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Abstract. Stochastic algorithms for solving constraint satisfaction 
problems with soft constraints that can be implemented on a parallel 
distributed network are discussed in a unified framework. The algorithms 
considered are: the Boltzmann machine, a Learning Automata network 
for Relaxation Labelling and a formulation of optimization problems based 
on Markov random field (MRF) models. It is shown that the automata 
network and the MRF formulation can be regarded as generalisations of 
the Boltzmann machine in different directions. 
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1. Introduction 

Many problems in computer vision and pattern recognition can be solved by a process 
that searches an appropriate space to find a point satisfying a given set of constraints. 
A special feature of such problems is that the constraints may be 'soft'; that is, it is 
not possible to categorically assert that a proposed solution satisfies or  does not 
satisfy the constraints. The solution is more appropriately viewed as 'maximizing' the 
'degree of satisfaction' of the constraints and hence such constraint satisfaction 
algorithms have much in common with optimization techniques. Constraint satisfaction 
has been used in computer vision for a long time (Waltz 1975, pp. 19-91; Davis & 
Rosenfeld 1981). The importance of soft constraints and the relationship with 
optimization have been pointed out by many people (Hnmmel & Zucker 1983; Blake & 
Zisserman 1987). Here our interest is in stochastic network-based solutions to such 
constraint satisfaction and optimization problems. Such networks can, by virtue of 
their massive parallelism, potentially deliver large processing rates needed for good 
performance in areas such as computer vision. 

We begin our discussion with the Boltzmann machine (Hinton et a1 1984; Rumelhart 
& McClelland 1986), a simple stochastic neural network that can solve some 
optimization problems in parallel. By incorporating simulated annealing we can 
reach global optima through a parallel algorithm. After this we show how this machine 
can be viewed as solving certain constraint satisfaction problems with soft constraints. 
Then we give a rigorous formulation of such problems and present a stochastic 
network, using learning automata, to solve them. 
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2. The Boltzmann machine 

Boltzmann machine is a neural network whose units (or neurons) have stochastic 
input-output functions. Let the network have N units. The state of unit i, which is 
also its output, will be denoted by si, 1 < i 6 N, and s~E(O, 11, Vi. The global state of 
the network is a vector of states of all units. Every unit in the network is connected 
to every other unit. Let wij denote the weight associated with the connection from 
the jth unit to the ith unit. The connections are symmetric; that is, wij = wjiViyj. At 
any instant k, the net input into the ith unit, denoted by neti(k), is calculated as 

where zi is called the threshold of the ith unit. 
The state of a unit depends on its net input. Units change their state asynchronously 

in discrete time. At any given instant of time only one randomly chosen unit changes 
its state. This dynamics is governed by a probabilistic law. Suppose at instant k, unit 
i is chosen for changing state. Then, 

pi = Prob [s,(k + 1) = 11 = 1/{ 1 + exp (- pneti(k))) 

where p is a positive constant. 
It is easy to see that the probability of si being 1 is more than 0.5 if net input is 

positive and less than 0.5 if net input is negative. Thus, from (1) and (2), si being in 
state 1 is more probable when the input reaching the ith unit from other units exceeds 
its threshold. Except for the probabilistic state transition, as given by (2), this network 
is very similar to the Hopfield Net (Hopfield & Tank 1985). In the Hopfield model 
also the net input is calculated using (1); but the state is set to 1 if net input is positive 
and set to zero otherwise. 

Let us denote the global state of the machine at k by S(k) = [s, (k), . . . , s,(k)lr. We 
denote specific global states by Say SB,  etc. and S, = [s", . . s$ Ity s~E(O, 1) Vi. Thus the 
state space of the machine is the set of all N-bit binary numbers. By (2), it is clear 
that S(k)  is a Markov chain on this state space. It is easy to show that the steady 

I state distribution of this Markov chain is given by 

na = exP ( - PEa)/Z, 
where 

(3) 

z,is the probability, at steady state, of finding the machine in the global state S,. Z 
is a normalising constant. E,, given by (4), is called the energy of global state Sa. 
From (3), it is clear that, at equilibrium, global states with lower energy are more 
probable. 

