
Top-k Queries for Multi-category RFID Systems
Xiulong Liu∗, Keqiu Li∗, Jie Wu†, Alex X. Liu‡, Xin Xie∗, Chunsheng Zhu§ and Weilian Xue¶

∗School of Computer Science and Technology, Dalian University of Technology, China
†Department of Computer and Information Sciences, Temple University, USA
‡State Key Laboratory for Novel Software Technology, Nanjing University, China

§Department of Electrical and Computer Engineering, The University of British Columbia, Canada
¶School of Management, Liaoning Normal University, China

Abstract—This paper studies the practically important prob-
lem of top-k queries, which is to find the top k largest categories
and their corresponding sizes. In this paper, we propose a Top-k
Query (TKQ) protocol and a technique that we call Segmented
Perfect Hashing (SPH) for optimizing TKQ. Specifically, TKQ is
based on the framed slotted Aloha protocol. Each tag responds
to the reader with a Single-One Geometric (SOG) string using
the ON-OFF Keying modulation. TKQ leverages the length
of continuous leading 1s in the combined signal to estimate
the corresponding category size. TKQ can quickly eliminate
the sufficiently small categories, and only needs to focus on
a limited number of large-size categories that require more
accurate estimation. We conduct rigorous analysis to guarantee
the predefined accuracy constraints. To further improve time-
efficiency, we propose the SPH scheme, which improves the
average frame utilization of TKQ from 36.8% to nearly 100% by
establishing a bijective mapping between tag categories and slots.
To minimize the overall time cost, we optimize the key parameter
that trades off between communication cost and computation
cost. Experimental results show that our TKQ+SPH protocol not
only achieves the required accuracy constraints, but also achieves
a 2.6∼7x faster speed than the existing protocols.

Index Terms—RFID, Multi-category, Estimation, Top-k query.

I. INTRODUCTION

A. Background and Problem Statement

Radio Frequency Identification (RFID) has been widely
used in various applications such as inventory management
[1], [2], localization [3], anti-counterfeiting [4], and human
tracking [5], [6], etc. An RFID system typically consists of
readers, tags, and a back-end server. A tag is a microchip with
an antenna in a compact package that has limited computing
power and communication ranges. RFID tags can be classified
into two types: active tags, which use the internal battery
to power their circuits, and passive tags, which do not have
their own power source and are powered up by harvesting the
energy from the reader’s electromagnetic fields. The back-end
server controls the RFID reader to send commands to query
the tags, and the tags respond over a shared wireless medium.

In many RFID applications, tags are categorized into differ-
ent categories. For example, a warehouse may categorize tags
according to the brands or manufacturers of the items that the
tags are attached to. We consider a set of tags where each
tag has a unique ID that consists of two fields: a category ID
that specifies the category of the tag, and a member ID that
identifies the tag within its category. The number of categories
and the number of tags in each category are unknown in

advance. This paper studies the practically important problem
of top-k queries, which is to use RFID readers to query the
tags so that we can quickly obtain the top-k largest categories
and the size of each such category. For example, a vendor
may want to know the most popular categories shipped in a
day, or the least consumed types of goods in its warehouse
[7]. We define the Multi-category RFID Top-k Query problem
as: given a set of tags that can be classified into ` categories
C1, C2, ..., C`, error thresholds ε, α ∈ (0, 1], and reliability
requirements δ, β ∈ [0, 1), a multi-category RFID top-k query
scheme outputs a set of k categories K and the size of each
category in K, which satisfy the following constraints. Here,
ni is the actual size of Ci and n̂i is the estimated size of Ci
for 1 ≤ i ≤ `, andM = max{nj

∣∣Cj 6∈K} (i.e.,M is the size
of the largest non-top-k category):

Membership Constraint: ∀Ci ∈ K, P r [ni ≥ (1− ε)M] ≥ δ
Population Constraint: ∀Ci ∈ K, P r [|n̂i − ni| ≤ αni] ≥ β

(1)

The membership constraint means that for any category Ci
in K, the probability that its size is larger than or equal to
(1−ε)M is larger than or equal to δ. The population constraint
means that for any category Ci in K, the probability that the
size difference between its actual size ni and its estimated size
n̂i is less than or equal to niα is larger than or equal to β.

B. Limitations of Prior Art

A straightforward solution to the multi-category RFID top-k
query problem is to use the tag identification protocols [8], [9]
to read the ID of each tag. Although perfectly accurate, they
are relatively slow as they have to identify each individual tag.
Another straightforward solution is to use the tag estimation
protocols [10]–[14] to estimate the size of each category.
Although simple, they are also relatively slow as they have
to individually estimate the size of each category. The ES
protocol [1] can address our problem; however, it does not
scale as its frame size is equal to the number of tags.

C. Proposed Approach

In this paper, we propose a Top-k Query (TKQ) protocol
and a technique that we call Segmented Perfect Hashing (SPH)
for optimizing TKQ.

