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Abstract

The encoding of both texture and depth maps of a set of migii-images, captured by a set of spatially
correlated cameras, is important for any 3D visual comnatito system based on depth-image-based rendering
(DIBR). In this paper, we address the problem of efficientaliication among texture and depth maps of multi-view
images. More specifically, suppose we are given (1) a codiobto encode texture and depth maps at the encoder,
and (2) a view synthesis tool to construct intermediate siaivthe decoder using neighboring encoded texture and
depth maps. Our goal is to determine how to best select @ptiews for encoding and distribute available bits
among texture and depth maps of selected coded views, sathvifual distortion of desired constructed views is
minimized. First, in order to obtain at the encoder a low claxipy estimate of the visual quality of a large number
of desired synthesized views, we derive a cubic distortiaaleh based on basic DIBR properties, whose parameters
are obtained using only a small number of viewpoint samplé&n, we demonstrate that the optimal selection of
coded views and quantization levels for correspondingutexaind depth maps is equivalent to the shortest path in
a specially constructed three-dimensional trellis. Bypale show that using the assumptions of monotonicity in
predictor's quantization level and distance, sub-optis@ltions can be efficiently pruned from the feasible space
during solution search. Experiments show that our prope$ézient selection of coded views and quantization levels
for corresponding texture and depth maps outperforms amaltive scheme using constant quantization levels for all
maps (commonly used in video standard implementations)pbiou.5dB. Moreover, the complexity of our scheme

can be reduced by at lea&®% over the full solution search.

|. INTRODUCTION

Recent development of imaging technology has led to reBeamchigher dimensional visual information pro-
cessing beyond traditional two-dimensional (2D) imaged single-view video, aiming at improving user’s visual

experience and offering new media navigation functioieaito consumers. One notable examplamisltiview
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video[1], where a scene of interest is captured by a large 2D arfalensely spaced, time-synchronized cameras
from different viewpoints [2]. Thus, the resulting captdi@ata has a much larger number of dimensions compared
to traditional media; i.e., pixel locatiofy, j) at time ¢ from camera locatior{z,y). In this work, we focus on
the more constrained scenario where the scene of interagitis, and the capturing cameras are placed ihDa
horizontal array Hence we can drop the temporal dimenstoand vertical camera shif§, and focus on a set
of still images instead of video sequences. The media ictierapromised for users is the ability to interactively
choose viewpoint images for observation anywhere alonghthrzontalz-axis. We refer to this more constrained
scenario asnultiview imagingin the sequél

In a typical multiview imaging scenario, a sender createkteansmits a multiview representation—composed of
viewpoint images taken by the aforementioned spatiallyetated cameras—of a physical scene of interest, so that a
receiver can construct images of the scene from viewpofrigsamwn choosing for display. To efficiently encode the
multiview image sequence for a given bit budget, the senderemnploy disparity compensation coding tools such
as those used in multiview video coding (MVC) [3] to explaitér-view correlation among th& captured views.
The receiver can subsequently decode images (texture nmafi® encoded sequence for display. See Fig. 1 for
an overview of multiview imaging communication system. BEwailable viewpoint images for the receiver are the
same encoded set &f images at the sender, plus possibly intermediate imagesbatcoded images interpolated
using methodssuch asmotion compensated frame interpolati@iCFI) [4], [5]. Because typical MCFI schemes,
with no available geometric information about the scensu@® simple block-based translational motion which in

general is not true for multiview images, the interpolatedldy tends to be poor.

A

A
sender receiver

A

A

scene of interest N capturing cameras  transport network  constructed images

Fig. 1. Overview of a multiview imaging communication systeV cameras in a 1D array capture images of a scene from diffgrenpoints.
The sender selects a multiview representation, compréisaes transmits it to the receiver. The receiver decodestimpressed images, and
if depth maps are available, synthesizes intermediatesviga DIBR that are spaced apart.

One method for the receiver to improve the quality of intdaped intermediate viewpoint images that are not

explicitly coded at the sender is to use depth-image-basedering (DIBR) [6]. The idea is for the sender to

1The analysis and bit allocation algorithm presented in plaiser for multiview images serve as a foundation for the nsoreplex multiview
video case. For example, for low-motion video, bit allogatialgorithm proposed here can be used to select quantiziels for the first
temporal frames of different views, which are then reusedszctime for the duration of the Group of Pictures (GOP) m video.

2Though multiview images have disparity instead of motianthieory interpolation methods based on motion compensatio also be used
for multiview images.
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encodedepth information(distance between camera and the physical object in theestemesponding to each
captured pixel) for some viewpoints. Depth can be estimff¢adr recorded by special hardware [8]. A receiver
can then synthesize additional intermediate views froneived neighboring texture and depth maps using DIBR
techniques such as 3D warping [9], [10]. Conveying bothuextand depth maps—commonly called teture

plus depthrepresentation—for a large multiview image sequence tadheiver, however, means a large amount of
data must be transmitted. A natural resource allocatiostgprehence arises: given a disparity-compensation-based
coder at the sender and a DIBR view synthesis tool at thevegeihat is the “best” multiview representation of

a scene for a given transmission bit budget?

More specifically, we address the following bit allocatiomiplem for DIBR in this paper. Suppose the receiver
desires to “construct” multiview images (either decode ges from the coded bitstream or interpolate images
from neighboring decoded images) from viewing locatioret tare integer multiples of a given view spacing
How should the sender select captured views for coding, atettsquantization levels of corresponding texture
and depth maps of chosen captured views, to minimize distodf all A-spaced constructed views (decoded or
interpolated) at the receiver for a given coding bit budg®e?focus on the scenario where the desired constructed
views at the receiver are very dense (smig)| thus offering the receiver maximum flexibility to choodgwally any
viewpoints for his/her observation of the scene. From armpgierspective, dense constructed views also means that
an alternative multiview representatotihat synthesizes all required intermediate views at theleseand encodes
all the generated texture maps, will require very large kiemditure, even at coarse quantization. Hence given a
small synthesized view spaciny, a practical multiview representation with reasonablébdget must only encode
(possibly a subset of) captured views, and rely on DIBR atrdueiver to synthesize many desired intermediate
views between two coded frames.

To address this bit allocation problem, the first practia#fiadilty is how to estimate, at the sender, the visual
distortion of A-spaced intermediate views that would be synthesized atdbeiver using neighboring encoded
texture and depth maps. One obvious method to estimateesinéidl distortion between two coded views at the
encoder is to actually synthesize the entire set of interatediews with spacing\ and calculate their distortions.
For small spacing\, however, this can be exceedingly expensive computational

Instead, in this paper we derivecabic distortion modelbased on basic properties of DIBR, in order to calculate,
at low computation cost, the distortions of all synthesizmgermediate images between two coded views. Specifically,
given the model, we can either: i) deduce model parameténg gsveral sample synthesized views to estimate the
distortion of all required intermediate views between tvedled frames, or ii) estimate the average distortion of all
required intermediate views using a single image sampleeattid-point between the two coded frames. We note
that, to the best of our knowledge, we are the first to estirbéBiR-synthesized view distortion of a set of densely
spaced viewpoints between two coded views using a small sumfhimage samples.

3When the required view spacing and/or the available bit bt very large, a feasible multiview representation cate@ud synthesize
all intermediate views at the sender and encode them asareffames. See [11] for this related bit allocation problerew the optimal

representation can be a mixture of synthesized views iol&tierdd and coded at the sender, and views synthesized a¢dbiwar via DIBR.
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Armed with our cubic distortion model, the second practiddficulty is to select an appropriate subset of
captured views for coding for a given desired rate-distoriRD) tradeoff. This is difficult because depending on
the efficiency of the chosen coding and view synthesis taoig, the complexity of the captured scene, different
optimal selections are possible. For example, if the captwcene is complex and requires detailed depth maps
for good view interpolation, then encoding texture and Hdapaps of all captured views may be a good selection.
On the other hand, if the captured scene is relatively easgtéopolate intermediate views at high fidelity, then
synthesizing even some captured views instead of coding iten offer better RD tradeoff. Hence the issue of
coded view selection is a critical one in multiview bit alkdion and must be optimized for good RD performance.