With the energy as defined by (4), it is now possible to reinterpret the dynamics of 
the machine, given by (21, in an optimization context. The net input to unit i, given 
by (I), is E. - ED where the global states S,  and SD are such that s; = 0, sf = 1 and 
s; = s! = sj(k)Vj # i. By (2), the ith unit prefers state 1 (i.e. pi > 0.5) if net, is positive. 
Thus the ith unit prefers state 1 if its assuming state 1 will decrease the overall energy. 
It may be noted that (2) allows a state change by an ith unit that increases the overall 
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energy also, though with a'smaller probability. Contrasting this with the Hopfield 
model, we see that all state changes allowed there have to decrease the global energy. 
This is true of all gradient descent algorithms that continuously try to decrease the 
objective function. But in the Boltzmann machine we allow 'uphill moves' also; that 
is, we allow state changes that increase the energy (or equivalently the value of the 
objective function). Once again referring to (2), we see that the probability with which 
uphill moves are allowed depends on the value of the parameter /I. 

3. Boltzmann machine as an optimization technique 

We are now in a position to appreciate the optimization capabilities of the Boltzmann 
machine. Suppose we have to determine values for N Boolean variables so as to 
minimize a quadratic objective function. Then we can view the given objective function 
as our energy and, by putting it in the form of (4), we can decide on the weights wij .  
If we now run a Boltzmann machine with these weights, then, at  equilibrium, the 
machine will spend more time in states that result in lower values of the objective 
function. So, we can pick up minima by, for example, gathering statistics about state 
occupancy (see, for example, Marroquin et a1 1987, for an application of this concept 
in computer vision). 

As an example, let us consider the Travelling Salesman Problem (TSP). Given a set 
of cities and distances between pairs of them, the problem is to find a tour, i.e., a 
sequence of visiting all the cities without visiting any city twice, so that the tour 
length, i.e., total distance travelled, is minimum. We can think of any tour as an 
assignment of a position number to each city. If we have N cities and have one unit 
to represent each city then we need units that are capable of being in N distinct states 
so that the global states can be viewed as a possible tour. But since our units take 
only 0-1 values, we have to reformulate the problem involving only binary decision 
variables. We will choose our variables as sxi, 1 d x ,  i ,< N. The variable sxi governs 
the decisions of putting city x in position i. We denote by w,~,,~, the weight connecting 
the units xi and yj. It is easy to see that not every possible global state represents a 
tour. For example, if for a given x, sxi = 1 for more than one i then it means we are 
assigning more than dne position to a given city and that is not permitted. Hence in 
formulating our energy, in addition to incorporating the tour length, we should also 
incorporate constraints which make sure that energy is large for global states that 
do not represent a valid tour, With this motivation, a possible energy function is 

The first term penalises (i.e. results in higher energy of) any global state where more 
than one position is assigned to the same city. The second term similarly penalises 
global states that assign two different cities to the same position. Now, if we take 
sxi = 0 V x, i, then the first two terms are zero but we still have not got a tour. So, 
the third term enforces the condition that there should be exactly N cities on the 
tour. These three terms together incorporate the conditions for valid tours. The fourth 
term accounts for the actual length of the tour represented by a global state. Here 
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dxy is the distance between cities x and y, and the subscripts i + 1 and i - 1 should 
be understood such that N + 1 is 1 and 1 - 1 is N .  

If we rewrite (5) in the form of (4) (where wij now becomes w,,,,~), we get 

w = - A (1 - ) - 1 - 8 )  - C - Ddx.(j,i+ + 6 , -  ) (6) 
and 

T~~ = C N ,  
where 

6,, = 1, if i = j, 

= 0, otherwise. 

By proper choice of parameters A, B, C, D one can make sure that global states 
corresponding to a tour have lower energy than others. Further, due to the last term 
in (3, tours with smaller lengths have lower energy. If we run the Boltzmann machine 
with weights and thresholds as given by (6), then, at steady state, the machine will 
spend more time in global states that correspond to tours with lower length. If we 
gather statistics about state occupancy at steady state, we can find the solution to the 
TSP by picking the state with highest probability. 

The procedure as outlined above, though offering a solution to an optimization 
problem in principle, is not very effective in many cases. In TSP, for example, there 
are 2N*N possible global states and all of them have non-zero steady state probabilities 
[see (3)]. Hence the probability of finding the machine in the optimal tour might be 
numerically very small (though still greater than finding the machine in any other 
state). Thus one needs statistics about a larger number of states gathered over a long 
time to be able to obtain the solution. 