1) TKQ: TKQ is based on the framed slotted Aloha pro-
tocol. First, the reader broadcasts the frame size f and a
random seed R to initialize a slotted time frame. Each tag
chooses a slot sc ∈ [0, f − 1] by calculating the hash
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Fig. 2. Monotonous relationship be-
tween the length of continuous lead-
ing 1s and the number of tags.

function sc = H(Ci,R) mod f . Thus, the tags from the
same category always choose the same slot. For simplicity,
we first assume that the category set C = {C1, C2, ..C`} is
known in advance. For each non-empty slot, if all the tags
belong to the same category, then we call it a homogeneous
slot; otherwise, we call it a heterogeneous slot. The reader
then calculates H(Ci,R) mod f for 1 ≤ i ≤ ` to predict
whether the slot is a homogeneous slot, a heterogeneous slot,
or an empty slot. In the slot chosen by a tag, the tag responds
with a ν-bit Single-One Geometric (SOG) string, denoted
by SOG[0...ν − 1], which satisfy two constraints: (i) only
one bit is 1 and the other bits are 0s; (ii) the probability that
SOG[j] = 1 is 1

2j+1 for j ∈ [0, ν − 1]. The tags transmit the
SOG string using the ON-OFF keying modulation [15]: a bit
1 is represented by the presence of a carrier wave; a bit 0 is
represented by the absence of a carrier wave. The combined
signal CS[0..ν−1] is logically equal to the result of the bitwise
OR operation on all replied strings, as illustrated in Fig. 1.

Our intuition is that for any slot, the more tags choose it, the
longer the sequence of continuous leading 1s in the combined
signal is. Fig. 2 illustrates this fact. Hence, we use the length
of the continuous leading 1s observed in the combined signal
to estimate the number of tags in the current slot. Consider
the example in Fig. 1, the length of continuous leading 1s
in the combined signal is 2. Using the estimator given in
Lemma 1, we can estimate the number of tags that choose
this slot by calculating 1.2897 × 22 ≈ 5.16, which is very
close to the real tag number. Since the combined signal in a
heterogeneous slot can only estimate the sum of the sizes of
multiple categories, TKQ uses the homogeneous slots. We use
multiple independent frames so that each category can occupy
sufficient homogeneous slots to achieve accurate estimate.
After each round of estimation, we sort the estimated category
sizes to find the top-k ones.

2) SPH: The homogeneous slots are useful for estimating
category sizes. However, the ratio of homogeneous slots in the
frame is up to 36.8% on average, when the frame size equals
the number of categories. The low frame utilization becomes
a key bottleneck of TKQ. Recall that each tag uses H(Ci,R)
mod f to choose a slot. Essentially, the seed R determines
the mapping between categories and slots. A straightforward
method is to generate a series of seeds, from which we find the
best seed R that establishes a full bijective mapping between
all categories and the slots. However, as shown in Table II,

finding such a full bijective mapping seed is time-consuming
when the number of categories ` is large. For example, it takes
even 9.1× 1013 years on average when ` = 64.

To improve the frame utilization of TKQ, we propose an
optimization scheme called Segmented Perfect Hashing (SPH).
At the beginning of each round of estimation, we put all
category IDs that are under estimation into a pending set P .
Instead of finding a full bijective mapping seed, SPH just
needs to find a random seed R that establishes a bijective
mapping between m categories and the first m slots in the
frame. Let S represent the set of these m categories. Then,
the reader broadcasts R and f to the tags to issue a frame.
After executing the first m homogeneous slots, the reader
sends commands to terminate the current frame immediately.
Then, we set P = P − S. We repeat the above process until
P = ∅. Logically, a long frame is divided into multiple frame
segments. The slots in each segment are homogeneous slots.

D. Technical Challenges and Solutions

The first key challenge is to guarantee the accuracy con-
straints in (1). We propose an unbiased estimator that leverages
the average length of continuous leading 1s in the homoge-
neous slots to estimate the category sizes. We also calculate
the variance of the estimator to measure its deviation from the
real category size. To satisfy the membership constraint, we
propose a fundamental theorem to recognize the larger one
among two arbitrary categories with a predefined reliability δ.
We determine that Ci ∈ K if Ci is larger than ` − k small
categories, and Cj 6∈ K if Cj is smaller than k large categories.
To satisfy the population constraint, we calculate the number
of homogeneous slots required for any Ci ∈ K so that the
deviation of the estimated category size is small enough to
satisfy the (α, β) accuracy.

The second key challenge is to optimize the frame segment
size m, which is the key factor that significantly impacts the
time-efficiency of SPH. Intuitively, if the frame segment size
m is too large, the computation cost on the server side will
be large accordingly, and will dominate the total time cost.
On the contrary, if the frame segment size m is too small, the
current round of estimation will contain many frame segments
with each requiring an extra transmission cost for transmitting
parameters 〈R, f〉. Essentially, the segment size m trades off
between the computation cost and the communication cost.
We define an efficiency function F〈m,|P|〉 for measuring the
time-efficiency of TKQ. We calculate the optimal value of m
by maximizing F〈m,|P|〉.

E. Novelty and Advantage over Prior Art

The key novelty of this paper is twofold. First, we propose
the Top-k Query (TKQ) protocol to find the top k largest
categories and their sizes with guaranteed accuracy constraints.
Second, we propose the Segmented Perfect Hashing (SPH)
scheme to improve the average frame utilization of TKQ from
36.8% to nearly 100%. Compared with ES [1], TKQ uses a
short frame size that is equal to the number of categories,
whereas ES uses a frame size that is equal to the number of



tags. This leads to much faster execution speed. Compared
with RFID identification protocols [8], RFID estimation pro-
tocols [11], and multi-category RFID top-k query protocol
ES [1], our TKQ+SPH protocol achieves 2.6∼7x speedup.

The rest of this paper is organized as follows. In Sections
II and III, we present the detailed design of TKQ and SPH,
respectively. In Section IV, we review the related work. In
Section V, we conduct simulations to evaluate the performance
of the proposed protocols. Section VI concludes this paper.

II. THE BASIC PROTOCOL: TKQ

In this section, we first present the detailed design of the
Top-k Query (TKQ) protocol. Then, we propose an unbiased
estimator for estimating each category size, as well as the
estimation variance. Finally, we explain how TKQ dynami-
cally determines the top k largest categories and their sizes,
meanwhile satisfying the constraints in (1).

