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Abstract—Modern computing systems featuring different kinds
of processing elements have proven to be efficient in terms
of performance/energy trade-offs. Furthermore these systems
usually have to execute multiple concurrent tasks without any a-
priori knowledge on expected arrival times, in an unpredictable
and very dynamic environment. This scenario has propelled an
interest towards self-adaptive systems that dynamically reorga-
nize the use of system resources to optimize for a given goal. The
SAVE project will develop a Heterogeneous System Architecture
that will decide at runtime to execute task on the appropriate
kind of resources, based on the current requirements. This paper
presents a first implementation of a resource allocation policy
that dynamically shares heterogeneous resources between mul-
tiple running applications. Resource allocation mechanisms are
discussed and evaluated in an experimental campaign, showing
how the policy helps in attaining users’ applications goals.

Keywords—Heterogeneous systems, Virtualization, Resource Al-
location

I. INTRODUCTION

The early computer science literature is filled with a plethora
of static optimization approaches, among which the most
prominent example of a system applying static optimization
is a compiler. A compiler applies a set of common transfor-
mations to an application so as to speed up its execution on
an entire family of microprocessors (e.g., x86). Whenever a
compiler is given additional information, it can harness more
aggressive transformations to obtain additional performance
improvements on a subset of a family of microprocessors.

The driver of static optimization is the availability of infor-
mation, which may be scarce depending on the environment.
On the one hand there are embedded computing systems that
usually perform the same task over and over; they represent the
perfect scenario to apply the highest level of static optimization
so as to maximize the benefits for users (e.g., maximize
performance while minimizing power consumption). On the
other hand there are clusters of computing systems that may
execute multiple tasks simultaneously without the possibility
to anticipate the startup of a task and the finishing of another.
Furthermore, the increasing availability of different kinds of
processing resources in Heterogeneous System Architecture
(HSA) associated with today’s fast-changing, unpredictable
workloads (e.g., of mobile or cloud-computing contexts), has

propelled an interest towards self-adaptive systems that dynam-
ically reorganize the usage of system resources to optimize for
a given goal (e.g., performance, energy, reliability, resource
utilisation). This scenario calls for dynamic optimization.

The SAVE (Self-Adaptive Virtualisation-Aware High-
Performance/Low-Energy Heterogeneous System Architec-
tures) project will develop a stack of hardware, software and
OS components that allow for deciding at run-time to execute
tasks on the appropriate type of resource, based on the current
system status/environment/application requirements. We claim
that dynamic (i.e., runtime) optimization is key to our project,
which deals with changing requirements and unpredictable
environments. For the sake of simplicity let us consider a
realistic example where many users run their applications
simultaneously in a cloud computing infrastructure. The goal
of each user is to get the best out of the infrastructure (finish
his/her computation respecting time constraints, if any) while
the goal of the administrator may be to minimize the total cost
of ownership. If a single user is running his/her application
the best strategy can be allocating the highest amount of
resources the application can use efficiently so as to idle
as soon as possible, thus decreasing power consumption. If
multiple users are running their applications simultaneously
the best strategy could be completely different depending
on how applications interfere with each other, etc. In such
a scenario, static optimization cannot deal with changing
requirements and unpredictable environments due to the lack
of essential information that becomes available only at runtime.
Nevertheless, static optimization can be a useful starting point,
to be combined with runtime policies.

The project outcome will be an improved HSA with self-
adaptation providing not only runtime reaction to changes,
but also the means to dynamically achieve optimization goals
based on the current context.