A possible method to overcome at least the storage overheads of gathering statistics, 
is the use of simulated annealing (Kirkpatrick et al 1983). 

As explained earlier, the dynamics of the ~oltzmann machine allows state changes 
that increase the energy. The probability with which these uphill moves are made is 
controlled by the parameter /3 in (2). If P = 0 then all state changes (both 'uphill' and 
'downhill') are equally probable. On  the other hand, as P tends to infinity only those 
state changes that reduce the energy are possible. In the terminology of simulated 
annealing, 1/fi is called temperature. To incorporate simulated annealing into the 
Boltzmann machine, we start the machine with a high temperature (low value of P)  
where state changes are essentially random. Then slowly, the temperature is decreased 
with time (i.e. p is increased with k) ultimately approaching zero temperature (P 
tending to infinity). This process is called cooling. If the cooling schedule, that is, the 
manner of decreasing temperature with time, is sufficiently slow then, at equilibrium, 
the machine will be in only those global states which represent global minima of the 
energy function. A cooling schedule that is suficient is T(k) 3 A/(B + log k) where A 
and B are appropriate constants (Mitra et a! 1986). Here T(k)(= l/P(k)) is the 
temperature at instant k. It is easy to see that the temperature needs to be reduced 
very slowly and hence a large number of iterations are needed to get the temperature 
sufficiently near zero. 

Thus the Boltzmann machine with simulated annealing can find the global minima 
of quadratic objective functions over Boolean variables but will take enormous time. 
Unlike the case where the machine is run at constant temperature (and hence the 
need to gather statistics at the steady state), here the space complexity of the 
optimization algorithm is very small. 
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In conclusion, we can see that the Boltzmann machine is an interesting network-based 
optimization technique. It may be noted that by making the net input of a unit equal 
to the energy difference between appropriate global states (as explained in $2), we 
can think of this as a general technique of optimization. But only in the case of 
quadratic functions can we write this energy difference as in (1). Viewing this 
computation as being performed on a network, where each unit decides its state 
based on the weighted sum of outputs of other units, is possible only when the energy 
function is quadratic. It may appear that there is not much parallelism here because 
at each instant only one unit is updated. But if we let each unit be run with its own 
clock, whose ticks are Poisson-distributed and which is independent of all other 
clocks, then we can implement the network on a set of processors without need for 
any explicit synchronism. To that extent it can be viewed as a parallel network. 

4. Boltzmann machine and soft constraints 

Consider a Boltzmann machine where the states si are such that si6{ - 1,1> 'di. Now 
if we consider the global states S,  and Sp  such that sq = - 1, sf = 1 and s; = sf V j  # i, 
then, forgetting the thresholds for the time being, we get E, - E p  = 2 Z j  wijsj. Thus 
even now, the net input measures the change in global energy and hence by the 
dynamics given by (2), the machine still prefers downhill moves in trying to minimise 
the energy given by (4). 

Now, the energy to be minimised is - Bwi;.sisj.. Therefore, if wij is negative it is 
worthwhile making si ad sj of opposite sign and vice-versa. Thus wii can be thought 
of as a constraint on the possible values for si and s j .  But this constraint is soft. Thus, 
just because wij is negative it may not always be desirable to make si and sj  of opposite 
sign. For example we can have weights wki and wkj both of which are negative and 
much larger than wu. Hence, it is desirable to make the pairs si and s, and s j  and s, 
of opposite sign which forces us to make si and s j  of the same sign though wij is negative. 

In the next section we give a formulation of such constraint satisfaction problems. 
If the objective is only to find global minimum of the energy, then the view of 
constraints satisfaction will not be very appealing. (A constraint satisfaction problem 
is appealing mostly in the context where there are multiple solutions that 'satisfy' the 
constraints.) So, we establish a connection between constraint satisfaction and local 
optima of the energy. Since the energy is defined on a finite set we have to clearly 
define what we mean by local optima. All these will be discussed in detail in the next 
section. 