TKQ includes several independent rounds of estimation.
At the beginning of an arbitrary round of estimation, the
reader broadcasts the parameters 〈<, ν〉 to notify each tag to
randomly generate a ν-bit SOGs string [14], [16]. Specifically,
the tag first generates a ν-bit random binary string B[0...ν−1]
by returning the first ν bits of the hash value H(ID,<). Let µ
represent the length of continuous leading 0s in B[0...ν − 1].
The tag sets SOG[µ] = 1 and SOG[i 6= µ] = 0. Qian et
al. indicated that ν = 32 is large enough [14]. Hence, we
set ν = 32 in the rest of this paper. For example, a tag
generates a 32-bit random string B[0...31] as ‘00101· · ·’. Since
the length of continuous leading 0s in B[0...31] is 2, the tag
sets SOG[2] = 1 and SOG[i 6= 2] = 0, i.e., the generated
SOG string is ‘00100· · ·’. An extreme case is that every bit
in B[0...31] is 0, then, SOG[0...31] will be all 0s accordingly,
which does not comply with the property of a SOG string.
Fortunately, the probability of this case is as small as 1

232 .
Then, the reader issues a slotted time frame by broadcasting

the parameters 〈R, f〉, where R is a random seed and f is
the frame size. Upon receiving these parameters, each tag
initializes its slot counter sc by calculating sc = H(Ci,R)
mod f , where Ci is its category ID. Clearly, the tags from
the same category should have the same slot counters. The
reader broadcasts QueryRep command at the end of each
slot to notify each tag to decrement its slot counter sc by one
[17]. A tag will respond to the reader once its slot counter sc
becomes 0. The tags from the same category Ci necessarily
choose the same slot, because each tag chooses the slot by
calculating H(Ci,R) mod f . There are three types of slots:
the homogeneous slot in which the tags are from the same
category; the heterogeneous slot in which the tags are from
different categories; the empty slot that no tag chooses. We are
able to predict whether a slot is homogeneous, heterogeneous,
or empty, by calculating H(Ci,R) mod f for 1 ≤ i ≤ `.
TKQ uses the combined signals in the homogeneous slots to
estimate the corresponding category sizes. We set the frame
size f to the number of categories because this setting results
in the highest ratio of homogeneous slots in the frame on
average [8]. The categories that pick the heterogeneous slots

cannot be estimated in this round. Therefore, multiple frames
with different seeds are required to let each category have a
chance to occupy sufficient homogeneous slots for estimation.

Assume N rounds of estimation have been executed. We
use a boolean variable θi,x to indicate whether a category Ci
chooses a homogeneous slot in the x-th round of estimation.
If so, θi,x = 1; otherwise, θi,x = 0. We now zoom in the
slot that category Ci chooses in the x-th round of estimation.
Let Li,x represent the length of continuous leading 1s of the
combined signal in this slot. We use si to denote the number
of homogeneous slots that the category Ci occupies among
N rounds of estimation, then, we have si =

∑N
x=1 θi,x. Let

Li,N represent the average length of continuous leading 1s of
the combined signals in these si homogeneous slots. Then, we
have Li,N = 1

si

∑N
x=1 (Li,x × θi,x). Next, Lemma 1 gives an

unbiased estimator that leverages the variable Li,N to estimate
the size of category Ci. Lemma 2 calculates the variance of
the estimator. The used notations are summarized in Table I.

Lemma 1. Let si represent the number of homogeneous slots
occupied by category Ci among N rounds of estimation, and
Li,N represent the average length of continuous leading ‘1s’
of the combined signals in these slots. n̂i = ω2Li,N is an
unbiased estimate of the category size ni, where ω = 1.2897.

Proof. The detailed proof can be referred to in [14].

Lemma 2. Let si represent the number of homogeneous slots
occupied by category Ci among N rounds of estimation, and
Li,N represent the average length of continuous leading ‘1s’
of the combined signals in these slots. The variance of n̂i =
ω2Li,N is V ar(n̂i) = (ln 2)2n2i %

2
/
si, where % = 1.1213.

Proof. We represent n̂i = ω2Li,N by φ
(
Li,N

)
. Then, we

calculate the Taylor’s series expansion of φ
(
Li,N

)
around

E = E
(
Li,N

)
as follows:

n̂i=φ
(
Li,N

)
=φ (E)+

(
Li,N−E

)
×

{
∂φ
(
Li,N

)
∂Li,N

∣∣∣
Li,N=E

}
= ni + ln 2 · ni ·

(
Li,N − E

) (2)

Then, we can calculate the variance V ar(n̂i) as follows.
V ar(n̂i)=E {n̂i−E(n̂i)}2

=(ln 2)2n2
iE
{
Li,N−E

(
Li,N

)}2
= (ln 2)2n2

iV ar
(
Li,N

) (3)

We know from [14] that V ar
(
Li,N

)
= %2

/
si, where % =

1.1213. Therefore, we have V ar(n̂i) = (ln 2)2n2i %
2
/
si.

Lemma 2 infers that, as the estimation is repeated round by
round, the estimator variance for each category is expected to
decrease gradually. After each round of estimation, we com-
pare the estimated category sizes to dynamically determine
whether a category belongs to the top-k set K. It is nontrivial to
investigate how to correctly compare two categories according
to their estimated sizes. For two categories Ci and Cj , if the
estimated sizes satisfy n̂i < n̂j , can we assert that the actual
cardinality ni is smaller than nj? The answer is no, due to
the inherent estimation variance: a small-size category may be



overestimated, while a large-size category may be underesti-
mated. Next, Theorem 1 tells us how to correctly compare two
category sizes with a predefined reliability δ ∈ (0, 1).

