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ABSTRACT
The variability model checker VMC accepts a product fam-
ily specified as a Modal Transition System (MTS) with addi-
tional variability constraints. Consequently, it o↵ers behav-
ioral variability analyses over both the family and its valid
product behavior. This ranges from product derivation and
simulation to e�cient on-the-fly model checking of logical
properties expressed in a variability-aware version of action-
based CTL. In this paper, we first explain the reasons and
assumptions underlying the choice for a modeling and anal-
ysis framework based on MTSs. Subsequently, we present
recent advances on proving inheritance of behavioral anal-
ysis properties from a product family to its valid products.
Finally, we illustrate challenges remaining for the future.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Formal methods, Model checking ; D.2.13 [Software
Engineering]: Reusable Software—Domain engineering

General Terms
Design, Experimentation, Verification

Keywords
Product families, Behavioral variability, Model checking

1. INTRODUCTION
Software Product Line Engineering (SPLE) is now an es-

tablished software-intensive system development technique
which propagates the systematic reuse of assets or features
(i.e. user-visible product characteristics or aspects of which
some are common to all family members while others are
only shared by some) in an attempt to lower production costs
and time-to-market but increase overall e�ciency. Guaran-
teeing the correctness of software (components) intended for
systematic reuse and overall correctness of the developed
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product family are thus important for SPLE. This means
adapting traditional quality assurance techniques, such as
model checking, to cope with variability. We contributed to
this by developing the variability model checker VMC. VMC
accepts a product family modeled as a modal process algebra
plus variability constraints. It o↵ers behavioral variability
analyses over both the family and its valid product behavior,
ranging from product derivation and simulation to e�cient
on-the-fly model checking of logical properties expressed in
v-ACTL, a variability-aware version of action-based CTL.

The recent advances of VMC concern an extension of its
input language to a modal process algebra sustaining deon-
tic synchronization operators, value-passing communication
and n-ary variability constraints, and a thoroughly revised
version of the supported v-ACTL logic with user notifica-
tions in case a family-based analysis result is guaranteed to
be preserved by all products. The most important challenge
ahead of us is to experiment VMC on a realistic, industrial-
size case study. To this aim, we need to enrich the process
algebra with advanced data types, while we might want to
implement some product line-specific features into VMC’s
model-checking algorithms. Finally, it might be interesting
to define explicit behavioral variability constraints, possibly
allowing parameter values in constraints. More on this later.

After briefly describing the family of model checkers de-
veloped the last two decades at ISTI–CNR in §2, we explain
the reasons and assumptions underlying the choice for a SPL
modeling and analysis framework based on MTSs in §3. Sub-
sequently, in §4 and §5, we describe in more detail how the
SPL analysis tool VMC implements MTSs and how it can
perform SPL analyses by means of a variability-aware logic
interpreted over MTSs. In §6, we discuss related tools, after
which we provide an example in §7. Finally, in §8 we con-
clude the paper and list some challenges left for the future.

2. A FAMILY OF MODEL CHECKERS
Our experiments with on-the-fly model checking began

with the FMC model checker for ACTL extended with fixed-
point operators [24]. Its computational model was a network
of automata built from terms of a process algebra derived
from the value-passing CCS/CSP-like calculus. On-the-fly
verification means that in general not the whole state space
needs to be generated and explored, improving performance
and allowing to partly deal also with infinite-state systems.

The same model-checking approach was later applied to a
computational model based on UML state machines. This
required switching to an action- and state-based logic, which
allows one to express in a natural way not only properties of
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evolution steps (i.e. related to the executed actions) but also
internal properties of states (e.g. values of object attributes).
This resulted in the UMC model checker for UCTL logic [6].

A third application of our approach concerned the process
algebra COWS [27], which is a specification language specif-
ically developed for the design and orchestration of service-
oriented systems. Verifying such systems requires properties
to be able to express the correlation between dynamically
generated values appearing inside actions at di↵erent times.
This led to the the CMC model checker for SocL logic [22].

These three approaches recently were integrated into a
common framework [25] whose behavioral semantic model is
an abstract Doubly-Labeled Transition System (L2TS) [18].
An L2TS is an extension of an ordinary Labeled Transition
System (LTS) in which not only edges but also states can
be associated with sets of (parametric) labels. This allows
us to define and implement the on-the-fly logical verification
engine on the abstract L2TS in a way that is completely in-
dependent from the details of the underlying computational
model (either based on UML state machines or a process cal-
culus). It is the task of the specification language and com-
putational model to define what kind of information is to be
mapped from the ground internal structure of the computa-
tional model onto the abstract form of labels in the L2TS.