In this paper, we propose a bit allocation algorithm that dirtlde optimal subset among captured views for
encoding, and assigns quantization levels for texture apthdmaps of the selected coded views. We first establish
that the optimal selection of coded views and associatedtmpagion levels is equivalent to the shortest path in a
specially designed three-dimensional (3D) trellis. Gitteat the state space of the trellis is enormous, we then show
that using lemmas derived from monotonicity assumptiorm@tictor’'s quantization level and distance, sub-optimal
states and edges in the trellis can be pruned from considerdtiring shortest path calculation without loss of
optimality. Experiments show that our proposed selectiboodled views and quantization levels for corresponding
texture and depth maps can outperform an alternative schismg constant quantization levels for all texture and
depth maps (commonly used in video standard implemenstion up to1.5dB. Moreover, our search strategy
reduces at leasi0% of the computations compared to the full solution search éxamines every state and edge
in the 3D trellis.

The paper is organized as follows. After discussing relatedk in Section II, we derive the cubic distortion
model used to estimate distortion of densely spaced syimttesiews in Section Ill. We then formulate our bit
allocation problem in Section IV. We introduce the monotitgiassumptions and propose an efficient bit allocation

algorithm in Section V. We present our experimental resualtSection VI. Finally, we conclude in Section VII.

II. RELATED WORK

We divide the discussion of related work into four parts. Wstfimotivate the value of “texture + depth”
representation of a 3D static scene studied in this paperingaestablished “texture + depth” is an important
representation, we discuss recent advances in coding fmotexture and depth maps for multiview images and
video, and new view synthesis tools using DIBR. Then, weulisaecent analysis and models for distortion of

images synthesized via DIBR. Finally, we discuss relatetkwom bit allocation for image/video coding in general.

A. Representations of 3D Static Scenes

In general, one can construct many different viable reprtasiens of a static scene for image-based rendering
of any viewpoint at the receiver, including layered deptlages [12], light field [13], lumigraph [14] and view-
dependent texture mapping (VDTM) [15]. See [16], [9] for ebkent surveys of representations proposed in the

literature. For a chosen representation, coding optinoizatan then be performed to trade off reconstructed view
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distortion with encoding rate. As a concrete example, [Dfisidered two representations: VDTM and model-aided
predictive coding. For VDTM, [17] first constructed303-voxel model, using 257 captured images around a single
object of interest (e.g., a stuffed toy animal). Given thedelanformation, the receiver can first render the shape
of the single object, then stitch texture patches on the insddace for image reconstruction. Tradeoff between
synthesized view distortion and coding rate can be achibyadrying the number of bits used to encode the voxel
model and the texture patches. For model-aided predictding, an image is first predicted by warping multiple
reference images given a geometry model [18]. Predictisiduals are subsequently coded using conventional
transform coding techniques. Coding rate can be reducedodaser quantization during residual coding.

In contrast, “texture + depth” format [6]—the focus of thiager—has one texture and depth map at each captured
viewpoint, where each depth map is a 2D representation o8ihsurface in the scene of interest. Image or video
sequence encoded in the “texture + depth” format can enaklelécoder to synthesize novel intermediate views
via depth-image-based rendering (DIBR) techniques su@Dawarping [19].

“Texture + depth” format has several desirable properf@st, unlike the mesh-based geometrical model in [15]
that can take hours to compute [17], depth maps can be eigierated simply using stereo-matching algorithms
[7], or captured directly using time-of-flight cameras [8kcond, depth maps can better handle complicated scenery
with multiple objects, while a mesh-based model often negpudense image sampling around the single object of
interest for good construction quality. Finally, “textutedepth” format is more adaptable to dynamic scene where
objects change positions and shapes over time. For thesatlamdreasons, “texture + depth” is currently the chosen
format for 3D scene representation in the free viewpoinewi@TV) working group in MPEG.

Given that the “texture + depth” format is an important regergation for multiview image/video, in this paper
we propose a bit allocation strategy to select capturedutexand depth maps for encoding at the appropriate
guantization levels, so that the synthesized distortiontgrmediate views of close spaciny is minimized.

We believe we are the first in the literature to address thisontant problem formally; the natures of previous
geometry representations (e.g., [17]) are sufficientlfedént from “texture + depth” format that previous empitica

and theoretical optimizations do not carry over.

B. Motion / Disparity Compensation Coding Tools and DIBRwynthesis Tools

For efficient representation of multiview images and videmjel coding tools and frame structures for texture map
encoding [20], [21], [22] have been proposed in order to exphter-view correlation for coding gain. Similarly,
new coding algorithms tailored specifically for depth mag3]] [24] have been proposed, leveraging on their unique
smooth-surface and sharp-edge properties. While new gdduis are important in their own right, the associated
bit allocation problem for DIBR—how bits should be optinyatlistributed among texture and depth maps for the
chosen coding tools for maximum fidelity of reconstructeevis—is not addressed in these works. We provide
this missing piece in our work by solving the following twoykproblems: i) how to estimate distortions of a large
number of synthesized intermediate views between two cfrd@des at the encoder at low complexity, and ii) how

to optimally select a subset of captured views for codingigishe optimal amount of bits for texture and depth
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maps. We emphasize the generality of our proposal: our loitation strategy can operate no matter which of the
above mentioned tools are chosen for texture and depth nmaoslieg.

With the advent of theexture plus depthepresentation for multiview images / video [6], enablinlBR-based
view synthesis at the decoder using received texture anthdepps, new 3D warping algorithms [9], [10] have
been proposed recently in the literature. Virtual view iiptdation has also been an useful tool for 3D video systems
[25]; several interpolation methods based on disparithrieues have been studied in [26]. Instead of developing
new view synthesis tools, our goal is to find the RD-optimaldiocation given chosen coding tool at the encoder

and DIBR-based view synthesis tool at the decoder.

C. Synthesized Distortion Model and Analysis

There has been work [27], [28], [29] studying the relatiapsbetween synthesized view distortion and lossy
compression of depth map. Because distortion of depth nr&ases geometric errors that ultimately affect synthe-
sized view constructions, [28], [29] proposed new metriasdal on synthesized view distortion (instead of depth
map distortion) for mode selection at a block level durin@&4 encoding of depth maps. Our work is different in
that we find the optimal quantization parameters for texauré depth maps at the frame level. Moreover, we find
the optimal subset of captured views for coding for givenirgdesRD tradeoff.

For a two-view-only video sequence, [27] constructed atbtgzal view synthesis distortion model and derived
two quantization parameters, one for all texture maps arelfonall depth maps, that minimize the theoretical
distortion. In contrast, our proposed bit allocation schesmlects quantization parameters for individual textak a
depth maps in a multi-view image sequence. Selecting onstigasion parameter for every frame (rather than one
for a large group of frames as done in [27]) means we can dapendent quantizationto consideration, where
a coarsely quantized predictor frame would lead to worséigtien, resulting in higher distortion and/or rate for
the predicted view. In terms of modeling, unlike the compteadel in [27] which requires derivation of a large
number of parameters, we first derive a simple cubic distorthodel (to be discussed in Section Ill) to model
the synthesized distortion between two coded views. Theng¥ery pair of coded views, we construct a finite
number of synthesized image as samples to deduce the foiar pollynomial coefficients specifically for this pair
of coded views during the solution search. While operationalapproach avoids a priori modeling errors (beyond
our cubic distortion model), the task of data collection t@noverwhelming. Hence, our focus is on complexity

reduction, so that only a minimal data set is required to fireldptimal solution.

D. Bit Allocation for Image / Video Coding

Operational approaches for optimal bit allocation amoradgpendent [30] and dependent [31] quantizers have
been studied for single-view video coding. More recen8g][has extended the trellis-based optimization technique
in [31] to multi-view video coding where texture maps of diént frames can be coded using different quantization

parameters. [32] did not consider view synthesis when aflog bits to texture maps, while our work considers
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bit allocation for two types of resource—texture and dep#psi+—for chosen subset of captured views for coding,
such that the resulting distortion of both encoded and sgitled views at the decoder is minimized.