Theorem 1. Assume that two categories Ci and Cj occupy si
and sj homogeneous slots, respectively. Their estimated cate-
gory sizes satisfy n̂i > n̂j; We have Pr

{
ni ≥ (1−ε)nj

}
≥ δ,

if the following inequality holds.
n̂i − n̂j + njε

ln 2%
√
n2
i /si + n2

j/sj
≥ Φ−1(δ) (4)

Proof. Since the estimated category sizes n̂i and n̂j are inde-
pendent to each other, we have E(n̂i−n̂j) = E(n̂i)−E(n̂j) =
ni−nj and V ar(n̂i− n̂j) = V ar(n̂i) +V ar(n̂j). According
to the central limit theorem, we know Z =

(n̂i−n̂j)−(ni−nj)√
V ar(n̂i)+V ar(n̂j)

asymptotically follows the standard normal distribution [18].
Then, Pr

{
ni ≥ (1− ε)nj

}
can be transformed as follows:

Pr

{
Z≤ n̂i−n̂j+njε√

V ar(n̂i)+V ar(n̂j)

}
=Φ

(
n̂i−n̂j+njε√

V ar(n̂i)+V ar(n̂j)

)
To ensure the above probability is larger than the required re-
liability δ, we should guarantee n̂i−n̂j+njε√

V ar(n̂i)+V ar(n̂j)
≥ Φ−1(δ).

Here, Φ(·) is the cumulative distribution function of the stan-
dard normal distribution, and Φ−1(·) is its inverse function.
Substituting the expressions of V ar(n̂i) and V ar(n̂j) into the
above inequality, we obtain Eq. (4).

To satisfy the membership constraint, we determine that
Ci ∈ K if we can find at least ` − k small categories, says
Cj , such that Ci and each Cj satisfy the inequality in Eq. (4);
Cj 6∈ K if we can find at least k large categories, says Ci, such
that each Ci and Cj satisfy the inequality in Eq. (4). Next,
Theorem 2 indicates how to ensure the population constraint.

Theorem 2. Let si represent the number of homogeneous
slots that category Ci occupies, α ∈ (0, 1) be the confidence
interval, β ∈ (0, 1) be the required reliability. To guarantee
Pr
{
|n̂i − ni| ≤ niα

}
≥ β, we should ensure the inequality:

si ≥
(ln 2)2%2

α2

{
Φ−1

(
1 + β

2

)}2

(5)

Proof. Pr
{
|n̂i − ni| ≤ ni · α

}
≥ β can be transformed into:

Pr

{
−αni√
V ar(n̂i)

≤ W ≤ αni√
V ar(n̂i)

}
≥ β

Here,W = n̂i−E(n̂i)
V ar(n̂i)

asymptotically follows the standard nor-
mal distribution [18]. To ensure the above inequality, we only
need to guarantee αni√

V ar(n̂i)
≥ Φ−1( 1+β

2 ). Substituting the

expression V ar(n̂i) into this inequality, we obtain Eq. (5).

Let U represent the set of categories that are under esti-
mation, which is initialized as C at the beginning. After each
round of estimation, we delete the small categories that are
out of the top-k set from U . Additionally, we remove the large
categories that should be in the top-k set, meanwhile satisfying
the population constraint from U to K. As the estimation
process goes on, the set U will shrink gradually while K grows.
The estimation process of TKQ is repeated round by round

TABLE I
NOTATIONS USED IN THE PAPER.

Notation Description
` number of tag categories.

Ci / C Ci is category ID, 1 ≤ i ≤ `; C = {C1, C2, ..C`}.
ni / n̂i size of category Ci; estimated size of category Ci.
SOG[..] Single-One Geometric (SOG) string.
CS[..] combined signal of multiple SOG strings.
N number of rounds of estimation repeated by TKQ.

θi,x
θi,x = 1 when Ci chooses a homogeneous slot in
the x-th round of estimation; θi,x = 0 for otherwise.

si number of homogeneous slots occupied by Ci.

Li,x
length of continuous leading 1s in the slot that Ci
chooses in the x-th round of estimation.

Li,N
average length of continuous leading 1s in the si ho-
mogeneous slots, of category Ci, among N rounds.

ε / α error thresholds.
δ / β reliability requirements.

Φ(·) / Φ−1(·) cumulative distribution function of the standard nor-
mal distribution; inverse function of Φ(·).

H(·) hash function with uniform distribution.
R random seed.
f frame size, i.e., the number of slots in the frame.

until |K| = k. Then, we obtain the k largest categories in K
that satisfy the constraints in Eq. (1).

III. THE SUPPLEMENTARY PROTOCOL: SPH

In this section, we first explain the motivation of proposing
the Segmented Perfect Hashing (SPH) protocol. Then, we
use a case study to elaborate on the basic idea of SPH,
which is followed by the detailed protocol design. We also
provide theoretical analyses to optimize the key parameters to
maximize the time-efficiency of SPH. Finally, we will discuss
some practical issues such as multi-reader deployment, and
channel error, etc.

