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Satisficing in multi-armed bandit problems
Paul Reverdy, Vaibhav Srivastava, and Naomi Ehrich Leonard

Abstract—Satisficing is a relaxation of maximizing and allows
for less risky decision making in the face of uncertainty. We
propose two sets of satisficing objectives for the multi-armed
bandit problem, where the objective is to achieve reward-based
decision-making performance above a given threshold. We show
that these new problems are equivalent to various standard
multi-armed bandit problems with maximizing objectives and
use the equivalence to find bounds on performance. The different
objectives can result in qualitatively different behavior; for
example, agents explore their options continually in one case and
only a finite number of times in another. For the case of Gaussian
rewards we show an additional equivalence between the two sets
of satisficing objectives that allows algorithms developed for one
set to be applied to the other. We then develop variants of the
Upper Credible Limit (UCL) algorithm that solve the problems
with satisficing objectives and show that these modified UCL
algorithms achieve efficient satisficing performance.

I. INTRODUCTION

Engineering solutions to decision-making problems are of-
ten designed to maximize an objective function. However, in
many contexts maximization of an objective function is an
unreasonable goal, either because the objective itself is poorly
defined or because solving the resulting optimization problem
is intractable or costly. In these contexts, it is valuable to
consider alternative decision-making frameworks.

Herbert Simon considered alternative models of rational
decision-making [30] with the goal of making them “com-
patible with the access to information and the computational
capacities that are actually possessed by organisms, including
man, in the kinds of environments in which such organisms
exist.” A major feature of the models he considered is what he
called “satisficing”. In [30], he discussed in very broad terms
a variety of simplifications to the classical economic concept
of rationality, most importantly the idea that payoffs should be
simple, defined by doing well relative to some threshold value.
In [31], he introduced the word “satisficing”, a combination of
the words “satisfy” and “suffice”, to refer to this thresholding
concept and illustrated it using a mathematical model of
foraging. He also briefly discussed how satisficing relates to
problems in inventory control and more complicated decision
processes like playing chess.

Since Simon’s pioneering work, satisficing has been stud-
ied in many fields such as psychology [29], economics [6],
management science [23], [37], and ecology [36], [8]. In
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engineering, satisficing is of interest for the same reasons
that motivated its introduction in the social science literature,
specifically that it can simplify decision-making problems: as
compared to maximizing it allows for less risky decision mak-
ing in the face of uncertainty. Furthermore, many engineering
problems are naturally posed using a satisficing objective, such
as choosing a design that meets given specifications, but where
the designers may be indifferent among any such designs.
Satisficing is well defined even if there are several competing
performance measures that trade off in complicated ways,
whereas maximizing may be poorly defined without additional
information about preferences.

Satisficing has been studied in the engineering literature in
several contexts. In [25], the authors studied design optimiza-
tion using a satisficing objective and found that it is effective
in many practical fields. In [14], the authors studied control
theory using a satisficing objective function, and in [38], the
authors used satisficing to study optimal software design.
In [10], the authors used a multi-armed bandit algorithm to
construct robots that actively adapt their control policies to
mitigate damage, such as actuator failures. In order to speed
the convergence of their algorithm, they only sought to identify
control policies with performance above a set threshold, rather
than to identify an optimal policy. The theory that we develop
in this paper formalizes their notion of thresholding and
provides bounds on performance.

In this paper, we consider satisficing in the stochastic
multi-armed bandit problem [28], for which a decision maker
sequentially chooses one of a set of alternative options, called
arms, and earns a reward drawn from a stationary probability
distribution associated with that arm. The standard multi-
armed bandit problem uses a maximizing objective on accumu-
lated reward. For this objective there is a known performance
bound in terms of expected regret, which is the expected
difference between the reward received by the decision maker
and the maximum reward possible.

Since the standard notion of regret is defined relative to the
unknown optimum, it can only be computed by an omniscient
agent; this notion of regret is not computable by a decision
maker faced with a multi-armed bandit problem. Nevertheless,
it is a useful theoretical concept, which facilitates the analysis
of algorithms designed to solve bandit problems. We extend
the notion of regret to satisficing objectives and use it to
analyze new algorithms.

In contrast to the standard stochastic multi-armed bandit
problem in which the agent seeks to determine, with certainty,
the option with maximum mean reward, the satisficing multi-
armed bandit problem seeks to determine, with a desired
confidence, a satisfying option. We characterize satisficing in
multi-armed bandit problems using three separate features of
the satisficing objective.
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The first feature selects the quantity on which the satisficing
objective is defined. We consider two such quantities: (i) the
unknown mean reward of the selected option, and (ii) the
instantaneous observed reward.

The second feature treats the satisfaction aspect of the
satisficing problem. In particular, it selects if the objective
function should be optimizing, or if it should be satisfying.

The third feature treats the sufficing aspect of the satisficing
problem. In particular, it selects if the decision-making algo-
rithm should be certain that the optimizing/satisfying criterion
is met, or if it is sufficient for the algorithm to meet a
desired threshold in confidence about the criterion. Different
combinations of the above three features of satisficing lead to
eight satisficing objectives that we discuss in this paper.

We begin by defining the four objectives for the case
where the satisficing quantity is the unknown mean reward.
We show that the bandit problem with each of these four
objectives is equivalent to a previously-studied bandit problem
and use the equivalence to derive a performance bound for the
satisficing problems. These four objectives seek an arm with
satisfyingly high mean reward without regard to that reward’s
dispersion. To develop objectives with improved robustness
properties, we then consider the case where the satisficing
quantity is the instantaneous observed reward. We extend the
first four objectives to this case by adding an additional layer
of thresholding, which defines four more objectives. When the
reward distributions belong to location-scale families, there
is an equivalence between the objectives defined in terms of
mean reward and the robust objectives defined in terms of
instantaneous reward, which we prove in the case of Gaussian
rewards.

For simplicity of exposition, we then specialize to Gaussian
multi-armed bandit problems, where the reward distributions
are Gaussian with unknown mean and known variance. For
such problems, we develop several modifications of the UCL
algorithm that we developed in previous work [27]. These
algorithms solve the problem with the satisficing mean reward
objectives (and thus also with the robust objectives); and
we show that these algorithms achieve efficient performance.
These results extend our previous work [26] by incorporating
the concept of sufficiency into the satisficing objective, as well
as adding several new algorithms and their associated analysis.

The assumption of Gaussian rewards with known variance
is not required, but it allows us to focus on the different
notions of regret, which is the main contribution of this paper.
We later show how the known variance assumption can be
relaxed. Our methods also extend immediately to many other
important classes of reward distributions, including distribu-
tions with bounded support and sub-Gaussian distributions. We
show how to extend our methods in these cases and provide
references to the relevant literature for other extensions.

The remainder of the paper is structured as follows. In
Section II we review the standard stochastic multi-armed
bandit problem and the associated performance bounds. In
Section III we propose the satisficing objectives and bound
performance in terms of these objectives. In Section IV we
specialize to the case of Gaussian rewards and show the
equivalence between the satisficing in mean reward objectives

and the satisficing in instantaneous observed reward objectives.
In Section V we review the UCL algorithm, and in Section
VI we design modified versions of the UCL algorithm for the
satisficing objectives. We show that these modified algorithms
achieve efficient performance for Gaussian rewards. We show
the results of numerical simulations in Section VII and in
Section VIII we conclude.

II. THE STOCHASTIC MULTI-ARMED BANDIT PROBLEM

In the stochastic multi-armed bandit problem a decision-
making agent sequentially chooses one among a set of N
options called arms in analogy with the lever of a slot machine.
A single-levered slot machine is called a one-armed bandit,
so the case of N ≥ 2 options is called a multi-armed bandit.

The decision-making agent collects reward rt ∈ R by
choosing arm it at each time t ∈ {1, . . . , T}, where T ∈ N
is the horizon length for the sequential decision process.
The reward from option i ∈ {1, . . . , N} is sampled from
a stationary probability distribution νi and has an unknown
mean mi ∈ R. The decision-maker’s objective is to maximize
some function of the sequence of rewards {rt} by sequentially
picking arms it using only the information available at time t.

A. Maximization objective

In the standard multi-armed bandit problem, the agent’s
objective is to maximize the expected cumulative reward

J = E

[
T∑
t=1

rt

]
=

T∑
t=1

mit . (1)

Equivalently, by defining mi∗ = maximi and Rt = mi∗ −
mit , expected regret at time t, minimizing (1) can be formu-
lated as minimizing the cumulative expected regret defined by

T∑
t=1

Rt = Tmi∗ −
N∑
i=1

miE
[
nTi
]

=

N∑
i=1

∆iE
[
nTi
]
, (2)

where nTi is the number of times arm i has been chosen up
to time T , ∆i = mi∗ − mi is the expected regret due to
picking arm i instead of arm i∗, and the expectation is over
the possible rewards and decisions made by the agent.

The interpretation of (2) is that suboptimal arms i 6= i∗

should be chosen as rarely as possible. This is a non-trivial
task since the mean rewards mi are initially unknown to the
decision-maker, who must try arms to learn about their rewards
while preferentially picking arms that appear more rewarding.
The tension between these requirements is known as the
explore-exploit tradeoff and is common to many problems in
machine learning and adaptive control.

B. Bound on optimal performance

Optimal performance in a bandit problem corresponds to
picking suboptimal arms as rarely as possible, as shown by
(2). Lai and Robbins [20] studied the standard stochastic multi-
armed bandit problem and showed that any policy solving the
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problem must pick each suboptimal arm i 6= i∗ a number of
times that is at least logarithmic in the time horizon T , i.e.,

E
[
nTi
]
≥
(

1

D(νi||νi∗)
+ o(1)

)
log T, (3)

where o(1) → 0 as T → +∞. The quantity D(νi||νi∗) :=∫
νi(r) log νi(r)

νi∗ (r)dr is the Kullback-Leibler divergence be-
tween the reward density νi of any suboptimal arm and
the reward density νi∗ of the optimal arm. Equation (3)
implies that cumulative expected regret must grow at least
logarithmically in time.

The bound (3) is asymptotic in time, but researchers (e.g.,
[4], [13], [27]) have developed algorithms that achieve cumu-
lative expected regret that is bounded by a logarithmic term
uniformly in time, sometimes with the same constant as in
(3). Cumulative expected regret that is uniformly bounded in
time by a logarithmic term is often called logarithmic regret
for short. In the literature, algorithms that achieve logarithmic
regret with a leading term that is within a constant factor of
that in (3) are considered to have optimal performance.