5. A mathematical formulation of constraint satisfaction 

In formulating problems with soft constraints we follow the treatment of Hummel & 
Zucker (1983). This class of problems is termed the labelling problems. A general 
labelling problem is specified by giving 

i) A set of objects, 0 = {O,, . . . , ON) 
ii) A set of labels, A = {I, . . . , M) 
iii) A neighbour relation over 0 specifying which pair of objects constrain each other. 
iv) A set of compatibility functions that specify the constraints. 
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The problem is to assign a label to each object such that the assignment is 'consistent' 
with respect to the compatibility functions. For every pair of objects Oi and Oj that 
constrain each other (as specified by the neighbour relation), there is a compatibility 
function, rij: A x A -t R. rij(l, 1"') is a measure of consistency of object-label pairs (O,, A) 
with (Oj,it). Thus this compatibility specifies, locally, how well the label 2 on Oi fits 
the decision of putting the label jv' on Oj. We can assume that ri j  are defined for all 
pairs i and j and stipulate, as a notation, that rij = 0 if 0, and Oj are not neighbours. 

Once such local compatibility functions are given, we have to define what we mean 
by global consistency. Let us denote by 3L = (A, ,  . . . , A,), a label assignment that assigns 
label Li to object Oi, 1 < i < N .  

DEFINITION 1 , 

A label assignment (L,, . . . , iN) is said to be consistent if 

It is said to be strictly consistent if the above inequalities are strict for A # Ai. 
We can think of the quantity Crij(Ai, A j )  as the amount of evidence in support of 

label on Oi given the labels on all other objects. Thus at a consistent labelling if 
we change the label on any one object, the 'amount of consistency' decreases. That 
is, changing the label on Oi will decrease net supporting evidence at Oi and this is L 

true for all objects. This can also be viewed as a local maximum of an appropriate 
objective function. 

Let L denote the space of all labellings. L will be an N-fold Cartesian product of 
the label set, A. We define a neighbourhood structure on L as follows. 

DEFINITION 2 

Let X = (IL1,. . . , > . N ) ~  L and let us denote by N(X) all neighbours of X. Then for any 
p = ( p l , .  . . , p N ) € 4  ~ E N ( L )  if and only if there exists i, 1 < i < N, such that Ai # pi and 
r, = p .  Q ' #  i. 

J J 
Thus given a labelling A, any other labelling differing from it in the assignment of 

a label to only one object, is a neighbour of X. Now we define a functional, F, on L by 

DEFINITION 3 

A labelling LE L is said to be a local maximum of F if 

F(h) b F(p), for all p EN@). 

Now we are ready to establish the connection between consistency as defined by 
definition 1 and the local maxima of F. 

a 

Theorem 1. Let the compatibility functions be symmetric. That is, rij(A, A') = rji(A', A), 
for all i, j, 2, lW1. Then, a labelling X E  L is consistent (definition 1 )  if and only if it is a 
local maximum of the functional F (definition 3). 

The proof of this theorem is very straightforward and directly follows from the 
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definitions. Now let us take another look at the Boltzmann machine to understand 
it in the labelling framework. 

Consider a labelling problem with N objects and the label set {+ 1, - 1). Let the 
compatibility functions be rij(si, sj) = wijslsj. We now apply definition 1 to determine 
when a labelling (global state), S, is consistent. We must have 

1 rij(si, sj) 2 rij(s, sj). 
j j 

Since each s is + 1, substituting the values for rij we get, for the case when si = + 1, 

Similarly we get, if si = - 1, 

Hence, for a global state S to be consistent, si should be of the same sign as Z: wijsj. 
That is, we want to make sl > 0 if the net input is positive and vice-versa. That is exactly 
the same as the Hopfield net. In the Boltzmann machine we said that we do not 
make si > 0 with probability 1 every time the net input is greater than zero because 
we want to include uphill moves also to avoid local minima. To understand this let 
us look at the F function for this case, 

F (S) = wijsisi. 
i , j  

Thus F(.) = - E. We know that the consistent labellings are local maxima of F (in 
the sense of definition 3). Thus they are local minima of E. Hence the consistency as 
given by definition 1 makes sure that we reach a local minimum of the energy function 
E. However, by allowing uphill moves and using simulated annealing, the Boltzmann 
machine can, in principle, find the global minima of energy E. 

