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This article surveys the current state of phase-change memory (PCM) as a nonvolatile memory technology
set to replace flash and DRAM in modern computerized systems. It has been researched and developed in
the last decade, with researchers providing better architectural designs which address the technology’s main
challenges—its limited write endurance, potential long latency, high energy writes, power dissipation, and
some concerns for memory privacy. Some physical properties of the technology are also discussed, providing
a basis for architectural discussions. Also briefly shown are other architectural alternatives, such as FeRAM
and MRAM. The designs surveyed in this article include read before write, wear leveling, write cancellation,
write pausing, some encryption schemes, and buffer organizations. These allow PCM to stand on its own as
a replacement for DRAM as main memory. Designs for hybrid memory systems with both PCM and DRAM
are also shown and some designs for SSDs incorporating PCM.
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1. INTRODUCTION

The purpose of this architectural survey is to provide newcomers to the field of PCM
research with an introduction to PCM, its applications and challenges, and some key
ideas already published by researchers. It also provides veteran researchers with a
quick index of PCM architectural designs—all researchers affiliated with PCM may
benefit from this article as a quick reference to other, more extensive works focusing
on a desired aspect of PCM.

There are quite a few published surveys regarding PCM. Some offer only a glimpse
of the current state of PCM development [Atwood 2010; Lai 2003; Lam 2007], while
others offer a more extensive review of PCM technology [Burr et al. 2010; Li and Lam
2011; Ohta 2011; Wong et al. 2010]. However, these surveys mostly cover the physical
properties of the PCM cell, such as the crystallization process of the chalcogenide glass,
fabrication challenges, and the resistivity and endurance of the PCM. To the best of
our knowledge, this is the first survey to cover architectural aspects of incorporating
PCM in common applications, such as PCs, laptops, and SSDs.
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Computer systems are present today in every home and business, and are under con-
stant development to satisfy growing demands for more applications with better per-
formance. Such systems, whether in desktop, laptop or handheld computers, whether
in large business machines or tiny embedded systems, mostly rely on memory devices
either as their main storage system or as a faster access point to slower hard disk
drives (HDDs).

While there are several technologies involved in memory systems, depending on
the overall systems requirements and limitations, any such technology has both a
cost and physical limitation when scaled down or pushed to some performance limit.
It is always up to researchers to improve upon the existing technology’s limitations,
but ultimately realize that at some point the costs of minimizing and optimizing the
existing technology may surpass its benefits. That is the exact time the industry may
be open for new ideas and innovative technologies that have a prospect of answering
the industry’s demands for the upcoming years.

phase-change memory (PCM) is a reborn nonvolatile memory technology, initially
researched in the 60s and abandoned, only to be picked up again at the turn of the
century, and is now considered a promising technology that may replace the existing
trusted but aging technologies of both flash memory and DRAM. While it is of some
controversy whether flash or DRAM are actually nearing their technological limits, and
both have been developed and improved further than some have foreseen, it is likely
that at some point in the future they too will reach their respective limits [Freitas and
Wilcke 2008], and it is that prospect which motivates PCM researchers to bring the
technology to a stable, cost-effective, and competitive state when compared with the
standard technologies used in modern computerized systems.

The remainder of this survey is organized as follows. Section 2 offers a short tech-
nological survey of leading memory technologies, such as DRAM and flash, while also
providing a short survey of so-called competing technologies. Section 3 provides a brief
historical introduction of PCM up until commercial developments in recent years.
Section 4 surveys PCM cell attributes—its physics, cell designs, and quantitative
parameters. Section 5 discusses PCM applications as flash or DRAM replacement.
Section 6 explains the challenges in adopting PCM as either flash or DRAM replace-
ment, and gives the basic questions any researcher must strive to answer. Section 7
surveys some key papers attempting to provide architectural designs as solutions for
main memory designs. Section 8 complements the architectural designs with a survey
of PCM in SSDs. Section 9 concludes the article.

2. OTHER MEMORY TECHNOLOGIES

Prior to elaborating on PCM technology, this section highlights other key memory tech-
nologies. Some of these, such as DRAM and flash, are the dominant technologies in
today’s market, while others, such as FeRAM and MRAM, are aspiring new technolo-
gies that are still in prototype or early manufacturing stages, but are still considered
as promising alternatives to existing technologies and are therfore constantly under
development.

2.1. Quantitative Parameters

Since PCM is constantly developing, it is difficult to present accurate data and measure-
ment for its physical properties, as different works contain varying parameter values.
Additionally, any comparison with other technologies should be examined carefully,
as some published parameters originate in commercial advertising, while other up-
to-date parameters are difficult to obtain because the industry does not publish some
of its datasheets. Table I attempts to offer key parameters of the main technologies
mentioned here.
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Table I. Quantitative Parameters of PCM

Parameter DRAM NAND Flash PCM
[Boboila and Desnoyers 2010] [Atwood 2010]
[Javanifard et al. 2008] [Pirovano et al. 2004b]
[MicronFlash 2008]
[Nobunaga et al. 2008]

Scalability 3X nm 2X nm <1X nm
[Samsung 2011]

Read Latency 60ns 25–200us 50–100ns
Write Speed ∼1Gb/s 2.5 MB/s ∼100MB/s
Endurance N/A 103 to 105 106 to 108 [Atwood 2010], 1011

[Pirovano et al. 2004b]

2.2. DRAM

Dynamic random access memory (DRAM) serves as the main memory of personal desk-
top computers, laptops, gaming consoles, and high-end phones. A DRAM cell consists of
a single transistor and single capacitor, allowing great density (in the order of several
Gb per chip [Samsung 2009]). DRAM is a volatile memory technology, meaning that
it requires routine refreshing of its data every few milliseconds, although some of its
stored data may still be recoverable after several seconds, depending on environmental
parameters [Halderman et al. 2008].

2.3. Flash Memory

Flash memory is a nonvolatile memory technology whose cells use floating gate devices.
Flash is organized in two variations. The first is NOR flash, which is not very dense, and
therefore is used mainly for code storage, for example, as boot up software. Since it is not
used for data storage, it is not discussed in this article. The other form is NAND flash,
which is common as data storage in mobile devices, such as digital cameras and digital
audio players and is also becoming widely used in laptop computers. Being nonvolatile,
it requires no power to maintain the data stored in it, unlike DRAM. Additionally,
it has faster access times and more shock resistance than magnetic disks (HDDs), is
considered more durable, and can sustain higher pressures. Its main limitations are
the need to erase whole blocks of it (resetting the cell’s values to 0), which forces the
memory controller to rewrite some of the data after it has been erased, and its limited
number of program-erase cycles. Typically, flash devices can withstand about 1,000–
10,000 program-erase cycles, with ongoing research to increase that number by a factor
[MicronFlash 2008]. It should be noted that the number of program-erase cycles is not
an accurate criteria for flash endurance, since flash is typically written iteratively,
and its value is checked after several such cycles. Should the value be incorrect after a
certain threshold, the operation is deemed as a failure. But by increasing this threshold,
it is possible to increase the number of program-erase cycles supported, at the expense
of write operation latency.

2.4. Other-Solid-State Memory Alternatives

Besides PCM and NAND flash, there are other alternative memory technologies consid-
ered for solid-state memories. Two such leading technologies are FeRAM and MRAM,
though PCM has been demonstrated to be feasible with smaller device dimensions than
these technologies [Burr et al. 2010].

FeRAM. Ferroelectric RAM, or FeRAM, is a RAM with a similar construction to
DRAM. However, FeRAM substitutes DRAM’s dielectric layer with a ferroelectric layer.
This causes the FeRAM to be a nonvolatile memory. FeRAM was first proposed in the

ACM Computing Surveys, Vol. 45, No. 3, Article 29, Publication date: June 2013.



29:4 O. Zilberberg et al.

1950s but has been developed mainly by Ramtron in the mid 2000s. Small scale FeRAM
is now commercially available and has been used instead of NOR flash in some chips.

FeRAM has been suggested for a hybrid flash and FeRAM memory architecture in
an SSD called Chameleon [Yoon et al. 2008].

MRAM. Magnetoresistive RAM, or MRAM, is a nonvolatile memory technology that
does not use electric charge to store data, but instead uses magnetic properties [Huai
2008]. It consists of two ferromagnetic plates and an insulating layer. One layer has a
constant polarity, while the other can be switched between polarities, effectively storing
a data bit. A 32Mbit RAM device has been demonstrated, and smaller 4Mbit devices
have been marketed. MRAM has also been considered as an alternative in CMOS
designs [Guo et al. 2010]. This technology is less mature than PCM and FeRAM and is
still under development.

3. PCM HISTORY AND CURRENT STATE

Early Years. The initial research on the usage of phase-change materials in memory
application is attributed to Stanford Ovshinsky, whose research into certain glassy ma-
terials having the property of switching between two phases in a stable manner even-
tually led to the recognition that some of these materials exhibited a change of phase
between an ordered state and a disordered phase. In the late 60s, it was recognized that
these two phases had very distinct resistivity, an effect which could be harnessed for
both optical and electronic memories. The research culminated in September 1970 with
a collaboration between Ovshinsky’s company, Energy Conversion Devices, and Intel’s
Gordon Moore, which presented the first PCM array of 256 bits [Ovshinsky 1968].
However, the technology had not been further developed until recent years, because
material quality and high power consumptions had rendered it non-cost-effective and
thus impractical when compared with the other popular technologies of that time.

Recent Years. Research into phase-change Materials and their applications as mem-
ory devices has picked up significantly in the last decade, as the growing demands
on memory devices and scalability issues prod scientists and engineers to look for
alternative technologies.