VMC is the most recent extension of this framework. VMC
was specifically introduced a few years ago to support behav-
ioral variability analysis of product families [7,10]. It accepts
the specification of a Modal Transition System (MTS) [1,30]
in process-algebraic terms plus an optional set of variability
constraints. An MTS is an extension of an LTS in which two
distinct types of transitions (admissible and necessary) are
distinguished (cf. §3). VMC allows to perform two kinds of
behavioral variability analyses on a given family of products.

1. The actual set of valid product behavior can explicitly
be generated and the resulting LTSs can be verified
against the same logic property (expressed in ACTL).

2. A logic property (expressed in v-ACTL) can directly be
verified against the MTS modeling the product family
behavior, relying on the fact that under certain syntac-
tic conditions validity over the MTS guarantees valid-
ity of the same property for all the family’s products.

As for all model checkers of our family, the core of VMC
is constituted by a command-line version of the tool writ-
ten in Ada, which can be easily compiled for the Windows,
Linux, Solaris and Mac OS X platforms. These core exe-
cutables are wrapped with CGI scripts handled by a web
server, facilitating an html-oriented GUI and integration
with graph drawing tools. Its development is still ongoing,
but the current version of the tool is freely usable online
(fmt.isti.cnr.it/vmc/). It is beyond the scope of this pa-
per to give detailed descriptions of the model-checking al-
gorithms and architecture underlying our family of model
checkers. The interested reader can consult [6, 22,24].

3. MODELING SPLs WITH MTSs
An MTS [1,30] is an LTS distinguishing ‘admissible’ may

from ‘necessary’ must transitions. By definition, every must
transition is a may transition. Graphically, an MTS is drawn
(cf. Fig. 1(left)) as a directed edge-labeled graph where nodes
model states (with a black initial state) and edges model

transitions (labeled with actions). Solid edges model neces-
sary transitions while dotted edges model transitions that
are admissible but not necessary. A path in the graph mod-
els a sequence of state changes as the result of executing
actions; if all edges are must transitions, it is a must path.

In [23], MTSs were first recognized as a compact model for
describing the possible operational behavior of products in a
product family. Over the years many variants and extensions
of MTSs for SPLE were proposed (e.g. [2, 4, 20,21,29,31]).

Implementations of an MTS are LTSs that capture the
idea of refining a partial description into a more detailed
one, reflecting increased knowledge on admissible (but not
necessary) behavior. This fits the SPLE notion that each
product of a product family is a refinement of that family,
based on the understanding that an LTS (product behavior)
conforms to the MTS (family behavior). The relation which
binds an MTS to its associated set of products (implementa-
tions) is defined by a refinement relation between the MTS
and the product LTSs. The classical definition of this re-
finement relation allows an infinite set of implementations
to be associated as possible products to a given MTS. This
explosion comes from the unbounded expansion of loops in
the MTS, which may lead to an infinite set of potentially
not bisimilar LTSs. In fact, in [21, 23] it was noted that re-
finement need not preserve an MTS’s branching structure.

Figure 1 shows an MTS (on the left) and two of its imple-
mentations (following the classical definition [1, 30]). Note
that the LTSs (on the right) are just two elements of the in-
finite set of possible implementations which may result from
unfolding the a-labeled transition and from the possible in-
stantiation, at each step, of the optional b-transition.

a

⇥⇥ b // a //

a

⇥⇥ b // boo a // a //

a

⇥⇥

Figure 1: An MTS and two of its implementations

In our SPLE context, instead, we believe it to be more use-
ful to have a simpler notion of refinement which preserves the
exact original branching structure of the MTS in the prod-
ucts, corresponding to the modelers’ intuition, and which
gives to the implementations the choice of just turning dot-
ted edges into solid edges or removing them altogether. This
stricter notion of refinement has the immediate advantage of
leading to a limited set of product behaviors. For instance,
the only acceptable products of the MTS in Fig. 2(left) are
the two LTSs depicted on the right, i.e. the dotted edge in
the MTS is either turned into a solid edge or removed.

a

⇥⇥ b //

a

⇥⇥ b //

a

⇥⇥

Figure 2: The MTS and its only two valid products

Following [2–5, 12–15, 20, 21, 23, 29, 31], an action models
a piece of functionality (a feature if you like). We therefore
assume that no solid edge is labeled with the same action as
a (di↵erent) dotted edge, i.e. no necessary a-transition exists
if the set of admissible but not necessary transitions contains
an a-transition. This is the assumption of coherence.