The labelling problem as formulated is an extension to the set of problems that 
can be tackled by the Boltzmann machine. Here we allow an arbitrary number of 
labels rather than restrict each object to a binary state. Therefore, even though 
consistency guarantees only a local maximum of F, due to the extra freedom allowed 
in the formulation, it might often be a more preferable alternative to formulating the 
problem in the framework of a Boltzmann machine. For example, in the case of TSP 
we have seen that it is essentially the need to work with Boolean variables that force 
us to add many constraints as penalty terms in the energy. By choosing the set of 
objects and labels intelligently we may avoid many such penalty terms in our energy 
function and thus even a local maximum of F might be an acceptable solution. The 
second reason for investigating labelling problems is that we can get parallel 
network-based algorithms to solve them so that the time complexity is much smaller 
than that of the Boltzmann machine. 
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6. A network of learning automata for solving the labelling problem 

In this section we present a stochastic network based on learning automata for solving 
the consistent labelling problem. A learning automaton is an adaptive decision-making 
device that can identify the optimal action out of a finite set of actions through 
interactions with a random environment. We will not be giving any details regarding 
general learning automata models and the reader is referred to Narendra & 
Thathachar (1989) for such details. The automata algorithm for the labelling problem 
is presented in Thathachar & Sastry (1986). Were our interest is in viewing it as a 
stochastic network and contrasting it with other similar stochastic networks. 

Consider a labelling problem with N objects and M labels. We use a network of 
N automata to solve the problem. The state of each automaton is a probability 
distribution over the set of labels. The state of the automaton i (associated with 
object Oi) at instant k is pi(k) = Cpir (k). . . piM(k)lt where pis is the probability with 
which automaton i chooses (i.e. associates object Oi with) label s. The output of the 
automaton is a random realisation of this probability distribution. That is, the output 
of automaton i at instant k is a choice of label for object Oi, at random, based on 
p,(k). Each automaton receives at its input the outputs of other automata (i.e. labels 
chosen for other objects) and uses this information to update its state, i.e., its label 
probability distribution. The network functions synchronously. That is, at each instant 
all the automata, simultaneously and independently, select labels for their objects at 
random based on their label probability distributions. Then each of them receives at 
its input the outputs of other automata, computes their net input and uses the net 
input to update the states. The state updating is also done simultaneously by all the 
automata. We now specify the dynamics of the network, that is, rules for computing 
net input and updating the state. 

Suppose at instant k, the ith automaton has chosen label A,. Then the net input 
to automaton i at k, net,(k), is given by 

The state of the automaton at (k + 1) is computed as 

where 0 < a < 1 is a constant. 
The net input into an automaton is still given by a summation of the effects of 

outputs of other automata. But instead of a simple weighted sum, we use a 'nonlinear' 
summation using the functions rij. 

In the terminology of Learning Automata theory, net, is called the reaction received 
by the ith automaton from its environment and the state updating given by (9) is 
called Linear Reward Inaction algorithm. Since pi(k + 1) should be a probability 
vector, it is necessary that 0 ,< net,(k) d 1 for all i and k. To ensure this we assume, 
without loss of generality (Thathachar & Sastry 1986) that r i j ( A , R ' ) ~ [ O ,  11 for all i, j, 
" 
A, A .  

Let us denote by P(k)€RMN, the collection of all label probability vectors pi(k), 
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i = 1 , .  . . , N. Since each pi is a probability vector, P(k) belongs to  K c R ~ ~ ,  defined by 

K = (p€RMN:P = (pi . .  . p&)I,pi = (pil.. .piN)'€RM, 

Pi j&O,Vi , j , xp i j=  1 , i =  1 ,..., N ) .  
j 

We can think of K as the N-fold cartesian product of M-dimensional simplices. 
Let e, denote an M-dimensional unit (row) vector with its ith component unity. 
(e,, . . .e,,)'€K is, for our algorithm, a labelling (a,,. . .,A,) that assigns the label Li 
to object i ,  i = 1,. . . , N. All such points are termed corners of the space K. 

