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3 Parallel Algorithms- with- Processor Failures -and Delays

3 Jonathan F. Buss' Paris -C. Kanellakis' Prabhakar L. Ragde* Alex A. Shvartsmnan

August 6, 1991

3 Abstract

We study efficient deterministic -parallel algorithms- on two models: restartable fail-stop
CRCWPRANs and strongly asynchronous PRAMs. In the first model. synchronous processors
are subject to arbitrary stop failures and restarts determined by an on-line adversary and involv-
ing loss of private but not shared memory: the complexity measures are comnpleted -work (where
processors are charged for completed fixed-size update cycles) and overhead ratio (completedI work amortized over necessary work and failures). In the second- model, the result of-the com-
putation is a serializaton of the- actions of the processors determined by an -on-line adversary;
the complexity measure is total work (number-of steps taken by all processors). Despite theirI differences the two models share- key algorithmic techniques.

We present new algorithms for the Write-All problem (in which P processors write ones into
an array of size N) for the two models. These algorithms can be used to implement a simulation
strategy for any N processor PRAM on a restartable fail-stop P processor CRCW PRAM-such
that it guarantees a terminating execution of each simulated M processor step, with Oflog! NV)
overhead ratio. and O(minfiV + P log2 N -I M' log N, .N . PO-59)) (sub-quadratic) completed
work (where If is the number of failures during this step's- simulation). We also show that the

Write-All1 requires N - P + £2(P logP) completed/total work on these models for P- < N.
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N| I INTRODUCTION

I1 Introduction

1.1 Context of this work

I The model of parallel computation known as the Parallel Random- Access Machine- or .PRAM
[FW 78] has attracted much attention-in recent years. Many- efficient and optimal algoritho, have
been designed for it;-see the surveys [EG t8, KR 90]. The PRAM is a convenient abstraction that
combines the power-of parallelism with the simplicity of a RAM, but it has several unrealistic
features. The PRAM requires: (1) simultaneous -access (requiring significant bandwidth) to- a
shared -resource, namely memory; (2) global processor synchronization; and (3) perfectly reliable
processors, -memory- and interconnection between them-. The gap between the abstract models
of parallel computation and realizable parallel- computers is being bridged by current research.
For example, memory access -simulation in other architectures is the subject of a large body of
literature surveyed in [Val 90a]; for some recent work see [IIP 89- Ran 87, Upf 89]. Asynchronous
PRAMs are- the-subject of [CZ 892 CZ-90, Gib 89, MSP 90, Nis 90]. -Ifere-we address the issues of
synchronization- and -reliability of PRAM processors.

In [KS 89] it-is shown that it is possible to combine efficiency and fault-tolerance in many key
IIRAM algorithms in-the presence of arbitrary dynamic fail-stop processor errors (when-processors
fail by stopping and do not perform any further actions). The key to such algorithm design is the
following fundamental problem, called the Write-All problem:

I Given a P-processor PRAM and a O-valued array
of N elements, write value I into all array locations.

This problem was formulated to capture the essence of the computational progress that can be
natu-ally accomplished in unit time by -a PRAM (when P = N). In the absence of failures, this3 problem is solved by a trivial and optim;I parallel assignment. However, it is not obvious how
to design solutions that are efficient in the presence of failures or asynchrony. [KS 891 give an
algorithm for the Write-All problem that does a total of O(N log " N) work.

I The iterated TWrite-All paradigm is employed (independently) in [KPS 90] and [Shv 89] to
,,xtend the results of [KS 89] to arbitrary PRAM algorithms (subject to fail-stop errors without
r,,tarts). In addition to the general simulation technique, [KPS 90] analyzes the expected behavior
of several solutions to l11rite-All using a particular random failure model. [Shy 89] presents a
,Ioterininistic optimal work execution of PRAM algorithms subject to worst case failures given3 parallel slackness (as in [Val 90b]).

A simple randomized algorithm that serves as a basis for simulating arbitrary PRAM-algorithms
,n an asynchronous PRAM is presented in [MSP 90]. This randomized asynchronous simulation has
vory good expected performance for the Write-All problem when the adversary is off-line. Recently,
'NIPRS 90] further refined the results-of [KPS 90] to produce an approach that leads to constant
,'Xpocted slowdown of PRAM algorithms when the power of the adversary is restricted. [KPRS 90]
:iko improved the fail-stop deterministic lower and upper bounds of [KS 89] (by log log N factors).

The work presented here deals with dynamic patterns of faults and the dynamic assignment of
processors to tasks. Processors in our algorithms have very little private information and commu-
iiicate via shared memory. For recent advances on coping with static fault patterns. see [I* 90].

U
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I INTRODUCTION 2

We consider fault granularity at the processor level; for recent work on gate granularities, see
[AU 90, Pip 85, Rud 85]. The general problem of assigning active processors to tasks has similari-
ties to the problems of resource management in a distributed setting, such as distributed controllers
of [LGFG 86] and [AAPS 87]. Fault-tolerance of particular network architectures is also studied in
[DPPU 86]. However, the distributed computation models, the algorithms, and their analysis are
-quite different from the parallel setting studied here.