We moreover assume behavioral variability to be resolved
consistently: A decision to ‘implement’ an admissible but
not necessary a-transition in a product must be consistent
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throughout the product (recall that a dotted edge of an MTS
modeling family behavior can be preserved or removed in an
LTS modeling product behavior). This assumption reflects
the fact that functionality (or a feature) either is or is not
present in a product, independent of its behavioral context.
The only consistent products of the MTS in Fig. 3(left) are
thus the two LTSs on the right, i.e. an LTS with only one
b-transition does not model acceptable product behavior.

b // b //

a

OO

b //

a

OO

b //

a

OO

Figure 3: An MTS and its only two valid products

While an MTS thus naturally caters for optional behav-
ior, it cannot capture all common variability notions (e.g.
alternative, requires and excludes constraints). In [2, 4] we
therefore opted for the addition of a set of variability con-
straints to be taken into account when deriving products to
guarantee only LTSs representing valid product behavior.

If the MTSs depicted in Figs. 2-3 were accompanied by
the alternative constraint a ALT b, then only the rightmost
LTSs in these figures would represent valid product behavior
(i.e. the optional b-transition would need to be removed to
satisfy the constraint stating that a and b are alternatives).

Possible variability constraints over a set { a
i

| 1  i  n }
of actions and their ACTL (cf. Appendix B) semantics are:1

a
1

ALT a
2

ALT · · · ALT a
n

:W
1in

((EF {a
i

} true)
V

1j 6=in

(¬ EF {a
j

} true))

a
1

OR a
2

OR · · · OR a
n

:
W

1in

(EF {a
i

} true)

a
j

EXC a
k

: (EF {a
j

} true) =) (¬ EF {a
k

} true) ^
(EF {a

k

} true) =) (¬ EF {a
j

} true)

a
j

REQ a
k

: (EF {a
j

} true) =) (EF {a
k

} true)

Note that syntactic constraints on actions (i.e. defined in
terms of their presence in a product) are thus checked seman-
tically (i.e. defined in terms of their reachability in the LTS).

Summarizing, we have described a modeling framework in
which an MTS, together with an additional set of variability
constraints, specifies the behavior of a product family in a
compact way. Derivation of all valid products leads to a
limited set of LTSs specifying the possible product behavior.
In the next sections we describe how VMC can be used to
perform behavioral analysis over families and products alike.

4. MODELING MTSs WITH L2TSs
The FMC/UMC/CMC model checking framework is based

on the notion of an L2TS as underlying abstract semantic
computational model. An MTS di↵ers from an LTS only by
distinguishing two possible kinds of transitions, which can be
necessary or admissible. This aspect can easily be encoded
in an L2TS by extending the labels on the transitions with
information about the modality of the edge. We recall that
in the L2TSs that we consider, edges can be associated with
sets of labels, so it is quite straightforward to add also this
additional information. Moreover, the information on the
modality of the transitions must in some way be specified

1Support for n-ary constraints (and more, cf. §8) is recent.

also in the syntax of the process calculus used to specify the
MTS. Our choice has been to model it as a special additional
parameter associated to the basic actions of the calculus.

In Fig. 4 we show an example MTS we want to encode
(and a formula over it) on the left, its syntax in terms of the
process algebra in the centre, and its encoding in terms of
an L2TS (and the corresponding formula) on the right.

a

⇥⇥ b // T = a.T + b(may).nil

{a}
⇥⇥ {b,may}

//

hai2 true ha ^ ¬mayi true

Figure 4: From MTS + v-ACTL2 to L2TS + ACTL

The logical verification engine of the model checking frame-
work has no problems in analyzing the L2TS derived in this
way from an MTS and additional variability-aware logical
operators can easily be defined through translations into the
classical ACTL operators (cf. Appendix B). In Fig. 4, e.g.,
we show the way a v-ACTL2 formula over an MTS is in-
terpreted over an L2TS. This deontic (‘boxed’) version of
the classical diamond operator from Hennessy-Milner logic
requires that a next state exists, reachable by a necessary
(must) transition labeled with action a, in which true holds.

