

Building Software Agents for
Planning, Monitoring, and Optimizing Travel

 Craig A. Knoblock

Information Sciences Institute

University of Southern California
4676 Admiralty Way

Marina del Rey, CA 90292 USA
knoblock@isi.edu

Abstract

Planning and executing a trip requires assembling a wide variety of interacting information
from a large number of sources, including information on flight schedules and prices, hotel
locations and reviews, ground transportation options, weather conditions, airport delays, flight
cancellations, etc. Much of this information is now available on the Internet and it can be used
to enable travelers to better plan and execute their trips. This paper describes the use of
software agents for extracting, integrating and mining online data sources to improve the ability
to plan, monitor, and optimize travel. These agents can dynamically extract data from online
travel sources, integrate this data to support interactive travel planning, continuously monitor
all aspects of a trip to ensure a trip goes smoothly, and exploit data mining to make predictions
that can either save a traveler money or improve the likelihood of a successful trip.

Keywords: software agents, wrappers, interactive planning, data mining, travel, and tourism.

1 Introduction

The standard approach to planning business trips is to select the flights, reserve a
hotel, and possibly reserve a car at the destination. The choices of which airports to
fly into and out of, whether to park at the airport or take a taxi, and whether to rent a
car at the destination are often made in an ad hoc way based on past experience.
These choices are frequently suboptimal, but the time and effort required to make
more informed choices usually outweighs the cost. Similarly, once a trip has been
planned it is usually ignored until a few hours before the first flight. A traveler might
check on the status of the flights or use one of the services that automatically notify a
traveler of flight status information, but otherwise a traveler just copes with problems
that arise, as they arise. Beyond flight delays and cancellations there are a variety of
possible events that occur in the real world that one would ideally like to anticipate,
but again the cost and effort required to monitor for these events is not usually
deemed to be worth the trouble. Schedules can change, prices may go down after
purchasing a ticket, flight delays can result in missed connections, and hotel rooms
and rental cars are given away because travelers arrive late.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
JAN 2004 2. REPORT TYPE

3. DATES COVERED
 00-00-2004 to 00-00-2004

4. TITLE AND SUBTITLE
Building Software Agents for Planning, Monitoring, and Optimizing
Travel

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Southern California,Information Sciences Institute,4676
Admiralty Way,Marina del Rey,CA,90292

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Planning and executing a trip requires assembling a wide variety of interacting information from a large
number of sources, including information on flight schedules and prices, hotel locations and reviews,
ground transportation options, weather conditions, airport delays, flight cancellations, etc. Much of this
information is now available on the Internet and it can be used to enable travelers to better plan and
execute their trips. This paper describes the use of software agents for extracting, integrating and mining
online data sources to improve the ability to plan, monitor, and optimize travel. These agents can
dynamically extract data from online travel sources, integrate this data to support interactive travel
planning, continuously monitor all aspects of a trip to ensure a trip goes smoothly, and exploit data mining
to make predictions that can either save a traveler money or improve the likelihood of a successful trip.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

15

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

There is now a wealth of information available on the Web that can be exploited for
planning, monitoring, and optimizing travel. The data is now readily available to
make more informed choices that consider all aspects of a trip, including the cost of
ground transportation, availability of restaurants, parking rates, etc. The online
information can also be used to monitor all aspects of a trip to ensure it goes
smoothly. Finally, this information can also be mined to optimize travel decisions by
making predictions about flight prices, hotel prices, or even the likelihood of a delay
at a particular airport.