Modern development of PCM began in the late 90s with the forming of Ovonyx,
Inc1, a corporation which licensed all intellectual properties and patents. from Stanford
Ovshinsky’s Energy Conversion Devices in order to commercialize Ovshinsky’s original
technology. The 2000s showed other major players entering the field of PCM R&D,
such as Intel, Lockheed Martin, and STMicroelectronics. Intel and STMicroelectronics
showed a 128Mb PRAM device in 2008. Such devices were released to customers in 2009
and mass produced in 2010 by Numonyx, later purchased by Micron, Inc. These devices
were all based on 90nm technology [MicronNumonyx 2010]. Numonyx has announced
a 1Gb device based on 45nm technology, but is yet to ship it to customers. Another key
player, Samsung, announced in June 2009 that they have joined forces with Numonyx
to further develop and market PCM technology. In April 2010, Samsung announced a
512Mb PCM based on 65nm technology [Samsung 2010].

4. ATTRIBUTES

4.1. Physics

Phase-change memory utilizes the special characteristics of chalcogenide glass, which
can switch between two distinct states—amorphous and crystalline. Phase-change ma-
terial can be switched between its states by applying heat using electrical pulses. The

1http://oronyx.com/corporate.
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Fig. 1. PCM cell structure with electrodes connecting the phase-change material and the heater with the
bitline and wordline.

important distinction between the two states is in their electrical resistivity—the amor-
phous state is characterized by its high resistivity, and the crystalline state by its low
resistivity. Fast crystallizing materials, such as Ge2Sb2Te5 (GST), which can crystallize
in less than 100ns, can have practical uses as fast memory devices. Moreover, these
devices can be fabricated in smaller dimensions than other industrial memory tech-
nologies (e.g., DRAM and flash memory) [Burr et al. 2010; Lee et al. 2009; Numonyx
2008; Qureshi et al. 2009a, 2009b; Zhou et al. 2009].

A PCM device generally consists of phase-change material located between two
electrodes. Between the bottom electrode and the phase-change material itself, there
is a heating element present (see Figure 1). The PCM is characterized by two key
temperatures—crystallization temperature and melting temperature. Injecting cur-
rent into the contact of the PCM and the heating element, thus heating the PCM above
the first threshold temperature but below the second one, sends the material into the
crystallized state and is called the SET operation. Alternatively, applying high volt-
age (and consequently high power) to the crystallized PCM increases its conductivity,
and shutting down the current when a certain threshold voltage has been achieved
sends the material back to the amorphous state. This is called the RESET operation
(see Figure 2). SET operations are achieved by applying moderate power for a long
series of electrical pulses, while RESET operations are achieved by a short duration of
high-powered electrical pulses.

In order to read the data stored inside the PCM, low power is applied to it, thus
sensing its resistivity. After a SET operation, when the device is in the crystallized
states, its resistance is low and its data is equivalent to a logical 1. Accordingly, af-
ter a RESET operation, the device is in its high-resistance amorphous state, which
constitutes a logical 0.

It has also been shown that PCM can retain its stored resistance value for ten years
at a temperature of 110◦C, estimating some 300 years of data retention at a normal
working temperature of 85◦C [Pirovano et al. 2004b].

4.2. Single-Level Cells and Multilevel Cells

The PCM memory cell has so far been shown to store one of two possible values, that is,
a single bit. This is the traditional use of a memory cell, called single-level cell (SLC).
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Fig. 2. RESET current heats the PCM above the melting temperature and puts it in the amorphous state.
SET current heats it above the crystallization temperature, but below the melting temperature, and puts it
in the crystallized state.

There is ongoing research into increasing the storage capabilities of a single PCM cell
by utilizing its physical properties to switch between several distinct states. A single
PCM cell can be put in four distinct physical states [Bedeschi et al. 2009; Dong and Xie
2011], while sustaining reasonable latency and write endurance limitations. A specially
designed programming algorithm allows the PCM cell to be put in intermediate states
in terms of resistivity, by exposing the cell to a set of accurately designed electrical
pulses. Such design is called a multilevel cell (MLC), and in this design, two bits are
stored in a single MLC, effectively doubling the storage capacity of the memory for the
same area cost [Lin et al. 2009].

In order to put the PCM cell in the correct state when it is used as an MLC, it is
often necessary to use iterative writes [Nirschl et al. 2007; Qureshi et al. 2010a]. This
technique stems from the fact that different PCM cells have different responses to
electrical pulses, and this physical behavior is unpredictable. It is therefore impossible
to program a PCM cell to a desired state with a single electrical programming pulse
without some probability for errors. As shown in Figure 3, the iterative writes method
calculates the properties of the electrical pulse required to program the PCM cell, but
after it has been applied to the cell, the cell’s state (resistivity) is sampled to ensure
it has been set to the correct state. If that is not the case, a new electrical pulse is
calculated and applied, iteratively setting the cell until it reaches the desired state,
that is, its resistivity is in the desired range.

5. APPLICATIONS

This section raises the main possible applications for PCM memory, should it arise
above the challenges facing it—that of flash memory and of DRAM memory, both
core technologies in computerized storage systems, each with its predicted limitations.
These applications offer fertile ground for development of PCM, since both flash and
DRAM technologies are found abundantly in various systems, and should PCM replace
either of them, it could become a key technology in the computerized memory industry.

5.1. An Alternative for Flash

An important market in which flash has grown to be dominant is the solid-state drive
(SSD) market. SSDs are data storage devices which store persistent data. Unlike HDDs,
they have no moving parts and are therefore more resistant to physical shocks, are
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Fig. 3. Iterative writes algorithm for PCM MLC writes.

quieter, and have lower access times and latencies than HDDs. These factors have led
SSDs to be used as a replacement for HDDs in some laptop computers, with a maximal
capacity of up to 512GB [Toshiba 2009]. While these advances speed up development
of flash memory, they also increase the demands on flash technology, ever bringing it
closer to its cost-effect limit. Even as multilevel cells are researched for PCM, they
exhibit lower resistance and write speed, and ultimately, flash memory may reach its
limit or at least reach a critical point where other technologies, such as PCM, may prove
to be more effective for the same cost [Burr et al. 2010]. When flash memory would
reach this critical point is a controversial issue, but growing research into alternative
technologies brings that point nearer.

PCM, being a nonvolatile memory, which at least theoretically exhibits superior
endurance and latency when compared with flash memory, offers a viable alternative to
flash memory [Bez et al. 2010]. If the challenges in producing it in lower scales and fully
integrating it as a memory chip in portable devices or as an SSD in laptop computers
are met, it may someday replace flash memory or at least some of its uses. Until such
a time, PCM could also be used in hybrid flash-PCM architectures to counter some of
the disadvantages of flash memory. Such designs are further explained in Section 8.

5.2. An Alternative for DRAM

Modern computer systems usually employ several processor cores on a single chip, with
many systems also consisting of several such chips. This ever-growing computational
power allows for more concurrent threads and processes, which naturally leads to
an increased demand for fast, available data. This burden falls mainly on the main
memory of the computer system, which must meet demands of both quantity and
availability—more concurrent processes require more data, and going to the hard disk
drive for data too often cancels out any increase in computational power, since it is too
slow. The preferred choice for the system’s main memory is almost always DRAM (see
Figure 4(a)), and has been such for several decades.

However, in recent years, DRAM has approached its limits in scalability and perfor-
mance. It has already fallen behind other technologies when scaling technology down to
4x nm, and even more so when incorporated into 3x nm technology [Atwood 2010; Burr
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et al. 2010]. The time may soon come when DRAM can no longer fulfill the increasing
demands of multicore processors with respectively increasing workloads. These limits
of DRAM in the one transistor one capacitor cell design are due to both capacitor scaling
and transistor scaling. Future process scaling depends on the ability to manufacture
a small enough capacitor that still stores a sufficient charge for reliably sensing the
bitline, and also on the access transistor that, as it keeps scaling down, also becomes
more difficult to ensure DRAM retention times, owing to the transistor’s increased
subthreshold leakage. It is already uncertain whether DRAM could be manufactured
beyond the 40nm technology, while PCM is projected to extend to 9nm [ITRS 2007; Lee
et al. 2009].

In order to prepare for that time, PCM is considered for replacing DRAM in the role
of the computer system’s main memory. There is, of course, quite a lot of PCM research
to do before PCM can be declared a suitable successor and DRAM is abandoned. First,
it must be noted that PCM requires great energy for a single write operation, owing
to the need to heat it in order to switch its state. On the other hand, with PCM it is
possible to write a single bit, while in DRAM multiple banks are accessed for every
write operation. Additionally, PCM is a nonvolatile memory, while DRAM, a volatile
memory, requires periodic rewrites of its data. Next, unlike DRAM, PCM has a limited
write endurance, and if not used wisely, may become faulty after a shore period of
time. Finally, when incorporating PCM into main memory, one must consider PCM
access times. PCM is about four times slower than DRAM [Qureshi et al. 2009b], a
problem which must be addressed before it is used as main memory, or overall system
performance will suffer.

The challenges involving PCM in its various applications are further developed in
the following sections. Should these challenges be met efficiently, PCM could well
prove to be DRAM’s successor as the main memory of future computer systems. In
the meantime, PCM is also used in hybrid DRAM and PCM architecures, in which
PCM is used where DRAM is disadvantageous. Such designs are further explained in
Section 7.2. Finally, PCM is also suggested as a replacement for DRAM as the preferred
device for hybrid checkpointing in massively parallel processing (MPP) systems [Dong
et al. 2011].

6. CHALLENGES

6.1. Finite Write Endurance - Hard Errors

Writing the phase-change memory is the primary contributor to its wear, reducing its
lifetime. The current injection required to write a PCM cell has a degrading thermal
effect on the contact between the electrode and storage area. This in turn increases
current variance, hence increasing resistance variability. The immediate consequence
is that PCM can only endure a limited amount of writes before its stored data can
no longer be read reliably. The exact endurance differs between manufacturers and
manufacturing techniques, but is in general on the order of 107 to 108 writes. The
lifetime of the PCM varies with its applications, but as shown in Zhou et al. [2009],
it may be as short as a few days, seemingly rendering the PCM an inappropriate
replacement for main memory. Such a device failure is considered to be a hard error,
as it is a final fault in the device, and the device itself is no longer functional.