C. Multiple plays

Anantharam et al. [2] studied a generalization of the multi-
armed bandit problem in which the agent picks k ≥ 1 arms at
each time t, which they called the multi-armed bandit problem
with multiple plays. The case k = 1 corresponds to the
standard multi-armed bandit problem defined above.

In the spirit of [2], let σ be a permutation of {1, . . . , N}
such that mσ(1) ≥ mσ(2) ≥ · · ·mσ(N). For the multi-armed
bandit problem with k plays, the optimal policy with full
information corresponds to picking the arms σ(1), · · · , σ(k),
called the k-best arms [2]. In the case k = 1, σ(1) = i∗, the
optimal arm defined above. For the case of general k ≥ 1, the
cumulative expected regret for the multi-armed bandit problem
with multiple plays is defined as follows [2]:

T

k∑
i=1

mσ(i) −
N∑
i=1

miE
[
nTi
]
, (4)

which is a straightforward generalization of the regret (2). The
suboptimal arms σ(k + 1), · · · , σ(N) are called the k-worst
arms [2]. Define ∆

(k)
i = mσ(k) −mi for each k-worst arm i.

The quantity ∆
(k)
i is the generalization of the expected regret

∆i for the problem with multiple plays, where the expected
value of the optimal policy is that of the k best arms.

As in the case of a single play, optimal performance corre-
sponds to picking suboptimal (i.e., k-worst) arms as rarely as
possible. By [2] each k-worst arm i must be picked a number
of times that is at least logarithmic in the time horizon T , i.e.,

E
[
nTi
]
≥
(

1

D(νi||νσ(k))
+ o(1)

)
log T. (5)

This bound can be interpreted as a generalization of the Lai-
Robbins bound (3) where the Kullback-Leibler divergence is
taken with respect to the kth best arm σ(k) rather than the
first best arm σ(1) (i.e., i∗ in the case k = 1).

D. PAC bounds

In the standard multi-armed bandit problem and the multi-
armed bandit problem with multiple plays, regret is defined
in terms of the unknown mean reward values mi. These
regret definitions imply that avoiding regret requires identi-
fying optimal arms with certainty. The requirement to identify
optimal arms with certainty is characteristic of a maximizing
decision-making strategy. In contrast, a satisficing decision-
making agent should seek arms that are “good enough”. In
this context, satisficing corresponds to finding arms that are
optimal with high probability rather than with certainty.

The Probably Approximately Correct (PAC) model for
learning introduced by Valiant [34] provides a natural way
to capture this aspect of satisficing. Even-Dar et al. [11], [12]
and Mannor and Tsitsiklis [22] studied the multi-armed bandit
problem using the PAC model and defined an ε-optimal arm
i as one for which mi > mi∗ − ε, i.e., the mean reward is
within ε of the optimum value. Equivalently, an ε-optimal arm
is an arm i for which the expected regret ∆i is at most ε.
Under the PAC model one wishes to find an ε-optimal arm
with probability of at least 1 − δ. With probability one, this
can be achieved in a finite number of samples, so performance
guarantees take the form of bounds on the number of samples
required, which is referred to as sample complexity. In our
notation, we denote sample complexity by T ∗, as it is the
value of the horizon length at which sampling terminates.

When the rewards are Bernoulli distributed with unknown
success probabilities pi, the following lower bound holds [22]:

E [T ∗] ≥ O
(

1

ε2
log(1/δ)

)
. (6)

A similar result was reported in [11] for T ∗, rather than its
expected value. In other words, one must sample an arm at
least log(1/δ)/ε2 times to be able to declare that it is ε-optimal
with probability at least 1− δ.

Similar to the work of [2] extending Lai and Robbins’
bounds [20] to the case of multiple plays, Kalyanakrishnan et
al. [15] extended the work of [12] from finding the ε-optimal
arm to finding the m ε-best arms with probability at least 1−δ.
In [15] this problem is called Explore-m, and an algorithm
that solves it (ε,m, δ)-optimal. Note that the problem in [12]
is the special case Explore-1. The Explore-m problem is
studied in [15] for rewards that are Bernoulli distributed. It
is proved that, for every (ε,m, δ)-optimal algorithm, there
exists a bandit problem on which that algorithm has worst-case
sample complexity of at least log(m/8δ). Specifically, it is
shown that there exists a bandit problem such that the number
of samples T ∗ required to identify m ε-best arms obeys

T ∗ ≥ 1

18375

N

ε2
log
(m

8δ

)
. (7)

This gives a worst-case bound on the number of times all arms
need to be sampled to achieve (ε,m, δ)-optimality.

The bounds (6) and (7) were both formulated for the case
of Bernoulli rewards, but it is straightforward to extend them
to the case where the rewards are Gaussian distributed with
unknown mean and known variance.
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E. Gaussian rewards

In this paper we focus on the case of Gaussian reward
distributions, where the distribution νi of rewards associated
with arm i is Gaussian with mean mi, which is unknown
to the decision maker, and variance σ2

s,i, which is known to
the decision maker from, e.g., previous observations or known
measurement characteristics. Relaxation of the assumption of
known variance is discussed in Remark 12. For the given case,
the Kullback-Leibler divergence in (3) takes the value

D(νi||νi∗) =
1

2

(
∆2
i

σ2
s,i∗

+
σ2
s,i

σ2
s,i∗
− 1− log

σ2
s,i

σ2
s,i∗

)
. (8)

This equation is more easily interpreted when the reward
variances are uniform, i.e., σ2

s,i = σ2
s for each i. In some cases

we assume uniform variance for simplicity of exposition, but
the relevant results are readily generalized to the case of non-
uniform variance. Assuming uniform variance, D(νi||νi∗) =
∆2
i /2σ

2
s , so the bound (3) is

E
[
nTi
]
≥
(

2σ2
s

∆2
i

+ o(1)

)
log T. (9)

This result can be interpreted as follows. For a given value of
∆i, a larger variance σ2

s makes the rewards more variable and
therefore it is more difficult to distinguish between the arms.
For a given value of σ2

s , a larger value of ∆i makes it easier
to distinguish it from the optimal arm. The expressions for the
problem with multiple plays (i.e., (5)) are identical except for
substituting σ(k) for i∗ and ∆

(k)
i for ∆i.

III. THE MULTI-ARMED BANDIT PROBLEM WITH
SATISFICING OBJECTIVES

We now define the multi-armed bandit problem with satis-
ficing objectives. We propose several new satisficing notions
of regret and find associated bounds on optimal performance.
These notions capture two dimensions of the satisficing prob-
lem: satisfaction, i.e., the agent’s desire to obtain a reward
that is above a certain threshold, and sufficiency, i.e., the
agent’s desire to attain a level of confidence that its choice
of a given arm will bring them satisfaction. We define these
notions first for satisficing in mean reward and then extend
them to satisficing in instantaneous reward, which we refer to
as robust satisficing.

A. Satisficing in mean reward

We define satisfaction in mean reward as having an expected
reward mit that is above a specified threshold value M.
Formally, we represent satisfaction in mean reward at time
t by the variable st, defined as

st =

{
1, if mit ≥M
0, otherwise.

(10)

The thresholdM is a free parameter that must be specified
by the decision-making agent. Let mi∗ = maximi be the
maximum expected reward from any arm. The agent can never
be satisfied ifM is greater than mi∗ , so we assume thatM≤
mi∗ to make the problem feasible. IfM > mσ(2), i.e., greater

than the mean reward of the second-best arm, then arm σ(1) =
i∗ is the only one that is satisfying in mean reward.

As in the multi-armed bandit problem with multiple plays,
let σ be a permutation of {1, . . . , N} such that mσ(1) ≥
mσ(2) ≥ · · ·mσ(N). Let k be the largest integer such that
mσ(k) ≥M. The arms {σ(1), . . . , σ(k)} are the k-best arms
defined by the satisfaction thresholdM. For each arm i, define
the thresholded expected regret ∆Mi = max{M−mi, 0}. For
each k-best arm, the thresholded regret is zero, and for each
k-worst arm i ∈ {σ(k + 1), . . . , σ(N)}, the value ∆Mi > 0
quantifies the extent to which the arm is unsatisfying in mean
rewards. Note that if M = mi∗ , ∆Mi = ∆i, which is
the standard measure of expected regret. We refer to the k-
best and k-worst arms as satisfying and non-satisfying arms,
respectively.

The satisfaction variable st defined in (10) can be written
as a function of the sign of ∆Mit :

st =

{
1, if ∆Mit = 0,

0, otherwise.

The quantity st is deterministic. However, since the agent does
not know the value of ∆Mi associated with any given arm,
they must learn it by sampling rewards from the various arms
and updating their beliefs accordingly. Adopting a Bayesian
framework, we assume st is a realization of a binary random
variable St. Due to the stochastic nature of the rewards the
agent will have less than perfect confidence in their beliefs
about the value of st.

We distinguish satisficing objectives in mean reward accord-
ing to the degree δ ∈ [0, 1] of confidence the agent wants to
achieve in their beliefs, which we call sufficiency in mean
reward. We define an arm i to be (δ-)sufficing in mean reward
if

Pr [St = 1] ≥ 1− δ,

where the probability is evaluated based on the agent’s current
beliefs. For non-zero values of δ, the agent finds it sufficient to
have finite confidence that they are satisfied, while for δ = 0,
the agent wants certainty that they are satisfied. The agent
cannot achieve certainty in finite time, so these two cases result
in qualitatively different behavior: δ = 0 means the agent will
never stop exploring, while δ > 0 means the agent will settle
on a set of acceptable options after finite time.

The satisficing-in-mean-reward objective is

T∑
t=1

1
(
(st = 1) or Pr [St = 1] > 1− δ

)
, (11)

where 1(·) is the indicator function. The objective (11) is
maximized if, at each time, a satisfying option is selected,
or the probability that the option is satisfying is sufficiently
high. The event that an option is satisfying is not known a
priori and must be learned by exploration. This results in an
explore-exploit tradeoff as in the standard multi-armed bandit
problem.

To quantify the optimal explore-exploit tradeoff in the spirit
of the Lai-Robbins bound we introduce the following notion
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of the expected satisficing regret at time t, Rt, defined by

Rt =

{
∆Mit , if Pr [St = 1] ≤ 1− δ,
0, otherwise.

(12)

If the agent is insufficiently certain of being satisfied by the
choice of it, they incur expected regret of ∆Mit . Otherwise,
they incur no regret.

