A. Roy, N. Memon, A. Ross, "MasterPrint: Exploring the Vulnerability of Partial Fingerprint-based Authentication Systems,"
IEEE Transactions on Information Forensics and Security, 2017.

MasterPrint: Exploring the Vulnerability of Partial
Fingerprint-based Authentication Systems

Aditi Roy, Student Member, IEEE, Nasir Memon, Fellow, IEEE, and Arun Ross, Senior Member, IEEE

Abstract—This paper investigates the security of partial
fingerprint-based authentication systems, especially when mul-
tiple fingerprints of a user are enrolled. A number of con-
sumer electronic devices, such as smartphones, are beginning
to incorporate fingerprint sensors for user authentication. The
sensors embedded in these devices are generally small and the
resulting images are, therefore, limited in size. To compensate
for the limited size, these devices often acquire multiple partial
impressions of a single finger during enrollment to ensure
that at least one of them will successfully match with the
image obtained from the user during authentication. Further,
in some cases, the user is allowed to enroll multiple fingers,
and the impressions pertaining to multiple partial fingers are
associated with the same identity (i.e., one user). A user is
said to be successfully authenticated if the partial fingerprint
obtained during authentication matches any one of the stored
templates. This paper investigates the possibility of generating
a “MasterPrint”, a synthetic or real partial fingerprint that
serendipitously matches one or more of the stored templates for
a significant number of users. Qur preliminary results on an
optical fingerprint dataset and a capacitive fingerprint dataset
indicate that it is indeed possible to locate or generate partial
fingerprints that can be used to impersonate a large number
of users. In this regard, we expose a potential vulnerability of
partial fingerprint-based authentication systems, especially when
multiple impressions are enrolled per finger.

I. INTRODUCTION

Fingerprints are one of the oldest and most widely em-
ployed biometric traits used by forensics and law enforcement
agencies worldwide [19]. Their use for human identification
is based on two premises: (i) permanence or persistence, and
(i1) uniqueness or distinctiveness. In recent times, there has
been a remarkable growth in the utilization of fingerprints for
biometric verification in various applications.

Companies such as Apple and Samsung have introduced fin-
gerprint sensors for authenticating users on smartphones. The
European Association for Biometrics considers the release of
the iPhone 5s in September 2013 as heralding a paradigm shift
[3]. This shift is now fueling a second emerging trend in user
authentication that uses fingerprints for payments and other
financial transactions. In addition to mobile payment services
by Apple, Samsung and others, a credit card with a fingerprint
scanner has been developed by Zwipe and MasterCard.
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Fig. 1: A set of partial fingerprints (b) extracted from the full
fingerprint (a)

Although, from a usability point of view, fingerprint au-
thentication is being touted as a much awaited and welcome
replacement for “what you know” (e.g. PINs), and “what you
have” (e.g. ID cards) based systems, their security has not
been well studied in the context of the following:

o Smartphones and other small form factor mobile devices
typically employ small sensors which capture only a
limited portion of the full fingerprint (see Figure 1 (a))
[15].

« Since only a partial fingerprint is captured in any single
sensing instance, multiple partial fingerprints are captured
for the same finger during enrollment, and a collection of
these partial fingerprint impressions is stored (see Figure
1 (b)).

« To enhance usability of the system, a user is permitted to
enroll multiple fingers.

« Since authentication is done in an unsupervised manner,
the verification system does not know which finger or
which part of the finger is being sensed. Hence, in
some cases, authentication is declared successful if the
sensed partial fingerprint matches with any of the stored
impressions; that is, any partial fingerprint of any enrolled
finger.

In the specific case of the Apple Touch ID, it has been
claimed that the system has a one in 50,000 chance for a
false match [1]. Hence, the system is assumed to be more
secure than the fallback (minimum 4 digit) PIN that a user is
requested to enter after 5 unsuccessful tries [1] or a restart.
However, irrespective of the specifics of a system, the security
of an authentication system is not merely measured by the
chance that a random attempt will succeed, but is based on the
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probability that an attacker, with some knowledge about the
distribution of the input data, will succeed in a given number
of attempts to guess the right input. So, for example, in a PIN-
based authentication system, an attacker who guesses “1234”
has a 4.3% [8] chance of success. The same question could be
asked of partial fingerprint-based user authentication systems.

Is there a partial fingerprint that can fortuitously match with
the fingerprint data of an arbitrary user with high probability?
We define a MasterPrint as a fingerprint that serendipitously
matches a certain proportion of the fingerprint population. This
is akin to discovering a password or passcode that can unlock
many accounts. Considering PIN-based authentication on mo-
bile phones as a reference [8], the existence of MasterPrints
that match with 4.3% of the population would have strong
security implications. A MasterPrint could be either a full print
or a partial print. For brevity sake, we use the term MasterPrint
for both situations with the context indicating the specific case
being discussed. The objective of this paper is to study the
security of fingerprint-based verification systems against such
attacks:

« Is it possible to find MasterPrints that match with a large
number of fingerprints originating from different users?

« Alternatively, is it possible to generate such a MasterPrint
synthetically and, if so, how?

Our results indicate that the answer to the above questions
may be “yes”, thereby exposing a potential vulnerability of
partial fingerprint-based authentication systems.

II. PRIOR WORK

The security of biometric systems has been extensively
studied in the past two decades. It is well known that in spite of
its numerous advantages, a fingerprint-based biometric system
is potentially vulnerable to a variety of attacks [36]. Ratha et
al. [28] identified eight points of attack in a biometric system
that can be grouped into four categories, namely, (i) attacks
at the user interface (input level), (ii) attacks at the interfaces
between modules, (iii) attacks on the modules, and (iv) attacks
on the database. Among these, type 1 attacks which involve
the presentation of fingerprint spoofs have proven to be quite
successful [22]. Since this attack only needs a fake biometric
without any knowledge of the matcher, image specifications or
database access privileges, its vulnerability is higher compared
to the other attacks. Moreover, since it operates in the analog
domain, digital protection mechanisms like encryption, digital
signature, hashing etc. may not be easily applicable. Therefore,
this type of attack represents a realistic threat for fingerprint
verification systems used in mobile devices.