This paper presents a set of software agents (Knoblock 2003) that exploit the
availability of online information for travel planning. First, the paper describes how
software agents are built to turn online HTML web data into information that can be
used by other agents (Section 2). Next, the paper presents an interactive planning
system, called Heracles, where all of the information required to make informed
choices is available to a user (Section 3). For example, when deciding whether to
park at the airport or take a taxi, the system compares the cost of parking and the cost
of a taxi given other selections, such as the airport, the specific parking lot, and the
starting location of the traveler. Then, the paper describes the construction and
execution of software agents that are capable of monitoring all aspects of a trip
(Section 4). For example, beyond simply notifying a traveler of flight delays, an
agent will also send a fax to a hotel to notify them of the delay and ensure that a room
will be available. Next, the paper describes work on mining the information available
online to make predictions that aid the traveler in their decision making (Section 5).
For example, the paper describes a system called Hamlet that learns a model of flight
prices in order to help the user decide whether they should buy a ticket right away or
wait to buy a ticket. Finally, the paper reviews related work (Section 6) and
concludes with a discussion of the impact of online sources on the travel industry.

2 Agent Access to Online Sources

A key capability for information agents is the ability to reliably access information.
As the Web moves towards XML and Web Services, accessing data could become
greatly simplified. However, movement in this direction has been quite slow and for
various reasons many sources will remain available only in HTML, so there is still a
critical need to turn HTML sources into agent-enabled sources.

In order to provide access to the data in an existing HTML source, we construct what
is called a wrapper. A wrapper is simply a program that understands the structure of a
specific web site and uses that knowledge to accept queries to that site and produce
answers to those queries in a structured format, such as XML (see Fig. 1). The
challenge in building wrappers for online sources is how to achieve broad coverage
and high accuracy with minimal user effort. The two general approaches to this
problem are supervised machine learning techniques (Kushmerick 1997; Hsu et al.
1998; Muslea et al. 2001) and unsupervised grammar induction techniques (Crescenzi
et al. 2001; Lerman et al. 2001). Unsupervised grammar induction has the advantage

of no required user input, but it is not able to handle the full range of online sources.
In contrast, the supervised learning techniques apply to a wider set of sites, but can
require a significant amount of labeled data to achieve high accuracy.

We developed a machine learning algorithm called Stalker (Muslea 2002) that
requires labeled data, but attempts to minimize the amount of information that must
be provided by a user. Given labeled data, the system employs an inductive learning
algorithm to generate extraction rules that define a wrapper for a source. We
minimize the amount of labeled data required by decomposing the learning problem
into a number of simpler subproblems, which require fewer examples to learn. The
decomposition is based on the hierarchical structure of the information in a web
source. This approach allows Stalker to learn how to extract data from complicated
sites that involve lists of information and even arbitrary nesting of embedded lists.

An issue for any learning system, even Stalker, is that to achieve high accuracy the
system must see the right set of examples. Since the expectation in a wrapper is to
extract the data with 100% accuracy, finding a representative set of examples is a
critical part of the problem. Rather than relying on the user to identify these
examples, we developed an active learning technique called Co-Testing (Muslea et al.
2000) that selects the most information examples to label. Co-Testing works by
learning multiple classifiers using different views of the same problem. In the case of
wrapper learning, the system exploits the fact that it can learn equally well a classifier
by finding landmarks from the beginning of the page or by finding landmarks from
the end of the page. The system can then exploit the fact that both classifiers should
agree if they have learned the same concept and any disagreement provides a source
of training examples. Both classifiers are applied to the unlabeled examples and the
user is asked to label the examples when there is disagreement.

<YAHOO_WEATHER>
- <ROW>

<TEMP>25</TEMP>
<OUTLOOK>Sunny</OUTLOOK>
<HI>32</HI>
<LO>19</LO>
<APPARTEMP>25</ APPARTEMP >
<HUMIDITY>35%</HUMIDITY>
<WIND>E/10 km/h</WIND>
<VISIBILITY>20 km</VISIBILITY>
<DEWPOINT>9</DEWPOINT>
<BAROMETER>959 mb</BAROMETER>
</ROW>

</YAHOO_WEATHER>

Wrapper
<YAHOO_WEATHER>
- <ROW>

<TEMP>25</TEMP>
<OUTLOOK>Sunny</OUTLOOK>
<HI>32</HI>
<LO>19</LO>
<APPARTEMP>25</ APPARTEMP >
<HUMIDITY>35%</HUMIDITY>
<WIND>E/10 km/h</WIND>
<VISIBILITY>20 km</VISIBILITY>
<DEWPOINT>9</DEWPOINT>
<BAROMETER>959 mb</BAROMETER>
</ROW>