If the MTS contains no optional transitions, then the en-
coding of the MTS in VMC becomes precisely the standard
encoding of an ordinary LTS (with no need for state labels).

More details on the syntax and semantics of the value-
passing modal process algebra accepted by VMC are given
in Appendix A, while more on the syntax and semantics of
the variability-aware ACTL-like logic accepted by VMC for
the specification of properties of the MTS and its products
is given in Appendix B. Full details of both are given in [8].

5. SPL ANALYSIS STRATEGIES
It is by now common to classify SPL analysis techniques

into product-based and family-based analyses [35]. The for-
mer operate on individually generated products (or at most
a subset), whereas the latter operate on an entire product
family at once using variability knowledge about valid fea-
ture configurations to deduce results for products.

5.1 Verifying Properties over the MTS
The most interesting and e�cient way to verify properties

of a product family relies on the feasibility of performing the
verification directly on the MTS modeling the family (i.e.
to perform a family-based analysis). Indeed, in Appendix B
we define a thoroughly revised version of the logic v-ACTL2

which guarantees (cf. [4, 8]) that whenever a formula holds
for the MTS, then it also holds for all products of the family.
Moreover, VMC now automatically notifies the user in case
a formula was verified to which such a preservation applies.

A first limit of this approach is that only the validity of
a formula (with respect to an MTS) is preserved by the
products. If a formula does not hold for a family, nothing
can be said on its validity for the products.

A second limit is that this kind of verification does not
take the additional constraints associated to the MTS into
account. Therefore if a property holds for the MTS, then
it is guaranteed that it holds for all (valid or not) products.
Conversely, any property which holds for just the valid prod-
ucts (i.e. there is at least one not valid product for which it
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does not hold), then it cannot hold for the MTS. The logic
formulations of the variability constraints in §3 are simple
examples of properties that hold for just the valid products,
but which do not hold for the MTS.

A third limit of this approach is the logic’s expressive
power, which does not allow to express certain interesting
properties over the family of products. It would, e.g., be nice
to express that a certain property ' holds for all products
that eventually execute an optional action b (i.e. support a
certain feature) but this kind of property is not among those
that can be expressed and evaluated in the context of MTSs.

5.2 Verifying Properties over the LTSs
Another possibility o↵ered by VMC, which exploits the as-

sumptions of coherence, consistency and product validity, is
to generate all valid products of the family (i.e. the finite set
of consistent products satisfying all variability constraints)
and to directly verify a property on each and every one of
them (i.e. to perform a product-based analysis). In this case
the logic does not even need to consider variability (since the
formula is just evaluated on the products, i.e. LTSs) so we
can resort to the full action-based fragment of our verifica-
tion framework’s logic (i.e. ACTL as defined in Appendix B).

The generation of the valid products of an MTS needs to
evaluate for each of them the reachability of the actions oc-
curring in the variability constraints. This task is performed
by VMC in an incremental way, analyzing the MTS struc-
ture in a breadth-first fashion, generating new templates for
groups of sub-products each time an optional transition is
encountered and removing invalid templates as soon as their
structure results incompatible with the required constraints.

This approach has proved to be rather e↵ective and so far
the generation of all valid product has never proved to be
a bottleneck for verification, but we must admit that the
scalability to realistic problems of industrial size has so far
never been investigated nor attempted. This is future work.

6. VMC AND RELATED TOOLS
Several of the behavioral variability models mentioned in

this paper come with an SPL tool for product-/family-based
analysis with verification techniques like model checking.

SNIP [12] is a model checker for product families mod-
eled as Featured Transition Systems (FTSs) specified in a
language based on that of SPIN. The feature diagram is
coded in the textual variability language TVL to be con-
sulted by the explicit-state on-the-fly model-checking algo-
rithm of SNIP to verify properties expressed in a feature-
aware version of LTL interpreted over FTSs (e.g. to verify a
property over only a subset of the valid products). Symbolic
FTS model checking [13] was implemented as an extension
of NuSMV, with a fully symbolic algorithm for a feature-
aware version of CTL. In SNIP, special-purpose exhaustive
model checking algorithms (continuing a search also after a
violation was found) allow the user to verify all products of
a product line at once and to output counterexamples for
all products that violate a property (in contrast with the
NuSMV extension that only produces a counterexample for
the first violating product found). SNIP has recently been
re-engineered into the tool suite ProVeLines [16].