Studying statistic properties of main memory write accesses shows that these ac-
cesses suffer from the locality property. Memory writes are not evenly distributed
among the entire address space, but tend to cluster around hot cells. This in turn
decreases the lifetime of PCM, because these hot cells use up their available writes
quickly, losing their reliability. Once a single PCM cell can no longer be consid-
ered reliable, it may render an entire page or even the entire memory unusable,
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depending on whether some error recovery scheme is in use. If the PCM or some
external mechanism were to distribute write operations more evenly across the avail-
able memory, they would also evenly distribute the wear, increasing PCM lifetime
considerably.

The finite write endurance, which may lead to device failure, provides another chal-
lenge which must be dealt with. PCM architectural studies usually evaluate their pro-
posed works with typical memory write profiles. These may also include profiles which
make great demands on memory, and some even suffer from the localization prop-
erty, which is a greater hazard to PCM endurance. But an important aspect of PCM
design should give an answer to the possibility of a malicious attack on the memory
system [Qureshi et al. 2009a]. Knowing the internal structure of the memory system
and possibly the architectural design, which is supposed to compensate for the short
PCM lifetime, may allow a potential adversary to implement a memory-demanding
application that exploits such design flaws and continuously writes to the same area
of PCM, or even to a specific memory line. If unprepared for, such an attack may lead
to device failure in several seconds.

6.2. Long Latency

A key parameter of any memory architecture in almost any computerized application
is the latency of the memory system. A vast amount of studies and analyses have
been made on the effect of memory latency on the general performance of a computer
system, and it is beyond the scope of this article to survey these. However, it is clear
that increased latency in servicing a memory read or write request eventually leads to
either increased latency in servicing an application’s memory read request, or a growing
occupancy of write buffers. Architectural solutions to these problems, whether in the
form of improving existing architectural designs or inserting new hardware devices
to mitigate the costs of increased latency, are bound to increase both manufacturing
costs and energy requirements of the associated devices, limiting their scalability and
incurring a further cost in hardware to sustain the increased energy costs.

In order for PCM to be a viable alternative for either flash memory or DRAM, its
latency must be comparable with that of its predecessors, both in read and write
operations, while also considering different behaviors for SLC and MLC PCM designs.

6.3. High-Energy Writes and Power Dissipation

With the growing demands on the memory system in terms of both quantity and latency,
the power required to support these functionalities is taking an ever-increasing portion
of the total power required by the system. In some servers, as much as 40% of total
power is required by the memory system [Lefurgy et al. 2003]. In typical memory
systems, which employ volatile memory technology as their main memory, the main
memory dissipates both leakage energy and dynamic energy, and since the leakage
energy dissipation grows with the memory capacity, it can reach the level of the dynamic
energy dissipation [Thoziyoor et al. 2008]. New architectural designs for main memory
should therefore focus on decreasing the amount of leakage memory dissipated. One
solution for this problem is to use nonvolatile memory technologies such as PCM.

When using a nonvolatile memory technology such as PCM to suppress the dissi-
pation of leakage energy, it is imperative to check its consumption of dynamic energy.
PCM experimentations show that write operations take as much as 150–300 times
more power than DRAM, depending on the bit value written [Zhou et al. 2009]. Failure
to suppress dynamic energy dissipation in PCM main memory may result in the con-
sumption of all power saved on leakage energy, and the total energy dissipated may be
the same as DRAM, or even worse.

ACM Computing Surveys, Vol. 45, No. 3, Article 29, Publication date: June 2013.



29:10 O. Zilberberg et al.

6.4. Privacy

Typical computer systems use DRAM as their main memory, which is volatile. Even so,
it has been demonstrated that data can be retrieved from a DRAM memory chip even
after power has been cut off to the chip, allowing a malicious retrieval of data from the
chip, such as disk encryption keys that are kept in memory for easy access [Halderman
et al. 2008]. While there are methods to protect volatile memories from such malicious
attacks, PCM is a nonvolatile memory, which can retain its stored data for several
years [Pirovano et al. 2004b]. Without some protection scheme, this could prove to be a
serious security breach, as anyone with physical access to the machine can reboot it or
cut its power, relaunch it with some modified kernel, or otherwise remove the PCM chip
entirely and install it in some other machine, and with any of those techniques restore
critical data, which has been stored in memory for temporary usage [Seong et al. 2010a;
Seznec 2010]. While processors and disks may be secured, any encryption key or other
private and sensitive data may be stored in the main memory by an application or the
operating system, rendering processor and disk securities useless.

6.5. Soft Errors

Soft errors in the PCM device represent phenomena that, over time, lead to a wrong
value read result, but unlike hard errors, do not represent some intrinsic failure in the
PCM device and can be remedied.

Resistance Drift. As described in Section (4), a PCM cell can be in either one of two
states—crystalline and amorphous. It has been observed [Wong et al. 2010] that device
conductivity remains fairly constant in the crystalline state. However, the device resis-
tivity changes substantially over time in the amorphous state. While this is relatively
tolerable in single-level cells (SLC), it may prove hazardous for multilevel cell (MLC)
designs, as resistance drift could eventually lead a read operation into misreading the
stored value. This physical aspect of the PCM device is somewhat beyond the scope
of this architectural survey, but should be addressed by anyone employing PCM in an
MLC architecture. Further explanations of the phenomenon and attempts to cope with
it can be found [Burr et al. 2010; Wong et al. 2010; Ielmini et al. 2007; Pirovano et al.
2004a].

Process Variation. The main attraction of PCM as a substitute for existing technolo-
gies in future memory applications resides in its increased scalability. However, as
the devices become smaller, they are more susceptible to variations in the process of
fabrication. Since it is impossible to have exact control over the fabrication of an entire
wafer of PCM devices, target parameters are accepted within some predetermined er-
ror ranges. Consequently, PCM devices may vary in thermal and electrical properties,
such as set and reset currents and resistivity in both amorphous and crystalline states.
It would be prudent of anyone designing PCM-based architectures to be aware of these
variations, and to design solutions that are robust to such variations. Further expla-
nations and solutions to this problem are beyond the scope of this architectural survey
and can be found in other physically-oriented surveys (such as [Burr et al. 2010; Wong
et al. 2010]).

7. MAIN MEMORY DESIGNS

7.1. PCM Main Memory

Conventional main memory design usually employs DRAM as its main memory (see
Figure 4(a)). This section describes architectural design solutions to problems which
arise when using PCM as the main memory (see Figure 4(b)).
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Fig. 4. (a) Conventional main memory design with DRAM. (b) PCM used as main memory. (c) Hybrid PCM
and DRAM memory.

7.1.1. Bit-Level Read Before Write

PCM Design Opportunities. In conventional DRAM and flash, each write operation
updates an entire page or block, and write operations on a bit granularity level are
unavailable. Furthermore, the read and write latencies for DRAM memory access
operations are similar. PCM exhibits different attributes. Depending on the device
manufacturer, it may be bit-accessible (though it is sometimes addressable on a page-
level granularity, to emulate NOR flash [NumonyxOmneo 2010]), and its read latency
is far smaller than its write latency. These characteristics provide an opportunity for
new design schemes focused on reducing PCM power consumption and increasing its
lifetime [Cho and Lee 2009; Yang et al. 2007; Zhou et al. 2009].

Redundant Writes. A DRAM or flash write operation affects an entire page or block.
Owing to the value locality property, this means that individual bits are often rewritten
with the same value stored in them. While this is of little importance in DRAM, it pro-
vides an opportunity for increasing PCM lifetime, by removing these redundant writes
on a bit-level. Since read operations in PCM are much faster than write operations, it
is relatively cheap to precede each write operation with a read operation, as depicted in
Figure 5. It is thus possible to write a cell only when its value actually changes, instead
of on any write request. The removal of these redundant write operations on a bit-level
may increase PCM lifetime by a factor of 4.5 [Zhou et al. 2009]. It should be noted
that this method is new to PCM and is inappropriate for DRAM, because unlike PCM,
the time required for a read operation in DRAM is roughly the same as for a write
operation, rendering the read-before-write technique costly in terms of performance.
This basic and simple reduction in memory write operations is common to many de-
signs and can be found under several names, including Read-Before-Write [Zhou et al.
2009], Flip-N-Write [Cho and Lee 2009], and Data-Comparison-Write Scheme [Yang
et al. 2007].

Flip-N-Write. It has been shown how to improve upon memory write energy, band-
width, and endurance by inspecting the currently written bit value and comparing
it with the new required value. These parameters can be further improved if the

ACM Computing Surveys, Vol. 45, No. 3, Article 29, Publication date: June 2013.



29:12 O. Zilberberg et al.

Fig. 5. Typical read before write algorithm.

comparison is done for an entire memory word and adding a flip mechanism. The key
idea here is adding a single bit for every memory word stored in the system. If, on a
write access, more than half of the word’s bits are about to be changed, then the flipped
word is written instead, and the flip flag is set. This effectively limits the amount of
bits written on each write operation to half of the available bits at most, and further de-
creases harmful write operations and the accompanying power consumption. In order
to decide which word to write—the original or the flipped version—the Hamming dis-
tance between the currently stored word and the two optional new words is calculated,
including the effect on the flip bit. The word which required less bit changes is chosen
and is written. Note that this design requires an additional bit per every memory word,
which for a 16-bit PCM word requires an increase of 7% in area cost.