1.2 Contributions of this paper

-lIn this paper, we extend the fail-stop model of [KS 89] by allowing arbitrary dynamic restarts of
processors (with loss of private memory). We also consider a model in which private memory is
safe, but the interactions of processors with each other through shared memory can no longer be
assumed to be synchronous. Although the models differ in their formal definition, some algorithms
work equally well -in both- models.

In the restartable fail-stop model, defined precisely in Section 2.1, PRAM processors are sub-
ject to on-line (dynamic) failures and restarts. We con:entrate on the worst case analysis of the
completed work of deterministic algorithms -that are subject to arbitrary adversaries, and o-1 the

overhead ratio, which amortizes the work over the necessary work and failures/restarts. In this
model, processors fail and then restart in -a way that makes it possible tc. develop terminating algo- I
rithms, while relaxing the requirement that-one processor must never 'l. (which was necessary in
the fail-stop without restart model). To guarantee algorithm termination-and sensible accounting of
resources, we introduce an update cycle, that generalizes the standard PRAM read/compute/write
cycle. In the absence of update cycles, a thrashing adversary exploiting the separation of read and
write instructions in PRAMs can force quadratic work for any Write-All solution. The restartable
PR,\M model is defined- in Section 2.1, which also -contains a discussion of the -technical choices i
made.

The strongly asynchronous model is defined in Section 2.2. In this r.,odel, we use Lamport's
notion of rerializability [Lam 86], which states that -the effect of a parallel computation should be
consistent with some serialization of atomic processor actions. We consider the serialization to
he chosen by an on-line adversary, and use atomic reads and atomic writes (other primitivts are
,'onsidered -as well). This model is related to other models known-as asynchronous PRAMs [CZ 89,
CZ 90, Gib-89, MSP 90, Nis 90]; perhaps the closest of these is [MSP 90], although this reference
considers only off-line (pre-specified) adversaries and randomized algorithms. The relationaip of
the two models in Sections 2.1 and 2.2 is discussed in Section 2.3; some practical motivation is .iso I'
discussed in Section 1.3 below.

In Section 3. we present lower bounds for the Wrile-All problem. When reads and writes
are accounted together in update cycles of the restartable fail-stop model, the quadratic lowe;
hound mentioned above no longer applies. Instead, we show-that the Write-All problem of size
requires N - P + fl(Plog-P) completed work for P < N. This bound- also holds in the strongly I
asynchronous model. It holds when processors can read and locally process the entire shared
memory at unit cost. Under these assumptions it is the tightest possible bound. An fQ(N og N)
lowpr bound when P = N was recently showy in [KPRS 90] using a different technique and different
assumptions for a fail-stop no-restart model. Our lower bound results are of interest because:
(a) they demonstrate that anly improvement to the lower bound must take account of the fact that
processors can read only a constant number of cells in constant time, and (b) they present a simple



SI INTRODUCTION 3

K:processor allocation strategy that we use to advantagein Section 4. We also demonstrate a lower
bound of N + Rl(P logNJ) (when 3 < P < N) for tihe strongly asynchronous PRAM, when certain[
atomic primitives- (such as- compare- and-swap or test-and-set) are used to access shared- memory.

In Section 4 we present three efficient algorithms for the Write-All problem. The-first (algorithm
V) -is a modification of the algorithm developed in [KS 89] for the fail-stop no-restart model, and
runs on-the restartable fail-stop model with completed work-O(N + P log 2 N + Al log N), where M
is the number of failures. This-algorithm-is based on an analysis of the lower bounds in Section 3.
The second (algorithm X)- runs on both- models in time O(N. Pio2-2). The third (algorithm T)
runs on both models in the case P = 3, using N + O(log N) compare-and-swap operations on the
strongly- asynchronous model and N + O(log N) update cycles in the fail-stop -restart model. This
matches- the lower bound when three processors are used.

In Section 5, we show -how to use algorithms V and X to simulate any N processor PRAM
on a restartable fail-stop P processor CRCW PRAM. A terminating execution of -each simulated
V processor stop is guaranteed with O(log" N) overhead ratio. and (sub-quadratic)- completed

work O(min{N + P log 2 N + Al log N, N _ p1og 2 1)), where Al is the number of -failures during
t liesimulation of the particular step. The strategy is work-optimal when the number of simulating
processors is P < NI log2 N and the total number of failures per each simulated step is O(N/ log N).

3 'The lower bounds presented in Section 3 apply to the worst-case work of deterministic algorithms
and to the expected work of randomized and deterministic algorithms. Randomization does not
C'em to help, given on-line (non-prespecified) patterns of failures. For example, it is easy to
construct on-line failure and restart (resp. no-restart) patterns that lead to exponential (resp.
quadratic) in N expected performance f:r the algorithms presented in [MSP 90]. These stalking
adversaries are described in Section 6, where we also conclude with some open problems.

Preliminary versions of this work were reported in [BR. 90, KS 91].

I 1.3 Motivation and relation to physical systems

S 11Tw models we present and study are intended to capture certain features of actual systems.

Processor delay is a feature of any multi-user environment, in which processing priorities are not
-lwcifi(-d by a single user. Processing time may be required at a moment's notice by another user
or by the underlying operating system.

Processor failure may occur either because of a. physical fault or because another entity in the3 system preempts processing time without saving the old state.

