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Optimal Discrete-Time Design of Three-Axis Magnetic Attitude Control Laws
Tiziano Pulecchi, Marco Lovera, and Andras Varga

Abstract—The problem of designing discrete-time attitude con-
trollers for three-axis stabilization of magnetically actuated space-
craft is considered. Several methods are discussed and an approach
to the tuning of various classes of projection-based controllers is
proposed relying on periodic optimal output feedback control tech-
niques. The main advantages of the proposed methods are dis-
cussed and illustrated in a simulation study.

Index Terms—Attitude control, magnetic actuators, periodic op-
timal control, periodic systems, spacecraft control, static output
feedback.

I. INTRODUCTION

E LECTROMAGNETIC actuators are a particularly effec-
tive and reliable technology for the attitude control of

small satellites. Such actuators operate on the basis of the in-
teraction between the magnetic field generated by a set of three
orthogonal, current-driven coils and the magnetic field of the
Earth and provide a simple solution to the problem of gener-
ating torques on board of a satellite, both for attitude control in
momentum biased or gravity gradient architectures and as sec-
ondary actuators for momentum management tasks in zero mo-
mentum reaction wheel based configurations.

The main difficulty in the design of magnetic attitude control
laws is related to the fact that magnetic torques are instanta-
neously constrained to lie in the plane orthogonal to the local
direction of the geomagnetic field vector. Controllability of the
attitude dynamics is ensured for a wide range of orbit altitudes
and inclinations in spite of this constraint, thanks to the vari-
ability of the geomagnetic field. However, this implies that the
attitude control engineer has to deal with a time-varying model
in the control design process.

In recent years, considerable effort has been devoted to the
analysis of this control problem. In particular, as far as the
linear attitude regulation problem is concerned, the following
two main lines of work can be identified in the literature.

• Methods based on averaged models. The idea is to re-
place the time-varying dynamics of the magnetically actu-
ated spacecraft with an approximate time-invariant model
obtained using averaging techniques. The advantage of
this approach is that the control problem becomes time-in-
variant. The main drawbacks are that: the designer has to
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verify a posteriori that the designed controller actually sta-
bilizes the original time-varying dynamics with a satisfac-
tory performance level; the approach is applicable only to
configurations for which the averaged model is completely
controllable; averaging implies limitations in closed-loop
performance. This approach, originally proposed in [1],
was further developed in [2] to deal with the (relatively
simple) stabilization problem for the coupled roll/yaw dy-
namics of a momentum biased spacecraft using a magnetic
torquer aligned with the pitch axis.

• Methods based on full periodic models. As the vari-
ability of the geomagnetic field is almost time-periodic,
most of the recent work on the linear magnetic attitude
control problem has focused on the use of optimal and
robust periodic control theory for the design of state and
output feedback regulators [3]–[11]. While periodic con-
trol design methods have the advantage of guaranteeing
closed-loop stability a priori, they lead to the synthesis
of time-periodic regulators, which are difficult to imple-
ment and operate in practice for a number of reasons (see
Section III-A). At the present stage, the only attempt at
designing a constant gain periodically optimal controller
(see [8]) has led to a design procedure which still calls for
a posteriori stability testing.

In light of the above discussion, the aim of this brief is to
present the results obtained in the application of periodic LQ
optimal control techniques to the design of digital attitude
controllers for spacecraft equipped with magnetic actuators.
The proposed approach allows the design of periodic control
laws parameterized via constant gains with guaranteed nominal
stability and LQ performance, using an optimization-based
method. More precisely, we will focus on the optimal tuning
of the so-called “projection-based” controllers for magnetic
attitude regulation (first proposed in [12]), a controller structure
widely used in the practice of magnetic attitude control.

Note that the magnetic attitude control design problems
associated with periodic optimization techniques pose a signif-
icant challenge from the numerical point of view. Indeed the
open-loop attitude dynamics is usually marginally stable (i.e.,
undamped) or unstable and the time-variability of the dynamics
introduced by the magnetic actuators is characterized by a very
long period. In particular, the design problems discussed in the
brief were solved by using reliable numerical methods such
as those implemented in the Periodic Systems Toolbox for
MATLAB developed by one of the authors (see, e.g., [13]).