P ( k )  is the global state of our network at  instant k. By the dynamics specified by 
(8) and (9), P ( k )  is a Markov process with state space K. To understand the performance 
of our network we need to obtain the asymptotic behaviour of P(k). For this, consider 
a piecewise-constant continuous time interpolation of P(k),  P""(.), defined by 

&t) = P(k) for t~[ka,(k + l)a), 

where a is the parameter used in (9). 
P(.)€llMN, the space of all functions from R into RMN which are left-continuous 

and have right-hand limits. Under the Skorohod metric (Billingsley 196s) this is a 
complete metric space. Now consider the sequence {p(-)) indexed by a. Using weak 
convergence results, it can be proved (Kushner 1984; Thathachar & Sastry 1986) that 
P" converges weakly to FO, where B0 is a solution of the ordinary differential equation 
(ODE) 

= gb), z (0) = P(O), (10) 
where 

a&.)  = E [ P ( k  + 1) - P(k) 1 P(k) = z ] .  

By analysing the asymptotic behaviour of the ODE (lo), and by the properties of 
weak convergence, one can obtain the asymptotic properties of P(k). The is stated in 
the following theorem. 

Theorem 2. If the value of the parameter a in (9) is suflciently small then 
the following is true about the asymptotic behaviour of the dynamical process 
{P(k), k 2 1). 

(i) Every strictly consistent labelling is an asymptotically stable stationary point of 
the process. 

(ii) Every stable corner of the state space K is a consistent labelling. 
(iii) All stationary points in the interior of K are unstable. 

The implication of this theorem is that the network mostly converges to a corner 
in K that is a consistent labelling. The convergence result is incomplete because we 
do not know about the stability or otherwise of stationary points on the faces of K 
(i.e., points that are neither corners nor are in the interior). Also, the ODE being 
nonlinear, there is a possibility of other limiting behaviour such as limit cycles. In 
practice, these cases never seem to arise. 

6.1 Comparison with the Boltzmann machine 

In the Boltzmann machine the global state is an ergodic Markov chain. Thus, at any 
finite temperature, the machine converges to a probability distribution over the set 
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of all labellings. The global state of the automata network is a hfarkov Process with 
absorbing states. [It can easily be verified that all corners of K are absorbing for 
p(k).] Thus the automata network converges to a specific labelling which is one of 
the possibly many consistent labellings. 

The steady state probability distribution of the Boltzmann machine prefers low 
energy states. Though the machine keeps visiting all labellings with a non-zero 
probability, the probability of visiting states with lower energy is higher. By 
incorporating simulated annealing we can reach the global minimum; but it will take 
a very long time. In constrast, the automata network converges to a specific labelling 
that is a local maximum of F(.)  This may or may not a global maximum depending 
on P(0). But there is no scope for incorporating a mechanism like simulated annealing 
into the automata network. 

For the Boltzmann machine, viewed as an optimizer, the objective function has to 
be quadratic involving only binary variables. In the more general labelling problem, 
the labels need not be binary, and also, by clever choice of riis one can tackle 
nonquadratic functions as well. By utilising the extra freedom given by the labelling 
framework one can reduce the possible unwanted local minima as compared to the 
energy function formulation of the Boltzmann machine. For example, in the energy 
function given by (3, we had three terms for incorporating the constraints which are 
necessary when formulating TSP using only Boolean variables. In a labelling 
framework, suppose we let each automaton represent a city and the actions represent 
position numbers. Then we do not need constraints such as no city be placed in more 
than one position (the 'A-term' in (5)) and every city be placed in some position (the 
'C-term' in (5)). This can effectively be used in reducing the unwanted local minima 
(Muralidharan 1989). 

As mentioned earlier, the automata network is primarily for constraint satisfaction 
problems with soft constraints. In such problems there will be, in general, many 
consistent solutions and what is desired is a consistent labelling 'close' to the initial 
problem data provided. Many problems in computer vision are of this type. In the 
automata algorithm the initial data can be incorporated through pi(0), the initial 
values for the action probabilities thereby biasing the network to converge to a 
consistent labelling closeby. Since the Boltzmann machine results in an ergodic chain, 
the initial state has no effect on the asymptotic behaviour and hence we have to code 
the initial data also as part of the energy function. 