A spoof attack can be launched by (a) lifting the residual
fingerprint of a user from the phone or any other surface,
(b) creating a dummy finger from the lifted impression; and
(c) placing the dummy finger on the fingerprint sensor [34].
Such attacks have been demonstrated against the Apple iPhone
5S as well as the Samsung Galaxy S5 [2]. Another type of
attack involves the reconstruction of a fingerprint image from
a minutiae template which can be achieved, for example, by
using amplitude and frequency modulated (AM-FM) functions
[31]. Consequently, if an attacker steals a database of minutiae

templates from a server or cloud storage, it is possible - in
principle - to reconstruct the corresponding fingerprint images
and generate spoof fingers using the reconstructed images.

A. Brute Force Attack:

When none of the aforementioned attacks are feasible,
a crude brute force attack with a large number of input
fingerprints can be used. Ratha et al. [28] established the
relationship between the number of brute force attack attempts
and the number of minutiae that is expected to match. They
showed that the search space for guessing the fingerprint to
be matched can be prohibitively large. However, for a mobile
device, where only a portion of the full fingerprint is used,
this search space would be much smaller.

B. Dictionary based guessing attack:

In contrast to a brute force attack, a dictionary attack
tries only those possibilities which are deemed most likely
to succeed. For example, a study on the RockYou! database
[12] shows if an attacker tries to gain access to a password-
protected system by trying the 10 most common passwords
in that database and using a listing of known accounts, he
could be expected to succeed within 25 accounts, costing only
250 guesses [13]. Analyses on dictionary attacks report that
the percentage of rightly guessed text passwords can vary
between 17% and 24% [23], [35], depending on the dataset
and dictionary size.

To quantify the resistance to dictionary attacks, proper
metrics are needed. In the context of PIN, text or pattern
based passwords, a number of measures have been proposed.
A traditional measure is Shannon entropy [33], which is
mathematically unsuited to measuring guessing difficulty. A
more sound measure is Guessing entropy [7] that computes
the average number of guesses that the optimal attack needs
in order to find the correct password. However, according
to [8], both of these measures are influenced by rare events
significantly enough to make them misleading for security
analysis. A preferable alternative is Marginal guesswork, fi,
which measures the expected number of guesses required to
succeed with probability « [8]:

J
ua:mm{je[l,N]\Zpi>a}, (1)
i=1

where the password z; in a database X of IV passwords has
probability of occurrence p; and p; > p2 > ... > py. In
the case of a fingerprint-based verification system, attackers
are almost always externally limited in the number of guesses
that are allowed. Then, the best metric is the Marginal success
rate \g, the probability that an attacker can correctly guess an
unknown password z in /3 attempts:

B
Ao =D i ©))
i=1

However, the Marginal success rate cannot be used in
biometric authentication as multiple biometric passwords can
be jointly accepted with a probability corresponding to the
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False Match Rate (FMR) of the matcher. So, we used the
Imposter Match Rate, described later, for this purpose.

Although dictionary attacks have been extensively studied
and analyzed for traditional password-based authentication
systems, they have not been systematically considered by the
research community in the context of fingerprint verification.
To perform a guessing attack with fingerprints, the question
arises as to whether there are some fingerprints that are
more likely to match a target than the others? It has been
observed in the previous literature, that different users have
different performance characteristics based on their fingerprint.
Doddington et al. [14] pointed out in the context of speaker
recognition that some users contribute disproportionately to
high a FMR and False Non-Match Rate (FNMR). They
introduced the concept of the “biometric menagerie”, which
characterized users into four different groups based on their
genuine scores and imposter scores, namely, sheep, goat, lamb,
and wolf. While Doddington et al. considered genuine scores
and imposter scores separately, Yager et al. [39] took the
relationship between genuine and imposter scores into account,
and introduced a new menagerie consisting of dove (users with
high genuine scores and low imposter scores), chameleons
(high genuine scores and high imposter scores, thus are easy
to match with everyone, including themselves), phantom (hard
to match with most of the users), and worm (hard to match
with themselves but easy to match with others). Previous
studies [39], [27] have identified the existence of chameleons
in datasets of full fingerprints.

There are two research topics in the literature that are
closely related to the current work on MasterPrints: “wolf
attack” [38], [16] and evidential value analysis [24]. The work
presented in [38], [16] introduced a security measure called
“Wolf Attack Probability (WAP)” to estimate the strength
of a biometric authentication system against impersonation
attacks. In that work, a wolf is defined to be any input
sample, including non-biometric samples such as physical
artifacts, that can incorrectly match with multiple biometric
templates. The focus of the previous work is primarily on
defining a measure for security. In our work, the focus is
on locating and generating MasterPrints. There are two major
differences between [38], [16] and our proposed work. First,
we present specific approaches to generate MasterPrint unlike
[38], [16]. Second, we show that the probability of detecting
a MasterPrint and the attack accuracy increases when partial
fingerprints are used, thereby exposing the vulnerability of
fingerprint systems that use partial prints for authentication.
Such an analysis has not been undertaken in the previous work.

The other related research work deals with evidential value
analysis [24] of latent fingerprints. The study shows that if the
surface area of the latent fingerprint is small or if there are
fewer minutiae points, then the evidential value of the print is
also low resulting in a higher probability of matching error.
Based on this observation, we hypothesize that the probability
of finding MasterPrints that incorrectly match with a large
number of templates is higher in a partial print dataset.

III. MASTERPRINTS: DO THEY EXIST?

While it is widely accepted in the fingerprint literature
that partial fingerprints are more prone to generate a false
match due to loss in “information entropy”, an analytical
evaluation of the probability of false matches using such partial
fingerprints of variable sizes is hard to perform. Existing work
has only modeled the observed minutiae feature distribution
statistically to compute the Probability of Random Correspon-
dence (PRC), which is actually the false match rate, for a full
fingerprint dataset [25]. Investigation of how PRCs change
with the size of a fingerprint image has not been done, to the
best of our knowledge.

In the absence of such analytical models, in this section
we explore statistical evidence that supports the intuition that
an increase in false match rate in a partial fingerprint dataset
leads to a higher chance of finding MasterPrints.

A. MasterPrint Existence Hypothesis:

We hypothesize that the probability of finding MasterPrints
is higher in partial print dataset than full print dataset. Consider
a population of N subjects with J fingers, with each finger
having K impressions. Let this dataset be denoted as F =
{F;k|z e{l,...,N},je{l,...,J ke {l,...,K}}. Let
the size of each print Fj?k be W x H. There are Ng (= J - K)
full prints per identity and the total number of full prints is
Nr (= N - Ng).

