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Abstract

We describe a low-complexity lattice-reduction-aided precoding scheme for multiuser broadcast scenarios. This
scheme fills the gap between low-complexity Tomlinson-Harashima precoding and the sphere-decoder-based system
of Peel et al. [1]. Simulation results show that, replacing the closest point search with the Babai approximation [2],
still each user will experience the full diversity order supported by the system.

1 Introduction
Recently, the multiuser broadcast precoding problem
has received considerable attention. New information-
theoretic results on the sum capacity of the multiuser
broadcast channel, e.g., [3], [4], [5] have shown that
some kind of Costa- or Tomlinson-Harashima precod-
ing [6], [7], [8], [9] is necessary to attain it. Peel
et al. [1] have recently introduced a “vector pertuba-
tion technique” and showed that the uncoded error rate
curves thus obtained exhibit the full diversity order of
the system. The key idea was already present in shap-
ing without scrambling [10], [11], which is based on a
successive processing to efficiently find the pertubation
vector.

However, the technique in [1] requires the use of the
rather complex sphere-decoder [12] in order to solve a
lattice closest-point problem, and this technique can be
viewed as some kind of “maximum-likelihood detection
at the transmitter”.

In the present work we consider the use of Babai’s
approximate closest-point solution [2] to come up with
a much less complex precoding technique, along the
lines of [13], [14]. This approximate solution relies on
the lattice basis reduction algorithm of A. K. Lenstra,
H. W. Lenstra and L. Lovász (LLL) [15], which is sub-
optimum but very efficient.

It turns out that while there is some loss in power ef-
ficiency with respect to the sphere-decoder based pre-
coding technique, the full diversity is also present with
the approximate solution, leading to significant gains in
uncoded error rate for high signal-to-noise ratios.

Note that the precoding schemes considered in this
work are optimized under the constraint that a stan-
dard scalar modulo receiver frontend, as in Tomlinson-
Harashima precoding, is used (similar to “shaping with-
out scrambling”), whereas precoding systems based
on higher-dimensional lattices, aiming for the 1.53 dB
shaping gain, require the use of higher-dimensional lat-
tice quantizers at the receiver, cf. [9].

The paper is structured as follows: In Section 2 we in-
troduce the transmission model. The precoding method

described by Peel et al. [1] is discussed in Section 3.
Section 4 shows how precoding is performed using
Babai’s approximate solution to the closest-vector prob-
lem, and simulation results follow in Section 5. Some
concluding remarks are offered in Section 6.

2 Transmission Model and
Conventional Precoding

We consider the transmission from a base station (BS)
with NT transmit antennas to K ≤ NT users (mo-
bile stations, MS) with a single receive antenna each, as
shown in Fig. 1. The transmission channel is assumed
to be frequency-flat, and the received signal of user k is
modeled in the equivalent complex baseband as

yk =

NT
∑

l=1

hk,lxl + nk , (1)

where xl ∈
�

is the signal on the lth transmit antenna,
and nk ∼ CN (0, σ2

n) the noise for the kth user.
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Fig. 1. Illustration of the broadcast setup considered in this work.

We use the vector/matrix notation

y = Hx + n , (2)

with x = [x1, . . . , xNT
]T, channel matrix H = [hk,l],

n = [n1, . . . , nK ]T and y = [y1, . . . , yK ]T, where we



keep in mind that receiver processing is limited to in-
dividual components of y (only diagonal matrix opera-
tions are allowed).

A necessary prerequisite for performing any kind of
preequalization is channel state information at the trans-
mitter. Here we assume the current realization of H to
be perfectly known to the transmitter.

For convenience we also use the following real-valued
notation:

[

<y

=y

]

=

[

<H −=H

=H <H

][

<x

=x

]

+

[

<n

=n

]

, (3)

(where the < and = prefix denote the real and imag-
inary parts), and we use the subscript (·)r to denote
the vectors and matrices obtained by this separation of
real and imaginary parts, obtaining an equivalent 2K-
dimensional real model of the form

yr = Hrxr + nr . (4)

The data symbols to be transmitted to the K users will be
denoted as a = [a1, . . . , aK ]T, chosen from an M -ary
square QAM constellation. E.g., for M=4, ak ∈ {± 1

2 ±
j 1
2}, or equivalently ar,k ∈ {± 1

2} (k = 1, . . . , 2K).
The most obvious method to perform precoding for

this setup is to select x = H
+
a, where H

+ is the right
pseudo-inverse of H , i.e., H+ = HH(HHH)−1. In
this case, the receiver simply quantizes yk to the M -ary
QAM constellation to recover ak.

A more power-efficient precoding method is Tomlin-
son-Harashima precoding (cf., e.g., [16]). This method
employs modulo-arithmetics in the precoding stage, and
requires a modulo-operation at the receiver before quan-
tizing to the QAM constellation. It is based on a QR-
type decomposition of the channel matrix H r, and its
performance can be increased by using the V-BLAST
algorithm [17] to optimize the ordering of the subchan-
nels. Moreover, operating on the real-valued model in-
stead of the complex-valued model is advantageous [18].