Ctommunication delay is a well-known feature of multi-processor systems. Small communication
hays are compatible with synchronization if the step time is sufficient for the longest possible
-.ccss time. but tynchronizing by counting tip to the longest possible access time eliminates any

advantages due to caching and similar techniques.

Communication failure may be due to memory operations of other processors. The interacting
opraitons need not involve the same memory module. If the communication network reports the
railure of an operat;on, the processor can re-attempt the ar.cess. and the situation can be modelled

-I a communication delay. If unannounced failures can occur, an algorithm must either explicitly

U
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Figure 1: A robust fail-stop multiprocessor.

check its write operations or ensure inmsome other way that omission of a write is not detrimental
to performance.

-In this paper, wetreat delay and/or failure as occurring to the processors only. If memory U
operations are atomic-and serializable, they may be assumed to be instantaneous, and the commu-
nication delays or access failures may-be charged to the processor.

An architecture for a restartable fail-stop multiprocessor: The main goal of this work is to
qt udy algorithmic techniques that enable efficient parallel computation on realizable multiprocessor
;ystems. We now suggest one way of realizing the abstract model of computation where processors
are subject to fail-stop errors and restarts, i.e., the model formalized in Section 2.1.

Engineering and technological approaches exist that allow implementing electronic components
and systems that operate correctly when subjected to-certain failures (for examples, see [IEEE 90,

Cri 91J). The technologies cited in thenext paragraph are instrumental in providing basic hardware
fauIt-tolerance for a foundation on which the algorithmic-and software fault-tolerance can be built.

emiconductor memories are the essential components of shared memory parallel systems.
Nlemories are routinely manufactured with built-in fault tolerance u mng replication and coding
,-chniques without appreciably degrading performance (see the surey [SM 84]). Interconnection
,', works are typically used in a multiprocessor system to provide communication among processors,
memory modules and other devices (e.g., as in the Ultracomputer [Sch 801). The fault-tolerance of
inerconnection networKs has been the subject of much work in its own turn. The networks are
Mad, more reliable by employing redundancy (see the survey [AAS 87]). A combining interconnec-
, nn network that is perfectly suited for implementing synchronous concurrent reads and writes is
frrmally treated in [KRS 88]. Finally, fail-stop processors are formally presented and justified in
[SS 83].

The abstract model that we are studying can be realized (Figure I j in the following architecture,
using the components-we have just discussed:

There are P fail-stop processors.each with a unique address and some amuount of local mem-
ory. Processors are unreliable.

2. There are Q addressable shared memory cells. The input of size N < Q iz, stored in shared
memory. This memory is assumed to be reliable.

I Interconnection of processors and memory is provided by a, synchronous combining intercon-

nection network. This network is assumed to be reliable.
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With this architecture,-our-algorithmic techniques become completely applicable: i.e., the algo-
rithms and simulations we develop will workcorrectly, and within the complexity bounds=(under
the unit cost memory access assumption) for all patterns-of processor failures and restarts when
the underlying components are-subject -to the failures within their respective design parameters.

I 2 Models of computation

2.1 The restartable fail-stop CROW PRAM

We use as a basis the PRAM model [FW 781, where all concurrently writingiprocessors write the
same value (COMMON CRCW). Processors are subject to stop failures and restarts as in [SS 83].3 Our algorithms are described using the forall/parbegin/parend parallel construct.

i. There are P synchronous processors. Each processor has a unique permanent identifier (PID)3in-the range O,...,P- 1, and-each- processor has access to P and its own 1ID.

2. The global memory accessible to -all processors is denoted as shared; in addition, each pro-
cessor has a constant-size local memory denoted as private. All memory cells are capable of
storing O(logmax{N', P}) bits on inputs of size N.

3. The input is stored in N cells in shared memory, and the rest of the shared memory is cleared
(i.e., contains zeroes). The processors have access to the input and-its size -.

In all our algorithms:

The PRAM processors execute sequences of instructions -grouped in update cycles. Each up-
late cycle consists of reading a small fixed number of shared memory-cells (e.g., -1). performingIome fixed time computation, and writing a small number of shared memory cells (e.g., 2).

The parameters of the update cycle, i.e., the number of read and-write instructions, are fixed,
hum depend on the instruction set of the PRAM; see [FW 78] for a typical PRAM instruction set.
Th values quoted (4 and 2) are sufficient for our exposition. It is an interesting question whether
%,maller values would suffice to implement efficient algorithms.

We use the fail-stop -with restart failure model, where time instances are the PRAM synchronous
,'lock-ticks:

1 - A failure pattern F (i.e., failures and restarts) is determined by an on-line -adrersary, that
knows everything about the algorithm and is unknown to the algorithm.

2 - Any processor may fail at any time during any update cycle, or having failed it may restart

at any time. provided that:

3 (i) at any time at least one processor is executing an update cycle that successfully completes;

(ii) single bit writes are atomic, i.e., failures can occ, r before or after a write of a, single bit.

3 Failures do not affect the shared memory. but the failed processors lose their private memory.
Processors are restarted at their initial state with their iiD as their only knowledge.