II. RELATED WORK

Achieving efficient self-aware system operation while sat-
isfying specific constraints is critical for modern computing
systems, ranging from SoCs to complex High Performance
Computing (HPC) solutions. This is especially true in the
presence of technological process variability and workload
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variations caused by the non-deterministic nature of appli-
cations. IBM has introduced the Autonomic Computing ini-
tiative in 2001, with the aim of developing self-managing
systems [1]–[3]. With the growth of the computer industry,
notable examples being highly efficient networking hard-
ware and powerful CPUs, autonomic computing constitutes
an evolution to cope with the rapidly growing complexity
of integrating, managing, and operating computing system.
Within this context, classical reconfigurable and multicore
systems will shift towards self-aware computing systems;
virtualized environments, hardware components, applications
and operating systems [4] will holistically adapt their behavior
to optimize selected metrics. The availability of operating
systems (OSes) and runtime support for coprocessors (e.g.,
the Intel Xeon Phi Coprocessors and the NVIDIA Tesla GPU)
and reconfigurable fabrics (DFEs/FPGAs) is essential for the
successful deployment of HSAs. Alongside with the support
for multiple execution paradigms, to ease HSA development
and exploitation OSes should also provide flexible monitoring,
decision-making, and adapting capabilities, so as to use such
resources at their best, satisfying users’ expectations within
reasonable costs. This optimal use and management of HSAs
are not yet available, because of various open issues that SAVE
will tackle, as the review of the state-of-the-art highlights.

A. Adaptive OS and run-time support for self-adaptability

The last recent years have seen a few initial studies in the
design of adaptive OS components, such as SEEC [5] and
Metronome [6]. SEEC provides an interesting and complete
framework embracing machine learning and control theoret-
ical solutions but is not integrated in the OS and does not
support HSAs. BarbequeRTRM [7] is the key element of a
highly modular and extensible run-time resource manager; its
management abilities are of interest, but it mostly employs
static partitioning of workloads and coarse-grain parallelism,
assuming a platform where no other task is running. Although
it provides an orchestrator, it does not self-adapt at runtime,
one of the fundamental challenges SAVE tackles. Metronome
extends GNU/Linux to manage at runtime the core and the
CPU time allocation; it is based on heuristics and it uses just
one metric to measure performance in terms of applications
throughput. Metronome is in its infancy but due to its structure
it could be an interesting starting point for SAVE, to be
extended to the HSA scenario and the HPC domain. When
considering HSAs, there are a few approaches in literature; in
particular, PTask [8] is a kernel-level abstraction for manag-
ing GPUs. CHIMERA [9] presents an architectural solution,
with external accelerators, presently characterized by too high
a development time, with the technology mapping between
the applications and the resources computed at design time.
BORPH [10] is an extension of the Linux kernel for runtime
support to FPGAs and currently runs on the BEE2 architecture
[11]. ReconOS [12] is an operating system for heterogeneous
multi-cores, that provides a common multi-threaded program-
ming model for tasks on CPUs and FPGAs. This common
programming and execution model simplifies the design of
adaptive computing systems [13] that migrate tasks between

hardware and software.
These are some of the effective solutions for promoting

HSAs and constitute important milestones. However, they still
lack a comprehensive, autonomic OSes and runtimes, such
as the K42 research OS [4], which makes monitoring and
adaptation first-class citizens. While leveraging on autonomic
computing, BORPH could enable a new class of solutions
capable of seamlessly employing processors and specialized
islands of computation, to achieve full utilization and high
performance with limited effort for developers and maximal
benefits.

B. Automatic identification of application hotspots and of-
floading to heterogeneous computing resources

Numerous research projects have shown that computing with
heterogeneous resources, e.g., FPGAs and GPUs, can improve
the performance and energy efficiency up to several orders of
magnitude. However, programming heterogeneous resources is
still difficult, in particular for FPGAs, where the developer has
to translate algorithms into customized digital circuits using
unfamiliar languages, programming models and tools. Despite
these obstacles, heterogeneous computing is increasingly used
and numerous projects aim at further simplifying the program-
ming and use of HSAs. These approaches can be classified into
three main areas:

1) Domain-specific tools: As in many areas, domain-
specific approaches have also been studied for the specification
of heterogeneous accelerators, in particular FPGAs. Research
has focused primarily on the areas of finite state machines
and digital signal processing and has also been successfully
commercialized in products like Xilinx System Generator,
Mathwork HDL Coder or Synopsys Synplify DSP. Current
research has successfully applied domain-specific approaches
to more domains, such as loop-pipelining [14] or stream
processing [15]. However, the restriction to a particular domain
limits the applicability of such approaches.