A. Motivation and Challenge

The homogeneous slots are useful in the TKQ protocol.
Hence, the ratio of homogeneous slots in the frame can
be interpreted as the frame utilization, which is given by(
`
1

)
( 1
f )(1 − 1

f )`−1 ≈ ρe−ρ. Here, ρ = `/f , ` is the number
of categories, and f is the number of slots in the frame. It
is easy to find that the average frame utilization is just up
to 36.8% when ρ = 1. The low frame utilization is a major
bottleneck of TKQ. Some previous work, e.g., [19], uses a
bit-vector to guide the tags to skip the useless slots, thereby
improving the frame utilization. However, it requires the tags
to be able to interpret the bit-vector, such a functionality is
hard to be implemented in the passive RFID tags.

Obviously, the ideal case is that all the slots in the frame are
homogenous slots, i.e., there is a bijective mapping between
the tag categories and slots. Recall that, given an arbitrary
seed R, the server is able to predict the mapping between tag
categories and slots even before actually executing the frame.
Hence, a straightforward method is to generate a series of
seeds R, and the server tests them to choose the best one
that establishes a bijective mapping between tag categories



TABLE II
THE COMPUTATION COST OF THE STRAIGHTFORWARD METHOD.

# of categories (`) # of tested seeds Time cost on average
1 1 1.5× 10−7s
2 2 5.8× 10−7s
4 10.7 6.2× 10−6s
8 416.1 4.8× 10−4s
16 8.8× 105 2.4s
32 5.6× 1012 297.6 days
64 3.1× 1026 9.1× 1013 years

and slots. Using such a seed to issue a frame, each slot in the
actual frame will be the homogeneous slot. Next, we analyze
the computation complexity of this method.

For an arbitrary seed R, the probability that it establishes
a full bijective mapping between ` categories and f = ` slots
is Pb = `!/``. Therefore, we need to test 1/Pb = ``/`! hash
seeds on average, so that one of them is a full bijective map-
ping seed. When testing a seedR, the server first calculates the
hash function H(Ci,R) mod f to map each category Ci to
a slot in the virtual frame for each i ∈ [1, `]. Then, the reader
checks whether all slots in the virtual frame are homogeneous
slots. Let η represent the number of clock cycles required by
the server to calculate the hash function, λ be the number of
clock cycles that it takes to check the status of each slot in
the virtual frame, and tc be the duration of a clock cycle that
depends on the CPU frequency of the server. Then, the average
time of finding such a full bijective mapping seed should be
1/Pb×(`η+`λ)tc. The numerical results in Table II reveal that
the required computation cost grows sharply as the number of
categories ` increases. For example, when ` = 64, it takes
even 9.1 × 1013 years on average to find a bijective random
seed, using a single-threaded program. Therefore, establishing
a bijective mapping between the categories and slots is a
nontrivial issue. Note that, in Table II, we set η = 344, λ = 3
according to [20], and the clock cycle tc = 4.17 × 10−10s
with the 2.4GHz CPU.

B. Case Study

Here, we give a case study, as exemplified in Fig. 3, to
explain the basic idea of the Segmented Perfect Hashing (SPH)
protocol. Assume that there are 9 tag categories C1 ∼ C9 in
the RFID system. At the beginning, a pending category set P is
initialized as {C1, C2, .., C9}. SPH includes several mapping
processes. In the first mapping, we find a random seed R1

that establishes a bijective mapping between 3 categories (i.e.,
C1, C2, and C4) and the first 3 slots. After executing the
first 3 slots, the reader terminates the frame, and sets P =
P − {C1, C2, C4}. Here, the first 3 slots can be interpreted
as a frame segment. In the second mapping, we find another
random seed R2 that establishes a bijective mapping between
3 categories (i.e., C3, C6, and C7) in P and the first 3 slots.
After executing the first 3 slots, the reader terminates the frame
and sets P = P−{C3, C6, C7}. In the third mapping, we find
a random seedR3 that establishes a bijective mapping between

C1 C2 C3 C4 C5 C6 C7 C8 C9

C1 C2 C4 C3 C5 C6 C7 C8 C9

C3 C6 C7 C5 C8 C9

R1

R1 R2

R2 R3

C1 C2 C4

R1

the 2nd mapping

the 3rd mapping

the 1st mapping

Without execution

bijectivebijective bijective

Pending set

Pending set

Pending set

bijective

Heterogeneous slot

R2

Wit

HetHomogeneous slot

Empty slot

Pendingg

Pe

Fig. 3. A case study of Segmented Perfect Hashing (SPH).

P = {C5, C8, C9} and 3 slots. After executing the last frame
segment, the pending set P becomes ∅ and SPH terminates.
Logically, we obtain a bijective mapping between 9 categories
and 9 slots through 3 frame segments.

To show the advantage of SPH, we first calculate its
computation cost in the example. Given an arbitrary seed R,
each category in the pending set P is randomly hashed to one
of the f = |P| slots in the frame. We refer to the seed R as
an 〈m, |P|〉 bijective seed, if it establishes a bijective mapping
between m categories and the first m slots in the frame. Let
P〈m,|P|〉 represent the probability that R is such a seed. We
calculate its expression as follows:

P〈m,|P|〉 =

(|P|
m

)
×m!×

(
|P| −m

)|P|−m
|P||P|

(6)

To obtain an 〈m, |P|〉 bijective seed, the server needs to test
1/P〈m,|P|〉 random seeds on average. The expected computa-
tion cost, denoted as O〈m,|P|〉, is given as follows:

O〈m,|P|〉=
|P|ηtc+mλtc
P〈m,|P|〉

=
|P||P| × {|P|ηtc +mλtc}(|P|
m

)
×m!×

(
|P| −m

)|P|−m , (7)

where {|P|ηtc + mλtc} is the computation cost of test-
ing each seed. Now, we consider the example in Fig. 3.
The overall computation cost on the server side will be
O〈3,9〉 + O〈3,6〉 + O〈3,3〉. In fact, the straightforward method
is a special case of SPH, where m = `. In this example,
the computation cost of the straightforward method is O〈9,9〉.
We calculate O〈9,9〉

O〈3,9〉+O〈3,6〉+O〈3,3〉
≈ 38.4, which infers that

SPH is about 38.4 times faster than the straightforward method
in this example. Note that, SPH can show more performance
improvement if larger number of tag categories are involved.