This brief is organized as follows. Section II provides a de-
scription of the spacecraft considered in the study as well as
the derivation of a linearized model for its attitude dynamics.
The considered control design techniques are subsequently de-
scribed in Section III, while the results obtained in the simula-
tion of the designed control laws are presented and discussed in
Section IV.
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Notation: For a square time-varying matrix ,
we denote

for and . If is periodic with period ,
the matrix is called the monodromy matrix of
system at time and its eigenvalues,
independent of , are called characteristic multipliers. Finally,

denotes the identity matrix and a matrix
with null elements.

II. LINEARIZED ATTITUDE DYNAMICS

In order to represent the attitude motion of an Earth-pointing
spacecraft on a circular orbit the following reference systems
are adopted.

• Earth Centered Inertial Reference Axes (ECI). The Earth’s
center is the origin of these axes. The positive -axis
points in the vernal equinox direction. The -axis points
in the direction of the North Pole. The -axis completes
the right-handed orthogonal triad.

• Orbital Axes ( , , ). The origin of these axes is at the
satellite centre of mass. The -axis points to the Earth’s
centre; the -axis points in the direction of the orbital ve-
locity vector. The -axis is normal to the satellite orbit
plane.

• Satellite Body Axes. The origin of these axes is at the satel-
lite center of mass; in nominal Earth-pointing conditions
the (yaw), (roll), and (pitch) axes are aligned
with the corresponding orbital axes.

We will consider a spacecraft with inertia matrix
, equipped with a single momentum

wheel aligned with the body axis, with moment of inertia
and angular velocity relative to the body frame. The aim of
the attitude control scheme is to maintain the satellite body axes
aligned with the orbital axes, while exploiting the gyroscopic
effect due to the momentum wheel. Note that the choice of
this spacecraft configuration is not particularly restrictive,
since by assuming that and , a
gravity-gradient configuration can be obtained as a particular
case. Similarly, the assumptions of a circular orbit and of a
diagonal inertia matrix are made only for ease of presentation,
but they are by no means necessary for the applicability of
the proposed design approach. Indeed, unlike existing design
methods based on averaging (see, e.g., [2]), inertial coupling
between roll/yaw and pitch dynamics can be handled in the
design problem. The angular kinematics and dynamics of the
spacecraft are modelled using as state variables the quaternion

describing the attitude
of the body axes with respect to the orbital axes, and the inertial
angular velocity vector , with respect to
the body axes.

In the following we will derive linearized dynamic models
for the formulation of this control problem (note, in passing,
that the use of a linearized model is fully justified in most ap-
plications by specifications requiring pointing accuracies of at
most a few degrees and pointing stabilities of fractions of the or-
bital angular rate). With respect to the selected state variables,
the nominal, Earth-pointing, equilibrium corresponds to the at-
titude quaternion and to the angular rate

, where is the orbital angular rate.

Define the state vector formed with
small displacements of the vector part of the attitude quater-
nion from the nominal values and small de-
viations of the body rates from the nominal values

, . Then the attitude dynamics can be linearized and
the local linear dynamics for the attitude can be defined as [6]

(1)

where is the magnetic control torque vector and
is the disturbance torque vector. Taking into account that
can be written as

(2)
where is the geomagnetic field vector (in
body frame), is the dipole vector of the magnetic torquers
and

Equation (1) can be equivalently written as

(3)

where

(4)

(5)

and , ,
, , ,
, . Here, is the nominal wheel

speed.
Note that two different control matrices and have

been defined, in order to handle problem formulations in which
either magnetic torques or magnetic dipoles are
used as control variables, respectively. In any case, also
describes the effect of disturbance torques on the linearized at-
titude dynamics. Note that, while is constant, the control ma-
trix corresponding to the control input turns out to
be time-varying because of the dependence on the geomagnetic
field vector . Such time-variability turns out to be approx-
imately time-periodic with period equal to the orbital period

. Deviations from exact periodicity are due to Earth
rotation and to orbit perturbations.

Remark 1: As can be seen from equation (4) (and well known
in the literature, see, e.g., [14], [15]), the matrix shows that
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the pitch dynamics is decoupled from the roll/yaw dynamics.
Therefore, in the case of a spacecraft equipped with three in-
dependent torque actuators it would be possible to design sep-
arate controllers for the two subsystems. Unfortunately, as can
be seen from the expression of matrix in (5), the use of
magnetic actuators introduces a coupling between the roll/yaw
and the pitch subsystems. Similarly, coupling terms appear if the
spacecraft inertia matrix is not diagonal—a situation which
occurs frequently in practice.