Fingerprints obtained using small sensors generally capture
only a partial print. Let a single full fingerprint be tessellated
into L partial prints each of size w x h (w < W and h < H).
The L fold increase in the number of partial fingerprints
(PF},)) results in a dataset F = {(PFjylie{l,...,N},je
{1,...,Jhk € {1,...,K},l € {1,...,L}}. This in turn
results in an increase in the number of genuine scores and
impostor scores for each subject in an all-to-all match test
using a symmetric matcher, which consequently may increase
the probability of observing chameleons having high imposter
scores that lead to false matches.

Hypothesis: Let, the probability of finding M P in partial
print dataset & be P(M P C ¥ ) and the probability of finding
it in full print dataset ¥ be P(MP C ¥). Then, our null
hypothesis is:

Hy: P(MP C %) >P(MPcCF). 3)

For our hypothesis to hold, H has to be rejected.

B. Hypothesis Test:

To test the MasterPrint existence hypothesis, experiments
were conducted on the standard FVC 2002 dataset DB1-A [8]
that contains 8 fingerprints of 100 subjects, for a total of 800
fingerprints. We created partial prints of size w x h by cropping
the full prints using an overlapping window that moved from
top-to-bottom and left-to-right with a 50% overlap between
adjacent windows. To create similar sized partial fingerprints
as used by Apple Touch ID, a window size of 150 x 150 was
used (See Appendix for a justification of the window size).
The sampling was done uniformly from the foreground area
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of the full fingerprints. On an average, 10 partial prints were
extracted from each of the 800 full prints, creating a total of
8220 partial prints.'

The commercial fingerprint verification software Verifinger
6.1 SDK was used for matching fingerprints. When using full
fingerprints in the DB1-A dataset, the average FMR was found
to be 0.1% while the average True Match Rate (TMR) was
99.18%. When comparing the full as well as partial prints, only
pairs of prints having at least 10 minutiae were considered.
Those partial or full fingerprints that matched with at least
4% of partial or full prints of other subjects were selected as
candidate MasterPrints. 1 out of 800 full fingerprints and 1203
out of 8220 partial fingerprints were detected as MasterPrints.

Next, the t-test was applied to test our hypothesis in Eq.
(3) based on these results. We found X2 = 185.42, degree of
freedom = (2 - 1)*(2 - 1) = 1, and p-value < 2.2e-16. Our
desired confidence level was a = 0.05. Since the p-value <<
0.05, the null hypothesis Hy can be rejected in favor of the
alternative hypothesis that the proportion of MasterPrints is
indeed much higher in a partial print dataset.

Robustness Check on Hypothesis Testing: The traditional
hypothesis testing approach described above uses the entire
sample set for evaluation. However, Perols et al. in [26]
pointed out that it is important to consider the robustness of
results across different subsamples of the original data. They
proposed the Multi-subset Observation Undersampling (OU)
[10] method to check the robustness of traditional hypothesis
testing. This approach addresses the imbalance between the
low number of full fingerprint data compared to the number
of partial fingerprint data by creating multiple subsets of the
original dataset. Each subset contains all the samples from the
“full” fingerprint data and multiple random subsamples of the
“partial” fingerprint data.

We created 12 subsets where each subset included 800 full
fingerprints and a random sample of 800 partial fingerprints
from the pool of 8220 partial fingerprints. MasterPrints were
then located on each of these subsets. On an average, 92
MasterPrints were detected from each partial print subset. Each
subset was then used in the hypothesis testing framework.
The p-value was << 0.05 in all of the 12 cases. These
results suggest that OU yields similar results as the traditional
hypothesis testing analysis, i.e., the null hypothesis, Hy, is
rejected in the OU analysis. However, the OU results are
generally more conservative. For example, the p-values from
the OU results are numerically higher than the traditional
approach. Thus, the OU subsample analysis indicates that our
hypothesis testing is robust and that the probability of finding
MasterPrints from the partial fingerprint dataset is higher than
the full fingerprint dataset. Additional comparative analysis in
Section V will show that the accuracy of an attack is also
higher in the case of the partial fingerprint dataset.

IV. MASTERPRINT GENERATION
Next, we investigate methods for generating MasterPrints.
We explore two approaches: one where the print is selected

IThe dataset can be downloaded from https://wp.nyu.edu/memon/the-
master-print/

from an existing dataset of real fingerprints, and another where
the print is generated synthetically. For the first approach,
a fixed dataset is used as the training dataset from which
the MasterPrint is sampled. These MasterPrints selected di-
rectly from a dataset are termed as “Sampled MasterPrints”
or “SAMPs”. The synthetically created MasterPrints in the
second approach are termed as “Synthetic MasterPrints” or
“SYMPs”. Both approaches are designed for a minutiae-based
fingerprint authentication system and a detailed description of
them is presented below.

A. Sampled MasterPrint Generation

Generating MasterPrints by sampling a fingerprint dataset
(training set) is rather straightforward. The “Imposter Match
Rate” (IMR) - which is the number of false matches when a
fingerprint is compared against images of other fingers (impos-
tors) - is computed for all candidate prints. If S((x), (¢, 4, k,1))
represents the match score between fingerprint x and Fj’k ;> and
0 represents the matching threshold, then M R(x) is formally
defined as follows:

1 .
IMR(x) = (N—l)—~L~NGV§.l¢((X)’ (4,7, k,1)),

where

¢((X), (i 4, k. 1)) :{ 1, if S((x), (i, k1)) > 0

0, otherwise.

4)

The prints with maximum IMRs are selected from the dataset.
However, since these SAMPs are identified from an existing
dataset, properties such as image size, degree of fingerprint
variability, noise, etc, might affect the IMR of these SAMPs
when used in various other datasets, i.e., their imitating power
may be low. Moreover, it may not be always possible to
find a MasterPrint in a selected dataset. To improve the IMR
of MasterPrint, we also explore the possibility of creating a
synthetic MasterPrint by altering a SAMP.

B. Synthetic MasterPrint Generation

Here, our objective is to generate improved MasterPrints
synthetically by maximizing their IMR over a training dataset.
Let ¥ be the space of all MasterPrints. If w is a candidate
MasterPrint in ¥, it implies that w at least matches with 4%
of the fingerprints. The goal is to find SYMP w' in the space
Y of all possible MasterPrints that maximizes the following
objective function:

w = argmax{IMR(w)}.
weX

(&)

Since searching over the entire space is intractable, local
search can be applied to find a solution.