In VMC there is no explicit reference to features and fea-
ture models, which is one of the more obvious di↵erences2

2Their commonalities and di↵erences are discussed in [4].

with these successful approaches based on FTSs, in which
transitions are labeled with actions and features and a fea-
ture model encoding is included (basically, the set of features
and the set of valid products in terms of their features).

In [34], Finite State Machines (FSMs) are extended with
variability by means of guards over variables on transitions
and a global predicate defining the valid configurations by
value assignments. For each product line feature, two FSMs
are built, one for the requirements and one for the design
level, and it is specified how to check their conformance.
This check is implemented by a never claim in SPIN. The
prototypical tool SPLEnD transforms pairs of XML files for
the FSMs into a file that can be fed to SPIN, which either
returns the conformance mappings or declares nonconfor-
mance, after which the behavior of the product line can be
checked by SAT solving.

We conjecture that there exists a trade-o↵ between brute-
force product-based analysis with model checkers optimized
for single product engineering, like SPIN (spinroot.com),
NuSMV (nusmv.fbk.eu), mCRL2 (www.mcrl2.org), and—
to a much lesser degree—VMC, and innovative family-based
analysis with model checkers that were developed specifi-
cally for SPLE, like SNIP [12] and the NuSMV extension
of [13]. To a certain extent, VMC o↵ers the full spectrum of
analyses, but—contrary to the special-purpose FTS model-
checking algorithms of SNIP—when a formula is verified
over an entire product family, then a negative result does
not actually list the specific products in which the property
fails to hold. However, the full list of violating products can
be obtained by means of a product-based analysis.

We are not aware of any other model-checking tool for
MTSs that also supports value passing. MTSA [19] is a
prototype, built on top of the LTS Analyser LTSA, for the
analysis of MTSs specified in an extension of the process al-
gebra FSP (Finite State Processes). MTSA allows 3-valued
FLTL (Fluent LTL) model checking of MTSs by reducing
the verification to two FLTL model-checking runs on LTSs.

7. AN EXAMPLE IN VMC
Consider the behavior of a family of bike-sharing sys-

tems specified in the value-passing modal process algebra
accepted by VMC, in which processes can pass and receive
integer parameter values (and store them in a variable pre-
ceded by a ‘?’), actions can be optional (i.e. typed may),
nondeterministic choice can be guarded by a comparison of
values, parallel composition is parametrized by the actions
/. . . / to be synchronized,3 and a system definition must be
complemented with a top term of the form net SYSTEM = P,
where P is the initial process (or composition of processes):

Station(I,N,J,M) =
request(I).
( [N = 0] nobike(I).Station(I,N,J,M) +
[N > 0] bike(I).Station(I,N-1,J,M) ) +

return(I).Station(I,N+1,J,M) +
redistribute(may,?FROM,?TO,?K).
( [TO = I] Station(I,N+K,J,M) +
[TO /= I] Station(I,N,J,M) ) +

[N > M] redistribute(may,I,J,N-M).Station(I,M,J,M)

Users(I,J) =
request(I).
( bike(I).return(J).Users(I,J) +
nobike(I).Users(I,J) )

3In MTSs, a(may) synchronized with a results in a(may) [1].
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net STATIONS =
Station(s1,1,s2,1) /redistribute/ Station(s2,0,s1,0)

net USERS = Users(s1,s2) // Users(s2,s1)
net BSS = STATIONS /request,bike,nobike,return/ USERS

It models a possibly infinite number of users that can take a
bike from docking station I, ride it for a while (not specifi-
cally modeled), and deliver it to docking station J . Initially,
docking station I has N bikes, which it gives (when avail-
able) to a requesting user or accepts from a returning user. If
docking station I receives more than M bikes, the exceeding
N � M bikes are distributed to docking station J . Docking
station I must accept all bikes distributed by other docking
stations or returned by a user (possibly for redistribution).

The specific case of a bike-sharing family of two docking
stations with two user groups and one bike is depicted in
Fig. 5. Given that redistribution is optional, this family
has two valid products: The behavior of the one without
redistribution is modeled by the LTS depicted in Fig. 5,
while that of the one with distribution is of course the LTS
that is obtained from the MTS in Fig. 5 by simply turning
the dotted redistribution edge into a solid one.