7.1.2. Wear Leveling

Row Shifting. The locality of write operations causes hot cells to be written more
frequently than other cells. A possible compensation for this property is the shifting
of memory cells inside a single memory row. Shifting allows memory writes to be
distributed more evenly across the cells in a row and avoids peaks in memory writes
statistics. There are several factors to consider when implementing row shifting. First is
the shift frequency. It is possible to shift memory after every write or keep a counter for
write operations and shift only after every n write operations. Shifting after every write
may very well worsen the wear of the PCM, because it incurs additional bit changes
and may cancel the advantages of reading before writing, as previously described. An
additional factor to consider is the shift granularity. A shift may be on a single-bit
granularity or any courser granularity. As studied in Zhou et al. [2009], too fine a
granularity is not advantageous, since hot cells tend to be clustered together (e.g., least
significant bits are usually written more often than most significant ones), and shifting
by a single bit may cause one hot cell’s write operations to affect another hot cell, which
misses the point of the shift operation.

Segment Swapping. When observing memory write statistics, it is noticeable that
in some write profiles entire, pages may be considered hot. In these pages, a local
mechanism to vary write operations does not solve the endurance problem, since there
are not enough cold cells to distribute the writes. However, studying the memory
writes on a coarser granularity may show that there are entire memory pages which
are scarcely written. Thus, swapping between such pages may prove advantageous in

ACM Computing Surveys, Vol. 45, No. 3, Article 29, Publication date: June 2013.



Phase-Change Memory: An Architectural Perspective 29:13

Fig. 6. Illustration of wear leveling. (a) Without wear leveling, the endurance limit is reached for cell 1
rendering the chip unusable, while other cells are barely used. (b) With an even usage of all cells, the limit
is not reached, and the chip is functioning.

terms of memory writes distribution. The swap operation has several key properties
to consider. First, the size of the swapped segment. If the segment is too small, there
would be many segments. In order to identify segments that have been written more
frequently than other segments, some write counter should be kept for each segment.
A large amount of segments would incur many such write counters, and the overhead
in terms of both area and performance (latency caused by updating the counters and
comparing their values to find a relatively unused segment) would render the entire
segment swapping mechanism too costly and inefficient. On the other hand, choosing
to swap a segment whose size is too large may incur overhead in the form of additional
writes—a large segment, which may be considered hot, might actually contain some
parts which are relatively cold and would be swapped needlessly. Implementation wise,
Zhou et al. [2009] suggest implementing the logic required for segment swapping inside
the memory controller, while keeping a write counter for each segment, along with an
additional register to hold the last time the segment was swapped. This is required to
prevent a cold segment from being swapped too frequently.

Start-Gap. Most wear-leveling techniques keep track of write operations on a per-
line statistic, with the aid of dedicated tables. This incurs an additional linear cost
in space for maintaining these tables, and furthermore takes an additional toll in the
form of increased latency, for every read and write memory access operation requires
the additional table lookup to translate the required logical address to its physical
location. This is translation is performed in the memory controller and is in addition to
any such translation performed by virtual memory mechanisms. The concept of Start-
Gap [Qureshi et al. 2009a] sets out to eliminate these costly overheads, or at least
to bring them to a bearable minimum. The key idea is to add an algebraic mapping
between logical and physical memory addresses, which is simple and cheap to maintain,
and to consult on every memory access.

Start-Gap is implemented by the addition of two designated registers—Start and
Gap—with both holding indices that allow calculation of the address mapping. Gap
holds the index of a memory line which is currently not in use. When calculating the
physical address, Gap should always be skipped. At first, Gap points to an index just
outside of the currently available memory range, for example, for a 16-line memory
(with lines 0–15 in use), Gap would point to line 16, which is unused, as shown in
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Fig. 7. Illustration of Start-Gap. (a) Initial state; (b) Gap index is decremented by 1; (c) Gap reaches the
first memory line; (d) Gap is reset to 16 and Start is incremented by 1.

Figure 7(a). After several write operations, Gap is decremented by 1, and the data it
now points to is stored instead in the previous Gap address. In terms of this example,
should Gap be decremented from 16 to 15, the data stored in line 15 would be copied to
address 16 and would henceforth be read from that address, as shown in Figure 7(b).
Gap continues to be decremented throughout the entire memory range until it reaches
the first memory line, as shown in Figure 7(c). The next memory write operation,
which should further decrement Gap according to the Start-Gap algorithm, would
instead reset the Gap address to its original value, for example, 16. Additionally, the
Start register, which initially holds the value of 0, is now incremented by 1, as shown in
Figure 7(d). This means that the memory addresses should be translated as if starting
from the Start address, instead of 0.

Note that the Start-Gap technique requires additional spare lines to function prop-
erly and assumes that the memory design already has such spare lines. Otherwise
they should be added, at an additional cost. Furthermore, the Gap register is not incre-
mented after every write, because that would effectively double write operation (i.e.,
register write on every memory write). Therefore, Gap is updated only every φ write
operations. For a choice of φ = 100, the additional costs in latency and power consump-
tion are only taken for 1% of write operations. However, this requires counting write
operations using some 7-bit counter. Whenever the counter reaches φ, the Gap value
is incremented according to the aforementioned algorithm, and the write-operations
counter is reset.

Start-Gap, in its given form, is ignorant of the spatial correlation of heavily written
memory addresses. It is typical in memory write operation profiles for certain mem-
ory areas to be “hotter” than others, and the Start-Gap wear-leveling mechanism is
localized and on its own is not sufficient to handle such write profiles. It would simply
switch one heavily written memory line with another. It is therefore necessary to up-
grade the Start-Gap wear-leveling mechanism with some randomization mechanism.
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Fig. 8. (a) First-come-first-serve scheduling; (b) write cancellation; (c) write pausing.

The enhanced version of Start-Gap defines some randomization algorithm, using ei-
ther a Feistel-Network based randomization, which is common in ciphers (DES), or
a random invertible matrix (RIB). Either of these elements allows a pseudorandom
memory of logical addresses to some intermediate address, with the added value that
two subsequent logical memory addresses, whose write usage operations have great
correlation, are now mapped to different unrelated addresses. So in effect, two nearby
intermediate addresses are far less likely to have similar memory write profiles, thus
removing the locality effect. After such a randomized translation is applied, Start-Gap
can be used to level the wear of any locally hot memory line, with less likelihood that
reducing wear of one critical line would increase the wear of another critical one.

Start-Gap also provides a potential solution for the possibility of an adversary attack-
ing the memory system. Should a malicious adversary be knowledgeable in the internal
design of the memory system, including the Start-Gap technique and its parameters,
it would be possible for that adversary to bring the PCM to device failure in several
seconds, due to continuous write operations to the same memory line. If, however,
Start-Gap is separated to different regions of the memory system and Start-Gap reg-
isters are duplicated for each such region separately, then it is possible to ensure that
the Gap would move the assaulted line before it reaches its memory write operations
limit. The required overhead is still far less than that of other wear-level mechanisms,
though it now depends linearly on the memory size and is no longer constant.

7.1.3. Write Cancellation and Write Pausing. PCM memory accesses, as opposed to DRAM
memory accesses, typically have a much higher write latency than read latency. Addi-
tionally, once a write operation has begun for some memory bank, a subsequent read
access request for the same bank must be delayed until the write request has been ser-
viced, as can be seen in Figure 8(a). The increase in read requests’ latency because of
dominant write requests is 2.3x. In order to reduce the overall latency of read requests,
which is performance critical in the system, it is possible to cancel or pause a write
request even as it is being serviced [Qureshi et al. 2010a].

Write Cancellation. The key element of this design scheme is allowing the PCM cells
the ability to cancel an ongoing write operation when a dedicated signal is sent. Thus,
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whenever a read request arrives for a bank which is currently being written to, the write
operation is canceled and the read request is serviced, as can be seen in Figure 8(b).
While such a cancellation may lead to inconsistency in the memory contents, as long as
the desired written values are kept in the write queue and subsequent read requests
are serviced from the write queue, the memory is coherent. To prevent an overflow of
the write queue buffer, another mechanism monitors the queue’s occupancy, and should
it reach some near-limit threshold, its write operations would be performed regardless
of subsequent read requests to the same bank (i.e., the write cancellation policy is
withheld). Further improvement of this mechanism arises from monitoring each write
request to keep track of how long it has been in operation. With this statistic it is
possible to prevent the cancellation of write requests which are nearing completion,
for example, a write request which is 90% complete should not be canceled. Further
improvement to the mechanism could be achieved by an adaptive write cancellation
scheme, which sets the cancellation threshold dynamically according to the number
of entries in the write queue buffer. This way writes are forced (i.e., there is no write
cancellation) if the queue is nearly full, but more writes are cancelled if the queue is
relatively empty. The threshold-based designs reduce the number of writes cancelled,
and thus the number of write operations which are redone, effectively decreasing the
energy overhead of the write cancellation mechanism.

Write Pausing. Due to the iterative writes property of the PCM cell, its write proce-
dure can be suspended and resumed. As seen in Figure 3, this allows a logical separation
of the write operation to several distinct operations, which can be paused inbetween.
This property is most beneficial for improving the read latency in PCM cells, because
whenever a read request arrives for a memory bank which is now serving a write re-
quest, the write request can be paused, allowing the read operation to be serviced, after
which the write operation can be resumed until completion without ever canceling the
write process, as seen in Figure 8(c). Thus the time and energy already spent on the
write operation need not be lost. In order to implement this policy, the iterative writes
algorithm is edited to allow the insertion of a new stage. Before the newly calculated
programming pulse is applied to the PCM cell, there is an additional check whether
a read request is pending. If there is such a request, it is serviced before the pulse is
applied. A final optimization for this technique could be achieved by combining it with
write cancellation. Because write operation cannot be stopped at any time, but only in
between iterative writes, an intra-iteration write cancellation scheme can be applied
to cancel a write iteration (and not the whole write request) to allow servicing of read
requests, if the read request arrives when there is no near option for pausing the write
iteration.