U



2 MODELS OFCOMPUTATION 6

The failure and restart: patterns are-syntactically defined as follows:

Definition 2.1 A failure pattern F is a set of triples <tag, 1ID, t > where tag is either failure
indicating processor failure, or restart indicating a processor restart. PID is the processor-identifier, 3
and-t is the time indicating when tie processor-stops or restarts. The size of the failure pattern F
is defined as the cardinality IFI. 0

Forisimplicity-of presentation. we-assume that the shared memory writes of O(logmax{N, P})
lit words are atomic. Algorithms using this assumption can be easily converted to use only single
bit atomic writes-as in [KS-89].

We investigate two natural complexity measures, completed work and overhead ratio. The
,ompleted work measure generalizes the standard Parallel-time x Processors product and the
available processor steps of[KS 89). The overhead ratio is an amortized measure.

Definition 2.2 Consider an algorithm with P initial processors that terminates in parallel-time r 3
after completing its task on some input data I and in the presence of a failure pattern F. If
Pif(, F) -< P is the number:of processors completing an update cycle at time i. and c is the time
required to complete one update cycle, then we define S(I, r. P) as: 1

S(I,F,P)=cZ Pi(I,F). 0

Update cycles are units of accounting. They do not constrain the instruction set of the PRAM,
and-failures can occur between tie instructions of an update cycle. However, in S(I. F. P) the pro-
ressors are not charged for the read and write instructions of update cycles that are not completed.

Definition 2.3 A P-processor PRAM .algorithm on any input data I of size III = N, and in the I
presence of any pattern F of failures and restarts of size IF _< .1l.

" uses completcd ,cork S = ma.fp = n.x{S(J. F, P)} , and
I.F

" lhas overhcad ratio a-= ajxr.,p = u S(h F-2 P)S .f p } I

Consider a definition of total twork S'(I. F. P) that also counts incomplete update cycles. Clearly
,1. r. P) _ S(I, F, P)+cIFI. Thus. using S' does asymptotically affect the measure of work (when I
F is very large), but it does not asymptotically affect or.

One might also generalize tile overhead ratio as " I.-.P[ where T('11) is tile time complexity 3
-f Ihe best sequential solution known to date for the particular problem at hand. For the purposes
'4 this exposition. it is sufficient to express a in terms of the ratio SI.F.P). This is because for

111T111
[Vrite-All1 (by itself and as used in tile simulation) T(IlI) = 0(111).

Now let us briefly comment on tIle technical choices made in Definitions 2.2 and 2.3. I
I
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5I Work vs. overhead ratio: For arbitrary processor failures and restarts. the completed work
measure S (or-the total work S') depends on the size N of the input I, the number of processors
P. and the size of the failure pattern-F. The-ultimate performance goal for a parallel fault-tolerant
algorithm is to perform the required computation at a work cost as close as possible to th-e work
performed-by the best sequential algorithm known. Unfortunately, this goal is not attainable when
an adversary succeeds in causing too many processor failures -during a computation.

Example-A: Consider a Write-All solution, where-it takes a processor one itistruction to recover
from a failure. If an adversary in a failure pattern F with the number of failures and restarts

IlP =1 (Nr + ) for c > 0, then the completed work will be Q(Nl+'). and thus already non-optimal
and potentially large. regardless of how-efficient the algorithl is otherwise. Yet the algorithm may
be extremely efficient, since it takes-only one instruction -to handle a failure. 0

This illustrates the need for a -measure of efficiency that is sensitive- to both the size of the
input N, and the number of failures and restarts ,I = IF1. When ,I = O(P) as in the case of
lhe stop failures without restarts in [KS S91, S properly describes the algorithm efficiency, and
a = O(L- :). However, when F can be large relative to N and P (as is the case when restarts
are allowed) a better reflects the efficiency of a fault-tolerant algorithm. Recall that a is insensitive
to the choice of S or S'. and to using update cycles, as a measure of work. However. update cycles
'are necessary for the following two reasons.

Update cycles and termination: Our failure model requires that at any time, at least one
processor :, executing an update cycle that completes. (This condition subsumes the condition ofIKS .;9] that one processor does not fail during the computation). This requirement is formulated
in terms of update cycles and assures that.some progress is made. Since the processors lose their
rontext after a failure, they have to read something to regain it. Without, at least one active update
qcle completing, the adversary can force the PRAM to thrash by allowing only these reads to be
performed. Similar concerns are discussed in [S 831.

5 Update cycles as a unit of accounting: In our (einition of completed work we only count
,completed update cycles. Even if the progress and termination of a computation is assured (by
always completely executing at least one update cycle), but the processors are charged for incom-
plete update cycles, the work 5' of any algorithm that simulates a single N processor PRAM step
i. at least Q(P- N. The reason for this quadratic behavior in S' is the following simple and rather
tu||interesting thrashing adversary.

Example B: We evaluate the work of any solution for the Write--Ill problem under the arbitrary
failure and restart model. Consider the standard PRAM read-compute-write cycle (if processors
S hin writing without reading. a simple modification of the argument leads to the same result).
I thrashing adversary allows all processors to perform the read and compute instructions; then it

fails all but one-processor for the write operation. Failed processors are then restarted. Since one
write operation is performed per cycle. .V cycles will be required to initialize N array elements.
Each of the P processors performs O(N) instructions which results in work of O(P- V). 3

By charging the processors only for the completed fixed size update cycles we do not charge for
1 hrashing adversaries. This change in cost measure allows sub-quadratic solutions.