C. Detailed Design of SPH

Before presenting the detailed design of SPH, we need to
re-clarify the relationship between TKQ and SPH as follows.
Generally, TKQ includes multiple rounds of estimation. In
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Fig. 4. State diagram of an RFID tag in SPH.

each round of estimation of TKQ, we use SPH to improve the
frame utilization. SPH includes multiple mapping processes,
each corresponds to a frame segment. In SPH, each tag needs
to keep a flag that has three possible values. A tag with the
flag of A0 is active and will participate in the next mapping
process; a tag with the flag of A1 will not participate in the
rest of mapping processes in current round of estimation, but it
will still participate in the next round of estimation; a tag with
the flag of B is inactive and will no longer participate in the
remaining rounds of estimation. Next, we will present the SPH
protocol in detail, meanwhile explaining the state transition of
the RFID tags shown in Fig. 4.

At the beginning of an arbitrary round of estimation, we use
U to represent the set of categories that are under estimation.
The reader sends commands to reset the tags whose categories
are within U to be with the flag of A0. The pending category
set P is initialized as U . The server finds an 〈m, |P|〉 bijective
seed R that establishes a bijective mapping between m cate-
gories in P and the first m slots in the frame. We use S to
represent the set of these m categories, clearly, S ⊆ P . The
reader uses the binary parameters 〈R, f〉 to issue a frame.
Each tag determines a slot by calculating sc = H(R, ID)
mod f . At the end of each slot, the reader broadcasts the
command QueryRep to notify each tag with the flag of A0
to decrement its slot counter sc by one [17]. Upon finding
its slot counter sc = 0, a tag will respond to the reader
with the generated SOG string, and turns its flag from A0 to
A1. Using the combined signals received in the homogeneous
slots, the reader updates the estimated category sizes as well
as the estimation variance based on Lemmas 1 and 2. If a
category has already satisfied the constraints in (1), the reader
will sends an ACK command to turn the flag of the tags
confined in this slot to B. The tags with the flag of B will
keep inactive and will no longer participate in the remaining
rounds of estimation. After the execution of the first m slots,
the reader terminates the current frame segment immediately,
and the server updates the pending set by P = P − S . Note
that, the tags that responded in previous frame segments should
have the flag A1. Only the tags with flag A0 will participate
in the next mapping process. Similar processes are repeated
until the pending set P = ∅, which also means that the current
round of estimation is finished.

D. Parameter Optimization

The time cost of SPH contains two aspects: (i) the com-
putation cost on the server side for finding the 〈m, |P|〉
bijective seeds; (ii) the communication cost for transmitting
the parameters 〈R, f〉 (from reader to tags) and transmitting
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SOG strings (from tags to reader). The numerical results in
Fig. 5 reveal that the frame segment size m is a key factor
that controls the tradeoff between the computation cost and
the communication cost. The underlying reason is elaborated
as follows. If the frame segment size m is too large, the
computation cost on the server side will be large accordingly,
and will dominate the total time cost. On the contrary, if
the frame segment size m is too small, the current round
of estimation will contain too many frame segments, each
requiring the non-negligible transmission cost for sending the
parameters 〈R, f〉. Therefore, it is important to optimize the
frame segment size m to minimize the total time cost.

Given a pending category set P , Eq. (7) has given the
computation cost for finding an 〈m, |P|〉 bijective seed on the
server side. Let Tact represent the actual communication cost
of executing a frame segment with size m; Tidl be the ideal
communication cost of executing a frame segment with size m.
We have Tact = m×τνu+τϑd and Tidl = m×τνu . Here, τνu is the
time to transmit the ν-bit SOG strings from tags to the reader
(uplink). τϑd is the time to transmit the ϑ-bit parameters 〈R, f〉
from reader to tags (downlink) for initializing the frame. We
define an efficiency function F〈m,|P|〉 = Tidl

Tact+O〈m,|P|〉
. Its

physical meaning is that: the numerator indicates the ideal
time for executing a frame segment containing m slots; the
denominator indicates the actual time for executing such a
frame segment. Obviously, the value of F〈m,|P|〉 is no more
than 1. In the ideal case, where it does not involve the
transmission of parameters and the computation cost on the
server side, the value of F〈m,|P|〉 equals 1. However, such
an ideal case cannot be achieved because these two costs are
inevitable. We calculate the expression of F〈m,|P|〉 as follows:

F〈m,|P|〉=
m(m!)τνu

(|P|
m

)
(|P| −m)|P|−m

(mτνu+τϑd )
(|P|
m

)
m! (|P|−m)|P|−m+|P||P| (|P|η+mλ) tc

As exemplified in Fig. 6, we could find an optimal value of m
by maximizing F〈m,|P|〉. We have observed from simulations
that the optimal value of m is typically less than 15. Therefore,
we can quickly find its optimal value even by the exhaustive
searching, which occurs offline before running our protocol.

E. Discussion on Some Practical Issues

1) Identification of Category IDs: For the case that the cat-
egory set C is unknown in advance, we propose a fast approach
to identify the category IDs. The reader queries the tags by
broadcasting parameters 〈R, f〉, and each tag determines a slot



in the frame by calculating H(Ci,R) mod f . In the picked
slot, a tag responds with its category ID Ci as well as the
checksum of Ci. In a homogeneous slot, the combined signal
in the category ID field will match the combined signal in the
checksum field, thus, the reader is able to successfully identify
the corresponding category ID. Multiple frames are repeated
until all categories are identified.