7.1.4. Error Recovery, Encryption Schemes, and ECC. The limited write endurance of PCM
can often lead to faulty memory cells. Even if mitigated with wear-leveling techniques,
such as described in Section 7.1.2, it is likely that at some point one or more cells
would become faulty, seemingly rendering the entire PCM chip unusable. The following
section offers architectural techniques for contending with this scenario and effectively
increasing PCM lifetime.

Dynamically Replicated Memory. Assuming that it is possible to identify faulty PCM
cells in a memory page, such errors can be recovered from by adding another layer
of indirection and pairing two real PCM pages to appear as one physical page for
all purposes. Dynamically Replicated Memory [Ipek et al. 2010] does this by adding a
global physical to real memory page translation table, which is stored in the PCM itself.
Thus, every memory access to a physical page is directed to either of two real memory
pages. Two pages are paired in the table if they are found to be compatible, that is, there
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is no single byte which is faulty in both of them. Since PCM is nonvolatile, this new
memory translation table must also be kept on it, as it too must not be volatile. Since
this method cannot ensure zero faults in the memory translation table itself, the table
is stored in triplicate copies on the PCM. Faulty pages and the pairing of two real pages
into a single physical page are handled by the OS. Finally, in order for this scheme to
be feasible, the memory controller must be able to identify faulty bytes in a PCM page.
This is achieved by a standard parity bit mechanism, which is common in DRAM,
and assisted by an additional read operation after every write, which ensures that
either the write operation was successful or that the parity mechanism noted the error.
Should the controller note that the parity mechanism is oblivious to the byte error,
another single bit would be intentionally inverted, prodding the parity mechanism into
recognizing the error.

The Effect of Encryption on Wear-Leveling. In computer systems where privacy and
security are demanded, it is common to use some encryption scheme on the main mem-
ory to protect its contents from being extracted and used maliciously [Kong and Zhou
2010; Seong et al. 2010a; Seznec 2010]. While this may help to increase the system’s
privacy, in some cases it has the side effect of seriously reducing the effectiveness of
wear-leveling schemes. The basic problem of encryption in this context is its changing
of the data stored in the memory. Encryption often works on block sizes, which are
smaller then the block sizes of the cache level. Additionally, a key principle of most en-
cryption schemes is the principle of diffusion, which dictates that a change to a single
bit in the block affect the entire block, or at least most of it. This is completely orthog-
onal to the assumptions on which wear-leveling schemes below cache-line granularity
are based. Such schemes, such as the removal of redundant bytes on a bit-level, are
primarily based on the statistical properties of write operations which state that in
most blocks written to the memory, an abundant amount of bits remain unchanged by
the write operation. This assumption is naturally invalidated by the introduction of an
encryption scheme, as even a change in a single bit may toggle a change in most of the
bits of the encrypted block. Encryption also disables the partial writes scheme, since
the entire cache line is changed and needs to be rewritten even if only a single word is
dirty.

Block-Level Counters. In order to mitigate the negative effect of encryption schemes
on the wear-leveling techniques described, it has been suggested to provide the en-
cryption scheme with additional counters on a block level, on top of the single counter
on a cache-line level. In this way, when a write-back occurs, only the counters of the
written-back block are updated, and there is no need to rewrite the entire cache, except
on the rare event that the block-level counter overflows, in which case the cache-line
level counter is incremented and the entire cache-line is re-encrypted and rewritten to
memory.

ECC Increases Lifetime. When considering the limited lifetime on the PCM, even if
some architectural designs are adopted to lengthen it, the question of what to do with
the device when it finally does fail still needs to be answered. In order to continue using
the system in a stable and reliable manner, it is possible to introduce error-correction
codes (ECCs) to mitigate PCM device failures by correcting bit errors in memory read
data. Ideally, if enough space is allocated in favor of the ECC algorithm, it can make
the PCM robust to bit failures. However, increased space obviously increases cost and
reduces PCM effectiveness. Additionally, during PCM’s initial lifetime, it has only a
few bit errors at most, and space allocated in favor of ECC is wasted.

It would therefore seem advantageous to apply some adaptive ECC scheme to
the PCM which takes into account the amount of write operations to the PCM, or
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specifically to any of its lines, and utilizes a sufficiently strong ECC to fix any expected
bit errors. This can be done by dividing the memory addresses into several groups, with
each group allocating some of its memory pages in favor of ECC. Each group also keeps
some statistics on the write operations to it which are kept in the form of a counter,
and when this counter reaches some predetermined factor, it causes an interrupt to the
OS, which is aware of the adaptive ECC scheme and can reorganize the group so as to
allocate more space for the ECC, until after some final threshold, the entire group is
marked as faulty and no memory is ever allocated from it by the OS. It is claimed that
using the PCM itself to store the ECC is beneficial because it saves the need for extra
hardware and also because it is quite unlikely for the ECC pages themselves to reach
the write limit threshold that is defined in this scheme.

Encryption and ECC Combined. As discussed, use of adaptive ECC requires counters
to keep track of write operations. This can be done either by keeping a counter for each
cache line, which is costly in terms of space, or by keeping a single counter for the entire
page, which requires very little space but is far less accurate since writes to different
lines in the same page are accumulated, instead of being considered a single write.

In order to improve the accuracy of this statistic without having to store additional
counters on a cache-line level, the aforementioned encryption scheme can be utilized.
Each cache line already has some counter for encryption purposes, which is updated
by write operations to that line and in effect counts write accesses to that line. With
the addition of some global counter on a page-level granularity, ECC can keep track of
write accesses to each page with nearly no additional hardware cost other than costs
already incurred by the encryption scheme.

Error-Correction Pointers (ECP). The usage of error-correction codes (ECC) is com-
monly employed to correct errors in DRAM-based memories, and has also been sug-
gested for PCM. However, it should be noted that DRAM and PCM memories exhibit
different behaviors regarding errors. The charge-based DRAM is commonly affected by
soft errors, that is, leakage-related errors in a write operation, which affect only the
results of that particular write operation and are reset on the next write operation.
PCM, however, is prone to hard errors, that is, specific memory cells can fail completely
when written too many times. It would therefore be more efficient to mark these cells
as unusable and replace them with other functioning cells, rather than attempting
to correct the error using ECC, especially since ECC requires additional writes and
may be contradictory to other wear-leveling techniques employed. The ECP [Schechter
et al. 2010] scheme stores pointers to defective memory cells and their corresponding
data. Thus, whenever a read-write-read operation fails, a pointer is stored to the faulty
cell with the required written data, and upon read operation, the correction pointer is
considered prior to the actual data stored in the PCM cell. This scheme can also be
used to mitigate errors in the pointers themselves.

Stuck-At-Fault Error Recovery (SAFER). A data block which contains faulty bits (i.e.,
bits stuck at a certain value) can be partitioned into several sub-blocks, where each
such sub-block has at most one faulty bit [Seong et al. 2010b]. In this manner, it is
possible to employ a simple technique to recover from a single-bit error on such sub-
blocks, avoiding rendering the entire block or page unusable. The trick to overcoming
a single fault is to keep a single inversion bit for every such sub-block. On every write
operation, the faulty bit is checked. If it holds the required value (there is generally a
50% chance of that occuring), the sub-block can be read later without error. Otherwise,
if the faulty bit holds the inverted value of the written bit, the entire sub-block can be
inverted and the inversion bit set. Subsequently, a read operation would recognize that
the sub-block is inverted and invert back the read data. In order to prevent duplicate
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write operations on every faulty sub-block, a dedicated cache can hold addresses of
faulty bits and their stuck-at values, so that the value of the inversion bit and the
written data could be determined before the actual write operation.

Fine-Grained Remapping with ECC and Embedded Pointers (FREE-p). Previous
techniques have employed some dedicated memory storage area in order to either
store some backup for faulty memory bytes or simply to keep track of the addresses of
these bytes. FREE-p [Yoon et al. 2011] offers to use the faulty memory block itself in
order to embed a pointer to the replacement memory block. In this manner, a faulty
64B block can hold a 64b address pointer to its replacement. Because of the high space
redundancy used for the pointer, it is possible to use a powerful ECC to ensure correct
encoding and decoding of the pointer, such as a 7-modular-redundancy (7MR) ECC
which repeats the 64b address 7 times in the allocated 64B block. An additional bit
is reserved for each 64B block to mark it as faulty. When a read operation occurs,
the faulty bit is read first to determine whether the actual data should be read or an
indirection followed. If errors are detected in the block pointed to, multiple indirection
pointers could be used in a linked-list fashion, with an additional mechanism that
updates the first pointer to point at the last segment in the chained loop, for added
efficiency of read operations. If a 64B block becomes too faulty to store even the small
64b address, the entire page is rendered unusable and replaced, as in previously de-
scribed schemes. An advantage of FREE-p over other error recovery schemes rests in
its ability to recover from many local errors, such as a single cache-line failure.

7.1.5. Buffer Organization and Partial Writes. In using PCM as an alternative to DRAM
main memory, it is beneficial to consider the memory array architectural organization.
A PCM cell, very much like DRAM, is organized into different banks, blocks, and sub-
blocks. These blocks share among them the peripheral circuitry required to operate
the memory array, most notably the sense amplifiers and write drivers. These large
devices take a heavy toll on PCM [Lee et al. 2009], and an efficient buffer organization
should be adopted to reduce usage of these devices.

In this typical memory architecture, reading a row from the memory requires latching
it to a memory buffer, from whence it is read and to which it is written. Any read or write
access to an unbuffered row requires that the buffer would be evicted in order to make
room for the next accessed row. In DRAM memory, every such row eviction requires that
the data evicted from the row be rewritten to memory, owing to DRAM’s destructive
read operations. In a PCM-based architecture, however, it is seldom required that the
data be rewritten, except when it has changed.