A number of approaches have been proposed in the literature
to generate synthetic fingerprints for launching indirect attacks
against fingerprint systems. Attacks based on hill climbing [36]
have been found to be highly effective in generating synthetic
impressions that are falsely accepted by the matcher [21]. We
adopt a similar approach in our work. The SAMPs found from
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the training dataset are used as the initial seed in the hill
climbing process.

In hill climbing, a randomly generated synthetic minutiae
template is presented to the matcher and, based on the output
score, it is iteratively modified until a specific criteria is
fulfilled. Here, minutiae are defined by their position and
orientation. At first, image-level matching is performed on the
training dataset to select a sampled MasterPrint (SAMP) with
high IMR (IM Rganp). The seed fingerprint is then divided
into multiple cells each covering one inter-ridge distance (9
pixels for a 500 dpi image) to prevent adding minutiae points
that are in close proximity to each other (details below). Thus,
each cell of size 9 x 9 pixels can only contain one minutia in
the center of the cell, apart from the already existing minutiae
in the initial SAMP. Also, the minutia orientation range [0,27)
is quantized into 16 equally spaced intervals. Next, a hill
climbing method is applied on this fingerprint as described
in Algorithm 1.

The algorithm modifies the SAMP such that the number
of minutiae is increased or decreased, or the positions and
orientations of existing minutiae points are changed. The value
of IMR is used to guide this process. However, the average
number of minutiae in partial prints is generally low. To
prevent the situation where the number of minutiae in SYMP
is further lowered by the deletion operation to the extent that
it cannot be reliably used for matching, a lower bound on
the number of minutiae is set. After each iteration, if the
IMR improves, the current template (/M R.,.-) is replaced
with the new template (/M Ry.,,p). Hence, the algorithm “hill
climbs” to increase the IMR. The SAMP is modified until the
maximum number of iterations is reached or the IMR attains
a predefined maximum value.

V. EXPERIMENTAL RESULTS

To investigate whether the generated MasterPrints success-
fully match with a large number of fingerprint impressions
pertaining to multiple subjects, several experiments were con-
ducted. In addition to determining the maximum value of
¢ for which MasterPrints could be found, we also explored
the scenario where an authentication system would permit a
user to offer their fingerprints multiple times in the case of
a failed authentication attempt. In the latter case, multiple
MasterPrints are identified, and a successful authentication
is claimed when any one of them incorrectly matches with
the target subject. The questions of interest in this scenario
are: What set of MasterPrints one would choose to increase
the probability of success? What part of the fingers do Mas-
terPrints typically come from? To address these questions,
a collection of MasterPrints were identified from publicly
available fingerprint datasets. Experiments on a capacitive
fingerprint dataset, similar to the one used by Apple TouchlD,
showed that it is possible to break 6.88% of users’ account
in 5 attempts if the FMR setting of the matching algorithm
(Verifinger 6.1 SDK) was set to 0.01% and each subject was
enrolled with one finger and 12 partial impressions per finger.
This is significantly higher than what has been estimated for
PINs and passwords. Further, with higher FMR settings (lower

TABLE I: Threshold selection corresponding to different FMR
settings of the matching algorithm

Capacitive Dataset Optical Dataset

1% 0.1% | 0.01%| 1% 0.1% | 0.01%

FMR | FMR | FMR | FMR | FMR | FMR
Threshold | 35 50 65 18 30 40
TMR (%) | 80.85| 71.28| 62.42] 99.29| 99.18 | 99.04

security), it was possible to perform successful attacks on
an even higher subject population. The rest of this section
presents detailed results for not only a capacitive dataset but
also with an optical dataset, thereby ensuring variation in
quality as well as nature of partial prints.

The FingerPass DB7 dataset [18] consisting of images from
a capacitive sensor and FVC 2002 DB1-A dataset consisting of
images from an optical sensor were used in our experiments.
The capacitive dataset comprises 8640 fingerprints of size
144 x 144 pixels and 500 dpi resolution from 720 fingers,
each having 12 impressions. The data was collected using
Authentec AES3400 sensor. The fingerprints from this dataset
were used without any modifications, as these fingerprints
were already partial in nature. It is assumed that there are
substantial differences among the partial fingerprints captured
from the same finger. From the optical dataset, partial fin-
gerprints of size 150 x 150 pixels were created from the
800 full prints, as mentioned in Section III. To create the
training and test datasets, each dataset was divided into two
disjoint sets each containing data corresponding to 50% of the
fingers. In the case of FVC dataset, both the training and test
datasets consisted of 50 fingers with a total of 400 impressions
each. Similarly, for the FingerPass dataset, the training and
test sets each had 360 fingers resulting in a total of 4320
impressions in each set. The training sets were used to generate
the MasterPrints based on the two techniques described in
Section IV, while the test sets were used in the dictionary
attack. This partitioning of each dataset into finger-disjoint
training and test sets was done 5 times, resulting in 5 different
estimates for dictionary attack success.

Using the Verifinger 6.1 SDK, first “all-to-all” matching
was performed on the training sets of both the capacitive
and optical fingerprints to determine the thresholds to be used
for assessing the success of the dictionary attack. In all our
experiments, we assume that the minutiae are defined by their
position and orientation. The thresholds corresponding to three
FMR values, i.e., 1%, 0.1% and 0.01%, were used in our
experiments to observe how the MasterPrints perform under
different security settings (lower FMR increases the system
security). Table I shows the thresholds and the TMR values
corresponding to these three FMR values. Since the capacitive
dataset itself is partial in nature, the TMR was lower than the
optical dataset.

The experiments were performed in two phases: “image-
level comparison” phase, where best SAMPs were identified
by an “all-to-all” matching and “finger-level comparison ”
phase, where the selected SAMPs and the SYMPs generated
from them were used to attack the subjects in the test set. Since
the subjects in the two datasets used for our experimentation
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Algorithm 1 Synthetic MasterPrint Generation Algorithm

Parameters:

Fyest = Best synthetic template

Feurr = Current synthetic template

Fiemp = Candidate template

SAMP = Sampled template used as seed

IM Rpest = Imposter match rate of Fpest

IM Rcyrr = Imposter match rate of Feypr
IM Riemp = Imposter match rate of Fiepmp

9: IMRsamp = Imposter match rate of SAMP
10: %maez = Maximum iteration

11: Mpin = Minimum number of minutiae in a template
12: IM Rpq, = Maximum Imposter match rate
13: Input: SAMP, IMRsAMP, tmaz, Mmin

14: Output: Fpest

15: Initialization:

16: Fyest < Feurr < SAMP,

17: IM Rpest < IMReyrr <— IMRsAMmP

18: Begin

19: while i < iz & IM Rpest < IMRppor do
20: Ftemp — Fcurr

W N =

A

21: Perform one of the following four operations on Ficmp and then calculate IM Riemp:

22: (a) Change an existing minutia of Fie,,, by moving it to an adjacent cell or by changing its orientation to the previous/next angle
quantum with equal probability.