This algorithm was successfully employed in computer vision problems such as 
stereopsis and object recognition (Sastri et a1 1988). Also unlike the Boltzmann 
machine,  here only one unit changes state at any given instant, here all automata 
function s~nchronousl~  and hence the network can be implemented in parallel, for 
example, on an  single instruction multiple data (SIMD) machine (Banejee et 1987). 

6.2 Another stochastic network for the labelling problem 

An important and widely studied algorithm for the constraint satisfaction and 
optimization problems of the kind studied in this paper is the algorithm of Geman & 
Geman (1984). 

Consider a labelling problem as specified a t  the beginning of 8 5. The neighbour 
relationship can be viewed as a graph with the set of objects as vertices. A clique of 
this graph is a set of objects, where all pairs of objects are neighbours. Instead of 
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specifying a set of compatibility functions rii, let us assume that the prior knowledge 
about the constraints to be satisfied by the solution can be encoded through an energy 
function defined on the set of labellings by 

where B is the set of all cliques. VJb) is called a potential function and its value 
depends only on the labels (components of 5) of those objects which are contained 
in the clique c.  If we allow only cliques containing pairs of objects then Vc is similar 
to rij(&, Ev j )  and E(.)  is similar to F(.) defined by (7). So the local minima of E(.) can 
be thought of as the 'consistent' labellings. We define a prior probability for each 
labelling by 

n(1) = exp ( - E (5)/Z, 

where Z is a normalising constant. It may be noted that this is the same as the steady 
state distribution of a Boltzmann machine though here the labels are not binary. The 
prior probability distribution given by (12) prefers labellings with low energy. As 
earlier, the objective is to find a consistent labelling that is close to the initial data 
given. In this approach we define the solution to be the global maximum of posterior 
probability P(Lld), which is the probability that the 'correct' labelling is 5 given the 
data d. We can use Bayes rule to calculate P(5Jd) using (12) if we have the conditional 
probabilities, P(dl l). These can be specified by having a model for the process which 
generates the data. Under some mild conditions on the conditional probabilities 
(which are generally true for image processing problems), P(L Id) will have the same 
form as (12) with the posterior energy containing one term for the data in addition 
to the summation of clique potentials as in (11). So now the problem is to find a 
parallel algorithm for finding the global maximum of a probability distribution as in 
the case of the Boltzmann machine. In the algorithm we have a unit for each object 
which chooses a label at random using the conditional probabilities given the current 
labels of all the neighbouring objects. This so-called Gibbs sampler algorithm can be 
shown to generate an ergodic Markov chain whose steady state distribution is the 
needed posterior probability distribution (same form as (12) but with E replaced by 
posterior energy). So as in the case of the Boltzmann machine we can reach the global 
maximum of the posterior probability by incorporating simulated annealing. 

Thus the Geman & Geman (1984) algorithm can be viewed as an extension of the 
Boltzrnann machine to the more general labelling framework. It generates an ergodic 
Markov chain (and hence we need to incorporate the data into the energy function) 
and we aim to reach the global maximum by incorporating simulated annealing. The 
main problem with this algorithm is its extremely slow rate of convergence. 

This algorithm is presented rather briefly because it is best explained in the context 
of image processing problems and such a discussion is beyond the scope of this paper. 
The details can be found in Geman & Geman (1984), Geman & Graffigne (1987) and 
Geman et a1 (1990). An extensive comparison of the automata model with the Geman & 
Geman algorithm is found in Banerjee (1989). 

Though in this paper we have discussed the automata model and the Geman & 
Geman algorithm as if they are extensions of the Boltzmann machine, all the 
algorithms have been originally proposed more or less independently from different 
perspectives. 
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7. Conclusions 

In this article we have presented a brief account of some stochastic network models 
for solving special types of constraint satisfaction and optimization problems. The 
use of such soft constraints is important in areas such as computer vision, image 
processing etc. Also these models give a flavour of the type of problems that can be 
tackled by artificial neural networks. There are deterministic schemes also for tackling 
soft constraints, for example, the graduated non-convexity algorithm of Blake & 
Zisserman (1987). See Blake (1989) for a comparison of the deterministic scheme 
against those that use simulated annealing. 

The Boltzmann machine discussed here also has applications in pattern recognition 
and learning. These are not discussed because it would be outside the scope of the 
topic of this paper. The reader can refer to Rumelhart & McClelland (1986) for details. 
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