In order to compete with DRAM’s superior energy write costs and access latencies
while maintaining the same area costs, the described architecture should be altered.
Using the same space occupied by the buffered row, along with its accompanying sense
amplifiers, it is possible to maintain narrower buffers with multiple buffer rows. The
amount of sense amplifiers required to operate the buffer is linearly dependent on
the buffer width, hence the great cost reduction when narrowing the buffer. This cost
reduction can be utilized to support several buffer rows with full associativity between
them, which reduces the amount of memory write operations due to buffer eviction,
greatly increasing average PCM access performance.

Narrower buffers reduce the PCM energy writes and help bring it to the same level
as that of DRAM, but at a performance cost—a narrow buffer has poorer utiliza-
tion of memory accesses spatial locality and provides fewer opportunities for memory
write accesses coalescing. Mitigating these performance costs with a fully associative,
multiple-row design with the same area cost as the original architecture can decrease
PCM delay penalties, when compared with DRAM design, from 1.60x to 1.16x, and also
decrease memory energy costs from 2.2x to 1.0x [Lee et al. 2009].
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This design can be further developed to account for the limited PCM write endurance
in the form of partial writes. This technique keeps track of the dirty data through all
cache levels up until they are written to the memory banks. In this manner, evicted
data from any cache level is only written to the main PCM memory if it has changed,
reducing the amount of unnecessary write operations. This scheme is considered on
two granularities. Lowest-level cache bitline size (64B) and word size (4B). It is not
considered on a per-bit granularity, since this incurs too great an overhead in stored
metadata or otherwise requires the use of comparators. Keeping track of memory
writes on the suggested granularities is possible by keeping track of memory write
instructions from the microprocessor pipeline. Using partial writes on a lowest-level
cache bitline size requires a 0.2 percent increase in memory usage, while utilizing it
on a word-size granularity has an increased 3.1 percent overhead [Lee et al. 2009].

7.1.6. Morphable Memory System. As described in Section 4.2, PCM cells can be either
single-level (SLC) or multilevel (MLC). While MLCs provide higher density, the itera-
tive algorithms required to accurately read and write data to these cells take a toll on
the device latency. Depending on the load services, some systems may benefit from the
use of MLCs with their higher density, while some workloads which are not capacity-
intensive may result in degraded performance due to usage of MLCs. The purpose of
the Morphable Memory System (MMS) is to benefit from both designs by incorporating
both of them into the system, while dynamically setting the portion of PCM cells used
as MLCs to account for varying workloads [Qureshi et al. 2010b].

In MMS, the memory pages are kept in either of two states. The high-density PCM
(HDPCM) are pages in which the PCM cells are treated as MLCs, and the low-density
low-latency PCM (LLPCM) are pages in which PCM is treated as SLC for reduced
latency. Using a memory monitoring circuit, the MMS architecture is able to determine
the portion of memory to be treated as HDPCM according to the capacity required by
the varying workload. In order to correctly translate logical addresses to physical
addresses and also provide current memory page allocations, the MMS collaborates
with the OS which must be aware of pages in the LLPCM section of the memory, as
these provide less memory capacity than is otherwise assumed by the software, which
normally treats all memory addresses as belonging to HDPCM, thus providing greater
capacity.

In order to estimate the memory capacity requirements of the system, a specialized
memory monitoring circuit (MMON) is designed. This circuit estimates memory usage
statistics using stack distance histogram analysis. The results of the MMON statisti-
cal algorithms are periodically read by the OS to determine subsequent handling of
memory page allocations. Whenever the OS is informed of a lack of LLPCM pages,
it evicts some HDPCM pages, enabling them to be used as LLPCM. Alternatively,
LLPCM pages may be converted to HDPCM pages when they are evicted by caching
write mechanisms or when the MMON detects that workload capacity requirements
are on the rise, requiring increased PCM density.

7.1.7. Software Opportunities. Using PCM (or any other nonvolatile memory technology)
in place of DRAM as main memory offers several conceptual advantages for software
systems utilizing the nonvolatile property of the memory. While this is somewhat
beyond the scope of PCM architecture, it does provide an extensive research field.
Some recent key works are presented here.

Byte-Addressable Persistent File System (BPFS). Traditional file systems are de-
signed for best performance with traditional block-accessed memory technologies.
BPFS offers performance enhancements by utilizing byte-accessible nonvolatile mem-
ory technologies, such as PCM [Condit et al. 2009]. BPFS requires use of atomic write
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operations and write ordering mechanisms implemented in hardware. Using these ca-
pabilities, it allows for storing of simple data structures in persistent memory, while
storing complex data structures in volatile memory. In order to ensure reliability, BPFS
uses short-circuit shadow paging (SCSP). While most file systems use either logging or
shadow paging (with shadow paging generally being less efficient), BPFS implements
SCSP which allows for efficient commit operations to any location in the file system
tree, due to memory byte-addressability and fast random write. The main drawback
of BPFS resides in its need of dedicated hardware support and its nonstandard file
system, which may require extensive adaptations of traditional computerized systems.

Nonvolatile Memory Heaps (NV-heaps). Architecting software for byte-addressable,
nonvolatile memory systems has several advantages over traditional systems, but may
also lead to some dangerous pitfalls. NV-heaps [Coburn et al. 2011] provide program-
mers with several primitives to ease work with nonvolatile memory while protecting
them from common bugs. These primitives include objects, pointers, memory alloca-
tions, and atomic sections. They ensure pointer safety (e.g., protection against pointers
in nonvolatile memory which point at locations in volatile memory), ACID transactions,
traditional API (similar to volatile-memory based data structures), high performance,
and scalability. Finally, NV-heaps provide the application with direct access to the
nonvolatile memory, skipping operating system overheads.

Mnemosyne. The Mnemosyne architecture [Volos et al. 2011] provides programmers
with an interface for direct access to nonvolatile memory, without any hardware con-
straints on PCM device design. Global data that should be stored in nonvolatile (per-
sistent) memory is declared by programmers using the dedicated pstatic keyword. This
direct nonvolatile memory access not only removes the need for data serialization into
files in block-based file systems, but also does not require any special adaptation of the
file system. Mnemosyne does not offers an alternative file system, but instead offer a
fast mechanism for storing simple data which should be kept persistent. By provid-
ing user-mode access to persistent memory and offering the programmer mechanisms
for consistent updates to the persistent memory, all the while requiring no hardware
changes, Mnemosyne appears to be a feasible, simple-to-implement architecture, which
is decoupled from PCM hardware architecural considerations.

7.2. Hybrid PCM and DRAM Memory

In most conservative main memory designs, the main memory homogeneously consists
of a single type of memory, for example, DRAM or PCM. In order to overcome the
challenges of implementing main memory using PCM while still making use of the
advantages of DRAM, a hybrid design which consists of PCM-based main memory
while using a small DRAM buffer is considered [Dhiman et al. 2009; Qureshi et al.
2009b; Ramos et al. 2011]. This allows for utilizing DRAM’s superiority in terms of both
latency and endurance to avoid those disadvantages in the PCM, while still building
the majority of the main memory with PCM, with its superior density and scalability.
This design is depicted in Figure 4(c). We also note that such hybrid designs may also
benefit 3D die-stacking designs [Zhang and Li 2009], though these aspects are beyond
the scope of this article.

Organization. Using PCM as the computer system’s main memory is identical in its
organization to traditional DRAM usage as main memory, with an operating-system
aware page table. The addition in the hybrid main memory organization is a small
DRAM buffer of which the OS is not aware [Dhiman et al. 2009; Qureshi et al. 2009b;
Ramos et al. 2011]. As seen in Figure 9, it is managed internally in hardware by the
main memory controller, similar to memory caches.
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Fig. 9. A hybrid PCM and DRAM memory design with memory controller and write count statistics table.

Lazy-Write. The Lazy-Write organization technique [Qureshi et al. 2009b] uses the
DRAM buffer to take advantage of the low latency of DRAM, compensating for the PCM
main memory’s inferior access and write speeds. Furthermore, it reduces the amount
of actual write operations to the PCM memory, thus improving its limited lifetime.

The concept of this organization is that when a page fault occurs and a page must be
brought into the main memory from the HDD, it is first inserted into the fast DRAM
buffer instead of the slower PCM main memory. A page is allocated in both DRAM
buffer and PCM memory, but the data is copied only to the buffer. Hence, read time
from the HDD incurs relatively short DRAM latency instead of the longer PCM latency.
Additionally, the memory controller holds two state bits for each page in the DRAM
buffer—present and dirty. Pages which are marked with the present bit in the DRAM
buffer are also present in the PCM main memory. This of course means that upon page
fault, the page that is brought into the DRAM buffer has its present bit set to 0. When
a page is replaced in the DRAM buffer, if it is dirty, it is written to the PCM memory
first, to maintain consistency. This technique reduces redundant write operations to
the endurance-wise limited PCM memory.

In addition to the DRAM buffer, a fast PCM write queue is used when actually
writing to the PCM memory. This write queue, which is much faster than the PCM
main memory, amortized the time spent for write operations. The DRAM buffer does
not write directly to the PCM memory, and thus does not have to wait for the PCM’s
long latency. On the other hand, The write queue is large enough so that it does not
get filled, and the written pages are transferred from it directly into the PCM, which
incurs the long PCM latency cost, but since only the write queue is affected, the system
as a whole is oblivious to this latency.

In short, the application of these two memory devices—the DRAM write buffer and
the PCM write queue—in addition to the PCM main memory, helps reduce write oper-
ations to the PCM and compensate for its relatively high latency.

Line-Level Writes. It has already been suggested [Qureshi et al. 2009b] that the
DRAM write buffer be used to write to the PCM main memory only pages which have
been marked as dirty, that is, pages which have been written over since their last
read from the main memory or HDD. In order to further improve upon this technique,
the writing of the dirty pages into the PCM memory has to be considered on a finer
granularity. This is done by considering chunks smaller than a whole memory page
when deciding whether a certain datum is dirty and must be written back to the
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memory. The proposed granularity for consideration is the size of a cache line. This
allows for only chunks which have been changed in the cache, and thus differ from
their original values as stored in the main memory, to be written back. It incurs the
greater cost of keeping track of each chunk’s dirty state, instead of a unified dirty bit for
the entire page, but can save a significant amount of redundant write-back operations
which reduce PCM lifetime.

