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Abstract

The encoding of both texture and depth maps of a set of multi-view images, captured by a set of spatially

correlated cameras, is important for any 3D visual communication system based on depth-image-based rendering

(DIBR). In this paper, we address the problem of efficient bitallocation among texture and depth maps of multi-view

images. More specifically, suppose we are given (1) a coding tool to encode texture and depth maps at the encoder,

and (2) a view synthesis tool to construct intermediate views at the decoder using neighboring encoded texture and

depth maps. Our goal is to determine how to best select captured views for encoding and distribute available bits

among texture and depth maps of selected coded views, such that visual distortion of desired constructed views is

minimized. First, in order to obtain at the encoder a low complexity estimate of the visual quality of a large number

of desired synthesized views, we derive a cubic distortion model, based on basic DIBR properties, whose parameters

are obtained using only a small number of viewpoint samples.Then, we demonstrate that the optimal selection of

coded views and quantization levels for corresponding texture and depth maps is equivalent to the shortest path in

a specially constructed three-dimensional trellis. Finally, we show that using the assumptions of monotonicity in

predictor’s quantization level and distance, sub-optimalsolutions can be efficiently pruned from the feasible space

during solution search. Experiments show that our proposedefficient selection of coded views and quantization levels

for corresponding texture and depth maps outperforms an alternative scheme using constant quantization levels for all

maps (commonly used in video standard implementations) by up to 1.5dB. Moreover, the complexity of our scheme

can be reduced by at least80% over the full solution search.

I. I NTRODUCTION

Recent development of imaging technology has led to research on higher dimensional visual information pro-

cessing beyond traditional two-dimensional (2D) images and single-view video, aiming at improving user’s visual

experience and offering new media navigation functionalities to consumers. One notable example ismultiview
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video [1], where a scene of interest is captured by a large 2D array of densely spaced, time-synchronized cameras

from different viewpoints [2]. Thus, the resulting captured data has a much larger number of dimensions compared

to traditional media; i.e., pixel location(i, j) at time t from camera location(x, y). In this work, we focus on

the more constrained scenario where the scene of interest isstatic, and the capturing cameras are placed in a1D

horizontal array. Hence we can drop the temporal dimensiont and vertical camera shifty, and focus on a set

of still images instead of video sequences. The media interaction promised for users is the ability to interactively

choose viewpoint images for observation anywhere along thehorizontalx-axis. We refer to this more constrained

scenario asmultiview imagingin the sequel1.

In a typical multiview imaging scenario, a sender creates and transmits a multiview representation—composed of

viewpoint images taken by the aforementioned spatially correlated cameras—of a physical scene of interest, so that a

receiver can construct images of the scene from viewpoints of his own choosing for display. To efficiently encode the

multiview image sequence for a given bit budget, the sender can employ disparity compensation coding tools such

as those used in multiview video coding (MVC) [3] to exploit inter-view correlation among theN captured views.

The receiver can subsequently decode images (texture maps)in the encoded sequence for display. See Fig. 1 for

an overview of multiview imaging communication system. Theavailable viewpoint images for the receiver are the

same encoded set ofN images at the sender, plus possibly intermediate images between coded images interpolated

using methods2 such asmotion compensated frame interpolation(MCFI) [4], [5]. Because typical MCFI schemes,

with no available geometric information about the scene, assume simple block-based translational motion which in

general is not true for multiview images, the interpolated quality tends to be poor.

constructed images

receiver

∆

∆

∆

∆

scene of interest

sender

N capturing cameras transport network

Fig. 1. Overview of a multiview imaging communication system. N cameras in a 1D array capture images of a scene from differentviewpoints.

The sender selects a multiview representation, compressesit and transmits it to the receiver. The receiver decodes thecompressed images, and

if depth maps are available, synthesizes intermediate views via DIBR that are spaced∆ apart.

One method for the receiver to improve the quality of interpolated intermediate viewpoint images that are not

explicitly coded at the sender is to use depth-image-based rendering (DIBR) [6]. The idea is for the sender to

1The analysis and bit allocation algorithm presented in thispaper for multiview images serve as a foundation for the morecomplex multiview

video case. For example, for low-motion video, bit allocation algorithm proposed here can be used to select quantization levels for the first

temporal frames of different views, which are then reused across time for the duration of the Group of Pictures (GOP) in the video.

2Though multiview images have disparity instead of motion, in theory interpolation methods based on motion compensation can also be used

for multiview images.
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encodedepth information(distance between camera and the physical object in the scene corresponding to each

captured pixel) for some viewpoints. Depth can be estimated[7] or recorded by special hardware [8]. A receiver

can then synthesize additional intermediate views from received neighboring texture and depth maps using DIBR

techniques such as 3D warping [9], [10]. Conveying both texture and depth maps—commonly called thetexture

plus depthrepresentation—for a large multiview image sequence to thereceiver, however, means a large amount of

data must be transmitted. A natural resource allocation question hence arises: given a disparity-compensation-based

coder at the sender and a DIBR view synthesis tool at the receiver, what is the “best” multiview representation of

a scene for a given transmission bit budget?

More specifically, we address the following bit allocation problem for DIBR in this paper. Suppose the receiver

desires to “construct” multiview images (either decode images from the coded bitstream or interpolate images

from neighboring decoded images) from viewing locations that are integer multiples of a given view spacing∆.

How should the sender select captured views for coding, and select quantization levels of corresponding texture

and depth maps of chosen captured views, to minimize distortion of all ∆-spaced constructed views (decoded or

interpolated) at the receiver for a given coding bit budget?We focus on the scenario where the desired constructed

views at the receiver are very dense (small∆), thus offering the receiver maximum flexibility to choose virtually any

viewpoints for his/her observation of the scene. From a coding perspective, dense constructed views also means that

an alternative multiview representation3 that synthesizes all required intermediate views at the sender and encodes

all the generated texture maps, will require very large bit expenditure, even at coarse quantization. Hence given a

small synthesized view spacing∆, a practical multiview representation with reasonable bitbudget must only encode

(possibly a subset of) captured views, and rely on DIBR at thereceiver to synthesize many desired intermediate

views between two coded frames.

To address this bit allocation problem, the first practical difficulty is how to estimate, at the sender, the visual

distortion of ∆-spaced intermediate views that would be synthesized at thereceiver using neighboring encoded

texture and depth maps. One obvious method to estimate synthesized distortion between two coded views at the

encoder is to actually synthesize the entire set of intermediate views with spacing∆ and calculate their distortions.

For small spacing∆, however, this can be exceedingly expensive computationally.

Instead, in this paper we derive acubic distortion model, based on basic properties of DIBR, in order to calculate,

at low computation cost, the distortions of all synthesizedintermediate images between two coded views. Specifically,

given the model, we can either: i) deduce model parameters using several sample synthesized views to estimate the

distortion of all required intermediate views between two coded frames, or ii) estimate the average distortion of all

required intermediate views using a single image sample at the mid-point between the two coded frames. We note

that, to the best of our knowledge, we are the first to estimateDIBR-synthesized view distortion of a set of densely

spaced viewpoints between two coded views using a small number of image samples.

3When the required view spacing and/or the available bit budget is very large, a feasible multiview representation can indeed synthesize

all intermediate views at the sender and encode them as regular frames. See [11] for this related bit allocation problem when the optimal

representation can be a mixture of synthesized views interpolated and coded at the sender, and views synthesized at the receiver via DIBR.
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Armed with our cubic distortion model, the second practicaldifficulty is to select an appropriate subset of

captured views for coding for a given desired rate-distortion (RD) tradeoff. This is difficult because depending on

the efficiency of the chosen coding and view synthesis tools,and the complexity of the captured scene, different

optimal selections are possible. For example, if the captured scene is complex and requires detailed depth maps

for good view interpolation, then encoding texture and depth maps of all captured views may be a good selection.

On the other hand, if the captured scene is relatively easy tointerpolate intermediate views at high fidelity, then

synthesizing even some captured views instead of coding them can offer better RD tradeoff. Hence the issue of

coded view selection is a critical one in multiview bit allocation and must be optimized for good RD performance.

In this paper, we propose a bit allocation algorithm that finds the optimal subset among captured views for

encoding, and assigns quantization levels for texture and depth maps of the selected coded views. We first establish

that the optimal selection of coded views and associated quantization levels is equivalent to the shortest path in a

specially designed three-dimensional (3D) trellis. Giventhat the state space of the trellis is enormous, we then show

that using lemmas derived from monotonicity assumptions inpredictor’s quantization level and distance, sub-optimal

states and edges in the trellis can be pruned from consideration during shortest path calculation without loss of

optimality. Experiments show that our proposed selection of coded views and quantization levels for corresponding

texture and depth maps can outperform an alternative schemeusing constant quantization levels for all texture and

depth maps (commonly used in video standard implementations) by up to1.5dB. Moreover, our search strategy

reduces at least80% of the computations compared to the full solution search that examines every state and edge

in the 3D trellis.