The most similar prior research to our work is the work on HBibcation for single-view video with frame
skip [33], [34], [35], which studies the problem of selegtia subset of captured frames in a video to code at
optimal amount of allocated bits. The frames skipped at theoéer are interpolated at the decoder using optical
flow analysis. The key differences between the two probleragtee following. First, for our multiview problem,
both texture and depth maps for a coded view need to be codssiply at different quantization levels, leading to a
more complicated resource allocation problem (and leadatgrally to a 3D trellis, to be discussed in Section 1V).
Second, depth map encoding is amxiliary bit expenditurehat does not improve the reconstruction of the coded
view itself, but improves the construction quality of intediate views synthesized at the decoder using the coded
view's texture and depth maps. There is no such “auxiliaiy’eRpenditure in the problem addressed in [33], [34],
[35]*.

This paper extends our previous work [36], [11] on bit altbma among texture and depth maps for DIBR as
follows. In [36], to evaluate the distortion of synthesiziatiermediate views, a small number of evenly spaced
samples are chosen a priori, and the encoder synthesizsnadiate frames at all these sample locations for
evaluation. In this paper, assuming the viewer desiresealgievpoint images of small spacingy, we derive a
cubic distortion model, so that only a few intermediate vismmples are constructed to estimate the distortion
of all A-spaced synthesized intermediate views between two cadete$. Further, we validate our monotonicity
assumption on predictor’'s quantization level and distamoeirically. In [11], we studied the bit allocation problem
where the required reconstructed view spacings large, so that synthesizing texture maps of intermediges
at the encoder and coding them is a viable multiview repitasien. The optimization proposed in [11] has high
complexity, however. In this paper, we focus instead on tmeavhenA is small, so that synthesizing all required
intermediate views at encoder and encoding them requitesnny bits and is not a viable option. By excluding

this possibility, the search strategy presented here ishnsirapler than [11].

IIl. VIEWPOINT SAMPLING FOR MODELING OF SYNTHESIZED VIEW DISTORTION

The goal of a DIBR-based multiview imaging communicatiosteyn is to construct high-quality images of a
static scene observed from densely spaced viewpoints aeteéver. We optimize quality of all constructed views
at the receiver by selecting captured views for coding afatafing bits among texture and depth maps of the
selected coded views at the sender. We search for the opgitedtion of coded views and bit allocation among
selected views in amperationalmanner, meaning that we iteratively try different allooat and evaluate their
quality (in a computationally efficient manner), until wenserge to an optimal operating point and terminate the

solution search.
4t is theoretically possible to have auxiliary bit spenditgt improves the interpolation quality of skipped framesaisingle-view video,

e.g., bits that improve optical flow prediction in the skigpfeames. This was not studied in the cited previous worksuth expenditure does
exist, our proposed search strategy can be used to solvbithatiocation problem for single-view video coding witrafme skip as well.
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To evaluate the merit of different bit allocations acrosduee and depth maps of coded views for this purpose,
the sender needs to assess the quality of intermediate giavigesized using the encoded texture and depth maps
of two neighboring coded views; andv;. Denote bydf,i,vj the sum of distortion of all desired intermediate views
between coded views; andv;. Then,d; . can be written as a sum of individual synthesized view dittos

dy, », (v)'s at intermediate viewpoints's, v; < v < v;:

Usy v, (B)
dls)»;,vj = Z d’LS)T',,’Uj (Ui + nA) (1)
n=1
V; — Uy
U’Ui-,Uj (A) = ’7 JA —‘ -1 (2)

whereA, as discussed in Section |, is the desired viewpoint spagfimgnstructed views at the receivér,, ,, (A)
is the number of desired intermediate views between viemipoj andv; (excludingv; andw;). In practice, each
Ay, v, (v) can be computed as the mean square error (MSE) between the-®ithesized images at viewpoint
v using uncompressed texture and depth mapsg aindv;, and using compressed texture and depth maps at the
samev; andv;. SinceA is assumed to be small, the summation in (1) has many ternisth@ncomputation of
dy, v, at the sender requires DIBR view synthesis of many imagesaatymwis. Further,df,i,vj differs for different
quantization levels chosen for the texture and depth maps afndv;; coarsely quantized texture and depth maps
for v; andv; will naturally lead to poorer synthesized view quality. R&mng the sender to compute (1) fdf,iyvj
multiple times for different combinations of quantizatitewvels during its solution search for optimal bit allocatio
is clearly too computationally expensive.

Hence, there is a need for a low-complexity methodology,hsd the sender can estimate synthesized view
distortions of many viewpoints between two coded frameshauit first explicitly synthesizing all required inter-
mediate views and then calculating their distortions. Iditn, the methodology must maintain generality, so that

its synthesized distortion estimate is reasonably acedmata generic class of DIBR-based view synthesis tools.

We discuss how we derive such a methodology next.

A. Derivation for Cubic Synthesized Distortion Model

The key to the derivation is to identify what constitutess@aable assumptions about synthesized distortions of
intermediate viewpoints between two coded frames usingBREWased view synthesis tool. Suppose we want to
synthesize an intermediate viewbetween left coded view; and right coded view;. For simplicity of derivation,
we assumey; = 0 andv; = 1. In general, a pixel in viewo can be mapped to a corresponding texture image
pixel in view 0 using the depth map of vie®, assuming known intrinsic and extrinsic camera param¢sgis For
simplicity, assume further that the capturing cameras hysipally located in purely horizontally shifted locatgn
so that a pixel at a certain coordind#€, y) in view v corresponds to a horizontally shifted pixel coordingiey)
in the left texture map. Denote hy(v) the geometric errorof pixel (k’,y) at viewv due to depth map distortion at

view 0. In other wordsg(v) is the offsetin number of (horizontal) pixels away from the true corrasgiag pixel
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coordinate(k, y) in the left texture map, due to left depth map distortionut&ésg in erroneous pixel coordinate
(k+go(v),y) instead. In [28], it is shown thaf(v) grows linearly with view location; i.e., go(v) = by v, by > 0.

Now suppose we model a row of pixel§ (k)’s in the texture map of viewd as a Gauss-Markov process; i.e.,

wherewy (k) is a zero-mean Gaussian variable with variange One can argue that Gauss-Markov process is a
good first-order model for pixels of the same physical objed scene of interest.

Due to geometric errog, an erroneous pixeX,(k + g) at locationk + g in the texture map of view is used for
DIBR instead of the true corresponding pixEh(k) for view synthesis. The expectation of the resulting sodiare

error is:

d(9) = ElXo(k+g)— Xo(k)[*]

= Elp?Xo(k) + p? two(k) + p?Pwo(k +1) + ... +wo(k + g — 1) = Xo(k)[?]

= E[(p? = D)Xo(k) + D p" wo(k +1t —1)]%]

t=1
= (= DPBIXo(kP] + 08> 00 < (g+ 1)od
t=1

where E[X(k)?] = Ro(0) = o2 is the autocorrelatioly(r) = 03p™ of processX,(k) evaluated at- = 0. The
inequality holds for0 < p < 1. Given thatgy(v) is linear with respect t@, we now see that the expected squared
errord;(g) at viewv due to the left depth map distortio,(go(v)), is also lineard;(go(v)) = d§(v) = (b v+1)od.
Similarly, we can write the expected squared error due toighe depth map distortion ads (v) = (b1 (1—v)+1)07.