However, since all of these schemes perform linear
preequalization for at least one of the subchannels, for
K ×NT Rayleigh-fading channels, the average bit error
rate curve will show diversity order NT − K + 1, and
in particular for NT = K, the diversity order of a single
Rayleigh-fading channel.

3 Search-Based Broadcast Precod-
ing

In [1] a “vector pertubation” technique was described
that is based on the following observation, which is also
the basis of shaping without scrambling (cf. the block
diagram in Fig. 2) [10], [11]:

Using a modulo-operation at the receiver, i.e.,

ỹr,k = yr,k mod A
def
= yr,k − Ab(yr,k + A

2 )/Ac , (5)

where A is chosen such that the points from the signaling
constellation can be uniquely recovered from ỹr,k, we
consider the “optimum” transmit signal, i.e., the signal
which requires minimum transmit power if it is followed
by linear preequalization. This is given by

xr = H+
r (ar + p), (6)

with p chosen such that its influence is eliminated by the
modulo frontend, hence p ∈ AZ

2K , and therefore

p = argmin
p′∈AZ2K

||H+
r (ar + p′)||2 . (7)

Thus, instead of linearly preequalizing ar, the symbols
ar + p′ drawn from a virtually periodically extended
constellation are used. For unique recoverability, any
A > 2 max |ar,k| is sufficient, e.g., for the 4-QAM con-
stellation {± 1

2 ± j 1
2} we can take any A > 1. However,

it can be shown that the optimum is A = 2, and symmet-
ric error regions and a periodic extension of the original
signaling constellation results.

At the receiver, yr = HrH
+
r (ar + p), and with the

modulo frontend, for each k = 1, . . . , 2K (real repre-
sentation),

ỹr,k = yr,k mod A (8)

= (ar,k + pk + nr,k) mod A (9)

= (ar,k + nr,k) mod A (10)

is observed.
We can write the minimization as

min
p′∈AZ2K

||H+
r (ar + p′)||2 =

min
p′∈AZ2K

||H+
r ar + H+

r p′||2 , (11)

and hence p′ contains the coordinates of the point in the
lattice AH

+
r Z

2K closest to −H
+
r ar.

Since the search space for this closest point problem
has a finite number of dimensions (2K), unlike in the
applications for which shaping without scrambling was
originally considered, the full search can be effectively
performed using standard lattice decoding techniques,
e.g., the sphere decoder [12], cf. also [11]. The corre-
sponding block diagram is shown in Fig. 3.

4 Lattice-Reduction-Aided Broad-
cast Precoding

While it has been shown that the average complexity
of the sphere decoder is not as bad as the worst case
complexity (exponential in the number of dimensions)
suggests [19], it is still quite high compared to both lin-
ear preequalization, which merely requires multiplica-
tion of the transmit data vector with the inverse chan-
nel matrix, and Tomlinson-Harashima precoding, which
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Fig. 2. Basic block diagram of shaping without scrambling. Only one receiver processing path is shown.
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Fig. 3. Illustration of the search-based broadcast precoding scheme by Peel et al. Only one receiver processing path is shown.
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Fig. 4. Illustration of the rounding-off approximation broadcast precoding scheme. Only one receiver processing path is shown.
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Fig. 5. Illustration of the nearest-plane approximation broadcast precoding scheme. Only one receiver processing path is shown.
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Fig. 6. Pdf of orthogonality defect of random 4×4 matrices and their
LLL-reduced counterparts (restricting the LLL main loop to 10,20,30
iterations).

is based on two subsequent matrix operations (and the
modulo-operation), and which is thus only marginally
more complex than linear preequalization.

Here we suggest to use the closest point approxima-
tion [2], similar to [13], [14], to obtain a simple but effi-
cient method for broadcast precoding:

Starting from ar and Hr, we use the LLL algo-
rithm [15] on the columns of H+

r to obtain

H+
r = WR , (12)

where W ∈ R
2NT×2K is the LLL-reduced basis with

approximately orthogonal columns, and R ∈ GL2K(Z),
i.e., an integer matrix with |det(R)| = 1, describes this
transform. This algorithm has polynomial complexity,
and to illustrate its effectiveness we have plotted the pdfs
of the orthogonality defect1 of random matrices of size
4 × 4 with complex-Gaussian distributed entries in Fig-
ure 6, together with those of the corresponding LLL-
reduced matrices. In addition we show the orthogonality
defects achieved if the LLL-algorithm (which is an inter-
ative algorithm) is aborted after 10, 20, 30 iterations of
its main loop (i.e., if we want to keep the preprocessing
time limited to a small constant value). Thus, partic-
ularly matrices with large orthogonality defects can be
avoided, and less noise enhancement is suffered by lin-
ear equalization based on these LLL-reduced matrices
(if the matrices could be made truly orthogonal, no noise
enhancement would result at all).