The paper is organized as follows. After discussing relatedwork in Section II, we derive the cubic distortion

model used to estimate distortion of densely spaced synthesized views in Section III. We then formulate our bit

allocation problem in Section IV. We introduce the monotonicity assumptions and propose an efficient bit allocation

algorithm in Section V. We present our experimental resultsin Section VI. Finally, we conclude in Section VII.

II. RELATED WORK

We divide the discussion of related work into four parts. We first motivate the value of “texture + depth”

representation of a 3D static scene studied in this paper. Having established “texture + depth” is an important

representation, we discuss recent advances in coding toolsfor texture and depth maps for multiview images and

video, and new view synthesis tools using DIBR. Then, we discuss recent analysis and models for distortion of

images synthesized via DIBR. Finally, we discuss related work on bit allocation for image/video coding in general.

A. Representations of 3D Static Scenes

In general, one can construct many different viable representations of a static scene for image-based rendering

of any viewpoint at the receiver, including layered depth images [12], light field [13], lumigraph [14] and view-

dependent texture mapping (VDTM) [15]. See [16], [9] for excellent surveys of representations proposed in the

literature. For a chosen representation, coding optimization can then be performed to trade off reconstructed view
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distortion with encoding rate. As a concrete example, [17] considered two representations: VDTM and model-aided

predictive coding. For VDTM, [17] first constructed a3003-voxel model, using 257 captured images around a single

object of interest (e.g., a stuffed toy animal). Given the model information, the receiver can first render the shape

of the single object, then stitch texture patches on the model surface for image reconstruction. Tradeoff between

synthesized view distortion and coding rate can be achievedby varying the number of bits used to encode the voxel

model and the texture patches. For model-aided predictive coding, an image is first predicted by warping multiple

reference images given a geometry model [18]. Prediction residuals are subsequently coded using conventional

transform coding techniques. Coding rate can be reduced viacoarser quantization during residual coding.

In contrast, “texture + depth” format [6]—the focus of this paper—has one texture and depth map at each captured

viewpoint, where each depth map is a 2D representation of the3D surface in the scene of interest. Image or video

sequence encoded in the “texture + depth” format can enable the decoder to synthesize novel intermediate views

via depth-image-based rendering (DIBR) techniques such as3D warping [19].

“Texture + depth” format has several desirable properties.First, unlike the mesh-based geometrical model in [15]

that can take hours to compute [17], depth maps can be either estimated simply using stereo-matching algorithms

[7], or captured directly using time-of-flight cameras [8].Second, depth maps can better handle complicated scenery

with multiple objects, while a mesh-based model often requires dense image sampling around the single object of

interest for good construction quality. Finally, “texture+ depth” format is more adaptable to dynamic scene where

objects change positions and shapes over time. For these andother reasons, “texture + depth” is currently the chosen

format for 3D scene representation in the free viewpoint video (FTV) working group in MPEG.

Given that the “texture + depth” format is an important representation for multiview image/video, in this paper

we propose a bit allocation strategy to select captured texture and depth maps for encoding at the appropriate

quantization levels, so that the synthesized distortion atintermediate views of close spacing∆ is minimized.

We believe we are the first in the literature to address this important problem formally; the natures of previous

geometry representations (e.g., [17]) are sufficiently different from “texture + depth” format that previous empirical

and theoretical optimizations do not carry over.

B. Motion / Disparity Compensation Coding Tools and DIBR View Synthesis Tools

For efficient representation of multiview images and video,novel coding tools and frame structures for texture map

encoding [20], [21], [22] have been proposed in order to exploit inter-view correlation for coding gain. Similarly,

new coding algorithms tailored specifically for depth maps [23], [24] have been proposed, leveraging on their unique

smooth-surface and sharp-edge properties. While new coding tools are important in their own right, the associated

bit allocation problem for DIBR—how bits should be optimally distributed among texture and depth maps for the

chosen coding tools for maximum fidelity of reconstructed views—is not addressed in these works. We provide

this missing piece in our work by solving the following two key problems: i) how to estimate distortions of a large

number of synthesized intermediate views between two codedframes at the encoder at low complexity, and ii) how

to optimally select a subset of captured views for coding using the optimal amount of bits for texture and depth
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maps. We emphasize the generality of our proposal: our bit allocation strategy can operate no matter which of the

above mentioned tools are chosen for texture and depth maps encoding.

With the advent of thetexture plus depthrepresentation for multiview images / video [6], enabling DIBR-based

view synthesis at the decoder using received texture and depth maps, new 3D warping algorithms [9], [10] have

been proposed recently in the literature. Virtual view interpolation has also been an useful tool for 3D video systems

[25]; several interpolation methods based on disparity techniques have been studied in [26]. Instead of developing

new view synthesis tools, our goal is to find the RD-optimal bit allocation given chosen coding tool at the encoder

and DIBR-based view synthesis tool at the decoder.

C. Synthesized Distortion Model and Analysis

There has been work [27], [28], [29] studying the relationship between synthesized view distortion and lossy

compression of depth map. Because distortion of depth maps creates geometric errors that ultimately affect synthe-

sized view constructions, [28], [29] proposed new metrics based on synthesized view distortion (instead of depth

map distortion) for mode selection at a block level during H.264 encoding of depth maps. Our work is different in

that we find the optimal quantization parameters for textureand depth maps at the frame level. Moreover, we find

the optimal subset of captured views for coding for given desired RD tradeoff.

For a two-view-only video sequence, [27] constructed a theoretical view synthesis distortion model and derived

two quantization parameters, one for all texture maps and one for all depth maps, that minimize the theoretical

distortion. In contrast, our proposed bit allocation scheme selects quantization parameters for individual texture and

depth maps in a multi-view image sequence. Selecting one quantization parameter for every frame (rather than one

for a large group of frames as done in [27]) means we can takedependent quantizationinto consideration, where

a coarsely quantized predictor frame would lead to worse prediction, resulting in higher distortion and/or rate for

the predicted view. In terms of modeling, unlike the complexmodel in [27] which requires derivation of a large

number of parameters, we first derive a simple cubic distortion model (to be discussed in Section III) to model

the synthesized distortion between two coded views. Then, for every pair of coded views, we construct a finite

number of synthesized image as samples to deduce the four cubic polynomial coefficients specifically for this pair

of coded views during the solution search. While ouroperationalapproach avoids a priori modeling errors (beyond

our cubic distortion model), the task of data collection canbe overwhelming. Hence, our focus is on complexity

reduction, so that only a minimal data set is required to find the optimal solution.

D. Bit Allocation for Image / Video Coding

Operational approaches for optimal bit allocation among independent [30] and dependent [31] quantizers have

been studied for single-view video coding. More recently, [32] has extended the trellis-based optimization technique

in [31] to multi-view video coding where texture maps of different frames can be coded using different quantization

parameters. [32] did not consider view synthesis when allocating bits to texture maps, while our work considers
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bit allocation for two types of resource—texture and depth maps—for chosen subset of captured views for coding,

such that the resulting distortion of both encoded and synthesized views at the decoder is minimized.

The most similar prior research to our work is the work on bit allocation for single-view video with frame

skip [33], [34], [35], which studies the problem of selecting a subset of captured frames in a video to code at

optimal amount of allocated bits. The frames skipped at the encoder are interpolated at the decoder using optical

flow analysis. The key differences between the two problems are the following. First, for our multiview problem,

both texture and depth maps for a coded view need to be coded, possibly at different quantization levels, leading to a

more complicated resource allocation problem (and leadingnaturally to a 3D trellis, to be discussed in Section IV).

Second, depth map encoding is anauxiliary bit expenditurethat does not improve the reconstruction of the coded

view itself, but improves the construction quality of intermediate views synthesized at the decoder using the coded

view’s texture and depth maps. There is no such “auxiliary” bit expenditure in the problem addressed in [33], [34],

[35]4.

This paper extends our previous work [36], [11] on bit allocation among texture and depth maps for DIBR as

follows. In [36], to evaluate the distortion of synthesizedintermediate views, a small number of evenly spaced

samples are chosen a priori, and the encoder synthesizes intermediate frames at all these sample locations for

evaluation. In this paper, assuming the viewer desires dense viewpoint images of small spacing∆, we derive a

cubic distortion model, so that only a few intermediate viewsamples are constructed to estimate the distortion

of all ∆-spaced synthesized intermediate views between two coded frames. Further, we validate our monotonicity

assumption on predictor’s quantization level and distanceempirically. In [11], we studied the bit allocation problem

where the required reconstructed view spacing∆ is large, so that synthesizing texture maps of intermediateviews

at the encoder and coding them is a viable multiview representation. The optimization proposed in [11] has high

complexity, however. In this paper, we focus instead on the case when∆ is small, so that synthesizing all required

intermediate views at encoder and encoding them requires too many bits and is not a viable option. By excluding

this possibility, the search strategy presented here is much simpler than [11].