In typical DIBR view synthesis, a pixeY'(v) in synthesized view, 0 < v < 1, is a weighted sum of two
corresponding pixels(y (k) and X;(I) from the left and right anchor views, where the weightis— v) and (v),
depend linearly on the distances to the two anchor viewsYi@) = (1 —v) Xy (k)4 (v)X1(1). Due to the left and
right depth map distortions, a pixel in synthesized viewecomes’ (v) = (1 —v) Xo(k+ go(v)) +vX1(l4 g1(v)).
Thus, the squared erral; | (v) = Y (v) — Y ()2 in the synthesized pixel due to distortion in the left anchtig

depth maps can be derived as follows:

dia(v) = E[Y(r) - Y(0)]
= E[(1 - v)Xo(k + go(v)) + (0)X1(1 + 91(v)) = (1 = v) Xo(k) — () X1 (1)|]
= B[|(1 —v) (Xo(k + 90(v)) = Xo(k)) + (v) (X2 (I + 91(v)) = X1 (D) ]
= (1-v)°d§(v) + (v)°di (v) +
+ ()1 = v) E[(Xo(l + g0(v)) = Xo(k)) (X1 (I + g1(v)) — X1(1))]

= (1—=v)%*bo v+ 1)ag + (v)*(b1(1 —v) + 1)o7

= (boog —biot) v° + ((1—2bo)og + (b1 +1)o7) v* + ((bo—2)05) v + (07) 4
N——— N~
c3 c2 c1 co
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where we assume pixels in the left and right texture m&pék) and X, (I) are independent processes, and
are the cubic polynomial coefficients. We now see #fat(v) is in general a cubic function with respect to the
intermediate view location.

Notice that if the left and right Markov-Gauss processesadihie same object, thely = b; ando? = 7. The

cubic term equals to zero, and we have a quadratic function:
g1 (v) = (2 = bo)ogv® + (bo — 2)ogv + 03 (5)

Taking the derivative off ; (v) with respect tov and setting it equal t0, we see the maximum distortion occurs
at mid-pointv = 1/2. We can hence conclude the following: if distortions in laftd right depth maps are not
severe, then DIBR will be performed using correspondinglgiin the left and right texture maps of the same
object for majority of pixels in the synthesized view, ane ttesulting distortion is quadratic. This is what was
observed experimentally in [38] as well. If distortions &ftland right depth maps are severe enough that DIBR
erroneously uses pixels of different objects for intergiotafor majority of pixels in the synthesized view, then the
distortion becomes cubic.
Note that in addition to (4), there are secondary non-lireféacts on the synthesized distortidljijvj (v) due

to: i) occlusion of different spatial regions with respeztie viewpointv determined by complex scene geometry,
ii) pixel coordinate rounding operations used in the viewthgsis (i.e., a 3D-warped point is usually displayed
at the nearest integer pixel location in the synthesized)yiand iii) statistical discrepancies in texture maps, as
discussed previously. We consider these effects secoradatyfocus instead on the major trend outlined by the

cubic distortion model. For the sake of simplicity, we mothed sum of these effects as a small noise fenrv).

B. Sampling for Cubic Distortion Model

Though we have concluded that the appropriate distortiodahas a function of intermediate viewis a cubic
function, we still need to find coefficients's that characterize cubic polynomial functit‘fﬁ(v) =coF+civtcov?+
csv® for given coded texture and depth maps at anchor viewand v;. Our approach is sampling: synthesize a
small number of images at intermediate viewss betweenv; and v; and calculate corresponding distortions
3, v, (vk)’s, so that using samplgsy, d; )’s, we can compute coefficients's in some optimal fashion. We present
two sampling methods below.

In the first method, we usé even-spaced samplés;, d;)'s betweenv; andv; to derive “optimal” coefficients
¢;’s in the cubic polynomial. For each data point,,d;), we can express the distortialf as a cubic function

co + c1vg + cov? + c3vi plus errorey; i.e., in matrix form, we write:

5Size of the noise will be larger if the quality of the obtaingepth maps are poor and/or if the captured images are nactigriectified.
Nonetheless, we stress that even in those cases, the detbeddistortion model is still accurate up to a first-ordppximation, especially
when the capturing cameras are physically very close to etudr.
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1 v v% v:f o d3 e1
1 vy v vl 1 ds es
= |+ . (6)
s : :
1 vg vE v C3 ds es
SN—_—— —— ——
A\ c ds e

By optimal, we mean coefficients’s lead to the smallest squared errerpossible. Using linear regression [39],
optimal ¢;’s can be calculated simply:
= (VV)'va @)

—_———
V+

where VT is the Moore-Penrose pseudo-inversevaf
The constructed cubic distortion model will be used to dal®uthe sum of synthesized distortions between the

two coded viewsy; andv;, ds as follows:

Uvi,vj (A)
By = Y d(vitnd) ®
n=1
Clearly, dzwj in (8) is an approximation to the true synthesized distartity, , in (1) at much reduced

computation complexity. As an example, we see that in Figustg the cubic distortion model we constructed
curves (blue) using eight samples each. We see that in be#dscthe cubic model captures the general trend of the
actual distortions (red) quite well. In addition, we seet ttoat fine quantization levels of depth maps in Fig. 2(a),
the curve does behave more like a quadratic function, asigheeldby our model. Extensive empirical evidence
showing the accuracy of the model is provided in Section VI.

Notice that in the first sampling method, we negdamples to find the four coefficients, . .., c3 in the cubic
distortion model. It is recommended [39] that the numberashglesS required should be at least multiples of the
number of parameters; in our experiments we use eight samiés still translates to a non-negligible computation
overhead. To further reduce computation, in the second i@gnpethod we only sample at the mid-point+uv;)/2
between two coded views, and scale it by the number of deBitedmediate view#/,, ., (A) to obtain an estimate
s, .0

daii.,uj = Uy, (A) * dy, ., (Vi +v5)/2). 9)
As previously discussed, if distortions in left and righpttemaps are small, then we expect a quadratic function
with peak at mid-point, and this mid-point sampling methagptares the maximum distortion. If distortions in
left and right depth maps are very large, this mid-point damgpmethod is no longer guaranteed to be accurate.
However, the distortions in such extreme cases are verg langway, and they will not be selected as operational
parameters for optimal bit allocation.

In the sequel, we will assume that whenever the synthesiméortiond;, ,, between two coded views andv,
needs to be computed in our solution search, we will invokeeei(8) fordgi,vj or (9) fordii,vj as a low-complexity

estimate. We will investigate in Section VI the accuracy offbsampling methods experimentally.
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Rocks2, referent viewpoints=[1,4], [Qt1,Qd1,Qt2,Qd2]=[30,30,30,30] Rocks2, referent viewpoints=[1,4], [Qt1,Qd1,Qt2,Qd2]=[50,50,50,50]
27 T T T T T 230 T T T T

26

MSE
MSE

—*— Sampled MSE
Cubic estimate
Mid—point estimate

—*— Sampled MSE
Cubic estimate 1
Mid-point estimate

2 ; ; ; ‘ ‘ 150 ; ; ; ‘ ‘

1 15 2 25 3 35 4 1 15 2 25 3 35 4
virtual viewpoint virtual viewpoint

(a) Synthesized MSE vs. viewpoint f6yP = 30 (b) Synthesized MSE vs. viewpoint f@P = 50

Fig. 2. Synthesized distortion is plotted against viewp&cation for different quantization levels félocks?2 sequence [40]. Cubic distortion
model (blue), mid-point (black) and actual synthesizedodi®mn at0.05 view spacing are shown.

IV. FORMULATION

Fig. 3. Example of multiview image sequence. Coding depecids among coded views (gray) are shown in solid arrowsy \dgnthesis
dependencies between an intermediate (patterned) viewvamaheighboring coded views (gray), and between an uncod®d (white) and
two neighboring coded views (gray), are shown in dottedvesraCoded and uncoded views afe= {1, 3,4} and 7’ = {2}, respectively.
Note that each patterned ellipsoid represents many desitednediate views at spacindy between two neighboring captured views.

We now formulate our bit allocation problem formally as éolis. A set of camera-captured views =
{v1,...,vn} in a 1D-camera-array arrangement, and a desired consirviete spacing, are specified a priori as
input to the optimization. For mathematical simplicity, wédl assume that each captured vieyy can be expressed
as a positive integer multiple ah, i.e. v, = nA, n € ZT. Captured views\V are divided intoK coded views
J =4j1,---,Jkx}, and N — K uncoded views/’ = N\ J. Coded views are captured views that are selected for
encoding by the sender. Uncoded views are synthesized aetleé/er along withintermediate viewgviews that
the user desires viewing but are not explicitly captured @yeras at the sender). The first and last captured views
in A" must be selected as coded views; g, oy € J C N. Texture and depth maps of a coded vigware

encoded using quantization levgl, andp;,, respectivelyg;, andp;, take on discrete values from quantization
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level setQ = {1,...,Qmax} @andP = {1, ..., Pnax}, respectively, where we assume the convention that a larger
qj. Or pj, implies a coarser quantization.