23: (b) Add a randomly generated minutia to Fiemp.

24: (c) Replace an existing minutia of Fiemp with a new minutia by randomly selecting a minutia, deleting it and then adding a

randomly generated minutia.

25: (d) Delete an existing minutia of Fiepmp randomly if the number of minutiae > M.
260 If IMRiemp > IM Reyrr, then IM Reyryr <= IM Riemp and Feyrr <= Fremp
27 I IMRcurr > IM Rpest, then IM Ryest < IM Reyrr and Fyest <— Feurr

28: =1+ 1;
29: end while
30: End

had impressions from only one finger, the term “subject” and
“finger” will be used interchangeably in the rest of the paper.?
The attack accuracy of a MasterPrint was measured in terms of
IMR. Image-level comparison assesses the number of images
against which a MasterPrint is successfully matched; while
finger-level comparison assesses number of fingers against
which a MasterPrint is successfully matched. Consider a
dataset of 50 fingerprint images corresponding to 5 differ-
ent fingers with 10 impressions per finger. If a MasterPrint
matches with 25 images corresponding to 3 fingers, then the
result of image-level comparison would be 25 and finger-level
comparison would be 3.

A. Image-level Comparison

In a dictionary attack, an attacker will try out a pre-defined
set of fixed fingerprints to access the system. In this regard,
we create a fingerprint dictionary consisting of MasterPrints
that sequentially increase the probability of matching a large
number of target prints.

1) Independent SAMP selection: In FingerPass DB7
dataset, each of the 4320 fingerprints corresponding to 360
subjects were compared with all fingerprints of the other 359
subjects. The partial prints corresponding to the 5 highest
IMRs were chosen as the Sampled MasterPrints. The IMRs

2Note that the term “subject” is synonymous with “user” in this article.

TABLE II: The percentage of images in the partial fingerprint
population that matched with the top 5 independent SAMPs
are shown in terms of Imposter Match Rate (%). Capacitive
SAMPs performed better than the optical SAMPs at lower
security settings (higher FMR)

Rank Capacitive Dataset
1% 0.1% | 0.01%| 1%

FMR | FMR | FMR | FMR
6.77%| 1.31%| 0.36%| 3.51%
6.45%| 1.12%| 0.31%| 3.31%
5.95% 1.08%| 0.27%| 3.13%
5.87%| 1.03% 0.27%| 2.97%
5.64% 0.98%| 0.25%| 2.94%

Optical Dataset

0.1% | 0.01%
FMR | FMR
1.31%| 0.56%
1.11% 0.50%
0.97% 0.45%
0.85% 0.40%
0.80%| 0.38%

W B W D —

were computed for each of the three FMR settings in 5 cross-
validation trials giving different sets of SAMPs for different
trials. Table II summarizes these results. Figure 2 shows the
drop in IMR when the FMR is decreased, i.e., when the
security of the authentication system is increased.

The top 5 SAMPs from the FingerPass dataset are shown in
Figure 3. It can be observed that the fingerprint patterns and
the spatial distribution of the minutiae of these automatically
selected SAMPs are quite different. For example, the third
SAMP covers the right side of the core while the fourth SAMP
covers the left side of the core. Together, these 5 SAMPs span
over different portions of the full fingerprint, which in turn
increases the probability of matching with a large number



A. Roy, N. Memon, A. Ross, "MasterPrint: Exploring the Vulnerability of Partial Fingerprint-based Authentication Systems,'

IEEE Transactions on Information Forensics and Security, 2017. 7

Fig. 2: Image-level Imposter Match Rate (%) using top 5
independent SAMPs corresponding to table II.

of imposter partial fingerprints irrespective of their spatial
location.

Similarly, from the FVC 2002 DB1-A dataset, the SAMPs
were identified from the partial prints generated from 50 fin-
gers. It can be observed from Table II that the IMR decreases
at lower FMRs (as expected).

The full fingerprint images from which the top 5 SAMPs
were extracted are shown in Figure 4. The minutiae locations
corresponding to only these SAMPs are shown here. It can
be observed that the SAMPs are mostly located in the lower
regions of the full prints, and dense distribution of minutiae
usually occurred near the core and delta regions of the finger-
prints. This observation is consistent with the previous work of
Cao et al. [9] who pointed out that low discriminative minutiae
configurations usually exist in these regions. Further, they
found that these spatial minutiae configurations lead to high
FMR with higher probability. Their observation is supported
by our experimental results.

If the SAMPs from capacitive and optical datasets are
compared, it can be noticed that the optical SAMPs are more
diverse in terms of their position within the corresponding full
fingerprints. The inherent nature of the source of the partial
fingerprints in the two datasets is the reason behind such
diversity. Since the partial fingerprints of the capacitive dataset
were obtained directly from the sensor, where the users tend to
position the center of their fingertip on the sensor, almost all
of the captured partial fingerprints contained the core (when
present). On the other hand, the partial fingerprints extracted
from the images in the optical dataset are more uniformly
distributed over the full fingerprint. Therefore, the SAMPs
also show more diversity in the optical dataset in terms of
their position in the fingertip.

2) Sequential SAMP selection: Here, we assume that the
attacker can launch multiple attempts to break into the system.
Therefore, we determine the SAMPs (5 attempts) that can
sequentially increase the probability of forcing an impostor
match.

In this case, the top 5 SAMPs were selected sequentially.
At first, the IMRs of all the partial fingerprints in the training
dataset were computed and the print with the highest IMR

TABLE III: Percentage of images in the partial fingerprint
population that matched with the top 5 sequential SAMPs are
shown here. As in the case of independent SAMPs, capacitive
SAMPs performed better than the optical SAMPs at higher
FMR values.