Finally, since we are concerned with a discrete-time design
problem, suitable discrete-time equivalents of (1) and (3) have
been derived, in the forms

(6)

(7)

respectively, where for a sampling-time of (
is the discrete-time period, i.e., the number of samples in one
orbital period ) we have

(8)

(9)

(10)

(11)

III. CONTROLLER DESIGN

In the following, the problem of designing a suitable con-
troller for the linearized models (6) and (7) is considered. In
particular, Section III-A provides some background on optimal
periodic control theory and a discussion of the pros and cons of
this approach to the magnetic attitude control problem; the class
of projection-based magnetic attitude controllers is presented in
Section III-B, while the proposed approach to the design of such
controllers is dealt with in Section III-C.

A. Periodic Optimal State Feedback Controller

A significant portion of the recent literature on magnetic at-
titude control attempted to solve the problem by resorting to
optimal periodic control theory (see, e.g., [3], [5], [6], [8], and
[16]). A brief overview of optimal periodic control (in discrete-
time) is provided in this section in order to highlight the ad-
vantages and disadvantages of this approach to the considered
problem.

Consider the linear discrete-time periodic system

(12)

(13)

and the linear-quadratic (LQ) criterion
, where

, are symmetric -periodic
matrices. Under suitable assumptions (see [17]), the

optimal -periodic state-feedback matrix mini-
mizing the performance index is given by

,
where the -periodic symmetric positive semi-definite matrix

satisfies the reverse discrete-time periodic Riccati
equation

.
The optimal periodic LQ approach has the obvious advantage

of providing a stabilizing controller with a guaranteed level of
performance, as expressed by the minimization of the cost func-
tion . The issues associated with the implementation of optimal
periodic controllers, however, make their actual application in
real satellite missions not very likely. The main difficulties are
related with the storage requirements for a fully time-periodic
gain, the accurate time-synchronization of the time-varying con-
troller and finally its robustness to variations in the time-history
of the geomagnetic field due to orbit precession. While these
issues motivate the interest in alternative approaches to this de-
sign problem, the performance level provided by the optimal
periodic LQ controller can be taken as a reference for all other
design methods.

B. Fixed-Gain Projection-Based Controllers

A very common structure for magnetic attitude control laws,
which goes back to classical papers such as [12], consists of
discrete-time control laws of the kind

(14)

where is the measurement, at discrete time , of the ge-
omagnetic field and is an “ideal” control torque to
be determined on the basis of a suitable feedback of state or
output variables, according to the specific attitude control archi-
tecture of the considered spacecraft. The above control law can
be readily given a simple geometric interpretation. Indeed, as-
sume for a moment that (14) can be implemented in continuous
time; then, recalling (2) we can express the torque generated by
the magnetic coils as

(15)

which can be easily interpreted as the projection of vector
onto the plane orthogonal to the direction of the magnetic field
vector (hence the name of “projection-based” controllers). In
view of the digital implementation of the controller, this geo-
metric view of magnetic control holds only in an approximate
sense, but still represents a good interpretation of the operation
of the controller since the sampling interval is normally small
(from one second to a few dozens of seconds at most) with re-
spect to the period of the geomagnetic field along a low Earth
orbit (the orbital period of a LEO orbit is typically about 6000 s).
Some examples of possible controller structures corresponding
to (14) are discussed in Section IV-C. Note that the advantage
of the considered controller structure is that only constant pa-
rameters (i.e., the ones defining as a function of the state or
output vector) have to be designed, while the time-dependence
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of the control law is carried by the (measurable) value of the
geomagnetic field entering (14). However, to the best of our
knowledge, no systematic design approaches to the selection of
the parameters in the proposed control laws (14) for a three-axis
magnetically stabilzed spacecraft are available. In Section III-C,
an approach to the optimal tuning of this class of attitude con-
trollers will be proposed.

C. Optimal Periodic Design of Fixed-Gain Projection-Based
Controllers

In this brief, we propose an approach to the tuning of projec-
tion-based controllers based on numerical techniques for the so-
lution of optimal periodic output feedback control problems [4].
This approach relies on a gradient-based optimization method
to determine time-periodic output feedback controllers by min-
imizing a suitable quadratic cost function. In this section, an
overview of this technique will be presented.