2) Deployment of Multiple Readers: In large-scale appli-
cation scenarios, a single reader is usually unable to cover
the whole application area. Therefore, multiple readers are
required to be deployed. Many excellent reader-scheduling
schemes were proposed to efficiently synchronize the readers
[21]. We let the query commands across all the readers be
consistent, and the readers return the received data to the
server. Thus, these readers cooperate like a powerful reader
that can cover the whole area [11]. Then, we can migrate the
proposed protocols to the multi-reader scenarios seamlessly.

IV. RELATED WORK

Through comprehensive review of previous work, we sum-
marize and classify the related work into four fields below.

Tag identification is to identify the exact tag IDs within
the vicinity of the reader. There are two types of solutions:
Aloha-based protocols [8] and tree-based protocols [9]. In the
Aloha-based protocols, the tags content for slots in the frame
to respond with their IDs. In the tree-based protocols, the
reader broadcasts a 0/1 string to query the tags. A tag responds
with its ID once it finds that the querying string is the prefix
of its ID. A reader identifies a tag when one tag responds.

Probabilistic estimation is to estimate the cardinality of
a tag set with a predefined accuracy constraint [10]–[14],
[22]. Kodialam et al. proposed the first set of tag estimation
protocols, USE and UPE, which use the number of empty
or collision slots to estimate population sizes [23]. Similarly,
Zheng et al. proposed the PET protocol for tree-based RFID
systems [10]. Qian et al. first proposed using geometric
distribution hash to estimate the tag cardinality of a single set
[14]. Shahzad et al. proposed ART, which uses the average run
length of non-empty slots for cardinality estimation [11]. Li
et al. proposed the Maximum Likelihood Estimator (MLE),
which looks at the energy aspect [24]. Liu et al.studied the
problem of RFID estimation with blocker tag [22].

Iceberg query is to identify the categories whose cardinality
is above the given threshold for multi-category RFID systems.
Sheng et al. proposed Group Testing (GT) scheme to rapidly
eliminate the groups that contain multiple small-size categories
[7]. Luo et al. proposed a Threshold-Based Classification
(TBC) Protocol, which can obtain multiple logical bitmaps
from a single time frame. Each bitmap can be used to estimate
the tag cardinality of a category. The categories whose sizes
are obviously above the threshold can be quickly removed.
The iceberg query protocols cannot be borrowed to solve the
problem of top-k query, because the threshold (i.e., the size
of the k-th largest category) is unknown previously and hard
to obtain in some applications.

Top-k query is to pinpoint the k largest categories within a
multi-category RFID system. Xie et al. made the first and only
dedicated effort to address the top-k query problem [1]. In the
Ensemble Sampling (ES) protocol [1], all the tags contend for
a common slotted frame, and each responds with the category
ID in a random slot. ES leverages the ratio of singleton slots
carrying category ID Ci to the total singleton slots to estimate
the category size ni, and dynamically finds the top k largest
categories. In Section I-B, we have discussed the limitations
of the related work.

V. PERFORMANCE EVALUATION

We implemented the proposed protocols in Matlab on a
ThinkPad X230 desktop with an Intel 2.4GHz CPU. The
simulated RFID system contains ` tag categories. We randomly
generate the category sizes following the normal distribution
Norm(µ, σ) [1]. Recall that our protocols can seamlessly
work in both multi-reader and single reader scenarios. Same
as [1], [8], [11], we simulate a single reader that has sufficient
power to probe all tags. The transmission rate between the
reader and tags is asymmetric. The uplink (tags to reader) rate
is 53Kb/s, while the downlink rate is 26.5Kb/s. Between
any two consecutive data transmissions, there is a waiting time
τw = 302us [11]. The clock cycle tc of the computer is 4.17×
10−10s. For clarity, the programs for finding the bijective seeds
required by SPH is in a single-threaded manner. We compare
TKQ+SPH with three representative protocols: the Ensemble
Sampling (ES) protocol [1], which is the only dedicated
solution to the top-k query problem; the Enhanced Dynamic
Framed Slotted ALOHA (EDFSA) protocol [8], which is the
identification protocol specified in the C1G2 standard; the
Average Run-based Tag estimation (ART) protocol [11], which
is an excellent tag estimation protocol. Extensive simulations
under various settings are conducted to evaluate the time-
efficiency and the reliability of these protocols. Each simu-
lation result is averaged from 500 independent trials.

A. Time-efficiency

1) Impact of k: TKQ+SPH is the fastest protocol with
varying number k of concerned categories. Without otherwise
specified, we set both the membership accuracy (ε, δ) and
the population accuracy (α, β) to (0.05, 95%) by default. The
number ` of total categories is fixed to 100, and the cardinality
of each category is randomly generated following normal
distribution Norm(µ, σ), where µ = 500 and σ = 400.
Fig. 7(a) shows the execution time of each protocol with
varying k. The execution time of EDFSA is stable because
it has to exactly identify all the tags, regardless of the number
of concerned categories. The performance of ART is also
independent of k because it needs to estimate the population
of each category in a separate manner. On the contrary,
the execution time of ES, TKQ and TKQ+SPH increases
against k. The underlying reason is as follows. A larger k
means that more large-size categories have to be kept in the
estimation process until meeting the population constraint,
which will incur more execution time. TKQ+SPH significantly
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outperforms the benchmark protocols, particularly when k is
small. For example, TKQ+SPH runs 7x faster than the fastest
existing protocol when k = 5.