2) High-level synthesis: Since the 1990s a general approach
(denoted as high-level synthesis) for creating FPGA accel-
erators from high-level languages has been studied. Despite
intensive research and progress, the resulting tools have not
been widely adopted for manifold reasons, well discussed in
[16]. In summary it could be argued that high-level synthesis is
today an interesting technology for translating small, compute-
intensive application portions to FPGA implementations, but
not a solution for complete, complex applications.

3) Just-in-time binary synthesis: An innovative and alter-
native approach is the so-called binary synthesis. It does not
rely on source code but uses binary programs as specifica-
tion for hardware accelerators [17], [18]. An interesting use
case is just-in-time binary synthesis, where application-specific
accelerators are generated at runtime without any interaction
with the programmer. Should this approach be efficiently
implemented, it would make the benefits of heterogeneous
computing available to a broad spectrum of users.

III. THE PROPOSED SAVE HSA
In this section we introduce the target architecture we

envision in the SAVE project. The project proposes an in-
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Fig. 1. The SAVEHSA architecture template.

novative architecture, based on a HSA, that combines self-
adaptiveness and virtualization, to move one step further with
respect to the current state-of-the-art multicore plus accelera-
tors approaches. This self-adaptive, virtualization-aware HSA
is called SAVEHSA. It is designed to efficiently support
a wide assortment of data- and task-parallel programming
models that are enabled by the presence of key hardware and
system features suitable for the different system components,
consisting of (host) CPUs, GPUs and DFEs, henceforth called
SAVEHSA agents. The pool of SAVEHSA agents can be used
by different Virtual Machines (VMs) for better security, per-
formance and efficiency. In particular, the SAVEHSA platform
aims at exploiting the characteristics of the various computing
resources to dynamically schedule workloads on the most
appropriate resource, to meet the current user-determined opti-
mization goal, be it the minimization of energy consumption,
performance optimization, or a trade-off between them. The
actor responsible for performing the resource allocations what
we refer to as the Orchestrator. This entity is responsible for
monitoring the status of the SAVEHSA system and of the
running applications and VMs; the Orchestrator will adopt self-
adaptive techniques to ensure that users, applications, and the
system itself meet the goals expressed by either the users or
the system administrators. The Orchestrator can be seen as an
advanced runtime Operating System (OS) support layer able to
dynamically and seamlessly partition and distribute the various
tasks to the available resources, based on changeable work-
loads and/or optimization goals (e.g., optimize performance
for a given energy budget, or minimize energy consumption
without decreasing the expected QoS).

We envision this kind of proposed architecture to fit Em-
bedded System (ES) as well as High Performance Computing
(HPC) scenarios, possibly with different characteristics and
different specific resources.

In this initial part of the project, the main characteristics of
these elements have been identified together with their require-
ments, to define the SAVE architecture template represented
in Fig. 1. In a broader perspective, more suitable for the HPC
scenario, we also envision an overall system consisting of
several SAVEHSA nodes, being part of a much bigger system.

IV. THE ORCHESTRATOR

The Orchestrator is a software component in charge of
managing resources at runtime and distributing among them
the current workload (composed of several VMs, each one
running a set of applications). It relies on the concept of
feedback-loops, the basis of a self-aware and adaptive system,
generally referred to as ODA (Observe, Decide and Act) loops.
The Orchestrator observes the running applications through a
monitoring API which continuously gathers information both
on their performance and the system power consumption. This
information is forwarded by the Orchestrator to services that
are responsible for the decision phase. Each service controls
a set of actuators to optimize a given goal through a user-
defined policy. The output of the service is an action carried
out by an actuator to obtain the desired effect.