</YAHOO_WEATHER>

WrapperWrapper

Fig. 1: Wrapper converts Yahoo Weather into XML data, which can be
interpreted by a software agent

Another important challenge in building wrappers is to ensure that they continue to
work properly over time. We developed a wrapper maintenance system that can
repair wrappers by learning a description of the content extracted by a wrapper
(Lerman et al. 2003). This approach learns a pattern by using a hierarchy of pattern
types, such as number or capitalized word, and then learning a description of the
beginning and ending of the information that is being extracted. The resulting
description or learned patterns are then stored and compared to the information being
extracted. The patterns are compared statistically to avoid false positives due to
examples that have not been seen before. In a large test set, this approach was able to
identify 95% of the Web sites that had changed. Once the system has identified a
source that has changed, the learned patterns can then be used to automatically relabel
the site and run the labeled examples through Stalker to relearn the wrapper.

3 Interactive Planning of a Trip

We developed a general, interactive, constraint-based planner, called Heracles
(Knoblock et al. 2001), which we then applied to the problem of planning travel. The
resulting system integrates a wide variety of travel related data from web sources to
provide the data that travelers need to plan a trip (Ambite et al. 2002). This system
uses information agents described in the previous section to provide real-time access
to the many online sources related to travel. A traveler enters their origin and
destination addresses and the dates of his/her trip and then the travel planner
interactively helps the traveler plan the trip. The system provides the choices of
flights, hotels, ground transportations, etc. For each decision, the system makes a
recommendation that optimizes a user-specified criterion, such as minimizing the
overall cost of a trip.

Consider the planning process shown in Figs. 2 and 3. The user first specifies their
starting and destination address and dates of a trip. The system then plans the trip,
selecting the closest airports and proposing specific flights (1.1), comparing the cost
of driving and parking a car at the airport to the cost of taking a taxi (1.2), comparing
the cost of renting a car and driving to the destination address versus taking a taxi
(1.3), and recommending a hotel near the destination that has the lowest price (2). At
each step the user can view all of the choices and override the recommendation made
by the system. All of the data needed to make informed choices is not only available
to the user, but is also made explicit to the system using constraints that connect the
choices. This means that the choices in one part of a plan are immediately reflected in
other parts as well. For example, if the traveler decides to depart from Long Beach
airport instead of LAX, then the system would immediately recompute the cost of the
flight, determine the cheapest form of ground transportation to the airport from the
starting address, retrieve new directions to the airport, and update the time that the
traveler would need to leave his/her house based on both the distance and updated
flight time. The propagation of updates of all of the related information occurs
automatically as part of the constraint network.

Fig. 2: Screen shots showing planning of flights and ground transportation

Fig. 3: Planning of where to stay and how to get there

Consider the choice of driving and parking a car at the airport or taking a taxi to the
airport. Which choice is more appropriate depends on a variety of factors and most
people simply make these kinds of choices based on some simple heuristics, but their
choices are often suboptimal because it is difficult to assemble and integrate all of the
data needed to make more informed choices. Fig. 4 shows an example constraint
network for making these types of decisions, where the total cost of parking a car,
which is calculated based on the airport, the selected parking lot, and the number of
days of travel, is compared to the cost of taking a taxi, which depends on the distance
and taxi rate. Instead of simply guessing about these types of choices, the system can
carefully evaluate the different choices and then make a recommendation, which can
still be overriden by the user.

Besides integrating the data to help users make choices about tradeoffs, the system
also makes much more information available directly to the user to help the user make
better decisions. For example, instead of simply choosing arbitrarily between two
flights, the system can tell the user the types of the planes, how the seats are
configured, and what the on-time performance is of each of the flights. All of this
information is organized into the constraint network to provide the user with the
information they need to make informed decisions to plan their trip.