We define the satisficing-in-mean-reward multi-armed ban-
dit problem in terms of minimizing cumulative expected
satisficing regret.

Definition 1 (Satisficing-in-mean-reward multi-armed bandit
problem). The satisficing-in-mean-reward multi-armed bandit
problem is to minimize the cumulative sum of the expected
satisficing regret (12):

JR = E

[
T∑
t=1

Rt

]
. (13)

The satisficing-in-mean-reward bandit problem has two pa-
rameters:M and δ. These parameters characterize the agent’s
thresholds for satisfaction and sufficiency, respectively. For
purposes of analysis we distinguish four cases as a function of
the parameter values. For the satisfaction threshold M ∈ R,
the first case is setting M > mσ(2), while the second case is
setting M ≤ mσ(2). For the sufficiency threshold δ ∈ [0, 1],
the first case is the certainty value δ = 0, while the second
case is δ ∈ (0, 1].

Table I summarizes the four problems that result from the
interaction of the two dimensions of satisfaction and suffi-
ciency. Problem 1 sets the satisfaction threshold M > mσ(2)

and the sufficiency threshold δ = 0, which results in a standard
bandit problem. We call Problem 2 with M ≤ mσ(2) and
δ = 0 satisfaction-in-mean-reward. We call Problem 3 with
M > mσ(2) and δ ∈ (0, 1] δ-sufficing. Finally, we call
Problem 4 withM≤ mσ(2) and δ ∈ (0, 1], (M, δ)-satisficing.

Remark 1. We note that the distinction between Problems
1 and 2 and between Problems 3 and 4 is only due to the
range of values M can take. These problems can be thought
of as a single problem in which the choice of M dictates
the cardinality of the set of satisfying arms. However, the two
ranges of thresholds M > mσ(2) and M ≤ mσ(2) allow us
to clearly contrast the satisficing problem with the standard
problem. Assuming M > mσ(2) in Problems 1 and 3 is
equivalent to assuming that the agent seeks the (unknown)
highest mean reward, which is consistent with the standard
problem. The policies we define for Problems 1 and 3 do
not rely on a known threshold M. Assuming M ≤ mσ(2) is
equivalent to assuming that the agent seeks to meet a (known)
desired mean reward threshold. The policies we define for
Problems 2 and 4 do rely on the threshold M. These same
assumptions analogously distinguish Problems 5 and 7 from
Problems 6 and 8 defined in Section III-B. However, unlike
the policies for Problems 1 and 3, the policies defined for
Problems 5 and 7 do rely on M > mσ(2) being known. We
do not assume in any of the problems that the agent knows
the permutation σ, so no policies depend on σ.

We develop performance bounds for each of these problems
in terms of corollaries of the performance bounds presented
in Section II. For the problems with δ = 0, these bounds
show that cumulative expected regret must grow at least at
a logarithmic rate, while for the problems with δ > 0, finite
regret is possible.

Problem 1: Standard bandit The satisficing-in-mean-
reward multi-armed bandit problem with M > mσ(2) and
δ = 0 is a standard multi-armed bandit problem. Therefore,
for this problem, the Lai-Robbins bound (3) holds, and the
expected number of times a suboptimal arm i is chosen obeys

E
[
nTi
]
≥
(

1

D(νi||νi∗)
+ o(1)

)
log T.

As a direct consequence, the cumulative expected satisficing
regret (13) grows at least logarithmically with time horizon T :

JR ≥

(
N∑
i=1

∆Mi
D(νi||νi∗)

+ o(1)

)
log T.

Problem 2: Satisfaction-in-mean-reward The satisfaction-
in-mean-reward problem, defined as the satisficing-in-mean-
reward multi-armed bandit problem where M ≤ mσ(2) and
δ = 0, also has a logarithmic lower bound on the cumulative
expected satisficing regret:

Corollary 2 (Satisfaction-in-mean-reward regret bound). The
satisfaction-in-mean-reward problem is a satisficing-in-mean-
reward multi-armed bandit problem where the objective (13)
is defined withM≤ mσ(2) and δ = 0. Any policy solving the
satisfaction-in-mean-reward problem obeys

E
[
nTi
]
≥
(

1

D(νi||νσ(k))
+ o(1)

)
log T (14)

for each non-satisfying arm i, where σ is a permutation of
{1, . . . , N} such that mσ(1) ≥ mσ(2) ≥ · · · ≥ mσ(N) and k
is the largest integer such that mσ(k) ≥M.

Proof. The definition of satisfaction (10) implies that per-
formance bounds for the satisfaction-in-mean-reward problem
and the multi-armed bandit problem with multiple plays are
equivalent. Given a problem instance, the thresholdM induces
the number k of satisfying arms, so performance can be
analyzed as in the problem with multiple plays. The bound (5)
applies to the problem with multiple plays and the equivalence
implies the result.

Problem 3: δ-sufficing The δ-sufficing problem, defined
as the satisficing-in-mean-reward multi-armed bandit problem
whereM > mσ(2) and δ ∈ (0, 1], admits policies that achieve
cumulative expected regret that is a bounded function of T :

Corollary 3 (δ-sufficing regret bound). The δ-sufficing prob-
lem is a satisficing-in-mean-reward multi-armed bandit prob-
lem where the objective (13) is defined with M > mσ(2) and
δ ∈ (0, 1]. Any policy solving the δ-sufficing problem obeys

nTi ≥ O
(

1

ε2
log(1/δ)

)
(15)

for each suboptimal arm i, where ε = ∆i =M−mi.
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Proof. The definition of satisfaction (10) in the δ-sufficing
problem implies that the agent incurs regret if the arm selected
is not (ε = 0, δ)-optimal. The bound (6) thus provides a lower
bound on the number of times the agent must incur regret.

Problem 4: (M, δ)-satisficing The (M, δ)-satisficing
problem, defined as the satisficing-in-mean-reward multi-
armed bandit problem where M ≤ mσ(2) and δ ∈ (0, 1],
admits policies that achieve cumulative expected regret that is
a bounded function of T :

Corollary 4 ((M, δ)-satisficing regret bound). The (M, δ)-
satisficing problem is a satisficing-in-mean-reward multi-
armed bandit problem where the objective (13) is defined with
M ≤ mσ(2) and δ ∈ (0, 1]. Any policy solving the (M, δ)-
satisficing multi-armed bandit problem obeys

T ∗ =

N∑
i=1

nT
∗

i ≥
1

18375

N

ε2
log

(
k

8δ

)
(16)

where σ is a permutation of {1, . . . , N} such that mσ(1) ≥
mσ(2) ≥ · · · ≥ mσ(N), k is the largest integer such that
mσ(k) ≥ M, and ε = M− mσ(k). Since only arms in the
set {σ(k + 1), . . . , σ(N)} result in regret, the left hand side
of (16) is an upper bound on the expected satisficing regret
(13).

Proof. The definition of satisfaction (10) in the (M, δ)-
sufficing problem implies that an algorithm that minimizes
satisficing regret is equivalent to an (ε = mσ(k) −M, k, δ)-
optimal algorithm in the sense of [15]. Therefore, the bound
(7) applies to the (M, δ)-sufficing problem.

Recall that T ∗ is the number of times all arms (including
the optimal one) should by cumulatively sampled such that
following T ∗ an (M, ε)-optimal decision can be made. The
lower bounds on both T ∗ and nT

∗

i are independent of T ,
suggesting that for (M, ε)-satisficing, a bounded regret can
be achieved.

Corollaries 3 and 4 show that the worst-case regret is a
bounded function of T for the sufficing problems, where
δ > 0. Therefore we can conclude that the expected regret
for such problems can also be a bounded function of T . This
is an important distinction from the maximizing problems,
where δ = 0: in such problems, the Lai-Robbins bound (3)
implies that the expected regret must grow logarithmically
with T . As is standard in the bandit literature, we say an
algorithm has efficient performance if its regret matches,
up to constant factors, the relevant growth rates: log T for
maximizing problems and log(k/δ)/ε2 for sufficing problems.

B. Robust satisficing in instantaneous reward

The four objectives defined in Section III-A above define
satisfaction (10) in terms of the mean reward mi from an arm
i. This captures situations where the time scale for satisfaction
spans numerous decision times. For example, consider forag-
ing, where an animal must consume a minimum amount of
food each day. If each decision time represents a small portion
of the day, the total food consumed during the day represents
the sum of numerous small rewards from each decision time.

As long as the mean reward at each decision time is sufficiently
high, the animal will meet its daily food requirement.

If, instead, the decision time scale is the same as the satis-
faction time scale, it is more appropriate to define satisfaction
at time t in terms of the reward rt received at that time.
This requires more robust algorithms, in the sense that they
must ensure that each reward, rather than simply the mean
reward, is satisfying with high probability. In this context we
define satisfaction in two stages. First, we define happiness
as receiving a reward rt that is at least a threshold value
M ∈ R. We represent happiness at time t as the Bernoulli
random variable ht, defined as

ht =

{
1, if rt ≥M
0, otherwise.

(17)

We define the success probability of the happiness random
variable ht as

pi = Pr [ht = 1|it = i] . (18)

The success probability pi is the expected rate of happiness
due to picking arm i. This defines a Bernoulli multi-armed
bandit problem where the mean reward (i.e., happiness rate)
is pi. We then define satisfaction in terms of a threshold Π for
this Bernoulli multi-armed bandit problem as we did in (10):

st =

{
1, if pit ≥ Π

0, otherwise.
(19)

Given the happiness threshold M , this definition is identical
to the definition (10) of satisfaction where mi = pi, pi∗ =
maxi pi, and M = Π. Therefore the four satisficing multi-
armed bandit problems defined in Table I can be used to define
four additional problems in this context, which we call robust
satisficing.

Definition 2 (Robust satisficing multi-armed bandit problem).
The robust satisficing multi-armed bandit problem is to mini-
mize the cumulative sum of the expected satisficing regret (12):

JR = E

[
T∑
t=1

Rt

]
,

where the regret Rt is defined using the notion of satisfaction
defined by (17)–(19).

A robust satisficing multi-armed bandit problem has three
parameters: M,Π, and δ. We assume that M and Π are chosen
such that there is at least one satisfying arm; otherwise, the
expected regret must grow indefinitely. Table II summarizes
the four robust satisficing multi-armed bandit problems that
result from the interaction of the two dimensions of satisfac-
tion and sufficiency, which we list below. We assume that ς is a
permutation of {1, . . . , N} such that pς(1) ≥ pς(2) ≥ . . . pς(N).