The remainder of this section describes the structure of the
Orchestrator. At first, a single layer orchestrator is presented
as the basic block of the system, and will be used for a
preliminary experimental evaluation. Then, we will provide
the vision and an overview of the final structure of the
Orchestrator, consisting of a dual-layer entity, whose overview
is reported in Fig. 2. The Orchestrator, in charge of the decision
phase, spans across the host and the virtualized environment.
At the host level, it is in charge of partitioning the HW
resources among the different virtual machines, while the
Orchestrator component that resides in each VM is responsible
of partitioning the resources assigned to the VM among the
different applications running inside the VM.

A. Single Layer Orchestrator
The simplest implementation of the Orchestrator we have

envisioned is composed of a single entity running at the OS
level, directly interacting with the application with no layers
in the middle (i.e., no virtualization). This solution is very
appealing from the programming point of view; however it
presents important issues in terms of scalability, isolation and
security when applied to a production environment that has
to support multiple users’ workloads. Nonetheless we can
start from the definition of a single layer implementation
and make it suitable for our final purpose by defining and
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constraining proper communication interfaces to share data
across the virtualization layer. For this reason, this work is
focused on the definition of the structure of the single layer
orchestrator and the result section will report an evaluation of
its current implementation.

A visual representation of the current software architecture
of the Orchestrator is given in Fig. 3; the most relevant parts
are discussed here.

1) Orchestrator: The central entity of the system is the Or-
chestrator. We identified the following requirements: a) aware-
ness of the applications that have to be controlled; b) knowl-
edge of which monitoring information is available; c) knowl-
edge of which actuators are available; d) knowledge of which
services are currently active; e) responsibility to forward
the relevant information provided by the applications to the
services and actuators.

The role of the Orchestrator is to forward and share the
information coming from the different actors cooperating in
the system and to decide at runtime which among the available
services must be enabled to fulfil the goals. This information
is shared via shared-memory segments.

2) Application: The running applications must be instru-
mented with a simple-to-use API that will allow them to reg-
ister with the Orchestrator. The applications employ monitor-
ing services and application-level actuators, exposing shared-
memory segments to achieve bidirectional communication. An
application can send the information on which monitors and
actuators it provides to the Orchestrator through standard inter-
process communication facilities (in our implementation, a
POSIX message queue).

3) Service: A service is responsible for implementing a
given policy to fulfill a specific goal for which it has been
designed. To pursue its goal, the service tells the Orches-
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Fig. 3. Structure of the single layer Orchestrator

trator, through inter-process facilities, the set of monitoring
information and actuators it depends on. The Orchestrator is
then in charge of informing the services on which applications
expose the desired combination of monitors and actuators. For
the application matching of the desired set of monitors and
actuators of a specific service, the Orchestrator forwards to
the service the related memory segment IDs, so they can map
the shared memory in their address space.

This three-fold structure decouples the role of the five main
actors in the system (i.e., applications, monitors, actuators,
services, orchestrator) and allows to dynamically add new
kinds of monitors and services. All entities are identified by
unique IDs, used to retrieve the proper information upon a
request on the message queue. Each monitor, actuator and
service is identified by its name, assumed to be unique. Once
the Orchestrator forwards the memory segments information
to services and after the binding between applications and
services is done, the Orchestrator does not further intervene in
the interaction between services and applications. A sequence
diagram detailing such interactions is reported in Fig. 4. As the
diagram shows, a service registers in the system and specifies
which kind of monitors/actuators it wants to be notified for;
the Orchestrator is responsible for forwarding to the service
the requested information when those kinds of monitors or
actuators are registered.