III. V IEWPOINT SAMPLING FOR MODELING OF SYNTHESIZED V IEW DISTORTION

The goal of a DIBR-based multiview imaging communication system is to construct high-quality images of a

static scene observed from densely spaced viewpoints at thereceiver. We optimize quality of all constructed views

at the receiver by selecting captured views for coding and allocating bits among texture and depth maps of the

selected coded views at the sender. We search for the optimalselection of coded views and bit allocation among

selected views in anoperationalmanner, meaning that we iteratively try different allocations and evaluate their

quality (in a computationally efficient manner), until we converge to an optimal operating point and terminate the

solution search.

4It is theoretically possible to have auxiliary bit spendingthat improves the interpolation quality of skipped frames in a single-view video,

e.g., bits that improve optical flow prediction in the skipped frames. This was not studied in the cited previous works. Ifsuch expenditure does

exist, our proposed search strategy can be used to solve thisbit allocation problem for single-view video coding with frame skip as well.
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To evaluate the merit of different bit allocations across texture and depth maps of coded views for this purpose,

the sender needs to assess the quality of intermediate viewssynthesized using the encoded texture and depth maps

of two neighboring coded viewsvi andvj . Denote byds
vi,vj

the sum of distortion of all desired intermediate views

between coded viewsvi and vj . Then,ds
vi,vj

can be written as a sum of individual synthesized view distortions

ds
vi,vj

(v)’s at intermediate viewpointsv’s, vi < v < vj :

ds
vi,vj

=

Uvi,vj
(∆)

∑

n=1

ds
vi,vj

(vi + n∆) (1)

Uvi,vj
(∆) =

⌈
vj − vi

∆

⌉

− 1 (2)

where∆, as discussed in Section I, is the desired viewpoint spacingof constructed views at the receiver.Uvi,vj
(∆)

is the number of desired intermediate views between viewpointsvi andvj (excludingvi andvj). In practice, each

ds
vi,vj

(v) can be computed as the mean square error (MSE) between the DIBR-synthesized images at viewpoint

v using uncompressed texture and depth maps atvi andvj , and using compressed texture and depth maps at the

samevi and vj . Since∆ is assumed to be small, the summation in (1) has many terms, and the computation of

ds
vi,vj

at the sender requires DIBR view synthesis of many images at many v’s. Further,ds
vi,vj

differs for different

quantization levels chosen for the texture and depth maps ofvi andvj ; coarsely quantized texture and depth maps

for vi andvj will naturally lead to poorer synthesized view quality. Requiring the sender to compute (1) fords
vi,vj

multiple times for different combinations of quantizationlevels during its solution search for optimal bit allocation

is clearly too computationally expensive.

Hence, there is a need for a low-complexity methodology, so that the sender can estimate synthesized view

distortions of many viewpoints between two coded frames, without first explicitly synthesizing all required inter-

mediate views and then calculating their distortions. In addition, the methodology must maintain generality, so that

its synthesized distortion estimate is reasonably accurate for a generic class of DIBR-based view synthesis tools.

We discuss how we derive such a methodology next.

A. Derivation for Cubic Synthesized Distortion Model

The key to the derivation is to identify what constitutes reasonable assumptions about synthesized distortions of

intermediate viewpoints between two coded frames using a DIBR-based view synthesis tool. Suppose we want to

synthesize an intermediate viewv between left coded viewvi and right coded viewvj . For simplicity of derivation,

we assumevi = 0 and vj = 1. In general, a pixel in viewv can be mapped to a corresponding texture image

pixel in view 0 using the depth map of view0, assuming known intrinsic and extrinsic camera parameters[37]. For

simplicity, assume further that the capturing cameras are physically located in purely horizontally shifted locations,

so that a pixel at a certain coordinate(k′, y) in view v corresponds to a horizontally shifted pixel coordinate(k, y)

in the left texture map. Denote byg0(v) thegeometric errorof pixel (k′, y) at viewv due to depth map distortion at

view 0. In other words,g0(v) is theoffsetin number of (horizontal) pixels away from the true corresponding pixel
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coordinate(k, y) in the left texture map, due to left depth map distortion, resulting in erroneous pixel coordinate

(k+g0(v), y) instead. In [28], it is shown thatg0(v) grows linearly with view locationv; i.e., g0(v) = b0 v, b0 > 0.

Now suppose we model a row of pixelsX0(k)’s in the texture map of view0 as a Gauss-Markov process; i.e.,

X0(k + 1) = ρX0(k) + w0(k) 0 < ρ < 1 (3)

wherew0(k) is a zero-mean Gaussian variable with varianceσ2
0 . One can argue that Gauss-Markov process is a

good first-order model for pixels of the same physical objectin a scene of interest.

Due to geometric errorg, an erroneous pixelX0(k+g) at locationk+g in the texture map of view0 is used for

DIBR instead of the true corresponding pixelX0(k) for view synthesis. The expectation of the resulting squared

error is:

ds
0(g) = E[|X0(k + g)−X0(k)|2]

= E[|ρgX0(k) + ρg−1w0(k) + ρg−2w0(k + 1) + . . . + w0(k + g − 1)−X0(k)|2]

= E[|(ρg − 1)X0(k) +

g
∑

t=1

ρg−tw0(k + t− 1)|2]

= (ρg − 1)2E[X0(k)2] + σ2
0

g
∑

t=1

ρ2(g−t) ≤ (g + 1)σ2
0

whereE[X0(k)2] = R0(0) = σ2
0 is the autocorrelationR0(τ) = σ2

0ρτ of processX0(k) evaluated atτ = 0. The

inequality holds for0 < ρ < 1. Given thatg0(v) is linear with respect tov, we now see that the expected squared

errords
0(g) at viewv due to the left depth map distortion,ds

0(g0(v)), is also linear:ds
0(g0(v)) = ds

0(v) = (b0 v+1)σ2
0 .

Similarly, we can write the expected squared error due to theright depth map distortion as:ds
1(v) = (b1(1−v)+1)σ2

1 .

In typical DIBR view synthesis, a pixelY (v) in synthesized viewv, 0 < v < 1, is a weighted sum of two

corresponding pixelsX0(k) andX1(l) from the left and right anchor views, where the weights,(1 − v) and (v),

depend linearly on the distances to the two anchor views; i.e., Y (v) = (1−v)X0(k)+(v)X1(l). Due to the left and

right depth map distortions, a pixel in synthesized viewv becomeŝY (v) = (1−v)X0(k+g0(v))+vX1(l+g1(v)).

Thus, the squared errords
0,1(v) = |Ŷ (v) − Y (v)|2 in the synthesized pixel due to distortion in the left and right

depth maps can be derived as follows:

d
s
0,1(v) = E[|Ŷ (v) − Y (v)|2]

= E[|(1 − v)X0(k + g0(v)) + (v)X1(l + g1(v)) − (1 − v)X0(k) − (v)X1(l)|
2]

= E[|(1 − v) (X0(k + g0(v)) − X0(k)) + (v) (X1(l + g1(v)) − X1(l)) |
2]

= (1 − v)2ds
0(v) + (v)2ds

1(v) +

+ (v)(1 − v)E[(X0(l + g0(v)) − X0(k))(X1(l + g1(v)) − X1(l))]

= (1 − v)2(b0 v + 1)σ2
0 + (v)2(b1(1 − v) + 1)σ2

1

= (b0σ
2
0 − b1σ

2
1)

| {z }

c3

v
3 + ((1 − 2b0)σ

2
0 + (b1 + 1)σ2

1)
| {z }

c2

v
2 + ((b0 − 2)σ2

0)
| {z }

c1

v + (σ2
0)

|{z}

c0

(4)
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where we assume pixels in the left and right texture mapsX0(k) and X1(l) are independent processes, andci’s

are the cubic polynomial coefficients. We now see thatds
0,1(v) is in general a cubic function with respect to the

intermediate view locationv.

Notice that if the left and right Markov-Gauss processes areof the same object, thenb0 = b1 andσ2
0 = σ2

1 . The

cubic term equals to zero, and we have a quadratic function:

ds
0,1(v) = (2− b0)σ

2
0v2 + (b0 − 2)σ2

0v + σ2
0 (5)

Taking the derivative ofds
0,1(v) with respect tov and setting it equal to0, we see the maximum distortion occurs

at mid-pointv = 1/2. We can hence conclude the following: if distortions in leftand right depth maps are not

severe, then DIBR will be performed using corresponding pixels in the left and right texture maps of the same

object for majority of pixels in the synthesized view, and the resulting distortion is quadratic. This is what was

observed experimentally in [38] as well. If distortions in left and right depth maps are severe enough that DIBR

erroneously uses pixels of different objects for interpolation for majority of pixels in the synthesized view, then the

distortion becomes cubic.