Problem 5: Robust bandit The robust bandit problem is
defined as the robust satisficing multi-armed bandit problem
where Π > pς(2) and δ = 0.

Problem 6: Robust satisfaction The robust satisfaction
problem is defined as the robust satisficing multi-armed bandit
problem where Π ≤ pς(2) and δ = 0.
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Threshold level Seek certainty (δ = 0) Suffice (δ > 0)
M > mσ(2) 1) Standard bandit 3) δ-sufficing
M≤ mσ(2) 2) Satisfaction-in-mean-rwd 4) (M, δ)-satisficing

TABLE I
TABLE OF THE FOUR DIFFERENT REGRET CONCEPTS, AND RESULTING
PROBLEMS, ASSOCIATED WITH THE SATISFICING-IN-MEAN-REWARD

MULTI-ARMED BANDIT PROBLEM.

Threshold level Seek certainty (δ = 0) Suffice (δ > 0)
Π > pς(2) 5) Robust bandit 7) δ-robust sufficing
Π ≤ pς(2) 6) Robust satisfaction 8)(Π, δ)-robust satisficing

TABLE II
TABLE OF THE FOUR DIFFERENT REGRET CONCEPTS, AND RESULTING

PROBLEMS, ASSOCIATED WITH THE ROBUST SATISFICING MULTI-ARMED
BANDIT PROBLEM. THE QUANTITY pi REPRESENTS THE PROBABILITY OF

HAPPINESS (I.E., RECEIVING A REWARD OF AT LEAST M ) DUE TO
CHOOSING ARM i.

Problem 7: δ-robust sufficing The δ-robust sufficing prob-
lem is defined as the robust satisficing multi-armed bandit
problem where Π > pς(2) and δ ∈ (0, 1].

Problem 8: (Π, δ)-robust satisficing The (Π, δ)-robust
satisficing problem is defined as the robust satisficing multi-
armed bandit problem where Π ≤ pς(2) and δ ∈ (0, 1].

For a large class of reward distributions, there is an equiv-
alence between Problems 5–8 defined in terms of rt and
Problems 1–4 defined in terms of mi. By Lemma 5 below,
when the rewards rt follow a Gaussian distribution with
unknown mean mi and known variance σ2

s,i, each problem
in Table II is equivalent to the analogous problem in Table I.

IV. SATISFICING WITH GAUSSIAN REWARDS

In this section we study the Gaussian satisficing multi-
armed bandit problem. This is the satisficing multi-armed
bandit problem where the reward rt due to selecting arm it
is rt ∼ N (mit , σ

2
s,it

) and σ2
s,it

is the known variance of arm
it. In this case, we show a formal equivalence between the
satisficing-in-mean-reward multi-armed bandit problems and
the robust satisficing multi-armed bandit problems. The choice
of Gaussian rewards facilitates modeling correlation dependen-
cies among arms, which can be useful in applications.

A. Equivalence lemma for Gaussian rewards

For the Gaussian robust satisficing multi-armed bandit prob-
lem, define the quantity

xi =
mi −M
σs,i

, (20)

which we call the standardized mean reward, for each arm
i. The following lemma states that each Gaussian robust
satisficing multi-armed bandit problem where satisfaction is
defined by (19) is equivalent to a Gaussian satisficing-in-
mean-reward multi-armed bandit problem where satisfaction
is defined by (10) with standardized reward distributions.

Lemma 5 (Equivalence for Gaussian rewards). Each Gaussian
robust satisficing multi-armed bandit problem is equivalent
to a Gaussian satisficing-in-mean-reward multi-armed bandit
problem with rewards r̃t ∼ N (xit , 1) with xi given by (20).

That is, the ordering of the arms in terms of xi is identical to
the ordering in terms of pi, and, in particular, the arm with
maximal xi is the arm with maximal pi.

Proof. With Gaussian rewards, the probability (18) of happi-
ness due to choosing arm i is

pi = Pr [mi + σs,iz ≥M ]

= Φ

(
mi −M
σs,i

)
= Φ(xi), (21)

where z ∼ N (0, 1) is a standard normal random variable
and Φ(z) is its cumulative distribution function. Let i∗ =
arg maxi pi. The key insight is that Φ(·) is a monotonically
increasing function, which implies that the ordering of arms
in terms of pi is identical to the ordering in terms of xi.
In particular, arm i∗ is the arm with maximal xi. Therefore,
satisfaction in terms of rt is equivalent to satisfaction in terms
of the mean reward xi.

This is again a Gaussian bandit problem: consider the
standardized reward

r̃t =
rt −M
σs,it

, (22)

which is a Gaussian random variable r̃t ∼ N (xit , 1). The
quantity xi plays the role of the mean reward mi and the
transformed rewards have uniform variance σ̃2

s = 1. Minimiz-
ing the robust satisficing regret in terms of rt is equivalent to
minimizing the satisficing regret in terms of xi.

Lemma 5 has two implications for the relationship between
Problems 5–8 and Problems 1–4 when rewards are Gaussian
distributed. First, each Problem 5–8 inherits a regret bound
from the corresponding Problem 1–4. Second, each Problem
5–8 can be solved by applying the algorithm developed for
Problem 1–4 by first applying the standardization transforma-
tion (22) to the observed rewards.

Remark 6 (Location-scale families). Lemma 5 is easily gen-
eralized to reward distributions belonging to location-scale
families. A location-scale family is a set of probability distri-
butions closed under affine transformations, i.e., if the random
variable X is in the family, so is the variable Y = a + bX,
where a, b ∈ R. Any random variable X in such a family
with mean µ and standard deviation σ can be written as
X = µ+ σZ, where Z is a zero-mean, unit-variance member
of the family. Examples include the uniform and Student’s t-
distributions.

B. Application to the Gaussian robust satisficing problems

In this section we show how to use the equivalence result
of Lemma 5 for the full set of robust satisficing problems in
the case of Gaussian rewards.

Recall from Lemma 5 that the probability of happiness
(18) due to picking an arm i is pi. In the proof of the
lemma, we show that maximizing the probability of happiness
is equivalent to maximizing the mean reward in a Gaussian
multi-armed bandit problem with mean rewards xi = Φ−1(pi),
where xi is the standardized mean reward (mi − M)/σs,i.
Given an algorithm developed for one of the Problems 1–4
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defined in Table I, it can be applied to the corresponding
Problem 5–8 defined in Table II as follows. Standardize
the observed rewards rt and run the algorithm using the
standardized rewards r̃t = (rt − M)/σs,it as input. For
example, Problem 5, the robust multi-armed bandit problem,
can be solved by an algorithm designed to solve Problem 1,
the standard bandit problem, where rewards are transformed
according to (22) before being input to the algorithm. The
same procedure allows one to apply algorithms developed for
Problem 3, δ-sufficing, to Problem 7, δ-robust sufficing.

For Problem 6, robust satisfaction, and Problem 8, (Π, δ)-
robust satisficing, we need a threshold X that is analogous
to the threshold M defined for Problem 2, satisfaction-in-
mean-reward, and Problem 4, (M, δ)-satisficing. We use the
relationship between xi and pi to derive the threshold. In
particular, for a robust satisficing problem with probability of
happiness threshold Π, define the threshold X by

X = Φ−1(Π). (23)

When the rewards are Gaussian distributed, we can apply al-
gorithms developed for Problems 2 and 4 to the corresponding
robust satisficing Problems 6 and 8 by standardizing rewards
and using the threshold X defined in (23) in place of the
threshold M.

Lemma 5 implies that the efficient performance guarantees
for algorithms designed for Problems 1–4 also hold when they
are used to solve the robust satisficing Problems 5–8.

V. THE UCL ALGORITHM FOR GAUSSIAN MULTI-ARMED
BANDIT PROBLEMS

In this section we review the UCL algorithm, a Bayesian
algorithm we developed and analyzed in [27] to solve the
standard Gaussian multi-armed bandit problem. The UCL
algorithm was developed by applying the Bayesian upper
confidence bound approach of [16] to the case of Gaussian
rewards; the choice of Gaussian rewards facilitated the mod-
eling of human decision-making behavior.

The UCL algorithm maintains a belief about the mean
rewards m by starting with a prior and updating it using
Bayesian inference as new rewards are received. At each time
t the algorithm chooses arm it using a heuristic that is a simple
function of the current belief state. For uninformative priors,
the UCL algorithm achieves logarithmic regret, i.e., optimal
performance.

Uninformative priors correspond to having no information
about the mean rewards. A major advantage of the UCL
algorithm is its ability to incorporate information about the
mean rewards through the use of a so-called informative prior.
In [27], we showed that an appropriately-chosen prior can
significantly increase the performance of the UCL algorithm.
Several different UCL algorithms were developed in [27],
including a stochastic decision rule to model human behavior;
here we cover only the deterministic UCL algorithm, which,
for brevity, we refer to as the UCL algorithm.

A. Prior
The prior distribution captures the agent’s knowledge about

the vector of mean rewards m before beginning the task. We

assume that the prior distribution is multivariate Gaussian with
mean µ0 ∈ RN and covariance Σ0 ∈ RN×N :

m ∼ N (µ0,Σ0). (24)

The ith element of µ0, denoted by µ0
i , represents the agent’s

mean belief of the reward mi associated with arm i. The (i, i)

element of Σ0, denoted by
(
σ0
i

)2
, represents the agent’s uncer-

tainty associated with that belief. Off-diagonal elements of Σ0,
e.g., σ0

ij , represent the agent’s perceived relationship between
mi and mj : if σ0

ij is positive, high values of mi are correlated
with high values of mj , while if it is negative, high values
of mi correlate with low values of mj . Any positive-definite
matrix can be used as Σ0, but it is often useful to consider a
structured parametrization, such as Σ0 = σ2

0Σ, where σ2
0 > 0

encodes the agent’s uncertainty. One important special case
is an uncorrelated prior, where Σ is diagonal, which corre-
sponds to the agent perceiving the rewards associated with
different arms to be independent. Another important special
case is an uninformative prior, which corresponds to complete
uncertainty, i.e., the limit σ2

0 → +∞; an uninformative prior
can be thought of as a special case of an uncorrelated prior.

B. Inference update

At each time t the agent picks an arm it and receives a
reward rt that is Gaussian distributed: rt ∼ N (mit , σ

2
s,it

).
Bayesian inference provides an optimal solution to the prob-
lem of updating the belief state (µt,Σt) (i.e., the sufficient
statistics for estimating m) to incorporate this new informa-
tion. Let Λt = Σ−1

t , and let φt ∈ RN be the vector with
element it equal to 1 and all other elements equal to zero. Then
given the Gaussian prior (24), the Bayesian update equations
are linear [17]:

q =
rtφt
σ2
s,it

+ Λt−1µt−1

Λt =
φtφ

T
t

σ2
s,it

+ Λt−1,

µt = Σtq.