B. Two-Layer Orchestrator

The structure of the single layer orchestrator is straight-
forward, however such simplicity has many drawbacks. First
of all a single layer of control does not scale with an in-
crease in the number of applications typical of cloud and
large HPC clusters installations, where distributed decisions
and resource allocation mechanisms have proven to be more
appropriate. Furthermore, since the target of the work is
the management of multiprogrammed workloads, there is a
strong need of security and isolation between the applications.
In this context the state of the art solution is represented
by the virtualization technology. The two-layer orchestrator
will leverage these state-of-the-art approaches implementing a
distributed decision mechanism across the virtualization layer.
The decision mechanism will be then split into two layers,
the first one acting at the host level (referred to as Host
Orchestrator) and the second one embodied in the VM (the
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Virtual Orchestrator). Information between these entities will
be exchanged through the virtualized environment interfaces.
This prototype is currently under development and the next
paragraphs will report the requirements and features that the
final implementation will provide.

1) Virtual Orchestrator: The Virtual Orchestrator is the
component executing inside each of the active VMs running
on the SAVEHSA. Its structure is similar to the single layer
orchestrator presented above; the user applications directly
interact with the orchestrator that assigns them. The difference
with the single-layer solution relies in the fact that here the
assigned resources are not the physical ones available on the
host machine, but rather the virtual ones seen by the VM in any
particular moment. The resources will be assigned directly to
the applications on the basis of their direct performance mea-
surements. Moreover, the Virtual Orchestrator is in charge of
collecting information on the running applications, aggregating
and sending it to the Host Orchestrator, able to take informed
decisions for the whole VM.

2) Host Orchestrator: The Host Orchestrator is the actor
running on the SAVEHSA. It will receive aggregated data per
VM and will take decisions on the basis of metrics and policies
exploiting these observations. Its role is to assign physical
computational resources to each of the running VMs. The
acquisition of monitoring data as long as the assignment of
resources need to cross the virtualization layer and appropriate
APIs and interfaces will be defined for this purpose.

V. ADAPTIVE SERVICES

This section presents two of the adaptive services currently
supported by the Orchestrator. The first service performs
heterogeneous resource allocation in a system equipped with
a CPU and a GPU, while the second one performs JIT
compilation and code optimization for GPUs and DFEs.

A. Heterogeneous Resource Allocation
This service allows the allocation of heterogeneous re-

sources to applications on the basis of their current perfor-

mance and the declared goals. It registers to the Orchestrator
by sending the information on which monitors (performance)
and actuators (heterogeneous allocation) it wants to be sub-
scribed to. This service keeps track of the performance of
the monitored application gathering data from the performance
monitors and on their basis it controls the actuator that enforces
where an application is executed. In this case, the service and
the actuator are completely decoupled and asynchronous: the
former, implemented at the Orchestrator level, is a policy that
assigns resources to applications, the latter is implemented at
the application level and allows an application compatible with
SAVEHSA to run on multiple computational units.

1) Service: The decision policy is still under development;
at present it is a fairly simple resource allocator. The policy
is aware of the amount of available resources that can be
assigned to the applications. For each application the policy
is aware of a) the available implementations for the different
computational resources, b) their profiling on them, c) the
resources it needs, thus knowing which implementation is the
best for a given application. The decision is periodically made
and the frequency affects the accuracy of the resource partition-
ing and the computational overheads. It is also worth noting
that, as some resources may use reconfigurable hardware (e.g.,
DFEs), the migration of a task due to hardware reconfiguration
has a non-negligible impact (hundreds of milliseconds on a
typical DFE): a too small decision step could therefore impair
performance. The tuning of the frequency is currently being
investigated.

Algorithm 1 Heterogeneous resource allocation

1: function HETSCHED(A)
2: UL← list of available resources
3: while not UL.empty() do
4: for all a ∈ A do
5: δa ← πa

ḡa
6: end for
7: AS ← sort A by δa
8: for all a ∈ AS do
9: if δa < 1 then

10: u← most efficient resource for a
11: assign(a, u)
12: UL.remove(u)
13: end if
14: end for
15: end while
16: end function

The body of the control loop is reported in Algorithm 1.
At each iteration, the algorithm gathers from each application
a ∈ A the last measured performance value πa and the user-
defined goal ḡa. Applications are then ranked on the basis of
how much they are failing in achieving their goal. Resources
are thus assigned as follows:
• the application with the worst behavior is assigned the

resources it needs (among those available) to execute the
best implementation;

• the assigned resources are marked as used;
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• the process is repeated for the remaining applications.
Applications not assigned to any computational unit are
run on the CPU.