4 Building Agents for Monitoring Travel

As part of the Electric Elves project (Chalupsky et al. 2001; Ambite et al. 2002) we
have applied our agent technologies to build a set of agents for various monitoring
tasks. In the case of monitoring travel plans, this task is particularly well-suited for
applying agent technology for several reasons: a) this is a fairly complicated task with
many possible forms of failure ranging from flight cancellations and schedule changes

computeDuration

multiply

getDistance

getTaxiFare

findClosestAirport

getParkingRate

selectModeToAirport

DestinationAddress

OriginAddress
DepartureDate

Mar 15, 2001

ReturnDate
Mar 18, 2001

DepartureAirport
LAX

Distance
15.1 miles

Duration
4 days

parkingTotal
$64.00

parkingRate
$16.00/day

TaxiFare
$23.00

ModeToAirport
Taxi

computeDuration

multiply

getDistance

getTaxiFare

findClosestAirport

getParkingRate

selectModeToAirport

DestinationAddress

OriginAddress
DepartureDate

Mar 15, 2001

ReturnDate
Mar 18, 2001

DepartureAirport
LAX

Distance
15.1 miles

Duration
4 days

parkingTotal
$64.00

parkingRate
$16.00/day

TaxiFare
$23.00

ModeToAirport
Taxi

Fig. 4: Constraint network for deciding whether to drive or take a taxi

to hotel rooms being given away when a traveler arrives late at night, b) there are a
large number of online resources that can be exploited to anticipate problems and
keep a traveler informed, and c) these tasks would be tedious and impractical for a
human to perform with the same level of attention that could be provided by a set of
software agents.

To deploy a set of agents for monitoring a planned trip, the user first enters the travel
itinerary as described in the previous section and then specifies which aspects of the
trip he/she would like to have the agents monitor. A set of information agents are
then spawned to perform the requested monitoring activities. For the travel planning
application, we developed the following set of agents to monitor a trip:
• An airfare-monitoring agent that tracks the current price of a flight itinerary.
• A schedule-change agent that keeps track of the published schedule for a given

flight itinerary and notifies a traveler of there is any change to this itinerary.
• A flight-status agent that continually monitors the status of a flight. This agent

also sends a fax to the hotel if the flight arrival is delayed past 5pm in order to
ensure that the hotel room is held for the traveler.

• An earlier-flight agent that checks for flights that will depart before the scheduled
flight.

• A flight-connection agent that monitors a traveler’s connecting flights, checks the
status and gate information of the connecting flights, and checks for earlier flights
to the same destination.

• A restaurant-finding agent that locates the closest restaurants based on the
traveler’s GPS location.

Fig. 5 shows the messages that the various agents generated during actual use.

Ideally, a user of the system could define his/her own monitoring agents. To support
this capability we have developed a system that we call the AgentWizard, which
allows a user to define agents by answering a series of questions. The user can build
agents that extract data, combine data from different sources, monitoring the sources
for various types of changes over time, and notify the user by email, fax, or phone.
This system allows users to construct a monitoring agent that is tailored to their own
specific needs without requiring any programming skills. For example, someone
might want an agent that monitors airfares and notifies that person the moment he/she
can buy a ticket to Hawaii for less then $300. Someone else might want an agent to
monitor for travel delays in their connecting airport and notify them when the average
delay exceeds 30 minutes. The possibilities are endless.

The monitoring agents are defined as plans in the Theseus Agent Execution language
(Barish et al. 2002). In the Web environment, sources can be quite slow and the
latencies of the sources are also unpredictable since they can be caused by heavy
loads on both servers and networks. Since the primary bottleneck of most agent plans
on the web is retrieving data from online sources, the information requests need to be
executed as early as possible. To address these issues, we have developed a streaming
dataflow execution system, which is optimized for the Web environment in the

following three ways. First, since the executor is based on a dataflow paradigm,
actions are executed as soon as the data becomes available. Second, Theseus
performs the actions in a plan in separate threads, so they can be run asynchronously
and in parallel. Third, the system streams the output from one action to the next so
that sequential operations can be executed in parallel.