Note that in addition to (4), there are secondary non-lineareffects on the synthesized distortionds
vi,vj

(v) due

to: i) occlusion of different spatial regions with respect to the viewpointv determined by complex scene geometry,

ii) pixel coordinate rounding operations used in the view synthesis (i.e., a 3D-warped point is usually displayed

at the nearest integer pixel location in the synthesized view), and iii) statistical discrepancies in texture maps, as

discussed previously. We consider these effects secondaryand focus instead on the major trend outlined by the

cubic distortion model. For the sake of simplicity, we modelthe sum of these effects as a small noise term5 n(v).

B. Sampling for Cubic Distortion Model

Though we have concluded that the appropriate distortion model as a function of intermediate viewv is a cubic

function, we still need to find coefficientsci’s that characterize cubic polynomial functioñds(v) = c0+c1v+c2v
2+

c3v
3 for given coded texture and depth maps at anchor viewsvi andvj . Our approach is sampling: synthesize a

small number of images at intermediate viewsvk ’s betweenvi and vj and calculate corresponding distortions

ds
vi,vj

(vk)’s, so that using samples(vk, ds
k)’s, we can compute coefficientsci’s in some optimal fashion. We present

two sampling methods below.

In the first method, we useS even-spaced samples(vk, ds
k)’s betweenvi andvj to derive “optimal” coefficients

ci’s in the cubic polynomial. For each data point(vk, ds
k), we can express the distortionds

k as a cubic function

c0 + c1vk + c2v
2
k + c3v

3
k plus errorek; i.e., in matrix form, we write:

5Size of the noise will be larger if the quality of the obtaineddepth maps are poor and/or if the captured images are not perfectly rectified.

Nonetheless, we stress that even in those cases, the derivedcubic distortion model is still accurate up to a first-order approximation, especially

when the capturing cameras are physically very close to eachother.
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
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︸ ︷︷ ︸

e

(6)

By optimal, we mean coefficientsci’s lead to the smallest squared errorse possible. Using linear regression [39],

optimal ci’s can be calculated simply:

c∗ = (V′V)
−1

V′

︸ ︷︷ ︸

V+

ds (7)

whereV+ is the Moore-Penrose pseudo-inverse ofV.

The constructed cubic distortion model will be used to calculate the sum of synthesized distortions between the

two coded viewsvi andvj , d̃s
vi,vj

, as follows:

d̃s
vi,vj

=

Uvi,vj
(∆)

∑

n=1

d̃s(vi + n∆) (8)

Clearly, d̃s
vi,vj

in (8) is an approximation to the true synthesized distortion ds
vi,vj

in (1) at much reduced

computation complexity. As an example, we see that in Fig. 2,using the cubic distortion model we constructed

curves (blue) using eight samples each. We see that in both cases, the cubic model captures the general trend of the

actual distortions (red) quite well. In addition, we see that for fine quantization levels of depth maps in Fig. 2(a),

the curve does behave more like a quadratic function, as predicted by our model. Extensive empirical evidence

showing the accuracy of the model is provided in Section VI.

Notice that in the first sampling method, we needS samples to find the four coefficientsc0, . . . , c3 in the cubic

distortion model. It is recommended [39] that the number of samplesS required should be at least multiples of the

number of parameters; in our experiments we use eight samples. This still translates to a non-negligible computation

overhead. To further reduce computation, in the second sampling method we only sample at the mid-point(vi+vj)/2

between two coded views, and scale it by the number of desiredintermediate viewsUvi,vj
(∆) to obtain an estimate

d̂s
vi,vj

, i.e,:

d̂s
vi,vj

= Uvi,vj
(∆) ∗ ds

vi,vj
((vi + vj)/2). (9)

As previously discussed, if distortions in left and right depth maps are small, then we expect a quadratic function

with peak at mid-point, and this mid-point sampling method captures the maximum distortion. If distortions in

left and right depth maps are very large, this mid-point sampling method is no longer guaranteed to be accurate.

However, the distortions in such extreme cases are very large anyway, and they will not be selected as operational

parameters for optimal bit allocation.

In the sequel, we will assume that whenever the synthesized distortionds
vi,vj

between two coded viewsvi andvj

needs to be computed in our solution search, we will invoke either (8) ford̃s
vi,vj

or (9) for d̂s
vi,vj

as a low-complexity

estimate. We will investigate in Section VI the accuracy of both sampling methods experimentally.
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(a) Synthesized MSE vs. viewpoint forQP = 30 (b) Synthesized MSE vs. viewpoint forQP = 50

Fig. 2. Synthesized distortion is plotted against viewpoint location for different quantization levels forRocks2 sequence [40]. Cubic distortion

model (blue), mid-point (black) and actual synthesized distortion at0.05 view spacing are shown.

IV. FORMULATION

1 2 3 4

Fig. 3. Example of multiview image sequence. Coding dependencies among coded views (gray) are shown in solid arrows. View synthesis

dependencies between an intermediate (patterned) view andtwo neighboring coded views (gray), and between an uncoded view (white) and

two neighboring coded views (gray), are shown in dotted arrows. Coded and uncoded views areJ = {1, 3, 4} andJ ′ = {2}, respectively.

Note that each patterned ellipsoid represents many desiredintermediate views at spacing∆ between two neighboring captured views.

We now formulate our bit allocation problem formally as follows. A set of camera-captured viewsN =

{v1, . . . , vN} in a 1D-camera-array arrangement, and a desired constructed view spacing∆, are specified a priori as

input to the optimization. For mathematical simplicity, wewill assume that each captured viewvn can be expressed

as a positive integer multiple of∆, i.e. vn = n∆, n ∈ Z+. Captured viewsN are divided intoK coded views,

J = {j1, . . . , jK}, andN −K uncoded viewsJ ′ = N \J . Coded views are captured views that are selected for

encoding by the sender. Uncoded views are synthesized at thereceiver along withintermediate views(views that

the user desires viewing but are not explicitly captured by cameras at the sender). The first and last captured views

in N must be selected as coded views; i.e.,v1, vN ∈ J ⊆ N . Texture and depth maps of a coded viewjk are

encoded using quantization levelqjk
and pjk

, respectively.qjk
and pjk

take on discrete values from quantization
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level setQ = {1, . . . , Qmax} andP = {1, . . . , Pmax}, respectively, where we assume the convention that a larger

qjk
or pjk

implies a coarser quantization.

Uncoded views and intermediate views are synthesized at thereceiver, each using texture and depth maps of the

closest left and right coded views. We assume inter-view differential coding is used for coded views as done in

[21]. That means there exists dependency between an uncodedview and two neighboring coded views, between an

intermediate view and two neighboring coded views, and between two neighboring coded views (due to differential

coding). Fig. 3 shows an example. The first view is always coded as an I-frame. Each subsequent coded view

jk—frames3 and 4 in Fig. 3—is coded as P-frame using previous coded viewjk−1 as predictor for disparity

compensation. Each uncoded or intermediate view depends ontwo neighboring coded views.

A. Signal Distortion

Given the coded view dependencies, we can now write the distortion Dc of the coded views as a function of the

texture map quantization levels,q = [qj1 . . . , qjK
]:

D
c(q) = d

c
j1

(qj1) +

K
X

k=2

d
c
jk,jk−1

(qjk
, qjk−1

) (10)

which states that the distortiondc
j1

of starting viewpointj1 (coded as I-frame) depends only on its own texture

quantization levelqj1 , while the distortion of a P-framedc
jk

depends on both its own texture quantization levelqjk

and its predictorjk−1’s quantization levelqjk−1
. A more general model [31] is to have P-framejk depend on its

own qjk
and all previous quantization levelsqj1 , . . . , qjk−1

. We assume here that truncating the dependencies to

qjk−1
only is a good first-order approximation, as done in previousworks such as [41].

Similarly, we now write the distortion of the synthesized viewsDs (including uncoded viewsJ ′ and intermediate

views) as a function ofq and depth quantization levels,p = [pj1 , . . . , pjK
]:

Ds(q,p) =

K−1∑

k=1

ds
jk,jk+1

(qjk
, pjk

, qjk+1
, pjk+1

) (11)

whereds
jk,jk+1

is the sum of synthesized view distortions between coded views jk and jk+1, as described in (1),

given the texture and depth map quantization levels(qjk
, pjk

) and (qjk+1
, pjk+1

) for coded viewsjk and jk+1. In

words, distortion of the synthesized views depends on both the texture and depth map quantization levels of the

two spatially closest coded views.