For performance reasons, the decisions are written into a mem-
ory segment shared between the scheduler and the actuators
present in each of the controlled applications. A library, linked
by each application, is responsible for executing the correct
implementation and thus to offload the computation to the
specific resource.

2) Actuation: To take advantage of the Heterogeneous Re-
source Allocation, an application must provide an actuator that
is aware of the allocation decision provided by the Service
and selects the correct implementation. The application will
register with a proper SAVE API the various implementations
of the functions target of the heterogeneous scheduling service;
instead of directly calling one of these implementations, the ap-
plication needs to invoke the heterogeneous allocator function.
This function reads the resource assignment performed by the
service and then invokes the proper kernel implementation. It
is important to notice that, in our implementation, the actuation
is asynchronous with respect to the resource allocation decided
by the service; this allows not to introduce any overhead in the
execution of the application other than the overhead associated
with the function call and the monitoring infrastructure. Also,
our implementation is lock-free, and makes use only of the
compiler’s atomic builtins to achieve consistency.

B. RTCS: Runtime and Just-in-time Compilation System
The precondition for exploiting the ability of the Orches-

trator to dispatch workloads to different computing resources
in the SAVEHSA is that executable code for these resources
is available. There are however important practical use cases
where no code for heterogeneous resources is available, for
example, when running proprietary, binary applications or
when the developer lacks the skills/time to port the appli-
cation to GPUs or DFEs. To enable application offloading
to heterogeneous computing resources, we are developing an
adaptive service denoted as Runtime and Just-in-time Compila-
tion System (RTCS) that allows for generating implementations
for heterogeneous computing resources at runtime and for
offloading the application to them if deemed appropriate.

RTCS builds on the LLVM compiler infrastructure and
more specifically, on the LLVM execution engine. It works
on applications expressed in the LLVM intermediate rep-
resentation (LLVM IR) format, which can be considered
as a binary application representation, comparable to Java
bytecode. It is also possible to generated LLVM IR from
actual x86 binaries [19]. Once an application is submitted to
RTCS, the application is subject to a number of operations
that are implemented by three sub-components as shown in
Figure 5: Monitoring Engine, JIT Code Generation Engine,
and Application Transformation Engine.
The Monitoring Engine is capable of analyzing, profiling and

generating estimation metrics at runtime. It consists of three
components:

1) Analysis: This component analyses the control- and data-
flow structure of the application. It specifically searches for
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loops that contain instruction-level or data-level parallelism to
detect computationally intensive parts (hotspots). Furthermore
the types of instructions (floating point numbers, memory
operation, etc.) and the frequency of their occurrence can have
an impact on different resources, because they can be infea-
sible for an accelerator (system calls, library calls, recursive
functions calls, etc.) or occupy a lot of area.

2) Profiling: This component profiles the application traces
at runtime. It specifically looks for the execution frequency of
loops and functions, different memory access patterns and the
data transfer into and out of hotspots.

3) Estimation: It predicts the expected performance, power
consumption, and incurred overhead when mapped to dif-
ferent computing resources. It tries to estimate the compila-
tion/synthesis time to generate a new implementation and the
time to transfer the required data to/from the resource.

The JIT Code Generation Engine is responsible for gener-
ating code for a target computing resource as well as linking
the newly generated code with runtime libraries. It consists of
the following two components:

1) Target source code generation: It is responsible for
translating the hotspots from LLVM IR into efficient code
for multi-core CPUs (OpenMP, OpenCL), GPUs (OpenCL or
OpenACC) or DFEs (MaxJ, MaxGenFD). We don’t assume
that the results of this JIT compilation compilation process
are available instantaneously. In particular for DFEs, this
compilation process may take several hours. For long running
applications this initial overhead can still be amortized over
time. With caching, short running applications that are exe-
cuted multiple times can also profit from JIT acceleration.