Consider the system (12)–(13). The design problem entails
minimizing the LQ criterion

(16)

where , are symmetric -periodic ma-
trices, in order to determine the optimal stabilizing constant gain
output feedback controller, of the form

(17)

Note that (16) differs from the LQ criterion introduced in
Section III-A because of the expectation operator. It is im-
portant to point out that the expectation is taken over the set
of initial states (and has nothing to do with time averaging as
introduced in other design approaches for magnetic attitude
control, see, e.g., [2]). Indeed, in order to use the performance
criterion to find an optimal feedback gain it is necessary
to eliminate the dependence on . More precisely, it will be
assumed in the following that the initial state is a random
variable with zero mean and covariance .

The proposed approach for the solution of this time-periodic
design problem is based on the application of gradient-based op-
timization techniques which exploit the possibility of efficiently
computing both the cost function (16) and its gradient with re-
spect to the parameters of the considered controller (17). The
expressions of function and gradient can be computed on the
basis of the following result (see [4] for details and proofs).

Proposition 1: Let be a constant stabilizing output feed-
back matrix and denote and

. Then the expressions
for the cost function (16) and its gradient with respect to the
elements of are given by

(18)

(19)

where and satisfy, respectively, the discrete periodic
Lyapunov equations (DPLEs)

(20)

(21)

with

From a numerical point of view, each evaluation of the
performance index (16) and its gradient involves (see Propo-
sition 1) the solution of a pair of DPLEs: a reverse time
DPLE and a dual forward time DPLE, where it is assumed
that all characteristic multipliers of the monodromy matrix of
the closed loop system lie inside the open unit circle of the
complex plane. This ensures existence of a unique solution of
both equations. Note that for standard systems these are two
discrete Lyapunov equations, which can be solved efficiently
with a computational cost marginally greater than the cost of
solving a single Lyapunov equation. The preservation of this
feature is even more desirable for the periodic case, because
of the much higher computational effort involved in solving
a single periodic Lyapunov equation. Fortunately, this goal
can be achieved with the recently proposed numerically stable
algorithms to solve DPLEs [18]. The optimal tuning of the
proposed control law (14) can be determined using a suitable
function available in the Periodic Systems Toolbox [13]. This
function is based on a gradient-based function minimization
technique for problems with simple bounds (limited memory
Broyden–Fletcher–Goldfarb–Shanno—BFGS method). To
achieve the highest efficiency, the function and gradient eval-
uations have been implemented as a Fortran 95 mex-function
based on the above results.

Remark 2: It is important to note that the application of
Proposition 1 to control design problems requires a way of
obtaining an initial stabilizing gain, in order to reduce the
numerical difficulties associated with open loop unstable
dynamics, and to facilitate convergence of the iterative opti-
mization procedure. In the cases of constant-gain state feedback
and dynamic output feedback, the initial gain can be selected
according to the guidelines provided by [19, Prop. 1], [20]
for the globally stabilizing tuning of state feedback magnetic
attitude controllers of the projection-based type [i.e., equation
(14)]. Indeed, using the cited result it is possible to show that
for the control law

(22)

there exist positive scalars , , and such that for any
(22) ensures exponential stability for the closed loop

system. Therefore, it is possible to obtain an initial stabilizing
controller with the structure given in (22) by first choosing the
positive gains , and an initial value of and subsequently
reducing until stability is achieved. Finally, in the output feed-
back case one can follow the general approach outlined in [4]
for the initialization of the optimization process. Note that the
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control law (22) will only be considered for initialization pur-
poses and will not be actually implemented on the spacecraft.

Remark 3: Once a stabilizing initial gain has been obtained,
the gradient-based iterative procedure can be used in order to nu-
merically optimize the cost function (16) [or, equivalently, (18)]
using the gradient information provided by (19). It is important
to point out that such an iterative procedure can guarantee that
closed-loop stability is intrinsically maintained from one iter-
ation to the following one as the gradient of the cost function
is computed on the basis of the Lyapunov equation (20), which
implicitly enforces stability of the closed-loop system for the
current value of the controller gain.

Remark 4: Recently, the feasibility of techniques based on
linear and bilinear matrix inequalities (LMI, BMI) for the de-
sign of periodic controllers has been explored [21]. While this
approach lends itself to the formulation of more general control
problems, it suffers from a significant drawback, i.e., it is lim-
ited to relatively small scale problems (both in terms of order
and period) when compared to techniques relying on the solu-
tion of periodic Lyapunov and Riccati equations.