If we take the “rounding-off” approximation from [2],
the solution of (7) is given by

papprox. = −R
−1QAZ2K{Rar} , (13)

1Orthogonality defect of matrix � = [ � 1, . . . , � K ] with
columns � k:

δ( � )
def
=

�
K

k=1
|| � k||

|det( � )|
, with δ( � ) ≥ 1, and δ( � ) = 1 ⇔

� orthogonal

where we have used QAZ2K{·} to denote component-
wise rounding of a 2K-dimensional vector to the scaled
integer lattice AZ

2K .
Consequently, the transmit signal is given as

xr = H+
r (ar − R−1QAZ2K{Rar}) . (14)

The simple structure of this scheme is illustrated by the
block diagram in Fig. 4.

We also consider a variant of the nearest plane algo-
rithm [2] for the solution of the closest point problem.
This approximation is identical to decision-feedback
equalization, i.e., consists of a successive quantization
taking into account previous quantized values.

From the V-BLAST algorithm [17] applied to W ob-
tained from the LLL algorithm as above, we get

FWP = B . (15)

Here B = [bk,l] ∈ R
2K×2K is a lower triangular matrix

with unit diagonal (bk,l = 1 for k = l and bk,l = 0 for
k < l), F ∈ R

2K×2NT a matrix with orthogonal rows
and P a 2K × 2K permutation matrix corresponding to
the optimized decision order. (If the decision order is not
optimized, i.e., P = I , these matrices can be obtained
from a QL-decomposition of W ). The algorithm sets

q = [q1, . . . , q2K ]T = −FH+
r ar (16)

q̃1 = q1 (17)

and calculates for k = 2, . . . , 2K

q̃k = QAZ{qk −
∑k−1

l=1
bk,lq̃l} . (18)

(Note that QAZ{x} = Ab 1
A

(x+ 1
2 )c). Finally, we obtain

papprox. = R−1P q̃ . (19)

The straightforward implementation of this scheme is
shown in Fig. 5. Except for the upfront calculation of
the LLL reduced basis W , the complexity is similar to
that of, e.g., Tomlinson-Harashima precoding.

It is worth noting that while in the detection case the
effect of neglecting the boundary region of the constella-
tion has a negative impact on the performance [14], [20],
all lattice points are equally valid in this situation.

5 Simulation Results
We now present simulation results that show the perfor-
mance of the various schemes described above. We as-
sume hk,l ∼ CN (0, 1), i.e., NT independent Rayleigh
fading channels from the base station antennas to each
of the user’s receive antenna.

In Fig. 7 bit error rate (BER) curves over the aver-
age received energy per information bit Ēb divided by
the one-sided noise power spectral density N0 for a sys-
tem with NT = 4 and K = 4 are shown, where 4-
QAM signals (left plot) and 16-QAM signals (right plot)
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Fig. 7. Simulation results for the different broadcast precoding schemens in a NT = 4, K = 4 system using 4-QAM (left) and 16-QAM (right).
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Fig. 8. Simulation results for the different broadcast precoding schemens in a NT = 8, K = 8 system using 4-QAM (left) and 16-QAM (right).

are transmitted to all of the users independently. All
precoding methods were normalized for constant trans-
mit power. To show the diversity inherent in this type
of system we have also included the error rate curve
for a similar system where the signals do not inter-
fere (“orth.”). The worst performance of all precoding
schemes considered is achieved by linear preequaliza-
tion (“linear”); straightforward Tomlinson-Harashima
precoding (“THP”) works slightly better (in the very-
low-SNR region linear preequalization benefits from
the absence of the modulo frontend), and Tomlinson-
Harashima precoding based on the V-BLAST permuta-
tion of the subchannels (“THP/VB”) improves still some
more. The error rate curves for all three of these tech-
niques exhibit the diversity order 1, however.

The result obtained from the full search using the
sphere decoder (“search”) improves significantly over
linear preequalization as well as Tomlinson-Harashima

precoding, particularly exhibiting the full diversity order
of 4.

Strikingly, both approximation-based schemes, lat-
tice-reduction-aided precoding with linear (“LR-lin”)
and V-BLAST nearest-plane (“LR-VB”), also exhibit
the full diversity order 4, and in particular the nearest-
plane approximation shows only little loss in power-
efficiency with respect to the full search, at significantly
lower complexity.

The same holds true for a system with NT = 8 and
K = 8, shown in Fig. 8, where the V-BLAST based
Tomlinson-Harashima precoding system improves quite
substantially upon the non-permutation optimized ver-
sion, but again eventually settles to diversity order 1.
Even for this larger system the loss of the subop-
timum V-BLAST nearest-plane (“LR-VB”) precoding
compared to the full search (“search”) is not substantial.



6 Conclusions
The simulations conducted show that for system dimen-
sions of practical interest, the expensive search for the
precoding symbol in [1] can be avoided using the Babai
approximation, at only little cost in performance.

The uncoded error rate of the resulting system im-
proves significantly over linear preequalization as well
as Tomlinson-Harashima precoding, and exhibits the full
diversity offered by the communication channel, at the
same time the processing overhead is similar to that of
Tomlinson-Harashima precoding.

The LLL basis reduction required for Babai’s closest
point approximation is necessary only once per block,
and for reasonable block sizes introduces merely a negli-
gible additional overhead. Altogether the computational
structure of the resulting precoder is straightforward and
simple to implement.
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