Fine-Grained Wear-Leveling in the Hybrid Architecture. Several techniques have
been discussed here in order to reduce PCM wear in the DRAM and PCM hybrid
memory organization [Dhiman et al. 2009; Qureshi et al. 2009b; Ramos et al. 2011].
While these techniques indeed decrease PCM write operations and help achieve the
goal of increasing its lifetime, they are not complete without some wear-leveling mech-
anism. The granularity of the proposed wear-leveling mechanism is imposed by the
line-level writes mechanism previously described. Analyzing memory write accesses
inside a single page shows that the distribution of memory writes on a cache-line gran-
ularity inside a single page are nonuniform, and some cache lines are written more
often than others. This nonuniform wear obviously reduces the memory’s lifetime. Tak-
ing this uneven distribution into consideration, the idea here is to apply a cyclic shift
on a cache-line scale, so that while some cache lines are logically written to more often
than others, physically the wear is evened out over all cache lines in a page.

Like most wear-leveling mechanisms, it is imperative to hold some translation of
logical addresses to physical addresses. In this proposed fine-grained wear-leveling
mechanism, some register holds the size of the cyclic shift per memory page. For
example, a 16-line memory page incurs a 4-bit register to hold its shifting value. Some
random number generator is used to supply an initial value for the cyclic shift when the
page is replaced. In this manner, each time the page is replaced, its shift register holds
a varying evenly-distributed number, thus leveling the write wear across all cache lines
in the page.

Page-Level Bypass. Memory usage profiling of various applications shows that some
applications have poor memory reuse [Qureshi et al. 2009b]. An example of such appli-
cations is one which relies on streaming data. Such data are read once, used, and are
then rendered irrelevant by the arrival of new data. As described earlier, memory pages
read from the HDD are first stored in the DRAM buffer. When these pages are replaced
by the new data, they are stored in the PCM. But the profiling shows that these pages
are no longer needed by the application, and hence writing them to the PCM is not
beneficial performance wise and only serves to wear the PCM cells, reducing its overall
lifetime.

For such applications, it would prove beneficial to mark them for bypassing the
PCM. Such a page-level bypass (PLB) flag would serve to dispose of memory pages
replaced in the DRAM instead of writing them back to the PCM, saving redundant
write operations. Such memory profiling is not done by the hardware itself—it can only
be predefined, and the PLB set by the operating system.

Memory Controller and Page Manager. Hybrid PCM and DRAM architectures can
also benefit from an OS memory handling policy, which is aware of the hybrid memory
architecture [Dhiman et al. 2009]. Such a design incorporates architectural changes in
both the memory controller (hardware) and the page manager (OS—software).

The memory controller routes memory access requests to the relevant hardware
according to the requested address, whether it be in the DRAM section of the memory,
or the PCM. It also keeps track of all PCM accesses on a page-level granularity (see
Figure 9). This allows the controller, which is aware of PCM’s limited endurance, to
mark a PCM page as a “bad” page, once it has reached its theoretical limit for write
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accesses. This should prevent any future page allocations from reaching this hot page,
while the rest of the PCM is still usable. Additionally, once the amount of memory writes
to a single PCM page has reached some predetermined threshold, a page swap occurs,
which is handled by the page manager and should transfer the hot virtual page to some
other physical portion of the PCM, so as to provide wear leveling. These statistics, which
are maintained by the memory controller, may be kept in a small dedicated SRAM cache
so that this maintenance does not degrade PCM lifetime. Finally, since these statistics
should be kept throughout the lifetime of the system, they are copied to the disk on
shutdown and reloaded on startup, while also synchronizing the data with the disk
periodically to account for system crashes.

The page manager is the software part of this design scheme, and with it, the OS
ensures PCM wear leveling and an optimal use of the hybrid memory architecture.
It consists of two key elements—the memory allocator and the page swapper. This
design scheme assumes different behaviors for PCM page allocator and for DRAM
page allocator. DRAM design is outside the scope of this work, and thus only the
PCM allocator is discussed. The PCM allocator keeps four lists of memory pages: free,
used-free, threshold-free, and bad. Initially, all pages are marked as free. After an
allocated page has been freed, it is marked as used-free, to indicate that it is free for
reallocations but has already been used recently, while other pages have not. Whenever
the free list is exhausted, it is merged with the used-free. Also, as discussed regarding
the memory controller, a page which has been written to more than a predetermined
threshold amount of times is moved to the threshold-free list. This is done by the page
manager by handling the page-swap generated by the memory controller, thus ensuring
that this page will not be written to again until all memory pages have reached the
threshold. This scheme provides an OS-based wear leveling for the PCM on a page-
level granularity. The final list of bad pages contains pages which have reached their
theoretical endurance limit and should never be used again, for fear of write or read
failures.

When swapping pages, the page manager updates all relevant memory components
to comply with memory coherency—page table entries, TLB entries, and the page
contents themselves. It is also possible to choose from a simplistic memory swap policy,
which always allocates pages from the PCM, or a hybrid policy. The simple policy has
advantages of its own, as it provides some wear leveling for the PCM, independent
of DRAM memory, and can be beneficial. However, the hybrid policy achieves the true
goal of this design policy, as it provides a DRAM backup for the PCM endurance-limited
cells. Such a policy not only reduces memory writes to the PCM but also allows heavily
written memory pages to be placed in the DRAM, thus reducing the amount of page
swap interrupts raised for these pages and removing a major bulk of PCM endurance
costly writes.

8. SOLID-STATE DISK DESIGNS

8.1. Background

In recent years, advancements in solid-state disk (SSD) technology and nonvolatile
memories (NVM) have led to NAND flash memory being used extensively in various
applications, such as mobile devices, hard disk caches, and even HDD replacements
[Sun et al. 2010]. While NAND flash is still a preferable choice for such applications,
it has some limitations which need to be addressed in any future developments and
applications of the technology.

One such shortcoming of NAND flash technology lies in the asymmetry between its
read and write operations [Kim et al. 2008; Sun et al. 2010]. A NAND flash memory
read request can access any of its pages directly. However, that is not the case for write
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Fig. 10. Flash memory based SSD typical architecture with the flash tranlation layer.

operations. NAND flash pages cannot be written directly. Instead, before any write
operation, the memory area being written has to be erased first. Furthermore, NAND
flash cannot be erased on a single-page granularity. Instead, a single erase unit has
to be erased. Such an erase unit typically consists of several adjacent pages, not all of
which should be changed by the write operation. So, in effect, in order to write a NAND
flash memory page, an entire erase unit has to be backed up, erased, and subsequently
restored from the backup, with the updated version of the written page.

PCM has been shown to have superior endurance over NAND flash memory, but as it
has not yet been manufactured on a large scale with a cost competitive to flash memory,
it provides an opportunity for hybrid architectures which benefit from the advantages
of both technologies [Boboila and Desnoyers 2010; Park et al. 2008; Yoon et al. 2008].

Flash Translation Layer. The most common solutions to the problem of erase-before-
write in NAND flash memories have to do with using a flash translation layer (FTL)
[Boboila and Desnoyers 2010; Park et al. 2006; Kim et al. 2008]. As seen in Figure 10,
this abstraction layer translates between the file system and the physical flash pages,
giving the flash device write operations the feel of regular HDD access operations. The
extra layer redirects write requests by the file system to erase-free physical pages. Thus
not all memory write requests result in immediate costly erase operations; instead,
pages are written to physical memory areas which require no erase, while the original
data page is marked as invalid. Of course, once all pages have been exhausted in this
manner and there are no longer any erase-free memory pages, entire erase units have
to be merged so that previously invalidated pages are erased, freeing up room for
more write operations, while updated data from previous write operations are merged
consistently. This method incurs a trade-off between faster write operations due to less
frequent erase operations and the costly merge operations.
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Fig. 11. IPL design.

It should be noted that the FTLs are mostly implemented as firmware and are
proprietary of their respective manufacturers. One should therefore keep in mind that
academic papers regarding FTL designs, some of which are surveyed here, may not
necessarily be aware of the latest designs of industrial FTLs, as these designs are not
publicly available.

FTL Mapping Schemes. FTLs can map logical addresses to physical addresses on
varying resolutions [Park et al. 2006; Kim et al. 2008]. There are FTLs which translate
on a page-level granularity, giving good performance for random access write patterns,
but requiring a rather large amount of mapping information. Other FTLs map on a
block-level granularity, requiring a significantly smaller amount of mapping informa-
tion, but suffering a performance degradation owing to the extra operations required
on the entire block, even when only a part of it has been written to. Finally, the log
block mapping scheme combines both page-level mapping and block-level mapping by
dividing each memory block into a data block and a log block. Block mapping is used
for the data blocks and page mapping is used for the log blocks. Initially, every write
operation is performed on the log block. Once it runs out of free space, the FTL merges
both sections of the block. The size of the log block is fixed by design to avoid the large
memory requirements of the page-level mapping.

8.2. PCM-Based Log Region

In-Page Logging. In-page logging (IPL) is a further improvement on the log block ad-
dressing method explained in the previous section [Lee and Moon 2007; Sun et al.
2010]. In IPL, instead of storing the entire updated page in the log section, the log
section is divided into several log sectors. These log sectors are used to keep track of
updated data only, and not the entire page. They can be allocated on demand and may
also contain more than a single update record. These records are written back to the
NAND flash memory when all log pages of a single erase unit are dirty or full, but
the data page itself does not have to be written back, since all updates are stored in
the log sectors. A schematic design can be seen in Figure 11. This method gives im-
proved performance over traditional log block addressing, but still suffers performance
degradation because no in-place updating can be done for the log pages, since that is
still a limitation of NAND flash memory. Furthermore, a scenario of frequent writes
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to a single erase unit exhausts its log sectors quickly, triggering frequent costly merge
operations between data and log sections.