2) Impact of `: TKQ and TKQ+SPH are the only protocols
that have good scalability against the number ` of categories.
Moreover, TKQ+SPH is the fastest protocol with different
settings of `. In this set of simulations, we fixed the number
of concerned categories k to 10, and varied the number of
all categories ` from 50 to 150. Each category size follows
the normal distribution Norm(500, 400). As the number ` of
categories increases, the number of tackled tags also greatly
grows. The numerical results in Fig. 7(b) reveal that the
execution of each protocol increases more or less with respect
to the number ` of categories, but the execution time of TKQ
and TKQ+SPH increases with the smallest rate among all
protocols. The larger the number ` of total categories is, the
better the time-efficiency TKQ and TKQ+SPH achieve, as
compared with other protocols. Since k is fixed, increasing the
number of total categories is equivalent to increase the number
of unconcerned categories. Fortunately, the unconcerned cat-
egories do not require accurate estimation and can be filtered
out quickly. Therefore, TKQ and TKQ+SPH are not sensitive
to the number of tag categories. We observe that TKQ+SPH
is the fastest protocol with different settings of `, e.g., it runs
5x faster than the fastest benchmark protocol when ` = 150.

3) Impact of µ: TKQ+SPH is the fastest protocol with
different settings of µ. In this set of simulations, we fixed
the number k of concerned categories to 10, and the number
` of total categories to 100. Each category size is randomly
generated following the normal distribution Norm(µ, 150),
where µ varies from 200 to 700. The simulation results in
Fig. 7(c) reveal that the execution time of ART is independent
of the category size, and the execution time of TKQ and
TKQ+SPH increases slightly as µ increases. The underlying

reason is as follows. If we increase µ while fixing the value
of σ, the relative variance of category sizes becomes small.
Intuitively, it is difficult to determine which one is larger when
two categories are of similar sizes. Hence, as µ increases, the
execution time of TKQ and TKQ+SPH slightly grows. The
execution time of EDFSA increases sharply as µ increases,
because much more tags are required to be identified. The
execution time of ES also increases sharply as µ increases
because the used frame size should be proportional to the total
tag population. We observe that ES is suitable for the RFID
system that contains a large number of categories, each with
a very small category size, e.g., ES runs faster than EDFSA
and ART when µ = 200. As µ increases, the performance of
ES deteriorates. We observed that even when µ is as small as
200, TKQ+SPH still runs 2.6x faster than ES. Note that, such
an improvement will be more significant when µ is larger.

4) Impact of σ: TKQ+SPH is the fastest protocol with
different settings of σ. In this set of simulations, we fixed
the number of concerned categories k to 10, and the number
of total categories ` to 100. Each category size is randomly
generated following the normal distribution Norm(500, σ),
where σ varies from 100 to 300. As illustrated in Fig. 7(d),
the execution time of Es, TKQ and TKQ+SPH decreases as
σ increases. This is because the larger σ is, the larger the
variance of category sizes is. Intuitively, it is relatively easy
to compare two categories with significantly different sizes.
Hence, as σ increases, the execution time of Es, TKQ and
TKQ+SPH decreases. The execution time of ART is stable
and regardless of the category sizes. And TKQ+SPH is about
3x faster than the fastest benchmark protocol with varying σ.

B. Reliability

Both TKQ and TKQ+SPH are able to satisfy the required
reliability in various settings. Besides the time-efficiency, the
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actual reliability of the proposed protocols is another important
performance metric. In this set of simulations, we conduct
extensive simulations to evaluate the membership reliability
as well as the population reliability of TKQ and TKQ+SPH.
Figs. 8(a)∼(d) are plotting using different settings of k, `, µ,
or σ to show the impact of these key factors on the actual
reliability of TKQ and TKQ+SPH. The simulation results
demonstrate that the proposed protocols can meet the required
membership and population constraints. Note that, the actual
reliability is sometimes a bit lower than the required level.
This is a normal phenomenon due to the simulation variance.

C. Time-efficiency vs. Accuracy

TKQ+SPH is the fastest protocol with different accuracy
requirements. Figs. 9(a)(b) are plotted using k = 10, ` = 100,
µ = 200, σ = 150. In Fig. 9(a), we fixed the error tolerance δ
and β to 95%, then varied the reliability ε and α from 0.05 to
0.1. In Fig. 9(b), we fixed ε and α to 0.05, then varied δ and
β from 90% to 95%. We observed that the execution time of
EDFSA is stable regardless of the required accuracy. Except
for EDFSA, the time cost of the other protocols is positively
correlated to the error tolerance, and is negatively correlated
to the reliability. TKQ+SPH is consistently faster than all the
other protocols with various settings of ε, α, δ, and β.

VI. CONCLUSION

This paper studies the problem of top-k queries in multi-
category RFID systems, and makes three key contributions.
First, we propose a Top-k Query (TKQ) protocol. The key
idea is to use the combined signals in homogeneous slots
to estimate category sizes. TKQ can quickly eliminate the
sufficiently small categories, and only a limited number of
large-size categories need accurate estimation. Second, we
propose the Segmented Perfect Hashing (SPH) scheme to
improve the frame utilization of TKQ from 36.8% to nearly
100%. We theoretically maximize the time-efficiency of the
proposed protocols. Third, we conduct extensive simulations
to evaluate the protocol performance. The simulation results
show that TKQ+SPH achieves not only the required accuracy
constraints but also a 2.6∼7x speedup over prior protocols.
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