Recently we developed an approach to increase the potential parallelism in a
streaming dataflow execution system. This optimization technique, called speculative

Fig. 5: Actual messages sent by travel monitoring agents

Airfare Monitoring Agent:
 Airfare dropped message:
 The airfare for your American Airlines itinerary (IAD - LAX) dropped

to $281.

Schedule-Change Agent:
 Schedule change message:
 The schedule of your United Airlines flight 1287 has changed from

7:00 PM to 7:31 PM.

Flight-Status Agent:
 Flight delayed message:
 Your United Airlines flight 190 has been delayed. It was originally

scheduled to depart at 11:45 AM and is now scheduled to depart at
12:30 PM. The new arrival time is 7:59 PM.

 Flight cancelled message:
 Your Delta Air Lines flight 200 has been cancelled.
 Fax to hotel message:
 Attention: Registration Desk
 I am sending this message on behalf of David Pynadath, who has a

reservation at your hotel. David Pynadath is on United Airlines
190, which is now scheduled to arrive at IAD at 7:59 PM. Since the
flight will be arriving late, I would like to request that you
indicate this in the reservation so that the room is not given
away.

Earlier-Flight Agent:
 Earlier flights message:
 The status of your currently scheduled flight is:
 # 190 LAX (11:45 AM) - IAD (7:29 PM) 45 minutes Late
 If you would like to return earlier, the following United Airlines

flights will arrive earlier than your scheduled flights:
 # 946 LAX (8:31 AM) - IAD (3:35 PM) 11 minutes Late

Flight-Connection Agent:
 Connecting flights message:
 Your connecting United Airlines flight 925 will depart at 9:45 PM (25

minutes late) at gate C6.

Restaurant-Finding Agent:
 Closest restaurants message:
 These are the five closest restaurants from your location.
 Wingmaster's on I St, American, 1825 I St NW, 202-429-0058, $5-10,
 Lat: 38.90111, Lon: -77.04158, 0.23 miles
 …

execution (Barish et al. 2002; Barish et al. 2003), attempts to predict the results of an
operation based on data and patterns that it has seen in the past. The predicted results
can then be used to speculate about the operations that will need to be performed later
in the plan. The system decides where to speculate by analyzing a plan and
determining the critical paths. On these paths it then inserts a “speculate” operation,
which uses input to earlier operations to predict the input to later operations. The
system also inserts a “confirm” operation, which ensures that the final result is correct
regardless of whether the prediction is correct. This approach to optimizing streaming
dataflow plans can achieve arbitrary speedups by speculating on the speculations. If
the system is able to make accurate predictions, the executor could speculate on all of
the input, execute the entire plan in parallel, and then confirm all of the results.

5 Mining Online Sources to Optimize Travel Decisions

Beyond using current travel data for both planning and monitoring travel, software
agents can make predictions about the world by mining online data sources. For
example, an agent can make predictions about prices by mining historical price data to
determine how prices change over time. Or an agent can learn which airports are
most likely to experience delays or which freeways are most likely to be congested at
a particular time of day. This section describes two different data mining applications
that exploit the availability of online information sources.

A common problem for airline travelers is flight delays. There are a variety of causes
of flight delays, but one of the most common causes is weather conditions. We
developed a data mining system that predicts whether an airline flight will be delayed
during the upcoming week. As shown in Fig. 6, the prediction is made by combining
three sources of online information: (1) historical information about flight delays due
to weather conditions (available from the Office of Airline Information, which
collects information about every flight in the US), (2) historical information about the
actual weather conditions at the airports where the delays occurred (available from the
National Weather Service, which records weather conditions at every airport in the
US at fifteen minute intervals), and current weather forecasts (available from Yahoo
Weather, which provides forecasts of weather conditions at airports for up to five days
in advance).

We developed a predictor that correlates the historical flight delay data with the
historical weather information. The predictor was built by learning a Naïve-Bayes
classifier from the historical data sources. The prediction is based on the day of the
week, the time of day, the airline, the source and destination airports, and the weather
forecast. The system takes as input the particular flight and date and it then checks
the weather forecast for that date at the source and destination airports. By combining
the forecast with the predictor, the system makes statements, such as, “Your flight is
expected to be more than 15 minutes late, with a 75% confidence.”