Rank Capacitive Dataset Optical Dataset
1% 0.1% | 0.01% | 1% 0.1% | 0.01%
FMR | FMR | FMR | FMR | FMR | FMR
1 6.77% | 1.31% | 0.36% | 3.51% | 1.31% | 0.56%
2 5.06% | 1.06% | 0.31% | 2.81% | 0.73% | 0.44%
3 4.11% | 091% | 0.26% | 2.10% | 0.68% | 0.40%
4 338% | 0.83% | 0.25% | 1.65% | 0.57% | 0.33%
5 287% | 0.77% | 0.22% | 1.59% | 0.52% | 0.28%
Total | 22.19% 4.89% | 1.40% | 11.67% 3.81% | 2.01%

was selected. The selected partial print and all the partial
fingerprints that matched with it were excluded from the
training set. Then, the IMRs of the remainder of the partial
prints in the reduced training set were computed in order
to select the next partial print. This process was repeated
until there were 5 partial prints selected. Table III shows the
average image-level IMRs of the top 5 sequential SAMPs
obtained over 5 different trials. Sequentially, these 5 SAMPs
matched with 1.40-22.19% of the fingerprint population of
the FingerPass dataset. Figure 5 shows the variation in IMR
when using different ranked MasterPrints. In case of the FVC
dataset, these 5 SAMPs matched with 2.01-11.67% of the 4110
partial fingerprints. Thus, image-level probability of matching
was found to be in the range of 1.40-22.19% for FingerPass
and 2.01-11.67% for FVC, when the MasterPrints were used
to match the fingerprints in the training dataset.

B. Finger-level Comparison

In finger-level comparison, we replicate the situation of a
dictionary attack on a fingerprint dataset that is unknown to the
attacker. Here, if any one of the imposter match scores gener-
ated when comparing a MasterPrint with the multiple partial
or full print templates corresponding to a finger is higher than
a specified threshold, a match is declared. To explore whether
MasterPrints can also be used for full fingerprint attack, we
computed full fingerprint based MasterPrints and compared
their performance with partial fingerprint based MasterPrints.
Detailed results with sampled as well as synthetic MasterPrints
are described below. For finger-level matching, the test datasets
created in each of the 5 trials were used.

It must be noted that, during evaluation, the size of the
FVC2002 DB1-A dataset used for the full fingerprints (400)
is less than that of the partial fingerprints (=~ 4110). There
are two common data imbalance compensation methods, (i)
over-sampling and (ii) under-sampling. Over-sampling can be
done in two ways: by duplicating the existing fingerprint
impressions or by generating them synthetically. While the
duplication approach can easily lead to over-fitting due to the
lack of new information in the sampled dataset, the use of
synthetic dataset may cause over-generalization. Moreover, the
quality of the synthetic fingerprint may also affect the results.
Further, it has been shown that the under-sampling method
can delete crucial data [6], [11], which may adversely impact
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Fig. 3: Minutiae location of top 5 partial fingerprints that were selected as MasterPrints from the FingerPass DB7 dataset.

Fig. 4: Minutiae location of top 5 partial fingerprints that were selected as MasterPrints from the FVC 2002 DB1-A dataset

Fig. 5: Image-level Imposter Match Rate (%) when using the
top 5 sequential SAMPs corresponding to table III

the performance. Therefore, in subsequent experiments, we
avoided using any data imbalance compensation techniques
and employed the original datasets for testing the attack
accuracy using MasterPrints.

1) Results with Sampled MasterPrints: Finger-level match-
ing is performed on the test dataset with the independent
SAMPs as well as the sequential SAMPs. While the top
SAMP was compared with all the impressions of the avail-
able subjects,® successive SAMPs were matched with only
those impressions corresponding to the subjects that were
not already matched by the higher ranked SAMPs. Thus, the
finger-level IMR represents the percentage of subjects in the
population matched by the 5 SAMPs sequentially.

The finger-level IMR was calculated at different FMR

3We use the terms “subject” and “finger” interchangeably since every
subject has samples corresponding to only a single finger.

values for each set of 5 SAMPs corresponding to the 5 test
trials. The combined average finger-level IMR is, therefore,
the average IMR over these 5 trials. Further, the combined
average finger-level IMR was computed as a function of the
number of fingerprint impressions per finger. As the number
of impressions per finger is increased, it is expected that the
chance of matching the MasterPrint with any one of them
will also increase. Thus, the IMR will gradually improve
with increasing number of impressions per finger. Here, we
assume that the partial fingerprints corresponding to a finger
are sufficiently dissimilar to each other. Otherwise, increasing
the number of impressions per finger will not favorably affect
the IMR. Next, we present experimental results to support this
hypothesis.

Attack against Full Fingerprints: Since the fingerprints
in the FingerPass DB7 dataset are already partial in nature, we
used the FVC2002 DB1-A dataset that has full fingerprints.
The sequential and independent SAMPs were identified by
performing image-level comparison as described in the previ-
ous section. Every SAMP was compared with 400 unseen full
fingerprints corresponding to 50 subjects in the test dataset.
Figure 6 shows the variation in the combined average finger-
level IMR when the number of full fingerprints per finger was
increased from 1 to 8. Even when using the 5 top SAMPs
together, the probability of matching is observed to be quite
low at the 0.1% and 0.01% FMR security settings.

Attack against Partial Fingerprints: Now, we present the
performance of partial fingerprint based SAMPs from both the
capacitive as well as optical datasets. In case of the FingerPass
DB7 dataset, the number of partial fingerprints was varied
from 1 to 12. Figure 7 shows the variation in the combined
average finger-level IMR when increasing the number of
impressions per finger. For example, at an FMR of 0.1%,
the IMR increased from 1.32% to 23.9% using independent
SAMPs. Further, it can be observed that the sequential SAMPs
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Fig. 6: Finger-level Imposter Match Rate variation as a func-
tion of the number of impressions per finger using the top
5 full fingerprint based SAMPs from the FVC 2002 DBI1-A
dataset. At the 0.1% and 0.01% FMR security settings, both
the sequential as well as independent SAMPs exhibited very
low IMR. Overall, sequential SAMPs performed better than
the independent SAMPs.

performed better than the independent SAMPs irrespective
of the number of impressions per finger. The IMR using
sequential SAMPs at an FMR of 0.1% increased from 2.4%
to 26.5%.