B. Encoding Rate

As done for distortion, we can write the rate of texture and depth maps of coded views,Rc andRs, respectively,

as follows:
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Rc(q) = rc
j1

(qj1) +

K∑

k=2

rc
jk ,jk−1

(qjk
, qjk−1

) (12)

Rs(q,p)=rs
j1

(qj1 , pj1) +

K∑

k=2

rs
jk,jk−1

(qjk
, pjk

, qjk−1
, pjk−1

) (13)

(12) states that the encoding rate for texture map of a coded view, rc
jk

, depends on its texture map quantization

level, qjk
, and its predictor’s level,qjk−1

. In contrast, (13) states that the encoding rate for depth map, rs
jk

, depends

on both the texture and depth map quantization levels,qjk
and pjk

, and its predictor’s texture and depth map

levels, qjk−1
and pjk−1

. Note that though we assume depth maps are coded independently from texture maps in

experimental Section VI, there does exist correlation between texture and depth maps, and one can devise joint

texture/depth map coding schemes that exploit this correlation for coding gain [42]. Our formulation is sufficiently

general to include the case when depth maps are differentially coded using texture maps as predictors.

C. Rate-distortion Optimization

Given the above formulation, the optimization we are interested in is to find the coded view indicesJ ⊆ N ,

and associated texture and depth quantization vector,q andp, such that the Lagrangian objectiveLλ is minimized

for given Lagrangian multiplierλ ≥ 0:

min
J ,q,p

Lλ = Dc(q) + Ds(q,p) + λ [Rc(q) + Rs(q,p)] (14)

For clarity of later presentation, we will in addition definelocal Lagrangian costfor a differentially coded viewjk

as follows. Letφjk,jk−1
(qjk

, pjk
, qjk−1

, pjk−1
) be the Lagrangian term for coded viewjk given quantization levels of

view jk and its predictor viewjk−1, i.e., the sum of distortiondc
jk,jk−1

(qjk
, qjk−1

) and penaltiesλrc
jk,jk−1

(qjk
, qjk−1

)

andλrs
jk ,jk−1

(qjk
, pjk

, qjk−1
, pjk−1

) for texture and depth maps encoding.φjk,jk−1
will be used to mathematically

describe the two key monotonicity assumptions in the next section.

V. B IT ALLOCATION OPTIMIZATION

We first discuss how the optimal solution to (14) correspondsto the shortest path (SP) in a specially constructed

3D trellis. Nevertheless, the complexity of constructing the full trellis is large, and hence we will discuss methods

to reduce the complexity using monotonicity assumptions ofpredictor’s quantization level and distance. Using the

assumptions, only a small subset of the trellis needs to be constructed and traversed as the modified SP search

algorithm is executed.

A. Full Trellis & Viterbi Algorithm

We first show that the optimal solution to (14) can be computedby first constructing a three-dimensional (3D)

trellis, and then finding the SP from the left end of the trellis to the right end using the famed Viterbi Algorithm

(VA).
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Fig. 4. Optimization 3D Trellis.

We can construct a trellis—one corresponding to the earlierexample is shown in Fig. 4—for the selection of

coded view indicesJ , texture and depth quantization levelsq andp as follows. Each captured viewvn ∈ N is

represented by aplaneof states, where each state represents a pair of quantization levels(qvn
, pvn

)vn for texture

and depth maps. States in the first plane corresponding to thefirst view v1 will be populated with Lagrangian

costsφv1
(qv1

, pv1
)’s for different level pairs(qv1

, pv1
)v1 ’s. Each directed edge from a state(qv1

, pv1
)v1 in the first

plane to a state in the second plane(qv2
, pv2

)v2 of neighboring captured viewv2 ∈ N will carry a Lagrangian cost

φv2,v1
(qv2

, pv2
, qv1

, pv1
) andsynthesized view distortionsds

v1,v2
(qv1

, pv1
, qv2

, pv2
). Selecting such edge would mean

captured viewsv1 andv2 are both selected as coded views inJ . Each directed edge from a state(qv1
, pv1

)v1 in the

first plane to a state(qvn
, pvn

)vn in a further-away plane of captured viewvn ∈ N will carry similar Lagrangian

costφvn,v1
(qvn

, pvn
, qv1

, pv1
) and synthesized view distortionsds

v1,vn
(qv1

, pv1
, qvn

, pvn
). Selecting such edge would

mean captured viewv1 andvn are both selected as coded views inJ with no coded views in-between.

We state without proof that the SP from any state in the left-most plane to any state in the right-most plane,

found using VA, corresponds to the optimal solution to (14).However, the number of states and edges in the trellis

alone are prohibitive:O(|Q||P|N) andO(|Q|2|P|2N2), respectively. Hence the crux of any complexity reduction

method is to find the SP by visiting only a small subset of states and edges. Towards that goal, we first discuss

monotonicity assumptions next.

B. Monotonicity in Predictor’s Quantization Level

Motivated by a similar empirical observation in [31], we show here themonotonicity in predictor’s quantization

level for both Lagrangianφjk,jk−1
of coded viewjk, and synthesized view distortionds

jk,jk+1
of intermediate views

between coded viewsjk andjk+1. The assumption is formally stated as follows:

The Lagrangian termφjk,jk−1
(qjk

, pjk
, qjk−1

, pjk−1
) for coded viewjk given the predictor viewjk−1

and the synthesized view distortionds
jk,jk+1

is a monotonically non-decreasing function of the predictor’s

quantization levels. That is,
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φjk,jk−1
(qjk

, pjk
, qjk−1

, pjk−1
) ≤ φjk,jk−1

(qjk
, pjk

, q+

jk−1
, pjk−1

) (15)

φjk,jk−1
(qjk

, pjk
, qjk−1

, pjk−1
) ≤ φjk,jk−1

(qjk
, pjk

, qjk−1
, p

+

jk−1
)

ds
jk,jk+1

(qjk
, pjk

, qjk+1
, pjk+1

) ≤ ds
jk,jk+1

(q+

ji
, pjk

, qjk+1
, pjk+1

) (16)

ds
jk,jk+1

(qjk
, pjk

, qjk+1
, pjk+1

) ≤ ds
jk,jk+1

(qjk
, p

+

jk
, qjk+1

, pjk+1
)

ds
jk,jk+1

(qjk
, pjk

, qjk+1
, pjk+1

) ≤ ds
jk,jk+1

(qjk
, pjk

, q
+

jk+1
, pjk+1

)

ds
jk,jk+1

(qjk
, pjk

, qjk+1
, pjk+1

) ≤ ds
jk,jk+1

(qjk
, pjk

, qjk+1
, p

+

jk+1
),

whereq+
v (or p+

v ) implies a larger (coarser) quantization level thanqv (or pv).

In words, (15) states that if predictor viewjk−1 uses a coarser quantization level in texture or depth map, it

will lead to a worse prediction for viewjk, resulting in a larger distortion and/or coding rate, and hence a larger

Lagrangian costφjk,jk−1
for λ ≥ 0. Similarly, (16) makes a statement for monotonicity of the synthesized view

distortion. A coarser texture quantization (largerqji
or qji+1

) results in a higher synthesized distortionds
ji,ji+1

; since

a synthesized pixel is a linear combination of two corresponding pixels in the left and right coded texture map (as

discussed in Section III-A), a larger quantization error inthe left or right texture pixel will translate to a larger error

in the synthesized pixel as well. A coarser depth quantization (largerpji
or pji+1

) leads to a larger geometric error

and results in a larger synthesized distortionds
ji,ji+1

(also discussed in Section III-A). We will provide empirical

evidence of this monotonicity assumption in Section VI.

C. Monotonicity in Predictor’s Distance

We can also express monotonicity of Lagrangian costφζ,ξ of coded viewζ given predictor viewξ, ξ < ζ, and

synthesized view distortionds
ζ,ξ(v) at intermediate viewv between coded views, that isξ < v < ζ, with respect

to the predictor’s distanceto a coded view used for differential coding or synthesis. For φζ,ξ, we first assume

further-away predictor viewξ− for coded viewζ, ξ− < ξ, has the same quantization levels as viewξ. Similarly, for

ds
ζ,ξ(v), we assume further-away predictor viewsζ− andξ+, ζ− < ζ andξ+ > ξ, have the same quantization levels

for synthesized viewv as respective levels of viewsζ and ξ. We can then formulate the following monotonicity

assumption:

The Lagrangian termφζ,ξ(qζ , pζ , qξ, pξ) for coded viewζ given predictor viewξ, and the synthesized

view distortionds
ζ,ξ(qζ , pζ , qξ, pξ)(v) for intermediate viewv given closest left and right coded viewζ

andξ, are monotonically non-decreasing functions of the predictor’s distance. That is,

φζ,ξ(qζ , pζ , qξ, pξ) ≤ φζ,ξ−(qζ , pζ , qξ, pξ) (17)

ds
ζ,ξ(qζ , pζ , qξ, pξ)(v) ≤ ds

ζ,ξ+(qζ , pζ , qξ, pξ)(v) (18)

ds
ζ,ξ(qζ , pζ , qξ, pξ)(v) ≤ ds

ζ−,ξ(qζ , pζ , qξ, pξ)(v),

whereζ− implies ζ− < ζ, andξ+ implies ξ+ > ξ.
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In other words, (17) states that a further-away predictor, with the same quantization levels as the original predictor,

provides a worse prediction for differential coding, hencea larger Lagrangian termφζ,ξ(qζ , pζ, qξ, pξ). (18) states

that, for synthesized view distortionds
ζ,ξ(qζ , pζ , qξ, pξ)(v), a further-away predictor means a larger distancev − vi

between predictor frame at viewvi and predictee frame at viewv. That means a larger geometric errorgvi
(v),

as discussed in Section III-A, which again leads to a larger synthesized distortion. This assumption has also been

shown valid in [43] using the Markov random field prior model,and we will verify it empirically in Section VI.