IV. SIMULATION STUDY

In this section, the performance of the considered control laws
will be discussed in a detailed simulation study, and the results
will be compared to those provided by the reference optimal
periodic state feedback (PSF) LQ control strategy. For all the
control laws, two values for the number of sampling points
over one orbit have been considered, namely and

, corresponding respectively to a sampling interval
of about 56.1 and 18.7 s.

A. Spacecraft Parameters

The considered spacecraft is of the type described in
Section II; the numerical values for the parameters of the
linearized model are as follows:

• satellite inertia kg m : ;
• momentum wheel inertia kg m : ;
• nominal wheel speed rad/s : .

A saturation limit of 20 Am for the magnetic coils has been
assumed. The considered configuration corresponds to a satel-
lite characterized by coupled roll/yaw dynamics which is mar-
ginally stable thanks to the wheel momentum, and unstable pitch
dynamics, due to the unfavorable gravity gradient effect [
in (4)]. Note, however, that the open loop instability of the pitch
dynamics is compensated by the fact that the pitch axis is easier
to control using magnetic torquers than the roll and yaw axes,
as for the considered (polar) orbit the geomagnetic field lies es-
sentially in the orbital plane, so that the pitch dynamics is con-
trollable throughout the entire orbit.

The spacecraft operates in a near polar orbit (87 inclination)
with an altitude of 450 km and a corresponding orbital period of
5614.8 s. For this orbit, the following nominal (periodic) model
for the components of the geomagnetic field has been consid-
ered (Tesla):

It is important to point out that the above nominal periodic
representation for the geomagnetic field has been used only
as a design model. A detailed, highly accurate model of the
geomagnetic field has been used in the simulation study (see
Section IV-B) in order to validate the performance of the de-
signed controllers.

B. Simulation Environment

The simulations presented in the following have been carried
out using an object-oriented environment for satellite dynamics
(see [22] for details) developed using the Modelica language
[23]. More precisely, a full nonlinear simulation of the coupled
rigid body orbital and attitude dynamics has been performed and
the following models of the space environment have been im-
plemented: the -3 spherical expansion for the geopotential
as a gravitational model, the Harris–Priester model for the at-
mospheric density distribution (see [24] for details) and the In-
ternational Geomagnetic Reference Field (IGRF, see [25]) for
the Earth’s magnetic field (up to order 10). Disturbance torques
due to gravity gradient (including effects), magnetic residual
dipole (assuming a residual dipole of 1 Am along each space-
craft body axis) and solar radiation pressure (computed using
the solar coordinates formulas given in [24]) have been taken
into account in the simulation. Finally, all the controllers have
been implemented in digital form, using a conventional sample
and hold scheme.

C. Controller Tuning

Different control strategies, using the fixed structure projec-
tion approach, were adopted, namely as follows.

• Constant-Gain State Feedback Control (CSF):
.

• Constant-Gain Output Feedback Control (COF):
, . In particular,

the case of output consisting of measured angular rates,
and pitch and roll angles (quaternion components and

) only is considered.
• Dynamic output feedback control, where the output is as-

sumed to consist of the measured quaternion and a re-
constructed angular rate vector. Two design approaches
have been analyzed: a kinematic reconstruction of the an-
gular rate vector alone (DOF1) and an online estimation
of the whole system state via Kalman filtering (DOF2).
In the former case, system (3) has been augmented with
a pseudo-derivative filter with a time constant of sec-
onds (set to )

(23)

(24)

which, recalling (3) and (4), can be used to compute an
estimate of the spacecraft angular rate as

(25)
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TABLE I
OPEN- AND CLOSED-LOOP STABILITY DEGREE AND COST FUNCTION

FOR � � ��� AND � � ��� FOR THE CONSIDERED CONTROL

DESIGN METHODS

The augmented system given by (3) and (23)–(24) is there-
fore given by

In the latter case, the systemstate (attitude and angular rates)
is estimated online via a linear time-invariant Kalman filter
processing the satellite’s attitude measured data. The state
and output covariance matrices in the design of the filter
have been chosen respectively as
and (corre-
sponding to typical values of error variance for star tracker
measurements).