I
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2.2 The strongly asynchronous PRAM 3
Te strongly asynchronous PRAM model departs from the standard PRAM models in that the
processors are completely asynchronous. The only synchronizing assumption is that reads and
writes to memory are atomic and serializable, in the sense of Lamport (Lam S61. Serializability
means that the-result of a computation is consistent with some total ordering of atomic actions.
(Note that this-does not mean that the actions are in fact ordered this -way. but that the effect-of
t he computation is as if they were.) This is a restriction on the possible-outcome of simultaneous
events. With asynchronous processors, the- distinction between exclusive writes and concurrent
writes disappears. Among the traditional synchronous PRAM models, the ARBITRARY CRCW 3
PRAM is closest to the strongly asynchronous model.

One important situation that is modelled by the strongly asynchrorejus PIM is the case
in which the processors are "nearly synchronous." If identical processors access shared memory I
across a common communication channel or network, then they %iil run at approximately the same
• peed, but the precise interleaving of memory operationls my ",et be under the direct control of

fhe processors. To model the lack of control over the interleaving, we=posit an on-line adversary
that chooses the interleaving to maximize the cost of the tumputazion. The adversary is free to
delay any processor for any length of time-

Definition 2.4 We define an interleaving to be a sequence of processor numbers, each in the range
(0; P - 1]. An execution of a PIUM -algorithm consistent with a particular interleaving is the 3
execution of steps by the processcrs in the order specified by the interleaving. 0

Definit;on 2.5 The measure of the efficiency ofastrongly asynchronous PRAM is the tozal number 3
of steps completed. which we term the total work of the computation (expressed in terms of P and
the input size A). To define total work. we assume that each processor executes a- halt instruction
when it terminates work on the algorithm. In order for the algorithm to be correct. it must be the I
,-ase that at this point, the postconditions for the algorithm are satisfied. The total work of an

algorithm with respect to a given interleaving is the length of the smallest halt-free prefix of that
interleaving. The total work required by an algorithm is then the maximum total work over all I
possible interleavings of the processors. (.Note that in this worst case. all processors will be ready
,o execute halt instructions)O0

Previous work along these lines has assumed either that randomized algorithms can be used
In defeat off-line adversaries ([MSIP 901) or that interleavings are chosen according to some proba-
hilistic distribution [CZ 90. Nis 90J). Some of the models in these last two papers are similar to
-mir restartable fail-stop model. but failures are probabilistic and restarts do not destroy private
'wmenory. Because of our worst case assumptions, these analyses are inappropriate. Furthermore.
,otions of time used in [CZ 901 do not work here. because our scheduling adversary may introduce
arbitrarily long delays.

The notion of ,rail-frec asynchronous computation, in %hich an one processor terminates in a 3
'h'ite number of steps regardless of the speeds of the other processors. is introduced in (11er $1. In
-he strongly asynchronous PRAM. by definition any algorithm with bounded work must be wait-
Cr,,". The same paper shows that atomic reads and %rites are insufficient to solve two.proce.sor

I
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consensus, and demonstrates a hierarchy of stronger primitives for -accessing memory (such as- test-
and-set -or- compare-and-swap). A later paper ([AH 90]) demonstrates wait-free data structures
using only atomic reads and writes.

-Finally, we note-that the strongly asynchronous model is-a very general one, and it is subject
to fewer definitional restrictions than is its fail-stop restartable counterpart. However, as a result
nf such restrictions, the fail-stop model can be used for general synchronous PRAM simulations (asU ~vp-show in Section 5), while the strongly asynchronous model-cannot be used for such simulations
due to impossibility results such as (Her 88].

1 2.3 Comparison of the models

On- the surface, the two models of-restartable fail-stop processors-and- of asynchronous processors
I arordesigned for quite different- situations. The fail-stop model treats failure as an abnormal event,

which occurs with sufficient frequency that it cannot be-ignored. The asynchronous model treats
(lelay as a normal occurrence. Nevertheless, the -two models are closely- related.

Consider an execution of an asynchronous algorithm. Because the events are serializable, we
imay assume without loss of generality that the events occur at discrete times. In other words, a set
of time slices is fixed in advance, and the scheduling adversary chooses at each-time slice whether or
iiot-each processor will start running during that time slice. From this viewpoint, the two models

I (liffer in the following ways.

1. Processors-that miss a time slice lose their internal state in the restartable fail-stop case, and
keep their internal state in the asynchronous case.

I 2. The adversary can stop a processor after any memory operation within a time slice in the
restartable fail-stop case while this has no effect on the asynchronous case.

.3. The time slices are long enough for several memory operations ii the restartable fail-stop case
but allow only a single operation in the asynchronous case.

From-the algorithmic point-of view, the difference between the-models concerns the number of
failures during an execution of the algorithm. In the restartable fail-stop model, failure is treated

a significant event, and the number of failures may be taken into account when measuring the

,(ficiency of the algorithm. In the asynchronous model, delay is the rule rather than the exception,
;n iid the number of delays is not a particularly meaningful quantity. A normal execution may involve
imany delays-of each processor between each consecutive step.