We note that while monotonicity in predictor’s quantization level has been used extensively [31], [32], [35], we are

the first in the literature to exploit monotonicity in predictor’s distance for bit allocation.

D. Reducing Complexity

Given the described monotonicity assumptions, we now derive lemmas that will be used to construct a fast SP

search algorithm. LetΦvn
(qvn

, pvn
) be the shortest sub-path (minimum Lagrangian cost sub-path) from any states

of first view to state(qvn
, pvn

)vn of captured viewvn. The first lemma eliminatessub-optimal states(qvn
, pvn

)vn ’s,

given computedΦvn
(qvn

, pvn
)’s, using monotonicity in predictor’s quantization level.

Lemma 1:For given texture map quantization levelpvn
, if at state plane of captured viewvn, Φvn

(q+
vn

, pvn
) >

Φvn
(q∗vn

, pvn
), ∀q+

vn
> q∗vn

, then sub-paths up to states(q+
vn

, pvn
)vn , ∀q+

vn
> q∗vn

, cannot belong to an end-to-end

SP.

In other words, Lemma 1 states that if sub-path cost to state(q+
vn

, pvn
) with coarse texture quantization levelq+

vn

is already larger than sub-path cost to state(q∗vn
, pvn

) with fine texture quantization levelq∗vn
, then state(q+

vn
, pvn

)

is globally sub-optimal. A simple proof is provided in the Appendix.

Lemma 1 also holds true for depth quantization levelpvn
: given qvn

, if Φvn
(qvn

, p+
vn

) > Φvn
(qvn

, p∗vn
), ∀p+

vn
>

p∗vn
, then states(qvn

, p+
vn

)vn ’s, ∀p+
vn

> p∗vn
, are globally sub-optimal and can be pruned.

The next lemma eliminatessub-optimal edgesstemming from state(pvn
, qvn

)vn of captured viewvn to a state

in further-away coded viewξ, ξ > vn, using monotonicity in predictor’s distance.

Lemma 2:Given start state(qvn
, pvn

)vn of captured viewvn, end state(qξ, pξ)
ξ of captured viewξ, and in-

between captured viewvn+1, vn < vn+1 < ξ, if cost of traversing state(qvn
, pvn

)vn+1 of view vn+1, φvn+1,vn
+

ds
vn,vn+1

, is smaller than a lower-bound cost of skipping viewvn+1,
∑Uvn,vn+1

(∆)

x=1 ds
vn,ξ(vn + x∆), then edge

(qvn
, pvn

)vn → (qξ, pξ)
ξ cannot belong to an end-to-end SP.

In other words, Lemma 2 states that if from state(qvn
, pvn

)vn of captured viewvn, traversing state(qvn
, pvn

)vn+1

of captured viewvn+1 with same quantization levels is cheap in Lagrangian cost compared to a lower-bound cost

of skipping captured viewvn+1, en route to destination state(qξ, pξ)
ξ, then skipping captured viewvn+1 using

edge(qvn
, pvn

)vn → (qξ, pξ)
ξ is sub-optimal. A simple proof is provided in the Appendix.

The corollary of Lemma 2 is that if the said condition holds, then edges(qvn
, pvn

)vn → (qξ+ , pξ+)ξ+

, ∀qξ+ ≥

qξ, pξ+ ≥ pξ, whereξ+ means all indices larger thanξ, also cannot belong to the SP. The reason is: synthesized

distortionds
vn,ξ(v) of intermediate viewv using coded viewvn andξ as predictors is surely no larger thands

vn,ξ+(v)

using coded viewvn and further-away coded viewξ+ with same or coarser quantization levels. Hence the said
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condition must hold also for(qξ+ , pξ+)ξ+

as well, and the same argument as proof 2 follows to rule out edge

(qvn
, pvn

)vn → (qξ+ , pξ+)ξ+

. As an example, in Fig. 4 if the cost of traversing state(2, 4)2, φ2,1 + ds
1,2, is smaller

than
∑U1,2(∆)

x=1 ds
1,3(1 + x∆), then edges from(2, 4)1 to all states on the shaded region, including(3, 4)3 of view

3, can be eliminated.

E. Bit Allocation Algorithm

Algorithm 1 Bit Allocation Algorithm

1: n← 1. Φv1
(qv1

, pv1
)← φ(qv1

, pv1
), for all states(qv1

, pv1
)v1 of first captured viewv1.

2: q∗vn
← arg minqvn

Φvn
(qvn

, pvn
), for eachpvn

of view vn. Eliminate states(q+
vn

, pvn
)vn ’s, q+

vn
> q∗vn

.

3: p∗vn
← arg minpvn

Φvn
(qvn

, pvn
), for eachqvn

of view vn. Eliminate states(qvn
, p+

vn
)vn ’s, p+

vn
> p∗vn

.

4: For each survived state(qvn
, pvn

)vn of view vn, evaluate forward sub-paths to states(qvn+1
, pvn+1

)vn+1 ’s of

neighboring captured viewvn+1.

5: For each survived state(qvn
, pvn

)vn of view vn, using state(qvn
, pvn

)vn+1 of neighboring captured viewvn+1,

evaluate sub-paths forward: i.e.,

6: ζ ← neighboring captured view ofvn+1, whereζ > vn+1. Length-Pmax vectorQlim ← [Qmax, . . . , Qmax].

7: for each state(qζ , pζ)
ζ , s.t. qζ ≤ Qlim(pζ), do

8: if φvn+1,vn
+ ds

vn,vn+1
>

∑Uvn,vn+1
(∆)

x=1 ds
vn,ζ(vn + x∆) then

9: Evaluate possible path to state(qζ , pζ)
ζ with edge(qvn

, pvn
)vn → (qζ , pζ)

ζ .

10: else

11: Qlim(p+
ζ )← qζ − 1, ∀p+

ζ ≥ pζ .

12: end if

13: end for

14: If ζ 6= vN andQlim is non-zero vector, incrementζ to next neighboring captured view and goto step 7.

15: If n < N , incrementn and repeat step2 to 14.

We now describe a bit allocation algorithm, shown in Algorithm 1, exploiting the lemmas derived in previous

section to reduce complexity from the full trellis. The basic idea is to construct a subset of the trellis on the fly as

the algorithm is executed, and to try to rule out as many states and edges in the constructed trellis subset as early

as possible. Starting from the left-side of trellis, for each captured viewvn, using computed sub-paths to states

(qvn
, pvn

)vn ’s with sub-path Lagrangian costsΦvn
(qvn

, pvn
)’s6, we first eliminate states with larger Lagrangian costs

Φvn
’s and coarser texture quantization levelsq+

vn
’s than a minimum state(q∗vn

, pvn
), given pvn

. Same procedure

is applied for the depth quantization levelsp+
vn

’s given fixedqvn
. These sub-optimal states are eliminated due to

lemma 1.

6Lagrangian costsΦv1
(qv1

, pv1
)’s of first coded viewv1 are simplyφv1

(qv1
, pv1

)’s.
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In step 4, for each survived state(qvn
, pvn

)vn of view vn, weevaluateall forward sub-paths to states(qvn+1
, pvn+1

)vn+1 ’s

of the next captured viewvn+1. By “evaluate”, we mean comparing the sum ofΦvn
(qvn

, pvn
) andφvn+1,vn

+ds
vn,vn+1

to the cost of the best sub-path to(qvn+1
, pvn+1

)vn+1 to date,Φvn+1
(qvn+1

, pvn+1
), for each state(qvn+1

, pvn+1
)vn+1 .

If the former is smaller,Φvn+1
(qvn+1

, pvn+1
) will be updated accordingly.