Uncoded views and intermediate views are synthesized aketi@ver, each using texture and depth maps of the
closest left and right coded views. We assume inter-viefieiftial coding is used for coded views as done in
[21]. That means there exists dependency between an uneglednd two neighboring coded views, between an
intermediate view and two neighboring coded views, and betwtwo neighboring coded views (due to differential
coding). Fig. 3 shows an example. The first view is always dode an I-frame. Each subsequent coded view
jr—frames3 and 4 in Fig. 3—is coded as P-frame using previous coded vjgw, as predictor for disparity

compensation. Each uncoded or intermediate view dependésmneighboring coded views.

A. Signal Distortion

Given the coded view dependencies, we can now write therti@taD¢ of the coded views as a function of the

texture map quantization levelg,= [gj, . . ., g}

K

D*(q) = d5, (45,) + Y d5, 5, (@50 @is) (10)
k=2

which states that the distortiaff, of starting viewpointj; (coded as I-frame) depends only on its own texture
quantization level;, , while the distortion of a P-framé; depends on both its own texture quantization leygl

and its predictorj,—,'s quantization level;, ,. A more general model [31] is to have P-framedepend on its
own ¢;, and all previous quantization levefs,,...,q;. ,. We assume here that truncating the dependencies to
gj._, only is a good first-order approximation, as done in previvosks such as [41].

Similarly, we now write the distortion of the synthesizedws D (including uncoded views/’ and intermediate

views) as a function o§ and depth quantization levelp,= [p,, ..., pjx]:
K—-1
Ds(q’ p) = Z d,?;c,,jk+1 (qjk y Pji s Ljreyr 7pjk+1) (11)
k=1
wheredjk_’jw is the sum of synthesized view distortions between codedsvig and ji.1, as described in (1),

given the texture and depth map quantization levels, p;,) and(q;,_,.pj,.,) for coded viewsj, andj ;. In
words, distortion of the synthesized views depends on Huthtéxture and depth map quantization levels of the

two spatially closest coded views.

B. Encoding Rate

As done for distortion, we can write the rate of texture anptienaps of coded viewd?¢ and R*, respectively,

as follows:
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K
Rc(q) = T‘_(];'l (q]l ) + Z T;k ,jk71 (q]k ) qjk—l) (12)
k=2
K
R? (qa p) :le (qjl 7pj1) + Z T;k,jk,l (ij y Pirs Q-1 7pjk71) (13)
k=2

(12) states that the encoding rate for texture map of a codasd v , depends on its texture map quantization
level, ¢;, , and its predictor’s levely;, _, . In contrast, (13) states that the encoding rate for depth, nja, depends

on both the texture and depth map quantization levgls,and p;,, and its predictor’'s texture and depth map
levels, ¢;,_, andp;, ,. Note that though we assume depth maps are coded indeplnfient texture maps in
experimental Section VI, there does exist correlation ketwtexture and depth maps, and one can devise joint
texture/depth map coding schemes that exploit this cdioaldor coding gain [42]. Our formulation is sufficiently

general to include the case when depth maps are differigntiadied using texture maps as predictors.

C. Rate-distortion Optimization

Given the above formulation, the optimization we are irgté in is to find the coded view indicgg C N,
and associated texture and depth quantization vegtand p, such that the Lagrangian objectiyg is minimized

for given Lagrangian multipliea > 0:

min Ly = D(q) + D*(q,p) + A [R°(q) + R°(q, p)] (14)

J.a,p
For clarity of later presentation, we will in addition defiloeal Lagrangian costfor a differentially coded vievyy,
as follows. Letp;, s, . (¢j.,Pi: Gin_1+Pjr_, ) D€ the Lagrangian term for coded vigwgiven quantization levels of
view ji and its predictor view 1, i.e., the sum of distortiod ,  (q;.,qj, ,) and penaltiessrs . (¢, ;)

andArs . (@i, Pjx» Q1 P, ) fOr texture and depth maps encodirg, ;, , will be used to mathematically

describe the two key monotonicity assumptions in the nestice

V. BIT ALLOCATION OPTIMIZATION

We first discuss how the optimal solution to (14) correspdndbie shortest path (SP) in a specially constructed
3D trellis. Nevertheless, the complexity of constructihg full trellis is large, and hence we will discuss methods
to reduce the complexity using monotonicity assumptionpreflictor’'s quantization level and distance. Using the
assumptions, only a small subset of the trellis needs to bstagcted and traversed as the modified SP search

algorithm is executed.

A. Full Trellis & Viterbi Algorithm

We first show that the optimal solution to (14) can be compitedirst constructing a three-dimensional (3D)
trellis, and then finding the SP from the left end of the tseth the right end using the famed Viterbi Algorithm
(VA).
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Fig. 4. Optimization 3D Trellis.

We can construct a trellis—one corresponding to the eagi@mple is shown in Fig. 4—for the selection of
coded view indices7, texture and depth quantization levejsand p as follows. Each captured view, € N is
represented by plane of states, where each state represents a pair of quantidetiels(q,, ,p., )" for texture
and depth maps. States in the first plane corresponding tdirsteview v; will be populated with Lagrangian
COoStsoy, (gu, , v, )'s for different level pairs(q.,, , p,, )**’s. Each directed edge from a stdtg, , p,, )** in the first
plane to a state in the second pldae, , p,,)"* of neighboring captured view, € N will carry a Lagrangian cost
Bva01 (Quys Puas Qo > Puy ) @NAsynthesized view distortions, . (qv, ; Pu, » Gus s Pus )- S€lECting such edge would mean
captured views, andwv, are both selected as coded views/in Each directed edge from a stdtg, , p,, )** in the
first plane to a statéq,, ,p,, )" in a further-away plane of captured view € N will carry similar Lagrangian
COSt Py, v, (v, > Pun > Qo » Puy ) @N Synthesized view distortion§, , (qv,,Pv, , 9v,, Pv,, )- S€lECting such edge would
mean captured view; andwv,, are both selected as coded viewsjnwith no coded views in-between.

We state without proof that the SP from any state in the lefsihplane to any state in the right-most plane,
found using VA, corresponds to the optimal solution to (Hdwever, the number of states and edges in the trellis
alone are prohibitiveO(|Q||P|N) and O(|Q|?|P|>N?), respectively. Hence the crux of any complexity reduction
method is to find the SP by visiting only a small subset of staied edges. Towards that goal, we first discuss

monotonicity assumptions next.

B. Monotonicity in Predictor’'s Quantization Level

Motivated by a similar empirical observation in [31], we shbere themonotonicity in predictor's quantization

levelfor both Lagrangiam;, ;, , of coded viewj,, and synthesized view distortiaif of intermediate views

ko Jk+1
between coded viewg, and ji1. The assumption is formally stated as follows:
The Lagrangian ternd,, ;. . (¢j.:Pic> Gjn_.»Pjr_, ) fOr coded views,, given the predictor vievyy_1
and the synthesized view distortiaf) kit is a monotonically non-decreasing function of the predisto

guantization levels. That is,
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Dirrin—1 @i Pir Gie—1>Pi—r) < ¢jk1jk—1(qjlijk’q;;,l’pjk—l) (15)
Direrin—1 @i Pir D12 Pi—r) < ¢jk1jk—1(qjlijk’qjk—l’pjk,l)
d;k,jk+1(qjk7pjk’qjk+l’pjk+1) < jkyjk+1 (q;’:’pjk’qjk+17pjk+1) (16)
jk,jk+1 (qjk7pjk’qjk+l’pjk+l) < ;k,jk+1 (qjk7p;;7qjk+17pjk+l)
jk,jk+1 (qjk7pjk7qjk+l’pjk+l) < ;ka]‘k+1 (qjk7pjk7q;;+17pjk+l)
<

S ) ) ) ) S . . ) +
Gl rJkt1 (@3, Pis,» Liny 1 Pigr ) djkvjk+1 (@3, Pisy> Tin 41 Pjiis ),

whereq;" (or p;7) implies a larger (coarser) quantization level thgn(or p,).