All the proposed control laws have been designed using the Pe-
riodic Systems Toolbox for MATLAB. The weighting matrices
in the quadratic cost function (16) have been chosen as

and , where is the state dimension.
The results obtained for the proposed controller designs are

presented in Table I and can be summarized as follows.
• Closed Loop Stability: Since we are dealing with a

linear time-periodic system, closed loop stability must be
checked using Floquet theory (see [17]). This requires
to check if the eigenvalues of the closed loop mon-
odromy matrix (i.e., the transition matrix for
the closed-loop system over one period) are less than unity
in modulus. In the first and third columns of Table I the
obtained values for the spectral radius

of the monodromy matrix are shown, for and
, respectively. As can be inferred from the Table

all the designed controllers lead to asymptotically stable
closed loop dynamics, i.e., to a spectral radius smaller
than one.

• Optimality: The results obtained using periodic optimal
state feedback control (PSF) and the fixed structure con-
trollers can be compared directly in terms of the achieved
optimal values of the cost function (16) (second and fourth
columns of Table I, for and , respec-
tively). The performance loss associated with the adoption
of the fixed structure controller instead of the optimal pe-
riodic one turns out to be acceptable for the constant state
feedback, COF and DOF2 design cases, both for
and . On the other hand, the DOF1 designs do not
seem to be able to cope with the LQ-optimal reference de-
sign level of performance in terms of cost function, while
they provide a satisfactory stability degree.

As for the dynamic controllers DOF1 and DOF2, it is ap-
parent from the results summarized in Table I that the use
of a Kalman filter ensures far better performance than does
a simple pseudo-differentiator for the estimation of the un-
measured angular rate. The DOF2 design provides highly
satisfactory performance in terms of both stability degree
and cost function.

• Robustness: In order to assess in a quantitative way how
stability and performance are affected by uncertainty in
the design model, a Monte Carlo simulation approach has
been adopted. More precisely, two sets of experiments have
been performed, aiming at checking the behavior of the
closed-loop system: the principal inertias of the satellite
have been perturbed by 10%; the orbit altitude has been
perturbed by 100 km. For each of the two situations 200
random perturbations have been generated and the values
of the stability degree and of the optimal cost have been
computed. For the CSF controller the closed-loop system
remains stable in all cases, with perturbations on the in-
ertia causing a relatively small effect on the optimal cost
and on the stability degree (worst case of 0.13). The per-
turbation in the orbit altitude, on the other hand, affects
the closed-loop system in a more significant way (worst
case stability degree of 0.25) as it has a strong influence on
the strength of the geomagnetic field. It should be kept in
mind, however, that a 100 km variation in orbit altitude is
a rather extreme perturbation. Similar results (omitted for
brevity) have been obtained for the other control strategies
considered in this brief.

D. Simulation Results

In order to illustrate the time domain behavior of the
fixed structure controllers, some simulation examples are
presented, showing the transient following an initial pertur-
bation of the attitude dynamics with respect to the nominal
Earth-pointing equilibrium. In particular, the following initial
perturbations have been applied to the angular rate vector:

rad/s. While this may
appear to be an extremely small initial condition, it actually
represents a significant perturbation as far as nominal regulation
of attitude dynamics is concerned. For the sake of conciseness,
only simulation results for the CSF and COF controllers with

are presented (the time histories obtained by imple-
menting the DOF2 controller essentially coincide with the ones
for CSF) in Fig. 1.

As can be seen from Fig. 1, both controllers damp out the
effect of the initial angular rate perturbation in less than one
orbit (an adequate performance for a magnetic attitude con-
trol scheme) and bring the system to its steady state response
under the effect of the cyclic external disturbance torques. As
expected, the yaw and roll axes ( and components of the at-
titude quaternion) are strongly coupled and their transients cor-
respond to the response of the stabilized precession and nuta-
tion modes of the open-loop dynamics, while the pitch axis (
component of the attitude quaternion) is stabilized much more
efficiently thanks to the above mentioned favorable controlla-
bility properties. Actually, the closed-loop transient associated
with the pitch dynamics is too short to be visible on a time scale
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Fig. 1. Quaternion, angular rates and control dipole moments. Left: constant-gain state feedback controller (CSF) �� � ����. Right: constant-gain output feed-
back controller COF �� � ����.

of five orbits: the oscillation of is actually the steady-state re-
sponse to the external disturbance torques acting on the satellite
(see Section IV-B).