Fig. 7: Finger-level Imposter Match Rate variation as a
function of the number of impressions per finger using the
top 5 SAMPs from the FingerPass DB7 dataset. When the
number of impressions per finger is increased, IMR increases
gradually. Further, the figure shows how the sequential SAMPs
consistently performed better than the independent SAMPs at
all FMR settings.

Similar experiments were also performed on the partial
fingerprints of FVC 2002 DBI-A dataset. Figure 8 shows
the variation in the combined average finger-level IMR when
the number of full fingerprints per finger was increased from
1 to 8 Here too, the sequential SAMPs performed better
than the independent SAMPs. At a 0.1% FMR, the IMR of
the independent SAMPs ranged from 22.8% - 62.0% with

Fig. 8: Finger-level Imposter Match Rate variation as a
function of the number of impressions per finger using the
top 5 partial fingerprint based SAMPs from the FVC 2002
DBI1-A dataset. Just as in the case of the capacitive dataset,
here too, the sequential SAMPs performed better than the
independent SAMPs. Further, the partial fingerprint based
SAMPs performed much better than that of the full fingerprint
based SAMPs (see Figure 6).

1 - 8 impressions per finger, while the IMR of sequential
SAMPs ranged from 26.0% - 65.2% IMR. Therefore, in the
experiments below we only consider the 5 sequential SAMPs.

When these results are compared with the corresponding
FingerPass dataset results, it can be observed that the optical
SAMPs performed far better than the capacitive SAMPs in
terms of IMR. There could be multiple reasons behind this.
First, the difference in sensor type causes differences in image
quality. Second, as pointed out in Section V.A.1, the diverse-
ness in optical SAMPs is more than that in capacitive SAMPs.
This in turn can increase the probability of matching with a
large number of imposter partial fingerprints irrespective of
their capture location. Thirdly, the nature of partial fingerprints
in the two datasets are quite different. Since almost all the
partial fingerprints in the capacitive dataset contained the core
region, the imposter match probability was lower compared
to that of partial fingerprints from the optical dataset, which
were uniformly cropped from a full fingerprint.

Further, the partial fingerprint based SAMPs show much
better performance than that of the full fingerprint based
SAMPs. Specifically, at strong security settings (0.1% - 0.01%
FMR), the IMR of the full fingerprint based sequential SAMPs
was low (6.6% - 2.4%) compared to the partial fingerprint
based sequential SAMPs (65.2% - 22.2%). These results
confirm that not only is the proportion of MasterPrints much
higher in the partial fingerprint dataset, but that these Mas-
terPrints perform much better than the corresponding full
fingerprint based MasterPrints.

If the finger-level matching results on the two datasets are
compared against that of the image-level matching results
in Tables II and III, it can be observed that although the
optical MasterPrints matched with lower number of partial
fingerprint impressions than the capacitive MasterPrints, they
matched with higher number of fingers than the capacitive
ones. Thus, although the optical MasterPrints seem to be
weaker based on the image-level comparison results, they
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Fig. 9: Improvement in Imposter Match Rate of the top 5
sequential SAMPs with increasing number of iterations in the
hill-climbing method.

turn out to be stronger than the capacitive MasterPrints based
on the finger-level comparison. The difference in the number
of partial fingerprints corresponding to a finger in the two
datasets could be the reason behind this. The number of partial
fingerprint impressions per finger in the optical dataset is 8x 10
(average) ~ 80, whereas in the capacitive dataset there are 12
impressions per finger. During finger-level matching, a match
is declared if the Masterprint matches with any 1 of the 80
partial fingerprints in the optical dataset. Since the number of
partial prints per finger is higher in the optical dataset, the
probability of finger-level matching is also higher compared
to the capacitive dataset.

2) Results with Synthetic MasterPrints: In this section,
the results of finger-level matching using the synthetically
generated MasterPrints, SYMPs, are presented. The SYMPs
were generated from the training datasets by applying the
hill-climbing method (described in Section IV) on the top 5
sequential SAMPs. The SAMPs are modified until the IMR
is stabilized. If the IMR remains unchanged for a predefined
number of iterations, it is assumed that the performance has
been stabilized. Figure 9 shows the change in IMR values
as a function of the number of iterations, for the top 5
sequential SAMPs. The hill-climbing process is terminated if
the IMR values remain fixed over 100 iterations. As can be
seen from the figure, the IMR is steadied after 350 iterations.
Figure 10 shows the change in minutiae configuration after
applying the hill-climbing method. The original positions of
the minutiae in the SAMPs are shown in red. The updated
minutiae in the corresponding SYMPs are shown in green. It
should be noted that reconstruction of the actual fingerprint
image corresponding to the synthetic “template” has not been
done here.

Next, these SYMPs were used to launch a dictionary attack
on the test datasets. The finger-level IMR for each set of 5
SYMPs was computed at different FMR values and over 5
different trials. As in the previous subsection, the combined
finger-level IMR was computed as the summation of all the
finger-level IMRs obtained by the 5 sequential SYMPs. Then,
the final combined average finger-level IMR was computed
by averaging over the 5 trials (cross-validation). Like before,

Fig. 10: Minutiae location in two MasterPrint templates. The
red minutiae are the original ones in the seed template and
the green minutiae are the updated ones in the corresponding
synthetic template.

the combined average finger-level IMR was computed as a
function of the number of fingerprint impressions per finger.

Attack against Full Fingerprints: The SYMPs created
from the corresponding full fingerprint based SAMPs were
now used to attack the full fingerprints in the FVC 2002
DBI1-A dataset. Figure 11 shows the variation in the combined
average finger-level IMR when the number of full fingerprints
per finger was increased from 1 to 8. The SYMPs were
observed to perform better than the corresponding SAMPs.
At 0.1% FMR, the IMR increased from 0.4% to 2.8% when
only one impression per finger was used. When 8 impressions
per finger were used, the IMR increased from 6.6% to 10.0%.

Fig. 11: Finger-level Imposter Match Rate using full finger-
print based SAMPs and SYMPs on the FVC 2002 DBI1-A
dataset. The IMR of SYMPs was observed to be better than
that of SAMPs by =~ 2%.

Attack against Partial Fingerprints: Next, performance
of the synthetic MasterPrints obtained from the partial finger-
print datasets is presented. Figure 12 shows the IMR results of
the SYMPs and the corresponding SAMPs on the FingerPass
DB7 dataset. Here too the SYMPs are observed to perform
better than the corresponding SAMPs. For example, at a 0.1%
FMR, the IMR increased from 2.4% to 3.7% when only one
impression per finger was used. When 12 impressions per
finger were used, the IMR increased from 26.4% to 30.8%.