In words, (15) states that if predictor vieyy_; uses a coarser quantization level in texture or depth map, it
will lead to a worse prediction for viewy, resulting in a larger distortion and/or coding rate, anddeea larger
Lagrangian cost;, ;. , for A > 0. Similarly, (16) makes a statement for monotonicity of tiyateesized view
distortion. A coarser texture quantization (larggror g;,,,) results in a higher synthesized distortigf ;. ; since
a synthesized pixel is a linear combination of two corresiag pixels in the left and right coded texture map (as
discussed in Section IlI-A), a larger quantization errothia left or right texture pixel will translate to a larger @rr
in the synthesized pixel as well. A coarser depth quantimafiargerp;, or p;,.,) leads to a larger geometric error
and results in a larger synthesized distortiin;  (also discussed in Section Ill-A). We will provide empitica

evidence of this monotonicity assumption in Section VI.

C. Monotonicity in Predictor’s Distance

We can also express monotonicity of Lagrangian egst of coded view¢ given predictor viewg, ¢ < ¢, and
synthesized view distortiodgyg(u) at intermediate view» between coded views, that §s< v < ¢, with respect
to the predictor's distanceto a coded view used for differential coding or synthesis: #9¢, we first assume
further-away predictor view~ for coded view(, £~ < &, has the same quantization levels as vievimilarly, for
d¢ ¢(v), we assume further-away predictor viegs and¢é™, ¢ < ¢ andET > €, have the same quantization levels
for synthesized view as respective levels of viewsand¢. We can then formulate the following monotonicity
assumption:

The Lagrangian term¢ ¢ (qc, pe, ge, pe) for coded view( given predictor viewt, and the synthesized
view diStOftiOﬂdzg(qC,pc,q5,p5)(1}) for intermediate viewv given closest left and right coded viegv

and &, are monotonically non-decreasing functions of the ptedi distance. That is,

bce(qe ey gespe) < bee-(ae,pes qes e) (17)

di ¢(ac,pes qe,pe)(v) < di e (acspes Ge, pe) (V) (18)

IN

¢ ¢(qc.pey ge, pe) (v) di- (¢, e, qe, pe) (v),

where( ™ implies(~ < ¢, and¢™ impliesé™ > €.
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In other words, (17) states that a further-away predictah the same quantization levels as the original predictor,
provides a worse prediction for differential coding, helackarger Lagrangian term ¢ (qc, pc, ge, pe). (18) states
that, for synthesized view distortioff . (qc, pc, qe, pe)(v), a further-away predictor means a larger distaneev;
between predictor frame at view and predictee frame at view. That means a larger geometric erir (v),
as discussed in Section IlI-A, which again leads to a largathesized distortion. This assumption has also been
shown valid in [43] using the Markov random field prior modahd we will verify it empirically in Section VI.
We note that while monotonicity in predictor’s quantizatievel has been used extensively [31], [32], [35], we are

the first in the literature to exploit monotonicity in prettics distance for bit allocation.

D. Reducing Complexity

Given the described monotonicity assumptions, we now ddgmmas that will be used to construct a fast SP
search algorithm. Le®,,, (q.,,, pv, ) be the shortest sub-path (minimum Lagrangian cost sub-fratim any states
of first view to statg(q.,, , p,,, )" of captured view,,. The first lemma eliminatesub-optimal statesy,, , ., )*"’S,
given computedb,, (¢, ,p.,)’S, using monotonicity in predictor's quantization level.

Lemma 1:For given texture map quantization level , if at state plane of captured view,, ®,, (¢ ,pv,) >
®,, (g5 ,pv,): Yai > ¢ , then sub-paths up to statég' ,p., )", Vg, > ¢; , cannot belong to an end-to-end
SP.

In other words, Lemma 1 states that if sub-path cost to $tgte p,,, ) with coarse texture quantization levgl
is already larger than sub-path cost to stafg ,p,, ) with fine texture quantization levefl; , then statgq; , p,,,)
is globally sub-optimal. A simple proof is provided in the pgndix.

Lemma 1 also holds true for depth quantization levgl: giveng,,, if @, (qu,, 0 ) > o, (qu,, 05 ), VoI, >
py, . then stategq,, ,p.} )""’s, Vp! > pj , are globally sub-optimal and can be pruned.

The next lemma eliminatesub-optimal edgestemming from statép,, , ¢,,, )’ of captured viewy,, to a state
in further-away coded view, ¢ > v,,, using monotonicity in predictor’s distance.

Lemma 2:Given start stateg,,,p,, )" of captured viewv,, end state(q¢, p¢)¢ of captured viewg, and in-

between captured view,, 1, v, < v,41 <&, if cost of traversing statég,,, , p,,, )" Of VieW vp11, ¢u, .y 0, +

U"-”ﬂ’vn+1 (A) ds
r=1 V€

as is smaller than a lower-bound cost of skipping view, 1, >

Un,Un41"

(vn, + zA), then edge
(Qu,, > Pu,, )™ — (e, pe)® cannot belong to an end-to-end SP.

In other words, Lemma 2 states that if from stéjg , p,, )’ of captured view,,, traversing stat€g,, , p,, )"+
of captured viewv,,, 1 with same quantization levels is cheap in Lagrangian costpeoed to a lower-bound cost
of skipping captured view,, 1, en route to destination state;, p¢)¢, then skipping captured view, . ; using
edge(qu, , v, )" — (qe,pe)* is sub-optimal. A simple proof is provided in the Appendix.

The corollary of Lemma 2 is that if the said condition holdsn edgesq,,, , p., )"" — (q5+,p5+)§+, Vge+ >
qge, e+ > pe, Where{™ means all indices larger thah also cannot belong to the SP. The reason is: synthesized
distortiondjmg(v) of intermediate view using coded view,, and¢ as predictors is surely no larger thépﬂ_’E+ (v)

using coded view,, and further-away coded view" with same or coarser quantization levels. Hence the said
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condition must hold also 1‘o(q£+,p£+)£+ as well, and the same argument as proof 2 follows to rule ogeed

(Qu, , v, )" — (q£+,p5+)£+. As an example, in Fig. 4 if the cost of traversing st@tet)?, ¢, 1 + dj ,, is smaller

z=1

than ZU”(A) d5 5(1+zA), then edges frong2,4)" to all states on the shaded region, includig4)® of view

3, can be eliminated.

E. Bit Allocation Algorithm

Algorithm 1 Bit Allocation Algorithm
1:n < 1. @y, (Gu, s Doy ) — D(Gu, s Dw, ), TOr all states(q,, , p.,, )** of first captured view, .

2: q —argming, Py, (qu,.Pv,), for eachp,, of view v,. Eliminate statesq,” ,p.,)""’s, ¢, > ¢} -

3: pj, « argminy,, P, (qu,,Ds,), for eachg,, of view v,. Eliminate stategq,,,p;} )""'s, p;. > p} .

4: For each survived statgy,,, , p.,, )" of view v, evaluate forward sub-paths to states, . ,,p., ,)""*'’s of
neighboring captured view,, ;.

5: For each survived statg,,, , p.,, )" of view v, using stat€q,, , p,, )’"+* of neighboring captured view, 1,
evaluate sub-paths forward: i.e.,

6: ¢ « neighboring captured view af,, 1, where¢ > v, ;1. LengthP,.x vector Qiim «— [Qmax; - - - » @max)-

7: for each statdqc, pc)¢, s.t.q¢c < Qum(p¢), do
Uinyl’n,+] (A) ds

N L R SO D D o (vn +2A) then

9: Evaluate possible path to state, pc)¢ with edge(qv, , pv, )" — (¢, pc)S.
10: else

1 Qum(pd) < ac— 1, Vp{ = pe.

12.  end if

13: end for

14: If ¢ # vy and Quy IS NON-zero vector, incremegtto next neighboring captured view and goto step 7.

