∑ |A|

a=1 ζ(n)
a (t)

the proportion of femtocells using strategy a,
respectively. Thus, the replication dynamic equation can be
defined as follows:

ẋ(n)
a (t) = x(n)

a (t)
(
R(n)

a (t) − R̄(n)(t)
)
, (3)

where R(n)
a (t) is the payoff of all femtocells transmitting at

time t with strategy a ∈ A in subcarrier n, and R̄(n)(t) =∑
a x(n)

a R(n)
a (t) is the corresponding average payoff of the

entire femtocell population over all strategies a ∈ Ai. Based
on the replicator dynamics in (3), the evolutionary equilibrium
is defined as the set of fixed points of the replicator dynamics
that are stable. This evolutionary equilibrium is a desirable
solution to the evolutionary game since when the population of
players evolves over time, it will converge to the evolutionary
equilibrium. Furthermore, at this evolutionary equilibrium,
none of the individuals wants to change its strategy since its
payoff is equal to the average payoff of the population.

B. Q-learning based approach

Unlike the case where femtocells exchange their payoff
information, Q-learning approach is based on the fact that
information exchange among femtocells is no longer possible.
The Q-learning formulation consists of a set of states and
actions aiming at finding a policy that maximizes the ob-
served rewards over the interaction time of the agents/players
(i.e., femtocells). Every femtocell explores its environment,
observes its current state, and takes a subsequent action,
according to a decision policy. With their ability to learn,
the knowledge about other players’ strategies is not needed.
Instead, a Q-table maintains the knowledge about other players
in the network, based on which decisions are made. A number
of works have shown that Q-learning converges to optimal
values in Markov decision process environment [13]. Thus,
the goal of an agent is to find an optimal policy π∗(s) for
each state s, which maximizes a cumulative measure of the
rewards over time.

The state, agent, and reward associated with the Q-learning
game are defined as follows:

• Agent i: FBS i, ∀i ∈ {1, ..., Nf}.
• State Si = {s(n)

i }n∈{1,...,Nsub} where s(n)
i ∈ {0, 1}. The

state of every FBS i in subcarrier n indicates whether
FBS i generates interference towards the macrocell user
above a given threshold, (i.e., R0 < Γ0).

• Action Ai = {a(n)
i }n∈{1,...,Nsub} where a(n)

i is the
transmit power level of FBS i over a set of subcarriers
C ⊆ {1, ..., Nsub}.

Algorithm 1 Evolutionary Based Algorithm
1: Input: Number of subcarriers Nsub, Number of femtocells Nf ;
2: Choose a random strategy and obtain the reward Ri(0);
3: while 1 do
4: Provide Ri(t) to the HNB-Gateway;
5: Get R̄(t) from the HNB-Gateway;
6: if (Ri(t) < R̄(t)) then
7: if (rand(.) < (R̄(t) − Ri(t))/(R̄(t))) then
8: Choose a random strategy and obtain the reward Ri(t);
9: end if

10: end if
11: end while

Algorithm 2 Q-learning Based Algorithm
1: Input: Number of subcarriers Nsub, Number of femtocells Nf ;
2: Init: Q(., .) = 0 initialize Q-value for FBSi
3: while 1 do
4: if (rand(.) < β) then
5: Select an action randomly; [exploration step]
6: else
7: choose action Ai(t + 1) = arg max Qt+1(Si, Ai); [exploitation

step]
8: end if
9: Receive immediate reward for femtocell i at time t + 1: Ri(t + 1);

10: Observe new state Si(t + 1);
11: Update Q-table as given in (4);
12: end while

• Reward Ri = 1(Γ0−R0)

∑
n∈C log2

(
1+γ(n)

i

)
is the re-

ward of FBS i transmitting in a subset C of all subcarriers,
where:
1(Γ0−R0) =

{
0 for Γ0 < R0

1 for Γ0 ! R0
.

Algorithm 2 describes the Q-learning process, in which FBS
i performs the exploration step with probability β. A new
Q-value, i.e., Qt+1(Si, Ai), which is the expected payoff for
the future iterations, is obtained based on previous value, i.e.,
Qt(Si, Ai), along with the new observed payoff Ri at time t+
1. Furthermore, the Q-learning equation is updated as follows:

Qt+1(Si, Ai) = (1 − α)Qt(Si, Ai) + (4)

α
[
Ri + γ max

Bi !=Ai

Qt(Si, Bi

]
,

where α is the player’s willingness to learn from its environ-
ment and γ is the discount factor.