(25)

C. Decision heuristic

At each time t the UCL algorithm computes a value Qti for
each arm i. The algorithm then picks the arm it that maximizes
Qti. That is, it picks

it = arg max
i
Qti. (26)

The heuristic value Qti is

Qti = µti + σtiΦ
−1(1− αt), (27)

where µti = (µt)i, (σti)
2

= (Σt)ii , αt = 1/(Kt), K > 0
is a tunable parameter, and Φ−1(·) is the quantile function
of the standard normal random variable. The heuristic Qti
is a Bayesian upper limit for the value of mi based on the
information available at time t. It represents an optimistic
assessment of the value of mi. The decision made can be
thought of as the most optimistic one consistent with the
current information.



9

D. Performance

In [27], we studied the case of homogeneous sampling noise
(i.e., σ2

s,i = σ2
s for each i) and showed that the UCL algorithm

achieves logarithmic cumulative expected regret uniformly in
time. In particular, we proved that the following theorem holds.
We define {RUCL

t }t∈{1,...,T} as the sequence of expected regret
for the deterministic UCL algorithm.

Theorem 7 (Regret of the deterministic UCL algorithm [27]).
The following statements hold for the Gaussian multi-armed
bandit problem and the deterministic UCL algorithm with
uncorrelated uninformative prior and K = 1:

1) the expected number of times a suboptimal arm i is
chosen until time T satisfies

E
[
nTi
]
≤
(8σ2

s

∆2
i

+ 2
)

log T + 3 ;

2) the cumulative expected regret until time T satisfies

JR =

T∑
t=1

Rt ≤
N∑
i=1

∆i

((8σ2
s

∆2
i

+ 2
)

log T + 3

)
.

The implication of this theorem can be seen by comparing 1)
with the Lai-Robbins bound (9): the UCL algorithm achieves
logarithmic regret uniformly in time with a constant that differs
from the optimal asymptotic one by a constant factor, and thus
is considered to have optimal performance.

VI. ALGORITHMS FOR SATISFICING GAUSSIAN
MULTI-ARMED BANDIT PROBLEMS

In this section we develop algorithms for solving Gaussian
multi-armed bandit problems with the satisficing objectives
proposed in Section III. All the algorithms consist of modified
versions of the UCL algorithm. We analyze the algorithms
and show that they achieve efficient performance. The UCL
algorithm solves the standard Gaussian multi-armed bandit
problem, i.e., the satisficing Gaussian multi-armed bandit
problem withM > mσ(2) and δ = 0 (Problem 1). We develop
three new UCL variants for Problems 2–4 in Table I. These
algorithms can then be applied to Problems 5–8 in Table II.
At the end of the section, we consider extensions to reward
distributions other than the Gaussian with known variance.

A. Problem 2: Satisfaction-in-mean-reward UCL algorithm

A simple modification of the UCL algorithm achieves log-
arithmic regret for the Gaussian satisfaction-in-mean-reward
problem, which is the satisficing-in-mean-reward multi-armed
bandit problem with M≤ mσ(2) and δ = 0 (Problem 2). We
define this algorithm, which we refer to as the satisfaction-in-
mean-reward UCL algorithm, as follows.

As in (27), define the heuristic value Qti as

Qti = µti + σtiΦ
−1(1− αt),

where αt = 1/(Kt) and K > 0 is again a tunable parameter.
Let M ∈ R be the satisfaction threshold, so the agent is

satisfied if it picks an arm with mi ≥M. Let the eligible set
at time t be {i | Qti ≥ M}. In contrast to the UCL selection

scheme (26) that picks the arm with maximal Qti, satisfaction-
in-mean-reward UCL picks any arm in the eligible set. That
is, if the eligible set is non-empty, then

it ∈ {i|Qti ≥M}, (28)

or if the eligible set is empty, then satisfaction-in-mean-reward
UCL picks the arm with maximal Qti. Thus, if the most
recently selected arm is in the eligible set, it may be selected
again even if it does not have the maximal Qti.

The satisfaction-in-mean-reward UCL algorithm achieves
logarithmic cumulative expected satisfaction-in-mean-reward
regret, as guaranteed by the following theorem.

Theorem 8 (Regret of the satisfaction-in-mean-reward UCL
algorithm). Let a Gaussian multi-armed bandit problem with
the satisfaction-in-mean-reward objective have at least one
arm i that obeys mi > M, and, without loss of generality,
assume σ2

s,i = 1 for each arm i. Then, the following statements
hold for the satisfaction-in-mean-reward UCL algorithm with
uncorrelated uninformative prior and K = 1:

1) the expected number of times a non-satisfying arm i is
chosen until time T satisfies

E
[
nTi
]
≤

(
8(

∆Mi
)2 + 3

)
log T + 4;

2) the cumulative expected satisfaction-in-mean-reward re-
gret until time T satisfies

JSM ≤
N∑
i=1

∆Mi

((
8(

∆Mi
)2 + 3

)
log T + 4

)
.

To prove Theorem 8 we use the following bound from [1].

Lemma 9 (Bounds on the inverse Gaussian cdf ). For the
standard normal (i.e., Gaussian) random variable z and a
constant w ∈ R≥0,

Pr [z ≥ w] ≤ 2e−w
2/2

√
2π(w +

√
w2 + 8/π)

≤ 1

2
e−w

2/2. (29)

It follows from (29) that for any α ∈ [0.5, 1],

Φ−1(1− α) ≤
√
−2 logα. (30)

Proof of Theorem 8. The proof proceeds as in the proof of
Theorem 7 in [27], which itself follows the proofs in [4]. Let
i be a non-satisfying arm, i.e., mi < M, and recall that i∗

designates the maximum mean reward. Then

E
[
nTi
]

=

T∑
t=1

Pr [it = i]

≤
T∑
t=1

Pr
[
Qti≥M

]
+Pr

[
Qti ≥ Qti∗& max

j
Qtj<M

]

≤ η +

T∑
t=1

(
Pr
[
Qti ≥M, nti ≥ η

]
+Pr

[
Qti ≥ Qti∗ , nti ≥ η

])
.

The first term in the summand corresponds to the probability
that the non-satisfying arm i is in the eligible set, while the
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second term corresponds to the probability that the eligible set
is empty and that a non-satisfying arm appears better than an
optimal arm.

The statement Qti ≥ Qti∗ implies that at least one of the
following inequalities holds:

µti ≥ mi + Cti (31)
µti∗ ≤ mi∗ − Cti∗ (32)
mi∗ < mi + 2Cti , (33)

where Cti = σtiΦ
−1(1 − αt) and αt = 1/(Kt). Otherwise, if

none of (31)–(33) holds, then

Qi∗ = µti∗ + Cti∗ > mi∗ ≥ mi + 2Cti > µti + Cti = Qti.

We first analyze the probability that (31) holds. For an un-
correlated uninformative prior, µti is equal to m̄t

i, the empirical
mean reward observed at arm i until time t, and σti = 1/

√
nti.

Therefore, for an uncorrelated uninformative prior,

Qti = m̄t
i +

1√
nti

Φ−1(1− αt).

Conditional on nti, the empirical mean reward m̄t
i is itself

a Gaussian random variable with mean mi and standard
deviation 1/

√
nti, so (31) holds if

m̄t
i ≥ mi +

1√
nti

Φ−1(1− αt)

⇔ mi +
z√
nti
≥ mi +

1√
nti

Φ−1(1− αt)

⇔ z ≥ Φ−1(1− αt),

where z ∼ N (0, 1) is a standard normal random variable.
Thus, for an uninformative prior, Pr [(31) holds] = αt = 1

Kt .
Similarly, (32) holds if

m̄t
i∗ ≤ mi∗ − Cti∗

⇔ mi∗ +
z√
nti
≤ mi −

1√
nti

Φ−1(1− αt)

⇔ z ≤ −Φ−1(1− αt),

where z ∼ N (0, 1) is a standard normal random variable.
Thus, for an uninformative prior, Pr [(32) holds] = αt = 1

Kt .
Inequality (33) holds if

mi∗ < mi +
2√
nti

Φ−1(1− αt)

⇔ ∆i <
2√
nti

Φ−1(1− αt) ⇔
∆2
in
t
i

4
< −2 logαt (34)

⇒ ∆2
in
t
i

4
< 2 log t ⇒ ∆2

in
t
i

4
< 2 log T

where ∆i = mi∗−mi and inequality (34) follows from bound
(30). Thus, for an uninformative prior, (33) never holds if

nti ≥
8

∆2
i

log T. (35)

Thus, for nti sufficiently large, Pr [Qti ≥ Qti∗ ] = 2/(Kt).

We now bound the probability Pr [Qti ≥M] that a non-
satisfying arm i is in the eligible set. Note that Qti ≥ M
implies that at least one of the following inequalities holds:

µti ≥ mi + Cti (36)
M < mi + 2Cti . (37)

Otherwise, if neither (36) nor (37) holds, M ≥ mi + 2Cti >
µti + Cti = Qti and arm i is not in the eligible set.

(36) is identical to (31) and (37) to (33). For an uninforma-
tive prior, Pr [(36) holds] = αt = 1

Kt . And (37) holds if

M < mi +
2√
nti

Φ−1(1− αt)

⇔ ∆Mi <
2√
nti

Φ−1(1− αt)

⇔
(
∆Mi

)2
nti

4
< −2 log(αt)

⇒
(
∆Mi

)2
nti

4
< 2 log t ⇒

(
∆Mi

)2
nti

4
< 2 log T.

Thus, for an uninformative prior, (37) never holds if

nti ≥
8(

∆Mi
)2 log T. (38)

Since mi∗ ≥M, for each non-satisfying arm i, ∆Mi ≤ ∆i.
Thus, 1/

(
∆Mi

)2 ≥ 1/∆2
i and (38) implies (35). So setting

η =

⌈
8(

∆Mi
)2 log T

⌉
(39)

yields the bound

E
[
nTi
]
≤ η +

T∑
t=1

(
Pr
[
Qti ≥M, nti ≥ η

]
+ Pr

[
Qti ≥ Qti∗ , nti ≥ η

])
<

⌈
8(

∆Mi
)2 log T

⌉
+ 3

T∑
t=1

1

t
.