An algorithm that performs a bounded amount of work for any number of failures, and has-a
imall amount of state information, is suitable for either model. An algorithm whose performance

(ogrades significantly as the number of failures increases, however, may only be-suitable for the
rfstartable fail-stop model. Algorithms TV and V (as presented in Section .1) are examples of the
latter case; algorithms X and T exemplify the former case.I

I
I
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3 Lower bounds for the Write-All problem

3.1 Lower bounds with-memory snapshots I
As we have shown in Example B in Section 2.1, without the update- cycle accounting there is
a thrashing adversary that -exhibits a quadratic lower bound for the Write-All problem in the

rosrartable fail-stop model With the update cycle accounting -and for -the asynchronous model,
we show N - P + fl(PlogP)- work lower bounds (when P < N) for both models, even when the
processors can take unit time memory saapshots, i.e., processors can read- and locally process the
entire shared memory at-unit cost.

Theorem 3.1 Given any P-processor CRCW PRAM algorithm-that-solves the Write-All problem
of size N (P < N), an-adversary (that can cause arbitrary processor failures and restarts) can force
the algorithm to perform N - P + Q(Plog P) completed work steps.

Proof: Let Z be any algorithm for the Write-All problem subject to -arbitrary failure/restarts
using update cycles. Consider-each PRAM cycle. The adversary uses-the- following strategy:

Let U > 1 be the number -of unvisited- array elements. For as long a. U > P, the adversary
induces no failures. The work:needed to visit N - P array elements when-there were no failures is
at least N - P.

As soon as a processor is-about to visit the element N - P + 1 making U :5 P, the adversary
fails and then restarts all N processors. For -the upcoming cycle, the adversary determines how

lhe algorithm assigns processors -to write to array elements. By an averaging argument, for any
processor assignment to the U elements, there is a set of [IJ unvisited elements with no more
,ian [TI processors assigned to them. The adversary fails these processors, allowing all- others to

proceed. Therefore at least 2EJ processors will complete this step having visited no more than half
of the remaining unvisited array locations.

This strategy can be continued for at least log P iterations. The work performed by the algo-
rithm will be S > N - P+ 1 J logP = N- P + f(PlogP). 0

\'ote that the bound holds even if processors are only charged for writes into the array of size N
m.,d do not have to only write the value 1. The simplicity of this strategy ensures that the results
hold in the strongly asynchronous model.

Theorem 3.2 Any N-processor strongly asynchronous PRAM algorithm that solves the Write-All
1)roblem of size N has total work N - P + f(P log P).

Proof: Any possible execution of an algorithm on the restartable fail-stop model can be duplicated
1 vn appropriate interleaving on the strongly asynchronous model. Thi argument in Theorem 3.1
W11rk5 even if failed processors do not lose local state, and so the same strategy will work in the

strongly asynchronous model 0

This lower bound is the tightest possible bound under the assumption that the processors can
,,mi and locally process the entire shared memory at unit cost. Although such an assumption is
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very strong- we present the matching upper bound -for two reasons. First, it demonstrates that
any improvement to the lower bound must- take-account of the-fact-that processors-can read only a
constant number:of cells per update cycle. Second, it-presents a-simple processor allocation strategy

*; that we use to advantage in- the-next section.

Theorem- 3.3 If processors can- read and- locally process the-entire shared memory at -unit cost,
then asolution -for the Write-All problem in the restartable -fail-stop model can be constructed
such that its completed work using P processors on-input ofsize N is S = N - P + O(PlogP)-
when P < N.

Proof: The processors follow the following simple strategy: at each step that a processor PID is
active,-it reads the N-elements of the-array x[1..N] to be--visited. Say U of these elements are still
not visited.- The processor numbers these -U elements from 1 to U -based on their -position in the
array, and assigns itself to the ith unvisited element such- that-i = rPID • -l. This achieves load
balancing with no more than f I processors assigned to each unvisited element. The reading and-
local processing is done as-a snapshot at unit cost.

We -list the elements of -the Write-All array -in ascending order according to the time -at which
I t he elements are -visited (ties are -broken arbitrarily). We -divide this list into adjacent segments

numbered sequentially starting with 0, such that the segment 0 contains V = N - P -elements,
andegmnt 1contains = elements, for j 1-, .. *m and for some m < vfT Let

Uj be the least possible number of unvisited elements when processors were being assigned to theI
elements of the jth segment. Uj. can -be -computed -as U = N - E=- V,. Uo is of course N, and
for j -> 1, Uj = P - i=Vi >_ P - (P - ) = ". Therefore no more than [] processors were

I assigned to each -element.
The work performed by such an algorithm is:

S < t J +0 )] 1= o+O p =1 -P+O(PlogP)

I A similar situation holds in the strongly asynchronous model.

Theorem 3.4 If processors can read and locally process the entire shared memory at unit cost,I hen a solution for the Write-All--problem in the-strongly asynchronous model can be constructed
with total work N - P + O(PlogP) using P processors on input of size N, for P < N.