In step 5, for each survived state(qvn
, pvn

)vn , we next evaluate feasible edges to states(qζ , pζ)
ζ ’s of captured

views ζ ’s, ζ > vn+1. Feasible edges are ones that satisfyφvn+1,vn
+ ds

vn,vn+1
>

∑Uvn,vn+1
(∆)

x=1 ds
vn,ζ(vn + x∆).

We stop when there are no more forward feasible edges. We can identify the shortest end-to-end path by finding

the minimum cost state(qvN
, pvN

)vN of view vN and tracing it back to viewv1.

VI. EXPERIMENTATION

We start the experimentation section by providing empirical evidence to justify our assumption of monotonicity in

predictor’s quantization level and distance. We then evaluate the quality of our estimate of intermediate synthesized

view distortion using our proposed cubic distortion model.Finally, we show the effectiveness of our proposed bit

allocation strategy.

For test data sets, we used four Middlebury still image sequences [40],Plastic, Lampshade1, Rocks2 and

Bowling2 of size1270× 1110, 1300× 1110, 1276× 1110 and1330× 1110, respectively. We assumed captured

camera views were{1, 2, 3, 4, 5}, and desired constructed view spacing∆ at the decoder was0.05. For all our

experiments, we used H.264 JM16.2 [44] video codec to encodetexture and depth maps (texture and depth maps

were encoded independently from each other). The availablequantization levels for both texture and depth maps

wereQ = P = {25, 30, . . . , 50}. Rate controls were disabled in JM16.2, and software modifications were made so

that a particular quantization level can be specified for each individual frame.

For DIBR virtual view synthesis at the decoder, we used a simple algorithm presented in [38]. A synthesized

view is obtained by projecting two (left and right) capturedanchor views to the chosen synthesis viewpoint such

that the texture map pixels are warped according to the disparity information recorded in the intensities of the depth

map pixels captured at the same viewpoint. The pixels projected from the two anchor views to the same coordinate

at the synthesis viewpoint are blended using a view-dependent linear weighted sum of the two pixel intensities,

where the weight factors are proportional to the proximity of the source anchor view. At the synthesized view pixel

coordinates, where one of the two projections is unavailable due to occlusion or out-of-frame pixel location, the

pixels are synthesized using the single available intensity, whereas the pixels unavailable from any of the anchor

views are filled in a post-processing in-painting or interpolation step.

A. Validation of Monotonicity Assumptions

We first provide empirical evidence to show that the assumption of monotonicity in predictor’s quantization

level and distance are indeed valid. Using thePlastic sequence, we first plotted the texture map coding rate of

captured view2, using captured view1 as predictor, as function of view1’s quantization level (quantization level of

view 2 was kept constant for each curve). In Fig. 5(a), we see that for all curves, texture map coding rate of view
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(a) Texture map coding rate vs. predictor’s QP (b) Depth map coding rate vs. predictor’s QP

Fig. 5. Encoding rate of texture and depth map of coded view2 are plotted against predictor view1’s quantization level forPlastic

sequence. Each curve is generated using constant quantization level for view2.
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Fig. 6. Visual quality of coded view2 and of synthesized view1.5 are plotted against predictor view1’s quantization levels forPlastic

sequence. Each curve is generated using constant quantization level(s) for coded view2.

2 increased as view1’s quantization level became larger (coarser). In Fig. 5(b), we see the same trend for depth

map coding rate of view2 as function of predictor view1’s quantization level. This agrees with our intuition that

a coarsely quantized predictor (view 1) creates a poor prediction for the predictee (view 2), and hence to maintain

the desired quality at the predictee (controlled by its quantization parameter), more bits must be spent.

We also plotted PSNR (Peak Signal-to-Noise Ratio, a common objective measure for image quality) of coded

view 2 as function of predictor view1’s quantization level in Fig. 6(a). We see that for all curves, PSNR either

remained roughly constant, or decreased (distortion increased) as view1’s quantization level became coarser. This

also agrees with our intuition that the image quality of the predictee (view2) is mostly controlled by its quantization

level, hence we expect no or small negative change in the predictee’s visual quality as the quality of the prediction
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(a) Texture map coding rate vs. predictor’s view (b) Coded view PSNR vs. predictor’s view

Fig. 7. Texture map encoding rate and Visual quality of codedview 5 are plotted against predictor’s view forPlastic sequence. Each curve

is generated using constant quantization level(s) for all coded views.

deteriorates. Since Lagrangian cost is a weighted sum of distortion and coding rate, given empirical evidence

showing distortion and coding rate increase as a function ofpredictor’s quantization level, we can conclude that

our assumption of Lagrangian cost monotonicity of predictor’s quantization level (15) is shown to be valid.

We also plotted PSNR of synthesized view1.5 as a function of predictor view1’s texture mapquantization level

in Fig. 6(b), and as a function of predictor view1’s depth mapquantization level in Fig. 6(c) . (Quantization levels

of view 1’s other map and view2’s texture and depth map were kept constant for each curve.) For Fig. 6(b), we

see clearly that for all curves, PSNR decreased as view1’s texture map quantization level became coarser. Fig

Fig. 6(c), though the curves are not strictly decreasing at all points, the similar downward trend is undeniable. This

agrees with our intuition that a poorer predictor leads directly to a poorer synthesized view. Hence we can conclude

that our assumption of synthesized distortion monotonicity of predictor’s quantization level (16) is justified.

To validate our assumption of monotonicity of predictor’s distance, we first plotted texture map coding rate of

view 5 as function of predictor’s view in Fig. 7(a). (Quantizationlevels of predictor’s and view5’s texture maps

were kept at the same constant for each curve.) We see that as the predictor’s view became closer, the texture

map coding rate of view5 became smaller. Though not shown, depth map coding rate of view 5 also showed the

same behavior. This agrees with our intuition that a closer predictor provides better prediction, leading to a smaller

coding rate.

In Fig. 7(b), we plotted the PSNR of coded view5 as function of predictor’s view. As discussed earlier, intuitively

the quality of the predictee (view5) is controlled mostly by its quantization parameter, so we expect almost no

change in the predictee’s visual quality as we move the predictor frame closer to the target frame. The experimental

data does confirm our intuition. Given these evidences, we can conclude that the empirical evidence supports our
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(a) Synthesized MSE vs. viewpoint forQP = 30 (b) Synthesized MSE vs. viewpoint forQP = 50

Fig. 8. Synthesized distortion is plotted against viewpoint location for different quantization levels forLampshade1 sequence. Cubic distortion

model (blue), mid-point (black) and actual synthesized distortion at0.05 view spacing are shown.

assumption of Lagrangian cost monotonicity of predictor’sdistance (17).

B. Accuracy of Cubic Distortion Model

To demonstrate the accuracy of our proposed cubic synthesized distortion model, in addition to Fig. 2, we

plotted the synthesized view distortion interpolated using coded views1 and4 of the Lampshade1 sequence as

function of viewpoint location in Fig. 8(a) and (b) for two different sets of quantization levels:QP = 30 in (a)

andQP = 50 in (b). The actual computed MSE of the synthesized view, as compared to the “clean” synthesized

view when interpolated using two nearest uncompressed captured views, is shown in red. The constructed cubic

distortion model is shown in blue. We first observe that, though there was a non-negligible noise termn(v) in the

measured MSE due to secondary effects such as occlusion, rounding, etc., there is undeniably a trend that is either

concave (i.e., increased, then decreased distortion) or strictly increasing/decreasing. Second, we see visually that

for both plots, our proposed distortion model did track thistrend of synthesized distortion as function of viewpoint,

demonstrating the accuracy of our model. For Fig. 8(a), whenthe depth map quantization levels are relatively fine,

the distortion curve is close to parabolic in shape, as predicted in Section III.

We also plotted the synthesized distortion as function of viewpoint location when the quantization levels of the

left and right coded views were different. In Fig. 9(a), quantization level for the left view was set coarser than the

right, while in Fig. 9(b), quantization level for the right view was set coarser than the left. In both cases, we see

that our proposed cubic distortion model tracked the trend of measured MSE accurately, showing the accuracy of

our model.