PCM-Based IPL. In order to exploit the advantages of PCM over NAND flash mem-
ory, such as improved endurance and in-place updating, it is suggested to use hybrid
architecture in which PCM is used for the log region [Sun et al. 2010]. This design uti-
lizes a special log region controller which is responsible for address translation between
the NAND flash data pages and PCM-based log pages.

A read operation accesses both memory types, where the data is first taken from the
NAND flash data pages, and any further updates recorded for these pages are taken
from the PCM log section, thus forming a complete, updated memory page. Write
operations should first access the PCM log section. If no log records for the written
page exist, then a new record should be allocated. If the page already has some log
records associated with it, their contents are compared address-wise. Records which
apply to the same memory address are overwritten (which could not have been done
with NAND flash), and if no such records exist for the specific address, then a new
record is allocated along with the other records for the same page. A merge operation
is similar to previous schemes, where the log sector updates are applied to the data
pages, while writing them to a different free erase unit.

Since the log section is smaller than the data section, the latency incurred by the
peripheral access devices to it is smaller than the latency to access the data pages, and
since these occur simultaneously, there is no extra latency incurred due to the usage
of the hybrid memory scheme. Furthermore, PCM usage allows for in-place updating,
which greatly reduces the amount of new log sectors allocated, and even though each
write operation requires memory address comparison to check whether a log sector
already exists, this overhead is dwarfed by the reduction in unnecessary writes, espe-
cially if keeping in mind that the PCM read operations are much cheaper than write
operations. Finally, since PCM allows for read accesses with byte granularity, only the
log records that are relevant to the read memory page are loaded, in contrast with
NAND flash which requires loading an entire page or even several pages if the log
records stretch out over several different memory pages.

Another aspect to consider if utilizing PCM for log pages is how to allocate the log
region. Traditionally, IPL states that each erase unit has a fixed amount of log pages
[Lee and Moon 2007]. This may be necessary when using the NAND flash itself for the
log region, and its main advantage is in its simple design and easy address translation.
However, in such a scheme, a merge operation occurs when the fixed size of the log
region has been fully used for a given page, incurring a performance cost while other
pages on the log region have yet to be utilized. This scheme is called a static log
region assignment. In contrast, using PCM, it is possible to use the dynamic log region
assignment [Sun et al. 2010]. In this scheme, the number of log sectors assigned for
each erase unit is not fixed, but instead allocated based on the amount of updates for
that particular unit. This allows for a significantly lower amount of merge operations,
since more log sectors can be allocated for a frequently updated erase unit, which is
particularly beneficial for asymmetric write profiles.

Finally, the hybrid architecture suggested improves the overall endurance of the
memory, since most update operations do not affect the NAND flash, but only the PCM,
which has much greater endurance. In order to optimize the endurance benefits, it is
important to make sure PCM does not fail before the NAND flash, that is, the log region
can be written to more often than the data region, but only by a factor determined by
the ratio of PCM endurance to NAND flash endurance. Knowing this ratio beforehand,
it can be set as a threshold to the amount of updates per page stored in the log region
before a merge operation is forced, even if not all log pages are full. This way, the log
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pages and data pages wear out at the same pace. Further improvements for the log
region lifetime can be obtained by utilizing some wear-level mechanisms, as previously
elaborated in Section 7.1.2. It should be noted that while wear-leveling schemes are
common in flash memory designs, such designs are not necessarily applicable for PCM.
Since PCM is faster than flash memory in terms of both read and write accesses, its
wear-leveling designs are under more limiting constraints, and it is less desirable to
implement software-based solutions for wear-leveling. Thus PCM wear leveling designs
may be different than flash memory designs.

8.3. Metadata Separation

Metadata and User Data. File systems generally keep track of user data and metadata.
Every file updated incurs both a user data update and metadata update, which in
NAND flash memory are both sent to the FTL, as previously described. While the
size of metadata is usually much smaller than a file system block, it is nevertheless
updated quite frequently, in about half of memory write operations [Kim et al. 2008;
Park et al. 2008]. Additionally, analyses show that only a small portion of the metadata
is usually changed upon a write operation. This incurs a rather expensive cost when
writing to NAND flash memory, especially since the metadata and user data are not
usually stored together in the file system, which means that such a write operation
to NAND flash would access several memory blocks, breaking the sequential writes to
the memory and increasing the amount of log records and merge operations.

FSMS and PFFS. File System Metadata Separation (FSMS) is a technique which
separates metadata from user data [Kim et al. 2008]. The idea is to add a PCM device
to store the metadata only. This requires a change in the block device driver to allow it
to identify metadata writes according to their addresses. Once such a write has been
identified, it is sent to a PCM filter device instead of to the NAND flash memory. This
filter is responsible for carrying out only necessary write operations, using a read-
before-write scheme.

Alternatively, the file system metadata itself could be altered to account for the
hybrid architecture. This is done in the PCM-based Flash File System (PFFS) [Park
et al. 2008]. The idea here is to maintain file system metadata, such as directory
structure, in the PCM while enhancing the file system metadata to account for the
specific structure of both NAND flash and PCM.

Hiding Address Translation. Demand-based Flash Translation Layer (DFTL) [Gupta
et al. 2009] is a recent FTL design which is based entirely on page-level granularity
address translation. It relies on the assumption that most workloads have temporal
address locality, and therefore, there is no need to store the entire page mapping table
for easy access, but instead, a caching mechanism is employed that allows quick address
translation for hot pages. Non-cached address translations are stored in the flash itself,
thus saving DRAM space.

Hiding address translation (HAT) is a hybrid memory architecture utilizing flash, a
small portion of DRAM, and a PCM device [Park et al. 2006]. It is an upgraded FTL
based on DFTL, but which stores the small cached address map on DRAM for quick
access, while keeping the rest of the address translation map on a PCM device, utilizing
its advantages (i.e., in-place updating, superior endurance), as previously detailed.

Chameleon. While not using PCM devices in itself, the Chameleon [Yoon et al. 2008]
architecture is interesting in itself, since it is based on a hybrid of flash and FRAM
technologies, which may also be applicable for PCM. This is another architecture which
attempts to reduce the costly random access write operations on the NAND flash, since
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these are the most harmful to common FTL schemes’ performance. This architecture
separates any metadata from the actual written data and stores the metadata on the
FRAM instead of on the flash device. The metadata mentioned here is not a file system
generated metadata but, instead, the block mapping table of the FTL, pointers used by
page-level write buffers, and so forth.

8.4. Hybrid Flash Translation Layer

Hybrid Flash Translation Layer (hFTL) [Kim et al. 2008] is a page-level granularity
mapping based FTL, which incorporated PCM to store mapping information, thus
reducing the main memory consumption due to mapping metadata. All metadata,
including the mapping table, physical page status bitmaps, and the physical block
information are kept on PCM, and only the data blocks are stored on the NAND flash
memory.

The NAND flash memory blocks are also divided into data blocks, buffer blocks,
and garbage blocks. Newly arrived data is always stored in the buffer blocks. Once a
buffer block runs out of space, it is relabeled as a data block, and a new buffer block
is allocated from the pool of garbage blocks. Should the amount of garbage blocks
decline below a predetermined threshold, a merge operation occurs. As explained, all
metadata is stored in the PCM. However, in order to account for slower PCM writes
when compared with main memory, metadata which is related to the currently written
buffer block, is temporarily stored in the main memory. Only when the buffer block is
relabeled as data block is its metadata copied to the PCM.

In order to further reduce merge operations costs, hFTL implements the logical-page-
delete function, which is called whenever the file system deletes a file. This function
invalidates the physical pages which belong to the deleted file. The reason for this is
that most file systems mark a file as deleted by changing only its metadata, while
the user data itself remains seemingly valid, and may be redundantly copied during
a merge operation. Using this function removed unneeded memory pages from costly
merge operations.

A final improvement to merge-operation cost incorporated into hFTL is for the case
when storage utilization is high and nearing 100%. In such a case, only a few garbage
or free blocks are available for merge operations, rendering them less effective and
more frequent. To account for this costly scenario, hFTL sets several reserve blocks
aside, which are not counted in the total of logical space available, but are only used in
such a scenario when more blocks are needed for merge operations.

9. CONCLUSIONS

This article surveyed the current state of PCM technology, its physics, the main chal-
lenges facing it as it attempts to provide a feasible alternative to DRAM main memory
and to flash in SSDs, and some key architectural designs attempting to answer these
challenges.

The field of PCM architectural research is constantly growing and provides attractive
research opportunities. There are indications that existing omnipresent technologies,
such as DRAM and flash, may soon reach the limit of their scalability, with their further
development becoming non-cost-effective. In an attempt to be prepared for that day, the
industry looks toward alternative memory-technology investing efforts and funding in
designing such technologies. Among these, PCM is the most promising candidate to
become the next commonly used memory technology.

PCM provides research opportunities because its advantages and limitations are
different than those of DRAM and flash technologies. Therefore, while both flash and
PCM suffer from limited endurance, the solutions for each of the technologies are
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different. That is also true for the technology’s other limitations. However, PCM pro-
vides an opportunity for innovative design schemes that counteract these limitations
by using some of PCM’s unique advantages over other technologies, such as being ac-
cessible with higher granularity than flash, having faster read than write operations,
and being nonvolatile, as opposed to DRAM.

Should PCM find its way to becoming a dominant main memory technology, it may
also affect existing software architectures, which are based today on the fact that the
main memory is always volatile. With the introduction of a nonvolatile memory design,
software architectures may be less dependent on the storage system for saving durable
metadata or the memory contents. Thus PCM-based designs may also trigger further
research in software architectures and storage conceptions.
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