Figure 13 shows comparative IMR results on the partial
fingerprints of the FVC 2002 DBI1-A dataset. Like before,
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Fig. 12: Finger-level Imposter Match Rate using SAMPs and
SYMPs on the FingerPass DB7 dataset. Using the SYMPs, the
average improvement over the SAMPs in all settings was =
4%. At a higher FMR, the improvement was more pronounced
compared to a lower FMR setting. Further, with increasing
number of impressions per finger, the margin of improvement
also increased.

Fig. 13: Finger-level Imposter Match Rate using the partial
fingerprint based SAMPs and SYMPs on the FVC 2002 DB1-
A dataset. The IMR of SYMPs is observed to be better than
that of SAMPS by =~ 3%.. Overall, the partial fingerprint based
SYMPs continued to perform better than the full fingerprint
based SYMPs shown in Figure 11.

the SYMPs are observed to result in better performance than
the SAMPS. The results also indicate the importance of the
number of prints and the fype of prints that are stored for each
user in a partial fingerprint based authentication system.

Performance comparison of the partial fingerprint based
SYMPs with the full fingerprint based SYMPs suggests that
partial fingerprint based SYMPs continue to exhibit higher
accuracy in terms of IMR. Moreover, the degree of improve-
ment of partial fingerprint based SYMPs over the correspond-
ing SAMPs is more than that of the full fingerprint based
SYMPs. These results further strengthen our hypothesis that
the probability of finding MasterPrints with high accuracy is
greater in a partial print dataset than a full print dataset.

VI. DISCUSSION AND FUTURE WORK

This work exposes a vulnerability of fingerprint authentica-
tion systems that use partial fingerprints for user recognition.
Specifically, we discussed the generation of a MasterPrint that
could be used to launch a dictionary attack. Experiments were
carried out using a commercial fingerprint verification software
on two different fingerprint datasets, viz., the FVC2002 DB1-
A optical dataset and the FingerPass DB7 capacitive dataset.
Two approaches to generate MasterPrints were presented in
this paper. The efficacy of both approaches were tested on the
two datasets. The main findings of this work are as follows:

1) The work establishes the fact that it is indeed possible
to perform a dictionary attack on a fingerprint dataset
with substantial accuracy using a set of carefully chosen
MasterPrints. The MasterPrints can be either full or
partial fingerprints sampled from a dataset or designed
synthetically using a hill climbing method. However,
the probability of finding MasterPrints from a partial
fingerprint dataset and the accuracy of the ensuing attack
are much higher than that of a full fingerprint dataset.
With a dictionary of 5 partial fingerprint based Master-
Prints, and assuming a maximum of 5 attempts to be au-
thenticated, it was possible to attack 26.46% users (each
having 12 impressions per finger) in the FingerPass DB7
capacitive fingerprint dataset and 65.20% users (each
having 8 x 10 (average) ~ 80 partial impressions per
finger) in the FVC optical fingerprint at a FMR of 0.1%.
The attack accuracy varied greatly with the FMR value
and the number of impressions per finger (for details
refer to Section V.B.1).

It was observed that the synthetic MasterPrints, gener-
ated by a simple first-order hill climbing algorithm, are
able to improve the attack accuracy over the sampled
MasterPrints. On the capacitive dataset, the average
improvement over all FMR settings was =~ 4% whereas
on the optical dataset it was ~ 3% (for details refer to
Section V.B.2). Thus, it can be concluded that properly
designed synthetic MasterPrints can be used to perform
dictionary attack with higher accuracy.

The minutiae distribution of the selected MasterPrints
reveals that regions of high minutiae activity usually
occurred in the upper delta point of the fingerprints.
According to Cao et al. [9], these minutiae generally
have lower discriminative power, which may lead to a
higher imposter match rate.

Detailed analysis of the results reveals that even if a
MasterPrint matches with a small number of partial
fingerprints, the percentage of subjects that it matches
against can be quite high. This is because, for each sub-
ject, multiple partial prints may be stored. For example,
ata 0.1% FMR, a single MasterPrint (from the capacitive
dataset) matched only 1.4% of the partial fingerprints,
but this corresponded to 10.6% of the subjects owing
to the fact that every subject had 12 impressions. It is
clear that this risk would increase if multiple fingers
are enrolled for each subject. This observation indicates
that the number as well as the type of partial fingerprint

2)

3)

4)

5)
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impressions to be stored for each finger should be
judiciously chosen such that the chance of matching with
an arbitrary finger is minimized as suggested in [37].

Together, these results illustrate the effectiveness of Master-
Prints in launching a dictionary attack on partial fingerprint-
based authentication systems. The work presented in this paper
opens up several avenues for future research. Firstly, the
impact of the distribution of the location of partial fingerprints
on attack accuracy must be explored. Secondly, the process
of generating synthetic MasterPrints can be improved. In this
article, a rather simple (but effective) scheme was discussed.
Thirdly, the synthetic MasterPrint generation technique dis-
cussed here modified an existing partial fingerprint at the
“template-level” by minutiae manipulation. Such a modifica-
tion can also be done at the “image-level” in order to construct
a digital artifact, which can be potentially transferred to a
physical artifact for launching a spoof-attack [20].

The results of this work must be used to better address the
broader problem of designing trustworthy user authentication
systems that utilize partial fingerprints. This could entail devel-
oping effective anti-spoofing schemes [20]; carefully selecting
the number and nature of partial impressions of a user during
enrollment [37]; improving the resolution of the small-sized
sensors to facilitate extraction of more discriminative features
[17]; developing matchers that utilize both minutiae and tex-
ture information [30]; and designing more effective fusion
schemes to combine the information presented by multiple
partial impressions of a user [32], [29].

APPENDIX

The size of the window was decided to approximately match
the size of the fingerprint image captured by the Apple Touch
ID sensor which is composed of an 8 x 8 millimeter (0.3” x
0.3”) capacitive sensor of 500 dpi resolution [5]. But, average
finger dimension is 0.5” x 0.7” [4]. Thus, Apple Touch ID
captures only a part of fingerprint of image size 150 x 150
(500%0.3 = 150). To create similar sized partial fingerprints
from FVC2002 DBI1-A dataset having image resolution 500
dpi, the window size is chosen to be 150 x 150.
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