IV. NUMERICAL RESULTS

We provide insight into the performance comparison of both
learning strategies through numerical results. We consider one
macrocell, Nf = {20, 40, 60} femtocells and Nsub = 15 sub-
carriers. The Q-learning rate and discount factor are α = 0.5
and γ = 0.5, respectively. Finally, the macrocell target rate is
set to Γ0 = 50 [bps/Hz]. We invesigate both uniform power
allocation in which case the transmit power of femtocell i
over subcarrier n is set to p(n)

i = P = 5, whereas in the
optimal power allocation using the Water-filling technique∑Nsun

n=1 p(n)
i ≤ P̄ , with P̄ = 25.

Figure 2 shows the dynamics of the Q-learning approach
with uniform power allocation where 2 femtocells share
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Fig. 2. Dynamics of the Q-learning algorithm in which 2 femtocells share
3 sub-carriers.

Nsub = 3 subcarriers, while at the same time coexisting with
the macrocell network (i.e., R0 ≥ Γ0). Although femtocells
do not exchange information nor observe each other’s actions,
they implicitly coordinate their access when accessing the
same spectrum. Figure 3 illustrates the dynamics of the consid-
ered system under different both Q-learning and evolutionary-
based mechanisms for both uniform and optimal power allo-
cations. It is shown that the proposed evolutionary approach
outperforms the Q-learning approach in terms of convergence
time and achievable rate. Furthermore, a comparison of both
approaches with and without power control is given where
the dynamic power control with water-filling technique yields
higher capacity increase. More importantly, as time goes by,
femtocells are able to coexist with the macrocell where the
date rate of the macrocell user is satisfied.
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Fig. 3. Achievable rate R0 of the macrocell user, the average capacity
and the convergence of three different interference mitigation techniques:
Evolutionary, Q-Learning, and random allocation.

Furthermore, Figure 4 depicts the total femtocell sum-rate
with respect to the femtocell density Nf which satisfy the
macrocell target rate constraint. It can be seen that there is
an optimal point for the femtocell deployment density N∗

f
whose effect is akin to the famous Braess paradox [10] in
which increasing the number of deployed femtocells ends

up degenerating the global performance of the network. In
addition, the evolutionary based approach yields a higher data
rate.
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Fig. 4. The femtocell sum-rate with respect to the femtocell density Nf for
both Q-learning and evolutionary based approach.

Figure 5 shows the increase in overall femtocell sum-rate
with different values of the learning parameter α. Here, the
learning rate determines to what extent the newly acquired
information by each femtocell will update the outdated in-
formation. When α values are closer to zero, femtocells are
unwilling to learn new actions, instead they focus on exploiting
strategies which have been learnt so far, eventually yielding
better payoffs. On the other hand, the closer the learning rate
is to one, femtocells focus entirely on learning new strategies.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

Learning paramete α

Fe
m

to
ce

ll
su

m
-r

at
e

Nf = 20

Nf = 40

Nf = 60

Fig. 5. The total femtocell sum-rate with respect to the learning rate α under
the Q-learning approach.

Similarly, Figure 6 shows the behavior in terms of femtocell
sum-rate with different values of exploration probability β.
The total sum-rate increases with increasing β, nonetheless
there exists an optimal point after which the payoff of the
femtocell network starts decreasing until reaching zero when
femtocells can no longer satisfy the macrocell target rate. Note
that the optimal number of femtocells corresponding to Figure
4 correspond to the maximum available femtocell sum-rate
compared to the femtocell density Nf . Clearly, an interesting
exploitation versus exploitation tradeoff exists among femto-
cells in their coexistence with the macrocell network.
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V. CONCLUSION

In this paper, we investigated and compared the convergence
behavior of Q-learning with evolutionary game theoretic ap-
proach for the interference mitigation among macrocell and
femtocells. The biologically-inspired evolutionary approach
converges more rapidly to the desired equilibrium as compared
to the reinforcement learning based (Q-learning) and random
approach. This comes at the expense of more side information
required at the femtocells. In both cases, it was shown that
femtocells can coexist with the macrocell network. Future
work will look into other aspects of strategic learning, as well
as extending the current framework to other femtocell access
policies (closed, open and hybrid access control).
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