Now suppose that we want to verify the property that for
both products, i.e. bike-sharing systems, it is always the case
that eventually docking station 1 must give the user a bike.
A candidate v-ACTL2 formula to express this property is:4

AG EF2 {bike(s1)} true

This formula is true for all products (LTSs) of the family,
and it makes sense to verify it directly over the family since
it is a formula expressed in v-ACTL2. In fact, the above for-
mula holds over the MTS and therefore for all its products.
Clearly, in this case of only two products, a direct evalu-
ation over the products themselves would not constitute a
problem either. More on this example can be found in [8].

8. CONCLUSIONS AND FUTURE WORK
VMC is an SPL modeling and analysis framework that

accepts an MTS model of the behavior of a product family
specified in a value-passing process algebra, enriched with an
optional set of variability constraints. It o↵ers product- and
family-based analyses over the behavior of product families,
implemented by e�cient on-the-fly model checking of logical
properties expressed in v-ACTL. Recent additions include
a calculus deontic synchronization operators, value-passing
communication and n-ary variability constraints, and a re-
vised version of v-ACTL with user notifications whenever
family-based analysis results are preserved by all products.

There are several directions into which the analysis tech-
niques should to be improved before VMC can be experi-
mented with on a case study from industry, which is the
most important goal for the future. To this aim, a richer
process algebra is required, with more advanced data types
(not just integers, but tuples, sets, lists, etc.), which calls
for a more complex underlying computational model.

More advanced MTS model-checking techniques might ex-
plicitly take into consideration the variability constraints
that are used to define product validity and/or more op-
erators beyond those currently supported by VMC.

VMC actually allows more complex variability constraints
than the ones in §3, e.g. compositions like a REQ (b ALT c).
It might be interesting to consider also explicit behavioral
4In VMC, ¬ | _ | ^ | F2 are written as not | or | and | F#.

variability constraints like X{a} ALT X{b}, which is based
on the next operator X{a} that intuitively says that the
next state of a path can be reached by an action a. If both
actions a and b were possible in a state of the MTS, then a
valid product would only include one of the two. It would
be interesting to see how this could work, in particular as it
might interfere with the consistency assumption. Finally, it
might be possible to allow parameter values in constraints.
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Figure 5: MTS of a bike-sharing family of two docking stations with two users and one bike
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Figure 6: LTS of a product of the bike-sharing family of docking systems without redistribution
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APPENDIX
A. VALUE-PASSING MODAL PROCESSES

The latest version of VMC accepts an MTS (modeling the
behavior of a product family) specified in a value-passing
modal process algebra in which the deontic parallel compo-
sition operator is parametrized by the actions to be synchro-
nized [8] (i.e. contrasting recent approaches in [9,26,32]). A
product family can be defined inductively by composition,
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with the additional distinction between necessary actions of
type a and admissible but not necessary ones of type a(may).

Definition 1. Consider action set A with a2A and L✓
A. Processes are built from terms and actions of this syntax:

N ::= [P ]

P ::= K(e) | P /L/ P

where [P ] denotes a closed system, i.e. a process that cannot
evolve on input actions a(?v), and K(e) is a process identi-

fier from the set of process definitions of the form K (v)
def
= T ,

T ::= nil | K(e) | A.T | T + T | [e ./ e] T

A ::= a(e) | a(may , e) | a(?v) | a(may , ?v)

e ::= v | int | e ± e

where ./2 {<, , =, 6=, �, >} is a comparison relation, v is
a variable, int is an integer, and ± 2 {+, �, ⇥, ÷} is an
arithmetic operation.

This value-passing modal process algebra is interpreted over
MTSs, but for reasons of space we only provide the semantics
of the necessary actions in Fig. 7 (cf. [8] for the full syntax).

The intuition of parallel composition is that both partners
must fully and deterministically agree on the parameter val-
ues for the synchronization to occur. The rules in Fig. 7 refer
to a case of two parameters. In general, e.g., a(X, 2).nil and
a(3, Y ).nil can synchronize and execute action a(3, 2).