March 14, 2011 DRAFT



IEEE TRANSACTIONS ON IMAGE PROCESSING, MARCH 2011 22

1 1.5 2 2.5 3 3.5 4
0

5

10

15

20

25

30

35

40

45
Lampshade1, referent viewpoints=[1,4], [Qt1,Qd1,Qt2,Qd2]=[50,50,20,20]

virtual viewpoint

M
S

E

 

 

Sampled MSE
Cubic estimate
Mid−point estimate

1 1.5 2 2.5 3 3.5 4
0

10

20

30

40

50

60

70
Lampshade1, referent viewpoints=[1,4], [Qt1,Qd1,Qt2,Qd2]=[20,20,50,50]

virtual viewpoint

M
S

E

 

 

Sampled MSE
Cubic estimate
Mid−point estimate
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Fig. 9. Synthesized distortion is plotted against viewpoint location for different quantization levels forLampshade1 sequence. Cubic distortion

model (blue), mid-point (black) and actual synthesized distortion at0.05 view spacing are shown.
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Fig. 10. Performance Comparison between Optimal and Constant-QP Coded View and Quantization Level Selection Schemes

C. Comparing RD Performance of Bit Allocation Strategies

We tested the performance of our proposed bit allocation strategy using both sampling methods discussed in

Section III-B, S samples to construct the cubic model (8-samples) and a single mid-point sample (mid) to

bound average synthesized distortion, for the four Middlebury image sequences. We also tested a simple constant-

QP schemeconst that selects all captured viewsN for coding, i.e.,J = N , and assigns a constant quantization

level to all pixel and depth maps of coded views.

In Fig.10, we see the performance of the bit allocation strategies forPlastic andLampshade1, shown as
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Fig. 11. Performance Comparison between Optimal and Constant-QP Coded View and Quantization Level Selection Schemes

PSNR versus bitrate per captured view (including both pixeland depth maps). First, we see that both8-samples

and mid have better RD performance thanconst over all bitrate regions—by up to0.80dB and 1.51dB for

Plastic and Lampshade1, respectively. This shows that correct selection of quantization levels per frame

is important. Second, as bitrate decreased,8-samples andmid selected fewer captured views for coding and

relied instead on decoder’s view synthesis of captured views (four left-most points inPlastic and three left-

most points inLampshade1 of 8-samples represented selections of uncoded views). This is also the region

where8-samples andmid out-performedconst the most, hence selection of captured views for coding is also

important for best RD performance. Finally, we observe thatthe RD performance differences between8-samples

and mid are very small. Hence for complexity reasons, the less complex mid would be more preferable than

8-samples in practice.

When generating RD curves using8-samples, we tracked the amount of computation performed using our

solution search strategy compared to a full trellis search approach. Essentially, we counted the number of times local

Lagrangian costΦvn
(qvn

, pvn
) is potentially updated in both search strategies, where in8-samples evaluations

are avoided when nodes and edges are pruned during search in the 3D trellis. We found the computation savings

ranged from80% to 99% , with the maximum saving occurring at the right-most RD point.

In Fig. 11, we see the RD performance of competing bit allocation schemes for sequencesRocks2 andWood1.

We see that the general trend is similar to the earlier two sequences; i.e., performance gain of our bit allocation

strategy8-samples andmid over constant-QP schemeconst is more pronounced at low bitrate, when captured

views are skipped. The maximum gain in PSNR for these two sequences are1.05dB and0.95dB, respectively. We

see also that the two sampling methods8-samples andmid produced very similar results.

To take a closer look at the solutions generated by our algorithm mid, we constructed Fig. 12. First, Fig. 12(a)
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Fig. 12. Number of captured frames selected for encoding andaverage QP for selected encoded frames as function of encoded bitrate for

wood1 andlampshade1.

shows the number of captured views selected bymid for encoding as function of the encoding bitrate for image

sequencewood1 andlampshade1. We observe that at lower bitrate region, fewer number of views were selected

for encoding. This is intuitive, since fewer number of encoded views leads to smaller bit expenditure in general.

This is also the region wheremid out-performedconst the most. This shows that when bitrate is more a concern

than synthesized view quality, selecting the right subset of captured frames for encoding is very important for good

RD performance.

In Fig. 12(b), we plotted the average QP of the selected encoded views in solutions generated bymid as function

of bitrate forwood1 andlampshade1. We see that as bitrate decreased, the average QP became coarser for both

texture and depth maps, which is intuitive. We see also that in general,mid deemed texture maps as slightly more

important than depth maps, resulting in finer QP for texture than depth in most generated solutions. Finally, we

observe that the depth map QP curves are not strictly monotonic; i.e., there are cases when the QP becamefiner

as the bitrate decreased. These correspond to solutions where the texture map became coarser, or the number of

captured views decreased. Hence, we can conclude that a strictly monotonic search to derive one solution from a

neighboring one on the RD curve would not be RD-optimal.

VII. C ONCLUSION

Towards the goal of finding a compact multview image representation, one that takes advantage of both efficient

texture and depth map coding tools at encoder and view synthesis tool using depth-image-based rendering (DIBR)

at decoder, in the paper we presented an algorithm to select captured views for coding and quantization levels of

corresponding texture and depth maps in a rate-distortion (RD) optimal manner. We first derive a cubic distortion

model that models synthesized view distortion between two coded views. We then show that using monotonicity in
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predictor’s quantization level and distance, search complexity can be drastically reduced without loss of optimality.

Experiments show that our selection scheme outperformed a heuristic scheme by up to1.5dB in PSNR for the

same bitrate.

APPENDIX

We provide proofs for the two lemmas in Section V-D here.

Proof of Lemma 1:We prove by contradiction. Suppose shortest sub-path up to state(q+
vn

, pvn
)vn , q+

vn
> q∗vn

, is

part of an end-to-end shortest path. That means captured view vn is a coded view; letjk = vn. If we replace sub-

path to(q+
jk

, pjk
)jk with sub-path to(q∗jk

, pjk
)jk , synthesized intermediate views to the right ofjk and coded view

jk+1 that depend on viewjk ’s texture map will have no larger synthesized view distortion ds
jk,jk+1

or Lagrangian

costφjk+1,jk
, if q∗jk

is used instead ofq+
jk

, by monotonicity in predictor’s quantization level (15) and (16). Given

Φjk
(q+

jk
, pjk

) > Φjk
(q∗jk

, pjk
), we see that replacing sub-path to(q+

jk
, pjk

)jk with sub-path to(q∗jk
, pjk

)jk will yield

strictly lower Lagrangian cost. A contradiction.�

Proof of Lemma 2:We prove by contradiction. Suppose an optimal end-to-end path includes edge(qvn
, pvn

)vn →

(qξ, pξ)
ξ. If we replace it with two edges(qvn

, pvn
)vn → (qvn

, pvn
)vn+1 → (qξ, pξ)

ξ, the cost of traversing state

(qvn
, pvn

)vn+1 , considering intermediate synthesized viewsv’s, vn < v < vn+1, and captured viewvn+1, is smaller

than not traversing it by assumption. Moreover, Lagrangiancost of coded viewξ and distortion of synthesized

views to the right of viewvn that predicted from viewvn will not increase predicting viewvn+1 instead with

same quantization levels due to monotonicity of predictor’s distance (17) and (18). Hence a path using the two

replacement edges will yield strictly lower cost. A contradiction. �

REFERENCES

[1] B. Wilburn, M. Smulski, K. Lee, and M. A. Horowitz, “The light field video camera,” inProc. Media Processors SPIE Electron. Imag.,

San Jose, CA, January 2002.

[2] T. Fujii, K. Mori, K. Takeda, K. Mase, M. Tanimoto, and Y. Suenaga, “Multipoint measuring system for video and sound—100 camera

and microphone system,” inIEEE International Conference on Multimedia and Expo, Toronto, Canada, July 2006.

[3] “Mpeg - technologies - introduction to multiview video coding,” January 2008, iSO/IEC JTC 1/SC 29/WG 11 N9580.

[4] T. Chen, “Adaptive temporal interpolation using bidirectional motion estimation and compensation,” inIEEE International Conference on

Image Processing, Rochester, NY, September 2002.

[5] J. Zhai, K. Yu, J. Li, and S. Li, “A low complexity motion compensated frame interpolation method,” inIEEE International Symposium

on Circuits and Systems, Kobe, Japan, May 2005.

[6] P. Merkle, A. Smolic, K. Mueller, and T. Wiegand, “Multi-view video plus depth representation and coding,” inIEEE International

Conference on Image Processing, San Antonio, TX, October 2007.

[7] M. Tanimoto, T. Fujii, and K. Suzuki, “Multi-view depth map of Rena and Akko & Kayo,” ISO/IEC JTC1/SC29/WG11 MPEG Document

M14888, Oct. 2007.

[8] S. Gokturk, H. Yalcin, and C. Bamji, “A time-of-flight depth sensor—system description, issues and solutions,” inConference on Computer

Vision and Pattern Recognition Workshop (CVPRW), Washington, DC, June 2004.

[9] H.-Y. Shum, S.-C. Chan, and S. B. Kang,Image-Based Rendering. Springer, 2007.

[10] Y. Morvan, D. Farin, and P. H. N. de With, “Multiview depth-image compression using an extended H.264 encoder,” inAdvanced Concepts

for Intelligent Vision Systems, Lecture Notes in Computer Sciences, vol. 4678, 2007, pp. 675–686.

March 14, 2011 DRAFT



IEEE TRANSACTIONS ON IMAGE PROCESSING, MARCH 2011 26
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