We also developed a system called Hamlet that makes predictions about airline ticket
prices and advises a traveler whether he/she should buy or wait to buy a ticket on a
particular flight (Etzioni et al. 2003). We collected airfare data from online sources
every three hours over a period of several months. In the study, we considered only
non-stop flights between LAX and BOS and between SEA and IAD. In the collected
data, we found that there was an average of more than five price changes per flight on
both of the routes. On some flights there were as many as seven price changes per
day. Fig. 7 shows the price changes for a ticket on a round-trip from LAX to BOS on
American Airlines flights 192 and 223 on January 2 and 9, 2003. As shown in the
graph, the price for this particular ticket ranges from roughly $300 to $2300. Thus,
there are tremendous opportunities for savings if one can properly time the ticket
purchases.

Hamlet makes recommendations about whether to buy or wait to buy at ticket by
learning a predictive model of airline ticket pricing. The system uses a technique
called stacking (Wolpert 1992) to combine rule learning, reinforcement learning, and
time-series analysis. Each of these learning techniques has different strengths and
weaknesses and we found that the combination of the three techniques produces the
most accurate predictions. In order to test the efficacy of the learning, we compared
Hamlet to a clairvoyant algorithm with complete knowledge of future prices. In a
simulation on the real-world data, we found that Hamlet saved 341 passengers a total
of $198,074 out of a possible savings of $320,572. This was 61.8% of the possible
savings and provided an average savings of 23.8% for the 341 passengers for whom
savings are possible. This study clearly demonstrates the potential of data mining
techniques for large savings in the purchase of airline tickets. We plan to apply
Hamlet to hotel room pricing to see if similar savings are possible in related
industries.

Fig. 6: Predicting flight delays from historical flight delays, historical
weather data, and current weather predictions

Historical Flight
Data

Historical Weather
Data

Yahoo Weather

Prediction

AgentAgent
Learned Flight
Delay Predictor
Learned Flight
Delay Predictor
Learned Flight
Delay Predictor

Fig. 6: Predicting flight delays from historical flight delays, historical
weather data, and current weather predictions

Historical Flight
Data

Historical Weather
Data

Yahoo Weather

Prediction

AgentAgent
Learned Flight
Delay Predictor
Learned Flight
Delay Predictor
Learned Flight
Delay Predictor

6 Related Work

Most commercial systems for travel planning take the traditional approach of
providing tools for selecting flights, hotel, and car rentals in separate steps. There are
two integrated approaches to this problem. The first one is a system called MyTrip
from XTRA On-line. Based on personal calendar information, the system
automatically produces a complete plan that includes the flights, hotel and car rental.
Once it has produced a plan, the user can then edit the individual selections made by
the system. Unlike the Travel Assistant, the user cannot interactively modify the plan,
such as constraining the airlines or departure airport. Also, MyTrip is limited to only
the selection of flights, hotels, and car rentals. The second approach being developed
commercially by i:FAO Switzerland SA uses constraint satisfaction techniques to find
a complete itinerary (Torrens et al. 2002). However, this system assumes that all of
the relevant data has already been retrieved prior to the constraint satisfaction process
and does not address the problem of how to interleave the information gathering with
the constraint satisfaction to handle the enormous amount of potentially relevant
information.

For monitoring a trip, there exist a number of commercial systems (such as the one
run by United Airlines) that provide basic flight status and notification. However,
these systems do not actually track changes in the flight status over time (they merely
notify passengers a fixed number of hours before flights) and they do not notify hotels
about flight delays or suggest earlier flights or better connections when unexpected
events (e.g., bad weather) occur.