Proof: We use the same algorithm as in- the previous proof. The proof itself applies to the strongly
nisynclironous model with the following- modifications: -(1) one unit of total work is charged for each
rad and the write that (potentially) follows; (2) as soon as a processor performs a read, it is
,'harged one unit work; this-is done to take care of the situation when a processor performs a write
only after all elements in a given segment have been initialized. 0

I
I
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3.2 Lower bounds with test-and-set operations

Under certain assumptions on the way that memory is accessed in the strongly asynchronous model,
wo can prove a different lower bound. Assume for the moment that, instead of atomic reads-and
writes, memory is accessed by means of test-and-set operations. That is, memory can only-contain
zeroes and ones, and a single test-and-set operation on a-memory cell sets the value of that cell
to I and returns-the old value of the cell. (We will discuss shortly how this assumption can be
generalized.)

Theorem 3.5 Any strongly asynchronous PRAM algorithm for the Write-All problem-which uses
test-and-set as an atomic operation requires N + R(P log(N/P)) total work, for P > 3.

Proof: Consider the following class of interleavings. A round will be a length of time in which
processors take one step each in PID order; formally, it is -the sequence of PIDs (1, 2, ... P). We
will run the algorithm in phases. To define a phase, suppose that U cells out of the original- N
,omain unset at the beginning of a phase. We imagine running the algorithm in rounds until a
collision occurs; that is, until a test-and-set operation is done on a cell that is already set to one.
Suppose this happens in the tth round. The actual definition of the phase depends on the nature
of the collision; there are two cases.

If the cell involved in the collision was set in this round, then it was initially set by some
processor with PID i, and set again-by some processor with PID j. Then to define the phase, -we-let
only processors i and j alternate steps, instead of running all processors; that is, the phase consists
of the PIDs i, j repeated t times. A total of 2t steps aretaken and one of them is wasted work.

On the other hand, if the cell was set in a previous round, then consider the processor with-PID-
j that set it in this round and let only this processor take steps. That is, the phase consists of the I
PID j repeated t times, for a total of t steps and one wasted step.

We now note that t must be at most rUIPl, and so a-recurrence for the amount of wasted work
IV(U) is W(U) _ I + V(U - 2[U/P] + 1). By induction, we can show that W(U) _ cPln(U/2P)
or a suitable constant c > 0; the result follows by noting -that unwasted work N is necessary.

The trivial base case of the induction is U < 2P. Now suppose that the inequality W(x) _
,'P ln(/2P) holds for all integer x < U. By the induction hypothesis, we have W(U) cP ln((U -
2 frU/P] + 1)/2P) > 1 + cPln(U/2P) + cPln(1 - 2/P - 1/U). It thus suffices to prove 1 + cPln(1 -
2/P - 1/U) > 0. But

I + cP ln(1 -- 2/P - 1/U) _ 1 + cP ln(1 - 5/(2P)) _ 1 + cP(-.5/(2P - 5)) _ 0.

Tlhe first inequality is valid because U > 2P; the second -inequality uses lIn(1 - z) > -z/(1 - z),
vhich can be seen by comparing power series; the third inequality is valid for P > 3 and any choice
of c < 1/15. No attempt was made to optimize the constant c. 13

The argument used in this lower bound can be applied equally well if the atomic operation is
,-ompare-and-swap, or to any set of atomic read-modify-write operations where the read and writes
•i ro constrained to be to the same cells. It also applies to atomic read and atomic write, but in this
east there is no known matching upper bound, whereas algorithm T (presented in the next srction)
,-in match the lower bound (for some choices of atomic operation) in the case P = 3. The above
proof technique also applies to the fail-stop restartable model, when each update cycle accesses
only one array element used by the Ifrite-All problem.

I
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4 Algorithms for the Write-All problem

The original motivation for studying the Write-All problem was that it intuitively captured the
.. ,,sential nature-of a single synchronous PRAM step. This intuition was madeEconcrete- wlen it-was
ihown-([KPS 90, Shy 89]) how to use any algorithm for the Write-All problem in general PRAM
simulations. This application is discussed in the next section; in this section, we-will present new
algorithms-for the Write-All- problem.

In what follows,-we assume that-the number of array elements N and:the number of processors
P are powers of 2. Nonpowers of 2 can be handled using conventional- padding techniques. All
logarithms are base 2.

4.1 Algorithm V: a modification-of a no-restart algorithm

Algorithm W of [KS 89] is an efficient fail-stop-(no-restart) Write-All solution. The algorithm -uses
two full binary trees-as its basic data-structures (the processor counting and the progress measure-Imont trees). The algorithm uses an iterative approach in which all active processors -synchronously
execute the-following four phases:

\VI: Processors are counted and enumerated using-a static bottom-up, logarithmic time traversal
of the processor counting tree data structure.

W2: Processors are allocated to the unvisited array locations according to a divide-and-conquer
strategy using a dynamic top-down traversal of the progress tree data-structure.

\\'3: Array assignments are done.

W4: Progress is evaluated by a dynamic bottom-up traversal of the progress tree data structure.