The sum can be bounded by the integral

T∑
t=1

1

t
≤ 1 +

∫ T

1

1

t
dt = 1 + log T,

yielding the bound in the first statement of the theorem:

E
[
nTi
]
≤

(
8(

∆Mi
)2 + 3

)
log T + 4.

The second statement of the theorem follows from the defini-
tion (12) of expected satisficing regret.
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B. Problem 3: δ-sufficing UCL algorithm

An alternative modification of the UCL algorithm achieves
finite satisficing regret in the Gaussian δ-sufficing problem,
which is the satisficing-in-mean-reward multi-armed bandit
with M > mσ(2) and δ ∈ (0, 1] (Problem 3). For the agent,
this can be thought of as wanting to have finite confidence that
it has found the unknown optimal arm σ(1). For the δ-sufficing
problem, define the heuristic function

Qti = µti + σtiΦ
−1

(
1− δ

2

)
.

We define the δ-sufficing UCL algorithm as the algorithm that
selects arm it = arg maxiQ

t
i at each decision time t. The δ-

sufficing UCL algorithm achieves finite cumulative satisficing
regret, as guaranteed by the following theorem.

Theorem 10. Consider the δ-sufficing UCL algorithm with
an uninformative prior. The number of times the picked arm
it is non-satisfying with probability greater than δ is upper
bounded as

nTi <
4σ2

s

∆2
i

(
Φ−1

(
1− δ

2

))2

+ 1.

Proof. We bound nTi by noting that a non-satisfying arm i is
picked only if Qti ≥ Qti∗ , which can be decomposed as in the
proof of Theorem 8 into the three conditions

µti ≥ mi + Cti (40)
µti∗ ≤ mi∗ − Cti∗ (41)
mi∗ < mi + 2Cti . (42)

(42) is equivalent to

∆i = mi∗ −mi < 2Cti =
2σs√
nti

Φ−1(1− δ/2).

Squaring and rearranging, we see that this never holds if

nti >
4σ2

s

∆2
i

(
log(1/δ)

log 2
+ 1

)
>

4σ2
s

∆2
i

(
Φ−1(1− δ/2)

)2
= η.

The same argument as in the proof of Theorem 8 shows
that for nti ≥ 1, (40) and (41) each hold with probability at
most δ/2. Therefore, for nti > η + 1, a non-satisfying arm is
selected with probability at most δ.

Theorem 10 guarantees that the δ-sufficing UCL algorithm
achieves finite regret. Furthermore, the algorithm is efficient
in that the regret matches the dependence on ε and δ in
the bound (15). To see this, note that a non-satisfying arm
i with ∆i is an ε = ∆i-suboptimal arm, so Corollary 3
implies that nTi is lower bounded by O

(
log(1/δ)/ε2

)
. The

statement of Theorem 10 combined with the bound (30) on
the inverse Gaussian cdf implies that nTi is upper bounded by
8σ2

s log(2/δ)/∆2
i + 1 = 8σ2

s log(2/δ)/ε2 + 1, which matches
the lower bound (15) up to constant factors.

C. Problem 4: (M, δ)-satisficing UCL algorithm

A third modification of the UCL algorithm achieves finite
satisficing regret in the Gaussian (M, δ)-satisficing problem,
which is the satisficing-in-mean-reward multi-armed bandit
with M ≤ mσ(2) and δ ∈ (0, 1] (Problem 4). For the agent,
this can be thought of as wanting to have finite confidence
that it has found an arm whose mean reward is above a
known threshold. For the (M, δ)-satisficing problem, define
the heuristic function

Qti = µti + σtiΦ
−1

(
1− δ

3

)
.

Let the eligible set at time t be {i | Qti ≥M}. We define the
(M, δ)-satisficing UCL algorithm as the algorithm that selects
arm it ∈ {i|Qti ≥ M}, if the eligible set at time t is non-
empty. Otherwise, if the eligible set is empty, the algorithm
picks the arm with maximal Qti.

The (M, δ)-satisficing UCL algorithm achieves efficient
performance as guaranteed by the following theorem.

Theorem 11. Consider the (M, δ)-satisficing UCL algorithm
with an uninformative prior. The number of times the picked
arm it is non-satisfying with probability greater than δ is
upper bounded as

nTi <
4σ2

s(
∆Mi

)2 (Φ−1 (1− δ/3)
)2

+ 1.

Proof. The proof is very similar to the proofs of Theorems 8
and 10. As in Theorem 8, we bound nTi by

nTi =

T∑
t=1

1(it = i)

≤ η+

T∑
t=1

(
1
(
Qti ≥M, nti ≥ η

)
+1
(
Qti ≥ Qti∗ , nti ≥ η

))
.

The condition Qti ≥M, which means arm i is in the eligible
set, can be decomposed into the two conditions

µti ≥ mi + Cti (43)
M < mi + 2Cti . (44)

(44) is equivalent to

∆Mi =M−mi < 2Cti =
2σs√
nti

Φ−1(1− δ/3).

Squaring and rearranging, we see that (44) never holds if

nti >
4σ2

s(
∆Mi

)2 (Φ−1(1− δ/3)
)2

= η.

The same argument as in the proof of Theorem 10 shows
that for nti ≥ 1, (43) holds with probability at most δ/3, so
nti > η implies that a non-satisfying arm is in the eligible set
with probability at most δ/3.

As in the proof of Theorem 10, a non-satisfying arm i is
picked due to the eligible set being empty only if Qti ≥ Qti∗ ,
where i∗ is the arm with maximal mean reward. This condition
can again be decomposed into the three conditions (40)–(42).
(42) does not hold if nti > η, so the probability that Qti ≥ Qti∗
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is bounded by the probability that either (40) or (41) holds.
For nti > 1, each of these holds with probability δ/3, so the
probability of a non-satisfying arm being chosen due to the
eligible set being empty is at most 2δ/3. Thus, for nti > η+1,
a non-satisfying arm is selected with probability at most δ.

Theorem 11 guarantees that the (M, δ)-satisficing UCL
algorithm achieves finite regret. Furthermore, the algorithm
is efficient in that the regret matches the dependence on
ε and δ in the bound (16). Applying the bound (30) on
the inverse Gaussian cdf to the statement in the theorem,
we see that nTi is upper bounded by 8σ2

s log(3/δ)/
(
∆Mi

)2
.

Summing this bound over non-satisfying arms i shows that
the total number of times the algorithm incurs regret is at
most 8σ2

s log(3/δ)
∑
{i|∆Mi >0} 1/

(
∆Mi

)2
. This matches the

dependence on ε and δ in the bound (16) up to constant factors.
Note that lower bound (16) counts the number of selections

of all arms including the optimal arm, while the upper bound
counts only the suboptimal arms. Hence, we can only claim
that we achieve cumulative regret bounded in T . With a
better lower bound on nTi , we may be able to claim that,
similar to δ-sufficing UCL, (M, δ)-sufficing UCL achieves
the optimal dependence on ε and δ. However, this remains an
open problem to pursue.

D. Robust satisficing UCL algorithms

The UCL algorithm solves Problem 1, the Gaussian standard
problem. The modified versions of the UCL algorithm in
Sections VI-A, VI-B, and VI-C solve the other three Gaussian
satisficing-in-mean-reward Problems 2–4. All four UCL algo-
rithms achieve efficient performance in solving their respective
problems, as guaranteed by Theorems 8, 10, and 11.

The equivalence result of Lemma 5 shows for Gaussian
distributed rewards that we can modify the four UCL algo-
rithms developed for Problems 1–4 to solve Problems 5–8 as
follows. The modified UCL algorithms make decisions based
on the standardized mean reward (20) using priors on the
standardized mean rewards. A prior belief m ∼ N (µ0,Σ0)
on the mean rewards m is transformed into a prior belief on
the standardized mean rewards x ∼ N (µ̃0, Σ̃0) by

(µ̃0)i = ((µ0)i −M)/σs,i, (Σ̃0)ij = (Σ0)ij/(σs,iσs,j).

1) Problem 5: Robust UCL algorithm: The robust UCL
algorithm is the UCL algorithm where the prior is given in
terms of the standardized mean rewards, and the observed
reward rt is standardized according to the transformation (22)
before being input to the inference equations (25).

2) Problem 6: Robust satisfaction UCL algorithm: The
robust satisfaction UCL algorithm is the satisfaction-in-mean-
reward UCL algorithm where the prior is given in terms of
the standardized mean rewards, the observed reward rt is
standardized according to the transformation (22) before being
input to the inference equations (25), and the parameter M is
set equal to X = Φ−1(Π) defined in (23).

3) Problem 7: δ-robust sufficing: The δ-robust sufficing
UCL algorithm is the δ-sufficing UCL algorithm where the
prior is given in terms of the standardized mean rewards,
and the observed reward rt is standardized according to

the transformation (22) before being input to the inference
equations (25).

4) Problem 8: (Π, δ)-robust sufficing: The (Π, δ)-robust
sufficing UCL algorithm is the (M, δ)-satisficing UCL al-
gorithm where the prior is given in terms of the standard-
ized mean rewards, the observed reward rt is standardized
according to the transformation (22) before being input to the
inference equations (25), and the parameter M is set equal to
X = Φ−1(Π) defined in (23).

Lemma 5 implies that the performance guarantees that hold
for the UCL algorithms developed for Problems 1–4 also hold
for the four new UCL algorithms defined above when applied
to Problems 5–8.

E. Relaxations of Gaussian and known variance assumptions

The algorithms presented so far have been developed as-
suming that the reward distribution associated with each arm
i is Gaussian with unknown mean mi and known variance
σ2
s,i. The reward variance may be known, e.g., estimated from

known sensor characteristics or prior data. When the reward
variance is not known, a simple modification to the heuristic
(27) yields an algorithm that achieves efficient performance.
Similar simple modifications extend our results to the case
where the reward distribution is sub-Gaussian, which includes
any distribution with bounded support. We state modifications
for the case of an uninformative prior. Prior information can
be incorporated by means of a conjugate prior, as discussed
in [24].

Remark 12 (Gaussian rewards with unknown variance). When
the reward distribution is Gaussian with unknown variance,
the heuristic developed by Auer et al. [4] for their algorithm
UCB1-NORMAL results in algorithms that achieve efficient
performance. Recall that nti is the number of times arm i has
been selected up to time t, and m̄t

i is the empirical mean
reward observed at arm i up to time t. Define

qti =
∑
t|it=i

r2
t

as the sum of the squared rewards obtained from arm i.
The UCB1-NORMAL algorithm is composed of two rules:

if there is an arm that has been played less than d8 log te
times, it selects that arm. Otherwise it selects the arm i that
maximizes the heuristic

Qt,UCB1−NORMAL
i = m̄t

i +

√
16
qti − nti(m̄t

i)
2

nti − 1

log t

nti
.