15: If n < N, incrementn and repeat step to 14.

We now describe a bit allocation algorithm, shown in Algamit 1, exploiting the lemmas derived in previous
section to reduce complexity from the full trellis. The ltaglea is to construct a subset of the trellis on the fly as
the algorithm is executed, and to try to rule out as many statel edges in the constructed trellis subset as early
as possible. Starting from the left-side of trellis, for leamaptured viewv,,, using computed sub-paths to states
(qv,, , Pw, )V™’s With sub-path Lagrangian costs, (q., , ., )’s®, we first eliminate states with larger Lagrangian costs
®,,’s and coarser texture quantization levefs's than a minimum statég;; ,p., ), givenp,, . Same procedure
is applied for the depth quantization level$ 's given fixedq,,. These sub-optimal states are eliminated due to

lemma 1.

6Lagrangian coSt®y, (quy , Pvy )’s Of first coded vieww; are simplygy, (qu, , Pvy)’s.
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In step 4, for each survived sta®,, , p.,, )" of view v,,, weevaluateall forward sub-paths to statég, .. ,, p,,. ., )" *'’'S
of the next captured view, ;. By “evaluate”, we mean comparing the sundaf, (¢, , pv,, ) ande,,, ., v, +d3, ., .,
to the cost of the best sub-path(@,, . ,, p,,,., )"+ to date,®,,, ., (¢u, ., Pv,.,). fOr each statéq,, ., pv, ., )" .
If the former is smaller®,,, ., (¢v,,.,,Pv,.,) Will be updated accordingly.

In step 5, for each survived state,, , p,, )", we next evaluate feasible edges to stdtgsp.)¢’s of captured
views ('s, ¢ > v,41. Feasible edges are ones that satisfy,, ., +d;, ..., > zf;q’v”“‘“ dy (v +zA).
We stop when there are no more forward feasible edges. Wedeatify the shortest end-to-end path by finding

the minimum cost statey, ,,, p.y )"~ of view vy and tracing it back to view.

VI. EXPERIMENTATION

We start the experimentation section by providing empliigsédence to justify our assumption of monotonicity in
predictor’s quantization level and distance. We then etalthe quality of our estimate of intermediate synthesized
view distortion using our proposed cubic distortion modhally, we show the effectiveness of our proposed bit
allocation strategy.

For test data sets, we used four Middlebury still image sece® [40],Pl asti ¢, Lanpshadel, Rocks2 and
Bow i ng2 of size 1270 x 1110, 1300 x 1110, 1276 x 1110 and 1330 x 1110, respectively. We assumed captured
camera views werd1,2,3,4,5}, and desired constructed view spacifgat the decoder wa8.05. For all our
experiments, we used H.264 JM16.2 [44] video codec to entmdare and depth maps (texture and depth maps
were encoded independently from each other). The availgdatization levels for both texture and depth maps
were Q =P = {25,30,...,50}. Rate controls were disabled in JM16.2, and software madifios were made so
that a particular quantization level can be specified fohdadividual frame.

For DIBR virtual view synthesis at the decoder, we used a nafgorithm presented in [38]. A synthesized
view is obtained by projecting two (left and right) captutaachor views to the chosen synthesis viewpoint such
that the texture map pixels are warped according to the digpaformation recorded in the intensities of the depth
map pixels captured at the same viewpoint. The pixels pt@jerom the two anchor views to the same coordinate
at the synthesis viewpoint are blended using a view-dep#gnaear weighted sum of the two pixel intensities,
where the weight factors are proportional to the proximityh@ source anchor view. At the synthesized view pixel
coordinates, where one of the two projections is unavalahie to occlusion or out-of-frame pixel location, the
pixels are synthesized using the single available intgnaibereas the pixels unavailable from any of the anchor

views are filled in a post-processing in-painting or intéagion step.

A. Validation of Monotonicity Assumptions

We first provide empirical evidence to show that the asswnptf monotonicity in predictor's quantization
level and distance are indeed valid. Using Bleast i ¢ sequence, we first plotted the texture map coding rate of
captured view2, using captured view as predictor, as function of views quantization level (quantization level of

view 2 was kept constant for each curve). In Fig. 5(a), we see thalfeurves, texture map coding rate of view
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sequence. Each curve is generated using constant quiamtiztel for view 2.
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Fig. 6. Visual quality of coded viev2 and of synthesized view.5 are plotted against predictor vieWs quantization levels foPl asti c
sequence. Each curve is generated using constant quimtiztel(s) for coded viev.

2 increased as view'’s quantization level became larger (coarser). In Fig. 5{® see the same trend for depth
map coding rate of view2 as function of predictor viewl’s quantization level. This agrees with our intuition that
a coarsely quantized predictor (view 1) creates a poor gtiedifor the predictee (view 2), and hence to maintain
the desired quality at the predictee (controlled by its dgzation parameter), more bits must be spent.

We also plotted PSNR (Peak Signal-to-Noise Ratio, a comnigactive measure for image quality) of coded
view 2 as function of predictor view'’s quantization level in Fig. 6(a). We see that for all curveSNR either
remained roughly constant, or decreased (distortion &s@@) as view's quantization level became coarser. This
also agrees with our intuition that the image quality of thedictee (view2) is mostly controlled by its quantization

level, hence we expect no or small negative change in thegbeeds visual quality as the quality of the prediction

March 14, 2011 DRAFT



IEEE TRANSACTIONS ON IMAGE PROCESSING, MARCH 2011 20

Encoding rate vs. Predictor’s View for Plastic Coded PSNR vs. predictor’s view for Plastic
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Fig. 7. Texture map encoding rate and Visual quality of codiet 5 are plotted against predictor’s view f&f ast i ¢ sequence. Each curve
is generated using constant quantization level(s) foradled views.

deteriorates. Since Lagrangian cost is a weighted sum ¢brten and coding rate, given empirical evidence
showing distortion and coding rate increase as a functiopreélictor’'s quantization level, we can conclude that
our assumption of Lagrangian cost monotonicity of predistquantization level (15) is shown to be valid.

We also plotted PSNR of synthesized viéws as a function of predictor view's texture mapguantization level
in Fig. 6(b), and as a function of predictor vieMis depth mapguantization level in Fig. 6(c) . (Quantization levels
of view 1's other map and view’s texture and depth map were kept constant for each curee.Jig. 6(b), we
see clearly that for all curves, PSNR decreased as \liswiexture map quantization level became coarser. Fig
Fig. 6(c), though the curves are not strictly decreasinglgtaants, the similar downward trend is undeniable. This
agrees with our intuition that a poorer predictor leadsaliyeto a poorer synthesized view. Hence we can conclude
that our assumption of synthesized distortion monotoniaitpredictor's quantization level (16) is justified.

To validate our assumption of monotonicity of predictoristdnce, we first plotted texture map coding rate of
view 5 as function of predictor’s view in Fig. 7(a). (Quantizatitavels of predictor’s and vievi's texture maps
were kept at the same constant for each curve.) We see thaegsrédictor's view became closer, the texture
map coding rate of vievs became smaller. Though not shown, depth map coding rateewf ¥ialso showed the
same behavior. This agrees with our intuition that a closedigtor provides better prediction, leading to a smaller
coding rate.

In Fig. 7(b), we plotted the PSNR of coded viévas function of predictor’s view. As discussed earlier, iitaly
the quality of the predictee (view) is controlled mostly by its quantization parameter, so wpeet almost no
change in the predictee’s visual quality as we move the ptedirame closer to the target frame. The experimental

data does confirm our intuition. Given these evidences, weccaclude that the empirical evidence supports our
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Fig. 8. Synthesized distortion is plotted against viewptnation for different quantization levels fblanpshadel sequence. Cubic distortion
model (blue), mid-point (black) and actual synthesizedodi®mn at0.05 view spacing are shown.

assumption of Lagrangian cost monotonicity of predictdisance (17).