B. v-ACTL2: VARIABILITY-AWARE ACTL
We present the latest, revised version of the variability-

aware action-based branching-time temporal modal logic v-
ACTL. It was originally developed in [2–4] in the style of
(action-based) CTL [11,17] and the Hennessy–Milner Logic
(HML) with until [18,28], starting from the ACTL logic ac-
cepted by VMC. Next to the operators of propositional logic,
ACTL contains the box and, by duality, diamond modal op-
erators from HML, the existential and universal path quanti-
fiers and next operator from CTL, and the (action-based) F
(‘eventually’) and, by duality, G (‘globally’) operators from
action-based CTL as well as the (action-based) until and
weak until operators U and W drawn from those firstly in-
troduced in [17] and later elaborated in [33]. Finally, ACTL
contains the least and greatest fixed-point operators µ and
⌫, which provide a semantics for recursion used for “finite
looping” and “looping” (or “liveness” and “safety”).

(v-)ACTL defines action formulae (denoted by  ), state
formulae (denoted by �), and path formulae (denoted by ⇡).

Definition 2. Action formulae are built as follows over
a set A of atomic actions {a, b, . . .}:

 ::= true | a(e) | ¬ |  ^  
Action formulae are thus simply Boolean compositions of
actions. As usual, false abbreviates ¬ true,  _ 0 abbreviates
¬(¬ ^ ¬ 0) and  =)  0 abbreviates ¬ _  0.

For completeness we now give the full syntax of ACTL, as
accepted by VMC. Details of (v-)ACTL can be found in [8].

Definition 3. The syntax of ACTL is as follows:

� ::= true | ¬� | � ^ � | [ ]� | h i� | E ⇡ | A⇡ |
µ Y.�(Y ) | ⌫ Y.�(Y )

⇡ ::= X { } � | [� { } U { 0} �0] | [� { } W { 0} �0] |
[� { } U �0] | [� { } W �0] | F � | F { } � | G�

where Y is a propositional variable and �(Y ) is syntactically
monotone in Y .

In VMC, the least and greatest fixed-point operators µ and ⌫
are written as min and max, respectively, and recall that ¬, _,
^, and F2 are written as not, or, and, and F#, respectively.

Intuitively, the action-based until operators [� { } U �0]
([� { } U { 0} �0]) say that �0 holds at some future state of
the path (reached by a final action satisfying  0), while �
holds from the current state until that state is reached and
all the actions executed meanwhile along the path satisfy  .
The action-based weak until operators [� { } W �0] and
[� { } W { 0} �0] (also called unless) hold on a path either
if the corresponding strong until operator holds or if for all
states of the path the formula � holds and all actions exe-
cuted on the path satisfy  .

To make this ACTL logic variability-aware, for the box,
diamond and F operators we defined also a deontic interpre-
tation that takes the modality (or ‘deonticity’) of the tran-
sitions (may or must) into account, resulting in v-ACTL.
The intuitive interpretation of the di↵erent variants of these
operators is as follows. [ ]�: in all next states reachable by
a may transition executing an action satisfying  , � holds.
[ ]2 �: in all next states reachable by a must transition ex-
ecuting an action satisfying  , � holds. F �: there exists
a future state in which � holds. F2 �: there exists a fu-
ture state in which � holds and all transitions until that
state are must transitions. F { } �: there exists a future
state, reached by an action satisfying  , in which � holds.
F2 { } �: there exists a future state, reached by an action
satisfying  , in which � holds and all transitions until that
state are must transitions.

Now v-ACTL2, finally, is a fragment of v-ACTL that en-
joys some convenient properties, elaborated on below, and
which moreover su�ces for specifying interesting properties
for product families in the presence of variability as well as
for specifying the additional variability constraints.

Definition 4. The syntax of v-ACTL2 is as follows:

� ::= false | true | � ^ � | � _ � | [ ]� | h i2 � |
EF2 � | EF2 { }� | AF2 � | AF2 { }� | AG� |
¬�

� ::= false | true | � ^ � | � _ � | h i� |
EF � | EF{ }� | ¬�

Note that v-ACTL2 consists of two parts. The first fragment
is such that any formula expressed in it that is true for the
MTS, is also true for all products. The second fragment
(which in v-ACTL2 appears negated) is such that any for-
mula expressed in it that is false for the MTS, is also false
for all products. The latest version of VMC notifies the user
whenever preservation of a verification result is applicable.

From an implementation point of view, VMC handles v-
ACTL2 formula by means of the following translations into
classical ACTL operators.

h i2 � def
= h ^ ¬mayi�

EF2 �
def
= E [true {¬may} U �]

AF2 �
def
= A [true {¬may} U �]

EF2 { }� def
= E [true {¬may} U { ^ ¬may}�]

AF2 { }� def
= A [true {¬may} U { ^ ¬may}�]
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