This heuristic can be used directly in the standard and
satisfaction-in-mean-reward UCL algorithms. For the δ-
sufficing and (M, δ)-satisficing UCL algorithms, use k̃ = 2
and k̃ = 3, respectively, in the heuristic

Qti = m̄t
i +

√
4
qti − nti(m̄t

i)
2

nti − 1

log(k̃/δ)

nti
.

The Gaussian distribution with unknown mean and variance
is again a location-scale family, so Lemma 5 implies that these
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modified algorithms can be used to solve the robust satisficing
problems as well.

Prior information can be incorporated by means of a
conjugate prior, as discussed in [24].

Remark 13 (Sub-Gaussian rewards). Another generalization
of Gaussian rewards with known variance is the case where
the reward distribution is sub-Gaussian, also known as light-
tailed. The distribution of a random variable X is called
sub-Gaussian if its moment generating function M(u) =
E [exp(uX)] is finite for all u ∈ R. Then, one can find a
constant ζ such that M(u) ≤ exp(ζu2/2) [9].

In this case, a heuristic function due to Liu and Zhou [21]

Qt,SG
i = m̄t

i +

√
8ζ log t

nti

can be used to achieve efficient performance.

Remark 14 (Reward distributions with bounded support).
Another common assumption in the bandit literature is that the
reward distributions are arbitrary but have a known bounded
support [a, b] ⊂ R. Without loss of generality, we assume that
the support is contained in the unit interval [0, 1]. In this case
the UCB1 heuristic due to Auer et al. [4]

Qt,UCB1
i = m̄t

i +

√
2 log t

nti

can be used in the standard and satisfaction-in-mean-reward
UCL algorithms.

For the δ-sufficing and (M, δ)-satisficing UCL algorithms,
use k̃ = 2 and k̃ = 3, respectively, in the heuristic

Qti = m̄t
i +

√
log(k̃/δ)

2nti
.

For the robust satisficing problems the relevant reward,
happiness ht (17), is a Bernoulli random variable which is
supported on [0, 1]. Therefore, each robust satisficing problem
can be solved by the appropriate variant of UCB1. However,
if additional information is available about the distribution
of the raw rewards rt, e.g., that they are Gaussian with
known variance, then the robust UCL algorithms can achieve
improved performance relative to UCB1, for example if the
Kullback-Leibler divergence between the rt distributions is
larger than the Bernoulli distributions associated with ht.

Additional extensions to heavy-tailed distributions may be
possible using the techniques of [7].

VII. NUMERICAL EXAMPLES

In this section, we present the results of numerical simu-
lations of the modified UCL algorithms solving multi-armed
bandit problems with Gaussian rewards and satisficing ob-
jectives. We consider both thresholding in the mean rewards
mi, as in Problems 1–4 (Table I), and thresholding in the
instantaneous rewards, as in Problems 5–8 (Table II). In all
of the cases presented, the algorithms used an uninformative
prior. We use the simulations to illustrate performance of the
algorithms relative to the bounds proved in the theorems of

Section IV. We also use the simulations to compare how
the different algorithms trade off accumulation of reward
with reduction in exploration cost as measured by number
of switches among arms. As shown in the figures, satisficing
can significantly decrease the exploration cost while incurring
little cost in terms of the rewards received by the agent.

We first consider the satisficing objectives with thresholding
in the mean rewards. We illustrate how the objectives of
Problems 1 and 2 yield logarithmic regret (Figure 1) whereas
the objectives of Problems 3 and 4 yield finite regret (Figure
2), as predicted by the bounds proved in Theorems 7, 8, 10
and 11. For the simulations presented in Figures 1 and 2, we
set N = 4. The mean rewards m were set equal to [1 2 3 4]
and the standard deviations σs,i were each set equal to 1.

In Figure 1, the agent’s regret is defined by comparing the
mean rewards mi with the satisfaction threshold M. For the
standard objective (Problem 1) the satisfaction level M was
set equal to mi∗ = 4, so the agent incurred regret if it selected
any arm other than i∗ = 4. For the satisfaction-in-mean-reward
objective (Problem 2) the satisfaction level M was set equal
to 2.5, so the agent incurred regret if it selected arms 1 or 2.
Figure 1 plots mean cumulative regret from 100 simulations
(solid lines) and the bounds on regret from Theorems 7 and
8 (dashed lines) for the standard and satisfaction-in-mean-
reward UCL algorithms, respectively. We observe from Figure
1 that the algorithms’ regret is significantly below the bounds,
indicating that both bounds are conservative. Because both
objectives set the sufficiency threshold δ = 0 and define
regret in terms of the unknown mean rewards mi, the agent
must achieve certainty about the mean reward values to stop
incurring regret. It is impossible for the agent to achieve this
certainty in finite time, so the mean regret and its bound both
increase indefinitely at a logarithmic rate for both objectives.

Figure 2, in contrast, shows that by setting the sufficiency
threshold δ to a non-zero value, one can achieve finite regret.
All the parameters for the simulations shown in Figure 2 were
identical to those for the simulations in Figure 1, except that
the sufficiency threshold δ was set equal to 0.05. Setting δ to
a non-zero value transformed the standard and satisfaction-
in-mean-reward objectives into the δ-sufficing and (M, δ)-
satisficing objectives, Problems 3 and 4, respectively. For
these objectives, regret is again defined by thresholding the
mean rewards mi. However, rather than seeking certainty that
the threshold is met, the agent only seeks to ensure that its
threshold is met with a probability of at least 1−δ. Because of
the allowance of uncertainty, the agent only needs to perform
a finite amount of exploration before settling on an arm that
appears satisfying. The regret bounds in the figure follow
from Theorems 10 and 11 for the δ-sufficing and (M, δ)-
satisficing objectives, respectively. As in Figure 1, we observe
from Figure 2 that both bounds are conservative.

The reduction in exploring that comes with sufficing can
be advantageous when exploring is costly, e.g., when there
is a cost associated with making a switch from one arm to
another. Figure 3 suggests that this reduction in cost may
require little sacrifice in reward. The upper panel plots mean
cumulative reward from 100 simulations for both the standard
bandit problem 1 and the δ-sufficing problem 3. The curve
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for δ-sufficing is slightly below that for the standard bandit
problem, showing that it results in slightly lower cumulative
rewards, but the difference is insignificant in comparison to
the overall magnitude of the cumulative rewards. The lower
panel plots the mean cumulative number of switches between
arms for both algorithms and shows that δ-sufficing requires
roughly half as much exploration.
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Fig. 1. Comparison of regret incurred by the UCL algorithms when solving
the standard problem (Problem 1) and satisfaction-in-mean-reward problem
(Problem 2). Both problems define regret by thresholding mean reward values;
the standard bandit objective incurs regret when the mean reward of the chosen
option is less than the maximum reward mi∗ , while the satisfaction-in-mean-
reward problem incurs regret when the mean reward is less thanM≤ mσ(2),
here set equal to 2.5. For both problems, the cumulative expected regret and
its upper bound increase at a logarithmic rate since the agent seeks certainty
that its threshold is met, which it cannot achieve in finite time.

We next consider the satisficing objectives with thresholding
in the instantaneous rewards. Figure 4 presents a simulation
that demonstrates the equivalence result of Lemma 5 for the
robust bandit (Problem 5) using the robust UCL algorithm. The
happiness threshold M was set equal to 2. As in Figures 1 and
2, the mean rewards m were set equal to [1 2 3 4], but for this
simulation the standard deviations were set equal to [1 1 1 3].
So the standardized mean rewards were x = [−1 0 1 2

3 ] and
i∗ = 3 the optimal arm, i.e., the arm with maximal happiness
probability. Figure 4 shows mean cumulative regret from 100
simulations (solid line) and the regret bound (dashed line)
implied by Theorem 7 and the definition (19) of satisfaction.
Because the objective requires identifying the arm with highest
probability of satisfaction with certainty, both the regret and
its upper bound increase indefinitely at a logarithmic rate, as
in the problems illustrated in Figure 1.

Figure 5 shows the benefit of combining the robust objective
with sufficing in the δ-robust bandit objective (Problem 7).
By doing so, it is possible to retain the robustness benefit
of the robust bandit objective (Problem 5) relative to the
standard bandit objective (Problem 1) while reducing the
exploration cost. The parameter values used in the δ-robust
UCL algorithm (Problem 7) are the same as in Figure 4,
while the sufficiency parameter δ was set equal to 0.05.
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Fig. 2. Comparison of regret incurred by the UCL algorithms when solving
the δ- and (M, δ)-satisficing problems, (Problems 3 and 4, respectively).
As in Figure 1, the problems define regret by thresholding the mean reward
values; the δ-sufficing objective incurs regret when the mean reward of the
chosen option is less than the maximum reward mi∗ , while the (M, δ)-
sufficing problem incurs regret when the mean reward is less than M ≤
mσ(2), here set equal to 2.5. In contrast to Figure 1, the agent only seeks to
have 1−δ = 95% confidence that its threshold is met, which it can achieve in
finite time. Thus, the upper bounds on cumulative expected regret are constant
functions of horizon length and the mean regret plateaus at a finite value.
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Fig. 3. Upper: Mean cumulative reward accrued by standard (Problem 1) and
δ-sufficing (Problem 3) UCL algorithms. Lower: Mean cumulative number of
switches between arms, quantifying the algorithms’ exploration costs. The δ-
sufficing UCL algorithm achieves nearly the same cumulative rewards as the
standard UCL algorithm, but with roughly half the exploration cost.