B. Accuracy of Cubic Distortion Model

To demonstrate the accuracy of our proposed cubic syntbgiistortion model, in addition to Fig. 2, we
plotted the synthesized view distortion interpolated gsinded viewsl and 4 of the Lanpshadel sequence as
function of viewpoint location in Fig. 8(a) and (b) for twofidirent sets of quantization level§P = 30 in (a)
and QP = 50 in (b). The actual computed MSE of the synthesized view, aspared to the “clean” synthesized
view when interpolated using two nearest uncompressedig@ptviews, is shown in red. The constructed cubic
distortion model is shown in blue. We first observe that, gfothere was a non-negligible noise terfv) in the
measured MSE due to secondary effects such as occlusiandingy etc., there is undeniably a trend that is either
concave (i.e., increased, then decreased distortion)riathstincreasing/decreasing. Second, we see visually tha
for both plots, our proposed distortion model did track tinéshd of synthesized distortion as function of viewpoint,
demonstrating the accuracy of our model. For Fig. 8(a), wherdepth map quantization levels are relatively fine,
the distortion curve is close to parabolic in shape, as ptediin Section IlIl.

We also plotted the synthesized distortion as function efwioint location when the quantization levels of the
left and right coded views were different. In Fig. 9(a), quzation level for the left view was set coarser than the
right, while in Fig. 9(b), quantization level for the rightew was set coarser than the left. In both cases, we see
that our proposed cubic distortion model tracked the trehch@asured MSE accurately, showing the accuracy of

our model.
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Fig. 9. Synthesized distortion is plotted against viewptnation for different quantization levels fbanpshadel sequence. Cubic distortion

model (blue), mid-point (black) and actual synthesizedodi®mn at0.05 view spacing are shown.
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Fig. 10. Performance Comparison between Optimal and Car&B Coded View and Quantization Level Selection Schemes

C. Comparing RD Performance of Bit Allocation Strategies

We tested the performance of our proposed bit allocatioategily using both sampling methods discussed in

Section 1lI-B, S samples to construct the cubic mod8&F §anpl es) and a single mid-point sampleri(d) to

bound average synthesized distortion, for the four Middifgbmage sequences. We also tested a simple constant-

QP schemeonst that selects all captured views for coding, i.e.,7 = N, and assigns a constant quantization

level to all pixel and depth maps of coded views.

In Fig.10, we see the performance of the bit allocation styias forPl asti ¢ and Lanpshadel, shown as
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Fig. 11. Performance Comparison between Optimal and Car&B Coded View and Quantization Level Selection Schemes

PSNR versus bitrate per captured view (including both pixel depth maps). First, we see that b&tlsanpl es
and m d have better RD performance thaonst over all bitrate regions—by up t6.80dB and 1.51dB for

Pl asti ¢ and Lanpshadel, respectively. This shows that correct selection of quatitn levels per frame
is important. Second, as bitrate decreasdsanpl es andm d selected fewer captured views for coding and
relied instead on decoder’s view synthesis of captured viffaur left-most points inPl asti ¢ and three left-
most points inLanpshadel of 8- sanpl es represented selections of uncoded views). This is alsodb®m
where8- sanpl es andni d out-performectonst the most, hence selection of captured views for coding i als
important for best RD performance. Finally, we observe thatRD performance differences betweersanpl es
and mi d are very small. Hence for complexity reasons, the less cexnpi d would be more preferable than
8- sanpl es in practice.

When generating RD curves usil®g sanpl es, we tracked the amount of computation performed using our
solution search strategy compared to a full trellis seapgr@ach. Essentially, we counted the number of times local
Lagrangian cos®,,, (¢», , pv, ) iS potentially updated in both search strategies, whei@- imanpl es evaluations
are avoided when nodes and edges are pruned during seatoh &Dttrellis. We found the computation savings
ranged from80% to 99% , with the maximum saving occurring at the right-most RD poin

In Fig. 11, we see the RD performance of competing bit aliooaschemes for sequencescks2 andWod1.

We see that the general trend is similar to the earlier twaeecgs; i.e., performance gain of our bit allocation
strategy8- sanpl es andm d over constant-QP schene®nst is more pronounced at low bitrate, when captured
views are skipped. The maximum gain in PSNR for these twoesseps ard .05dB and0.95dB, respectively. We
see also that the two sampling meth@&issanpl es andmni d produced very similar results.

To take a closer look at the solutions generated by our dlgonin d, we constructed Fig. 12. First, Fig. 12(a)
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Fig. 12.  Number of captured frames selected for encodingametdage QP for selected encoded frames as function of emdutiate for
woodl and| anpshadel.

shows the number of captured views selectedrbg for encoding as function of the encoding bitrate for image
sequencewodl andl anpshadel. We observe that at lower bitrate region, fewer number ofvsieere selected
for encoding. This is intuitive, since fewer number of enedd/iiews leads to smaller bit expenditure in general.
This is also the region whera d out-performecconst the most. This shows that when bitrate is more a concern
than synthesized view quality, selecting the right subseaptured frames for encoding is very important for good
RD performance.

In Fig. 12(b), we plotted the average QP of the selected esttoitws in solutions generated by d as function
of bitrate forwood1 andl anpshadel. We see that as bitrate decreased, the average QP becarser doaboth
texture and depth maps, which is intuitive. We see also thgeneraljmi d deemed texture maps as slightly more
important than depth maps, resulting in finer QP for textin@ntdepth in most generated solutions. Finally, we
observe that the depth map QP curves are not strictly moiogtos., there are cases when the QP becéimer
as the bitrate decreased. These correspond to solution® e texture map became coarser, or the number of
captured views decreased. Hence, we can conclude that#ystnonotonic search to derive one solution from a

neighboring one on the RD curve would not be RD-optimal.

VII. CONCLUSION

Towards the goal of finding a compact multview image repriegem, one that takes advantage of both efficient
texture and depth map coding tools at encoder and view ssisth@ol using depth-image-based rendering (DIBR)
at decoder, in the paper we presented an algorithm to sedpttired views for coding and quantization levels of
corresponding texture and depth maps in a rate-distori) ©Optimal manner. We first derive a cubic distortion

model that models synthesized view distortion between toded views. We then show that using monotonicity in
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predictor’s quantization level and distance, search cexifyl can be drastically reduced without loss of optimality
Experiments show that our selection scheme outperformeeuaidtic scheme by up t®.5dB in PSNR for the

same bitrate.

APPENDIX

We provide proofs for the two lemmas in Section V-D here.

Proof of Lemma 1:We prove by contradiction. Suppose shortest sub-path u@te(s; , p., )", ¢f > ¢ ., is
part of an end-to-end shortest path. That means capturadwyjds a coded view; letj, = v,,. If we replace sub-
path to(q;.;,pjk)jk with sub-path to(qjk,pjk)jk, synthesized intermediate views to the rightjpfand coded view

Jk+1 that depend on view,’s texture map will have no larger synthesized view distorid; or Lagrangian

ksJk+1

costo;, , 4, If ¢, is used instead o:f*.;, by monotonicity in predictor’s quantization level (15)ca(il6). Given
®;, (g5, pi) > ®;5, (4, pj.), we see that replacing sub-path(tg , p;, )7+ with sub-path to(g; , p;, )* will yield
strictly lower Lagrangian cost. A contradictionl

Proof of Lemma 2:We prove by contradiction. Suppose an optimal end-to-etidipaludes edgéy,,, , p,,, )’ —
(qe,pe). If we replace it with two edgeéqg,, , pu, )" — (qu,;Pw, )"+ — (ge, pe)S, the cost of traversing state
(qv, s v, )'"*1, considering intermediate synthesized vievss v,, < v < v, 41, and captured view,, .1, is smaller
than not traversing it by assumption. Moreover, Lagrangiast of coded view¢ and distortion of synthesized
views to the right of viewy,, that predicted from view,, will not increase predicting view,,,, instead with
same quantization levels due to monotonicity of predistalistance (17) and (18). Hence a path using the two

replacement edges will yield strictly lower cost. A conicgidn. [J
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