In terms of performance, recalling that under small angles
assumptions , , and correspond to half of the roll, yaw,
and pitch angles, respectively, the following conclusions may be
drawn. The CSF controller can maintain the angular deviations
from the nominal attitude within approximately less than 1 on
all axes. This performance level is normally considered satisfac-
tory for this type of attitude control architecture; note, however,
that it has been obtained with fairly coarse sampling and that no
attempt has been made at selecting the weights in the cost func-
tion (16) in order to optimize the closed-loop performance. The
COF controller is capable of providing the same level of perfor-

mance as the CSF about the roll and pitch axes, but suffers from
the unavailability of the direct measurement of the yaw angle, as
visible from the slightly larger oscillation of in Fig. 1. Finally,
though figures could not be included due to space limitations, it
is interesting to note that the DOF1 controller, which has been
tuned using the same choice of weights used in the two previous
cases, gives rise to a significantly shorter transient at the begin-
ning of the simulation (the angular rates are damped out in less
than half an orbit), but to a less satisfactory steady-state per-
formance (as expected, given the relatively larger value of the
optimal cost, see Table I). The faster closed-loop dynamics is
achieved at the expense of a larger activation level of the mag-
netic coils with respect to the CSF and COF controllers (note,
however, that all the controllers use only a fraction of the avail-
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TABLE II
OPEN- AND CLOSED-LOOP STABILITY DEGREE AND COST FUNCTION FOR � � ����� AND � � ����

FOR THE CONTROL DESIGN METHODS CONSIDERED IN THE COMPARISON

Fig. 2. Quaternion and control dipole moments for the CSF (solid lines) and ACSF (dashed lines) controllers. Left: � � ����� . Right: � � ���� .

able range for the control variables). The different behavior of
the DOF1 controller can be easily interpreted by recalling that
this controller replaces actual angular rate measurements with
pseudo-derivatives computed on the basis of attitude measure-
ments only: this leads to a higher equivalent derivative gain.

E. Comparison With Averaging-Based Design

Finally, in order to evaluate the benefits of the proposed pro-
cedure, which allows to take into account the actual periodicity
of the linearized model in the design process, a comparison be-
tween the CSF controller and a similar controller tuned on the
basis of a time-averaged linearized model (and denoted in the
following with the acronym ACSF) has been performed (see
also [26] for a more detailed comparison study on the magnetic
control of roll/yaw dynamics for momentum bias spacecraft).
More precisely, the averaging-based design has been performed
as follows.

• The periodic linear model given by (1)–(2) and (15) has
been averaged over one orbital period in order to obtain
a time-invariant approximation. The averaged model has

been then discretized, consistently with the corresponding
periodic model ( has been considered in the
comparison).

• The discrete-time averaged model has been used to design
an optimal state feedback gain. In order to ensure the con-
sistency of the comparison, the design has been performed
by minimizing the cost function (16). Furthermore, the de-
sign has been carried out for two different choices for the

weighting matrix, namely and ,
while .

The obtained results are presented in Table II and Fig. 2. As
can be seen from the table, the two designed controllers lead
to very similar results for the case of . This is re-
flected by the simulation results depicted in the left portion of
the figure, which shows that similar closed-loop behavior is ob-
tained in both cases. This result is not surprising: it is apparent
from the figure that this choice of weights leads to a closed-loop
settling time for the attitude error of about one orbit, so the ef-
fect of averaging in this case is not too significant. Significant
discrepancies appear, on the other hand, when considering the
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case of : in this case the weighting leads to signif-
icantly faster closed-loop dynamics (the transients in the right
portion of the Figure settle in about one quarter of an orbit) so
we expect the averaging-based controller to provide less satis-
factory performance, which is indeed the case. Therefore, the
design approach based on the periodic model proves superior
whenever a high performance attitude control system, achieving
fast (settling time shorter than one orbit) closed-loop dynamics
is desired.

V. CONCLUSION

The problem of designing discrete-time attitude controllers
for magnetically actuated spacecraft has been considered. An
approach to the tuning of various classes of “projection based”
controllers has been proposed, relying on periodic optimal
output feedback control techniques. The performances of the
proposed control algorithms have been discussed and illustrated
in a detailed simulation study.

All the considered control designs have provided highly sat-
isfactorily performance, and proved the capability to overcome
one or both main restrictions posed by the reference periodic
optimal state feedback control design, i.e., demanding memory
storage requirements and full state measurements availability.
Finally, the improved performance with respect to methods
based on averaged models has been demonstrated.
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