The work on efficient agent plan execution is similar to network query engines, such
as Telegraph (Hellerstein et al. 2000) or Tukwila (Ives et al. 2002), in that they are

250

750

1250

1750

2250

12/8/2002 12/13/2002 12/18/2002 12/23/2002 12/28/2002 1/2/2003 1/7/2003

Date

Pr
ic

e

Fig. 7: Graph of prices changes for a ticket on American Airlines flights
192 & 223 for January 2 & 9, 2003

also streaming dataflow execution systems. However, the network query engines
focus on the efficient execution of of XML queries, while Thesues provides an
expressive language for defining information gathering and monitoring plans. The
Theseus language supports capabilities that go beyond network query engines in that
it supports recursion, notification operations, and writing and reading from databases
to support monitoring tasks.

The most closely related work that mines online data are comparison shopping bots
that gather price data available on the web for a wide range of products. These are
descendants of the Shopbot (Perkowitz et al. 1997), which automatically learned to
extract product and price information from online merchants' web sites. None of these
services attempts to analyze and predict the behavior of product prices over time.
Thus, the data mining techniques we developed complement the body of work on
shopbots. See (Etzioni et al. 2003) for a detailed comparison of our data mining
techniques with other approaches.

7 Conclusion

The availability of data on the Web was the key to building the various technologies
and tools described in this paper. We use the various travel-related data sources to
build an integrated tool for planning a trip, to build the agents for monitoring a trip,
and to mine the sources to make predictions about what was likely to happen in the
future. There are many more opportunities to exploit the data available on the Internet
for improving travel.

The widespread availability of travel-related information on the Web will continue to
improve the experience for travelers. The tools that allow end-users to plan their own
travel will continue to improve, making it possible for traveler’s to optimize their trips
with respect to their own preferences to a much greater extent. The use of agents for
monitoring all aspects of a trip will become more widespread as the tools become
easier to use and traveler’s can build their own agents. And the ability to mine the
data sources to minimize prices paid or better predict travel problems will continue to
put pressure on the major carriers to keep their prices low and improve their service.

Acknowledgements

I want to thank my many collaborators for their many contributions to the various
projects described in this paper. Ion Muslea, Steve Minton, and Kristina Lerman
helped develop the wrapper learning and wrapper maintenance and repair techniques.
Jose Luis Ambite, Steve Minton, and Maria Muslea all contributed to the design and
implementation of the travel planner. Jose Luis Ambite, Greg Barish, Maria Muslea,
Jean Oh, Snehal Thakkar, and Rattapoon Tuchinda all helped build the travel
application of the Electric Elves. Rattapoon Tuchinda and Parag Samdadiya helped
build the AgentWizard. Greg Barish helped develop the Theseus executor and
speculative execution techniques. Steve Minton and Josh Margulis developed the

flight delay predictor. And Oren Etzioni, Rattapoon Tuchinda, and Alexander Yates
all contributed to the development of the Hamlet price prediction system.

This material is based upon work supported in part by the Defense Advanced
Research Projects Agency (DARPA), through the Department of the Interior, NBC,
Acquisition Services Division, under Contract No. NBCHD030010, in part by the
Defense Advanced Research Projects Agency (DARPA) and Air Force Research
Laboratory under contract/agreement numbers F30602-01-C-0197 and F30602-00-1-
0504, in part by the Air Force Office of Scientific Research under grant numbers
F49620-01-1-0053 and F49620-02-1-0270, in part by the United States Air Force
under contract number F49620-02-C-0103, and in part by a gift from the Microsoft
Corporation.

References

Ambite, J. L., G. Barish, C. A. Knoblock, M. Muslea, J. Oh and S. Minton (2002). Getting from
Here to There: Interactive Planning and Agent Execution for Optimizing Travel. Proceedings
of the Fourteenth Conference on Innovative Applications of Artificial Intelligence (IAAI-
2002). AAAI Press, Menlo Park, CA: 862--869.

Barish, G. and C. A. Knoblock (2002). An efficient and expressive language for information
gathering on the web. Proceedings of the AIPS-2002 Workshop on Is there life after operator
sequencing? -- Exploring real world planning. Tolouse, France: 5--12.