Figure 5 shows how robust satisficing algorithms (Problems
5 and 7) outperform the standard algorithm (Problem 1) for
performance with respect to instantaneous reward as measured
by happiness (17). There is a switching cost associated with
achieving the higher rate of cumulative happiness. However,
this cost is significantly reduced for the δ-robust algorithm
(Problem 7), where sufficing is included, as compared to the
robust algorithm (Problem 5) and it approaches the switching
cost incurred by the standard UCL algorithm.
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Fig. 4. Regret incurred by the robust UCL algorithm (Problem 5). The agent
is happy if it receives a reward rt that is at least equal to M , here set equal
to 2. The agent seeks to maximize its probability of being happy at each time,
so it incurs regret if it chooses an option with less than maximal happiness
probability. As in Figure 1, the agent seeks certainty that it maximizes its
happiness probability, which it cannot achieve in finite time. So it incurs
regret that increases indefinitely at a logarithmic rate.
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Fig. 5. Upper: Mean cumulative number of times the agent is happy (i.e.,
has, reward rt ≥M = 2, (17)) when using the standard (Problem 1), robust
UCL (Problem 5), and δ-robust (Problem 7) UCL algorithms. Lower: Mean
cumulative number of switches between arms, quantifying the algorithms’
exploration costs. The robust bandit objective is more robust in the sense
that it is more likely to achieve a reward that is above the threshold M ,
but in this case incurs a greater exploration cost. The robust δ-sufficing
objective combines the positive aspects of both the δ-sufficing and robust
bandit objectives: exhibiting high robustness in terms of agent happiness and
minimizing exploration costs.

VIII. CONCLUSION

Satisficing, the concept of doing well relative to a reference
value, is a useful alternative to maximizing that can be applied
to a variety of decision-making scenarios. In this paper, we
considered the multi-armed bandit problem using satisficing
objectives. The multi-armed bandit problem is a canonical
decision-making problem that is widely studied in machine
learning and adaptive control using a maximization objective.

We proposed a system of eight objectives for stochastic
multi-armed bandit problems that generalize the standard
multi-armed bandit problem by capturing aspects of satisficing,
notably thresholding effects that we termed satisfaction and
sufficiency. We showed that each of the four objectives of
Problems 1–4, defined by thresholding the unknown mean
reward mi associated with each arm, is equivalent to a related
problem studied in the existing literature. We used these
equivalences to derive bounds on efficient performance. For
the four objectives of Problems 5–8 defined by thresholding
the observed rewards rt, we showed that, when the reward
distributions belong to a location-scale family, each objective
is equivalent to one of the first four objectives.

We then specialized to the case of Gaussian rewards (a
particular location-scale family) and developed four variants
of the UCL algorithm [27] to solve Problems 1–4 defined by
thresholding the mean rewards. We analyzed each algorithm
and showed that it achieved efficient satisficing performance.
We used the equivalency result (Lemma 5) to show how to
apply the four variants of the UCL algorithm to Problems 5–8
defined by thresholding the instantaneous rewards and again
achieve efficient satisficing performance.

Satisficing objectives that threshold the mean can reduce
exploration costs (and thus risk) as compared to the standard
problem where the objective is to maximize expected reward
with certainty. Satisficing objectives that threshold observed
rewards can result in more risk-averse and robust algorithms
than objectives that account only for mean rewards [26].
Risk aversion and robustness are important for engineering
applications (where standard bandit algorithms are known to
have poor risk-aversion characteristics [3]). Thus, our proposed
algorithms can be usefully applied to a range of engineering
problems, notably those involving design of control policies.

Risk aversion and robustness are also important in the field
of optimal foraging theory [8]. Foraging has been studied using
the multi-armed bandit framework with a maximizing objec-
tive [19], [18], [32]. The satisficing objectives and algorithms
that we have proposed in the present paper may provide an
even more biologically plausible framework.

For any satisficing problem, selecting the appropriate sat-
isfaction threshold remains an open problem. The results
presented here provide an efficient policy once the satisfaction
threshold has been chosen but leave the selection of the
threshold up to the end user. The problem of choosing a
threshold also arises when applying the Sequential Probability
Ratio Test (SPRT) in hypothesis testing [35]. To apply the
SPRT, one must select desired probabilities of type I and
type II errors. Once these probabilities are selected the SPRT
provides the optimal policy, but the SPRT itself does not
provide optimal values for the error probabilities.

In many decision-making scenarios, maximizing a reward
rate is used to optimize error probabilities [5]. A reward rate
criterion may provide an optimal threshold for the satisficing
algorithms developed here, but the specific criterion will
depend on the decision-making scenario. Natural extensions
also include considering cases where the mean rewards mi are
allowed to evolve over time, for example according to a jump
process [33]; such evolution will likely encourage satisficing
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policies that incorporate adaptive thresholds. Finally, it is
well understood that satisficing is an important feature of
human decision making [29] and that the UCL algorithm can
model many features of human decision decision making in
bandit tasks [27]. New empirical work should be undertaken to
compare the satisficing UCL algorithms with human behavior.
It is an open empirical question to determine which of our
notions of regret best explains human behavior.
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[16] E. Kaufmann, O. Cappé, and A. Garivier. On Bayesian upper confidence
bounds for bandit problems. In Int. Conf. Artificial Intelligence and
Statistics, pages 592–600, La Palma, Canary Islands, Spain, Apr. 2012.

[17] S. M. Kay. Fundamentals of Statistical Signal Processing, Volume I :
Estimation Theory. Prentice Hall, 1993.

[18] T. Keasar, E. Rashkovich, D. Cohen, and A. Shmida. Bees in two-armed
bandit situations: foraging choices and possible decision mechanisms.
Behavioral Ecology, 13(6):757–765, 2002.

[19] J. R. Krebs, A. Kacelnik, and P. Taylor. Test of optimal sampling by
foraging great tits. Nature, 275(5675):27–31, 1978.

[20] T. L. Lai and H. Robbins. Asymptotically efficient adaptive allocation
rules. Advances in Appl. Math., 6(1):4–22, 1985.

[21] K. Liu and Q. Zhao. Extended UCB policy for multi-armed bandit with
light-tailed reward distributions. arXiv:1112.1768, December 2011.

[22] S. Mannor and J. N. Tsitsiklis. The sample complexity of exploration in
the multi-armed bandit problem. J. Mach. Learning Research, 5:623–
648, 2004.

[23] T. M. Moe. The new economics of organization. Amer. J. of Political
Sci., 28(4):739–777, 1984.

[24] K. P. Murphy. Conjugate Bayesian analysis of the Gaussian distribution.
https://www.cs.ubc.ca/∼murphyk/Papers/bayesGauss.pdf, 2007.

[25] H. Nakayama and Y. Sawaragi. Satisficing trade-off method for
multiobjective programming. In Interactive Decision Analysis, pages
113–122. Springer, 1984.

[26] P. Reverdy and N. E. Leonard. Satisficing in Gaussian bandit problems.
In Proc. IEEE Conf. Decision and Control, pages 5718–5723, 2014.

[27] P. Reverdy, V. Srivastava, and N. E. Leonard. Modeling human decision-
making in generalized Gaussian multi-armed bandits. Proc. IEEE,
102(4):544–571, 2014.

[28] H. Robbins. Some aspects of the sequential design of experiments.
Bulletin of the Amer. Math. Soc., 58:527–535, 1952.

[29] B. Schwartz, A. Ward, J. Monterosso, S. Lyubomirsky, K. White, and
D. R. Lehman. Maximizing versus satisficing: happiness is a matter of
choice. J. Personality and Social Psychology, 83(5):1178, 2002.

[30] H. A. Simon. A behavioral model of rational choice. The Quarterly J.
of Econ., 69(1):99–118, 1955.

[31] H. A. Simon. Rational choice and the structure of the environment.
Psychological Review, 63(2):129, 1956.

[32] V. Srivastava, P. Reverdy, and N. E. Leonard. On optimal foraging
and multi-armed bandits. In Proc. of the 51st Annu. Allerton Conf. on
Commun., Control, and Computing, pages 494–499, 2013.

[33] V. Srivastava, P. Reverdy, and N. E. Leonard. Surveillance in an abruptly
changing world via multiarmed bandits. In Proc. IEEE Conf. Decision
and Control, pages 692–697, 2014.

[34] L. G. Valiant. A theory of the learnable. Commun. of the ACM,
27(11):1134–1142, Nov. 1984.

[35] A. Wald. Sequential tests of statistical hypotheses. Ann. of Math. Stat.,
16(2):117–186, 1945.

[36] D. Ward. The role of satisficing in foraging theory. Oikos, pages 312–
317, 1992.

[37] S. G. Winter. The satisficing principle in capability learning. Strategic
Management Journal, 21(10-11):981–996, 2000.

[38] B. Yin et al. Finding optimal solution for satisficing non-functional
requirements via 0-1 programming. In Proc. IEEE 37th Annu. Computer
Software and Applications Conf., pages 415–424, 2013.

Paul Reverdy (M ’14) received the B.S. degree
in engineering physics and the B.A. degree in ap-
plied mathematics from the University of California,
Berkeley, Berkeley, CA, USA, in 2007 and the
M.A. and Ph.D degrees in mechanical and aerospace
engineering from Princeton University, Princeton,
NJ, USA, in 2011 and 2014, respectively.

From 2007 to 2009, he worked as a Research
Assistant at the Federal Reserve Board of Governors,
Washington, DC, USA. He is currently a Postdoc-
toral Fellow with the Department of Electrical and

Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA. His
research interests are in the areas of control and robotics with current interests
in human and automated decision making, engineering design, and navigation.

Vaibhav Srivastava received the B.Tech. degree
(2007) in mechanical engineering from the Indian
Institute of Technology Bombay, Mumbai, India;
the M.S. degree in mechanical engineering (2011),
the M.A. degree in statistics (2012), and and the
Ph.D. degree in mechanical engineering (2012) from
the University of California at Santa Barbara, Santa
Barbara, CA. He served as a Lecturer and Asso-
ciate Research Scholar with the Mechanical and
Aerospace Engineering Department, Princeton Uni-
versity, Princeton, NJ from 2013-2016.

Srivastava is an Assistant Professor of Electrical and Computer Engineering
at Michigan State University. His research interests include modeling and
analysis of human cognition; shared autonomous systems; socio-cognitive net-
works; computational networks; and robotic search and surveillance problems.



17

Naomi Ehrich Leonard (F ’07) received the B.S.E.
degree in mechanical engineering from Princeton
University, Princeton, NJ, in 1985 and the M.S.
and Ph.D. degrees in electrical engineering from the
University of Maryland, College Park, in 1991 and
1994, respectively. From 1985 to 1989, she worked
as an Engineer in the electric power industry.

Leonard is the Edwin S. Wilsey Professor of
Mechanical and Aerospace Engineering and Director
of the Council on Science and Technology at Prince-
ton University. She is also an associated faculty

member of Princeton University’s Program in Applied and Computational
Mathematics. Leonard’s research and teaching are in control and dynamical
systems with current interests in coordinated control for multi-agent systems,
mobile sensor networks, collective animal behavior, and human decision-
making dynamics.