2) JIT compilation: This component wraps the code gener-
ated by the previous component into dynamic libraries so that
it can be later dynamically linked with the main application.
Additionally it is also capable of running architecture-specific
compilation tools and links the required communication and
runtime libraries.

Finally, the Application Transformation Engine is respon-
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sible for removing program parts that will be replaced by
the accelerated code, adding code for data transfers to/from
resources and inserting calls to offloaded functions provided
as loadable libraries.

RTCS resides in the user space and interacts with the
virtualized HW devices (vCPU, vGPU or vDFE) in the same
manner as it would with real hardware. RTCS provides two
APIs via which the Orchestrator can communicate with it:

Monitoring API: provides an interface via which the Or-
chestrator can query the RTCS about the analysis, profiling
and estimation data it gathered. Based on this fine-grained
information and certain policies, the Orchestrator can then
make informed decisions of what/where to migrate it. For each
hotspot and for each accelerator, RTCS provides the expected
performance/energy improvement, a rough estimation of the
compilation/synthesis time to JIT generate code for a particular
resource and finally the costs of the migration, including the
initialization and the data transfer times to/from the accelerator.

Actuator API: Once the Orchestrator has decided to offload
code, this API provides the means of communicating this
decision to the RTCS. By using this interface, the Orchestrator
can instruct the RTCS to first JIT compile the hotspot for a
specific platform, and once the code is available, to offload it.

Initially, the RTCS starts executing the application on the
CPU. It collects profiling information at runtime and analyses
it to identify hotspots and data access patterns of the appli-
cation. The Orchestrator queries the RTCS to know whether
the application could benefit from offloading such hotspots to
another computing resource. Based on the response from the
RTCS and the active policies, the Orchestrator can decide to
adapt and offloading a hotspot. If, for example, the Orchestra-
tor decides to offload the hotspot to a DFE, it invokes the JIT
Code Generation Engine over the Actuator API. The RTCS
generates the code for the DFE and signals the Orchestrator
when done. The Orchestrator can then instruct the RTCS to
offload this computation to the DFE; the RTCS proceeds to
initialize the DFE with the configuration, copies the required
data and starts the computation of the hotspot on the DFE.
Once the computation is complete, the results are copied back
and execution continues on the CPU. These resources are not
managed by RTCS but by the OS in cooperation with the
Orchestrator. Building on this infrastructure allows RTCS to
leverage the resource sharing capabilities while respecting the
resource sharing assignment decided by the Orchestrator.

VI. RESULTS EVALUATION

This section reports the evaluation of the Heterogeneous
Resource Allocation service (the simplified preliminary version
of the Orchestrator) when a single and multiple applications
want to take advantage of the SAVEHSA. Furthermore, we
evaluate the performance overhead in the monitoring and
decision mechanisms. The results have been collected by
executing the Orchestrator on a workstation equipped with an
Intel Core i7-3720QM processor, 16GB RAM with a NVIDIA
GeForce GT 750M GPU.

1) Control of a Single Application: Figure 6 illustrates how
the proposed system is able to control an application execution.
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Fig. 6. Execution of a single application using either a single type of resources
or exploiting heterogeneous ones managed by the proposed Orchestrator. The
controlled execution stays in the performance boundaries decided by the user
due to the action of the resource allocation service.

The application considered in the example is an instance of the
Black and Scholes demo application shipped with the CUDA
framework, showcasing a financial analysis algorithm on an
European-like stock option market. This application performs
a fixed number of simulations on set of stock options with
different parameters and can execute both on CPU and GPU.
The blue line shows the performance of the application when
running only on the GPU, while the red lines shows the
application running on the CPU only. If a user sets a goal of
achieving 70 MOptions/s +/- 10% (green area in the figure),
the Orchestrator tries to meet it by switching between CPU
and GPU (green line). As it can be seen, after an initial set up
phase the application lies in the green zone until it ends.