Barish, G. and C. A. Knoblock (2002). Speculative Execution for Information Gathering Plans.
Proceedings of the Sixth International Conference on Artificial Intelligence Planning and
Scheduling (AIPS 2002). AAAI Press, Menlo Park, CA: 184-193.

Barish, G. and C. A. Knoblock (2003). Learning Value Predictors for the Speculative Execution
of Information Gathering Plans. Proceedings of the 18th International Joint Conference on
Artificial Intelligence (IJCAI-2003). Acapulco, Mexico.

Chalupsky, H., Y. Gil, C. A. Knoblock, K. Lerman, J. Oh, D. V. Pynadath, T. A. Russ and M.
Tambe (2001). Electric Elves: Applying Agent Technology to Support Human Organizations.
Proceedings of the Conference on Innovative Applications of Artificial Intelligence.

Crescenzi, V., G. Mecca and P. Merialdo (2001). RoadRunner: Towards Automatic Data
Extraction from Large Web Sites. Proceedings of 27th International Conference on Very Large
Data Bases: 109-118.

Etzioni, O., C. A. Knoblock, R. Tuchinda and A. Yates (2003). To Buy or Not to Buy: Mining
Airline Fare Data to Minimize Ticket Purchase Price. Proceedings of the Ninth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining.

Hellerstein, J. M., M. J. Franklin, S. Chandrasekaran, A. Deshpande, K. Hildrum, S. Madden,
V. Raman and M. A. Shah (2000). "Adaptive query processing: technology in evolution." IEEE
Data Engineering Bulletin 23(2): 7--18.

Hsu, C.-N. and M.-T. Dung (1998). "Generating Finite-State Transducers for Semi-Structured
Data Extraction from the Web." Information Systems 23(8): 521-538.

Ives, Z. G., A. Y. Halevy and D. S. Weld (2002). "An XML Query Engine for Network-Bound
Data." VLDB Journal 11(4): 380--402.

Knoblock, C. A. (2003). Deploying Information Agents on the Web. Proceedings of the 18th
International Joint Conference on Artificial Intelligence (IJCAI-2003). Acapulco, Mexico.

Knoblock, C. A., S. Minton, J. L. Ambite, M. Muslea, J. Oh and M. Frank (2001). Mixed-
Initiative, Multi-source Information Assistants. Proceedings of the World Wide Web
Conference. ACM Press, New York, NY: 697-707.

Kushmerick, N. (1997). Wrapper Induction for Information Extraction, Ph.D. Thesis,
Department of Computer Science and Engineering, University of Washington.

Lerman, K., C. A. Knoblock and S. Minton (2001). Automatic Data Extraction from Lists and
Tables in Web Sources. Proceedings of the IJCAI 2001 Workshop on Adaptive Text Extraction
and Mining. Seattle, WA.

Lerman, K., S. N. Minton and C. A. Knoblock (2003). "Wrapper Maintenance: A Machine
Learning Approach." Journal of Artificial Intelligence Research 18: 149-181.

Muslea, I. (2002). Active Learning with Multiple Views, Ph.D. Thesis, Department of
Computer Science, University of Southern California.

Muslea, I., S. Minton and C. A. Knoblock (2000). Selective sampling with redundant views.
Proceedings of the 17th National Conference on Artificial Intelligence.

Muslea, I., S. Minton and C. A. Knoblock (2001). "Hierarchical Wrapper Induction for
Semistructured Information Sources." Autonomous Agents and Multi-Agent Systems 4(1/2).

Perkowitz, M., R. B. Doorenbos, O. Etzioni and D. S. Weld (1997). "Learning to Understand
Information on the Internet: An Example-Based Approach." Journal of Intelligent Information
Systems 8(2): 133-153.

Torrens, M., B. Faltings and P. Pu (2002). "SmartClients: Constraint Satisfaction as a Paradigm
for Scaleable Intelligent Information Systems." Constraints (Special Issue on Constraints and
Agents) 7: 49-69.

Wolpert, D. H. (1992). "Stacked Generalization." Neural Networks 5(2): 241-259.