2) Control of Concurrent Applications: The example of
Figure 7 reports the behavior of the system with a mixed
workload. Two concurrent instances of the Black and Scholes
application are running with different performance goals. In
this case the Orchestrator has to allocate the available resources
by trying to meet the performance of both applications, taking
into account that the architecture has one GPU contended
by the two applications. The applications have two different
performance goals of 400 and 700 MOptions/s through the
monitoring infrastructure (dotted lines in the figure), respec-
tively. The Orchestator takes care of executing each one of
the simulations on the proper resource in order to respect the
expressed goals. The average performance is represented by
the continuous stroke; meeting the goal means that at the end
of the execution this line should match the goal set for each of
the applications, as it happens in the experimental campaign.

3) Service Overheads: We measured the overhead of the
monitoring infrastructure and the decision policy. The overhead
of the Orchestrator component is negligible, being involved
only in the initial phase (binding between application and
services). Most of the overhead is due to the monitoring infras-
tructure and the control loop. From our experimental results,
the monitoring overhead is mainly due to the call to the system
function to read the timestamp. On our test platform, each call
to gettimeofday accounts for an average of 32ns, while
the average overall time to issue a heartbeat is 40ns. The other
source of overhead is the function that dynamically selects the
implementation to run and performs profiling. Also in this case,
the overhead is low: it measures 72ns on average, entirely due
to the two calls to gettimeofday needed to profile data. The



8

Performance 1
Performance 2
Goal 1
Goal 2

Ap
pl

ic
at

io
n 

1 
x1

00
 M

O
pt

io
ns

/s

0

5

10

Ap
pl

ic
at

io
n 

2 
x1

00
 M

O
pt

io
ns

/s

0

5

10

Time [us] (from epoch)
1.39610965×1015 1.39610966 1.39610967×1015

Performance and Resource Allocations with 2 Applications 
(CPU in blue, GPU in yellow)

Fig. 7. Heterogeneous allocation policy managing two instances of the Black
and Scholes benchmark with different goals. Colored bands reflect the resource
allocation: blue bands mean that the application runs on the CPU, while yellow
bands mean that the application runs on GPU.

overhead introduced by the control loop is negligible, as it runs
at a low frequency; despite this, the algorithm presented here
has a time complexity of O(n log n) due to the need of sorting
the n applications: a careful implementation must be provided
for scenarios envisioning many concurrent applications. We
believe that the performance overheads are reasonably small
(even in this preliminary implementation) with respect to the
duration of a computational kernel that is worth to offload to
a heterogeneous accelerator.

VII. CONCLUSIONS AND FUTURE WORK

In this work we presented the SAVE approach to resource
management in heterogeneous architectures. Although these
architectures are increasingly being adopted due to their good
performance per energy trade off, we are far from being able to
efficiently exploit them and nowadays the burden of resource
management is left to the user. This paper describes how the
SAVE project will tackle this problem by defining a proper
architecture, the SAVEHSA, along with a set of mechanisms
that helps the system administrator and the final user in
managing the system and its own application. Two of the
solutions developed have been presented: the Heterogeneous
Resources Allocation and the RTCS. The contribution to the
self-adaptiveness of these two services has been presented
and preliminary results and overheads have been discussed,
showing the benefits of dynamic resource management in both
a single and a multiple application scenarios. The overheads
introduced by this self-adaptiveness mechanism does not in-
fluence the correctness and responsiveness of the system.

Future work stemming from this research will focus on
the improvement of resource allocation mechanism to per-
form a better resource allocation and to possibly avoid the
need of a-priori profiling information that can be instead
estimated online. Another important direction of research is
the introduction of power measurements and self-adaptive
power management with the realization of a service able of
guaranteeing applications performance while at the same time
lowering the overall power consumption.
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