This algorithm has efficient completed work when subjected to arbitrary failure patterns without
r,,T arts. It can be extended to handle processor restarts by introducing an iteration counter, and
having the revived processors wait for the start of a new iteration. However, this algorithm may
n, terminate if the adversary does not allow any of the-processors- that were alive at the beginning
of an iteration to complete that iteration. Even if the extended algorithm were to terminate, its
completed work is not bounded by a function of iV and P.3 In addition, the proof framework of [KS 89] does not easily extend to include processor restarts:
,ho processor enumeration and allocation phases become inefficient and possibly incorrect, since no
icurate estimates-of active processors can be obtained when the adversary can revive any of -the
failed processors at any time.

On the other hand, the second phase of algorithm IV can implement processor assignment (in a
manner similar to that used in the proof of Theorem 3.3) in O(logJN) time by using the permanent
Isrorossor PID in the-top-(lowh divide-and-conquer allocation.- This also suggests that the processor
(,,neration phase of algorithm W does not -improve its efficiency when -processors can be restarted.

Therefore we present a modified version of algorithm IF, that we call V. To avoid a complete
rosiatement of the details of algorithm V. the reader is urged to refer to [KS 89].

V uses the data structures of the optimized algorithm IV of [KS 891 (i.e., full binary trees
witIt leaves) for progress estimation and processor allocation. There are log N array elements

I
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associated with each leaf. When using Pprocessor such that P > N on such data structures, it I
is sufficient for each processor to take-its PID modulo - to assure that there is a uniform initial
assignment of at least LP/LJ and no-more than Plo "V] processors to a work element. 3

Algorithm V is an iterative algorithm using the following three phases.

VI: Allocate processors using P IDs in a dynamic top-down traversal of the progress tree to as-sure
load balancing (O(logN) time).

V2: The processors now perform work at the leaves they reached in phase V1 (there are log N
array elements per leaf).

V3: The processors begin at the leaves of the progress tree where they ended phase V2 andupdate
the progress tree dynamically, bottom up (O(log N) time).

Processor re-synchronization after a-failure and a restart is an important implementation detail.
One way of realizing processor re-synchronization is through the utilization of an iteration wrap- I
around counter that is based on the synchronous PRAM clock. If a processor fails, and then is

restarted, it waits for the counter wrap-around to rejoin the computation. The point at which the
counter wraps arournd depends on the length of the program code, but it is fixed at "compile time ' .

Analysis of algorithm V:

We now analyze the performance of this algorithm first in the fail-stop, and then in the fail-stop
and restart setting.

Lemma 4.1 The completed work of algorithm V using P < N processors that are subject to
fail-stop errors without restarts is S = O(N + P log2 N).

Proof: We factor out any work that is wasted due to failures by charging this work to the failures.
qince the failures are fail-stop, there can be at most P fdl;lures, and each processor that fails can
waste at most O(logJN) steps corresponding to a single iteration of te algorithm. Therefore the
work charged to the failures is O(P log N), and it will be absorbed by the rest of the work.

We next evaluate the work that directly contributes to the progress of the algorithm by distin-
guishing two cases below. ib each of the cases, it takes O(log vo) = O(log N) time to perform
processor allocation, and O(log N) time to perform the work at the leaves. Thus each iteration of
the algorithm takes O(log N) time. We use the allocation technique of Theorem 3.3,-where:instead
of reading and locally processing the entire memory at unit cost, we use an O(log N) time-iteration
for processor allocation.

',se 1: 1 < P < "'• In this case, at -most 1 processor is initially allocated to each leaf. As-in
ihe proof of Theorem 3.3, when the -first i - P leaves are visited, there is no more than one
processor allocated to each leaf by the balanced allocation phase. When the remaining P or less
!,aves are visited, the work is O(Plog P) by Theorem 3.3 (not counting processor allocation). Each
leaf visit takes O(log N) work steps; therefore the completed work is:

S= ( -P + P log P) .logN) -O(N+P logP logN)=O(N+Plog2N).

.... .. . : = | --- = - | -I
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Case 2: ;'v < P < N. In thiscase,-no more than _[PIo"1g -processors -are initially allocated to-
oach leaf. Any two processors that are-initially allocated to the-same leaf, should they both survive,
will behave-identically throughout the computation. Therefore -we can use Theorem 3.3: with the

S [P/1 'I processor allocation as a multiplicative factor. From this, -the completed work-is:

S= / Al o---- !og .O(logNI) =O(Plog2 1).
r l I N N \ ogI

The results-of the two cases combine-to yield S = O(N + P log2 N). ,2

The following-theorem expresses the completed work of the algorithn, in the presence of restarts:

Theorem 4.2 The completed work of algorithm V using P < N processors subject-to an-arbitrary
hailure and restart pattern F of size M is: S = O(N + Plog2 N + A!flog N).

Proof: The proof of Lemma 4.1 does not rely on- the fact that in the -abseitce -of restarts, the-
nmber of active processors- is non-increasing. However, the lemma does not account for-the work

that might -be performed by processors that are active during a part of- an iteration but do not
contribute to the-progress of the algorithm due to failures. To account for all work, we are going to
charge to the array being processed the work- that contributes to progless, and- any work -that was
wasted-due to failures will be charged to thefailu es and- restarts. -Lemma 4.1 accounts for the work
charged to the array. Otherwise, we observe that a processor canwaste no more than:O(log N) time3teps without contributing to the progress due t(l a failure and/or a-restart. Therefore this amount
of wasted work is bounded by O(M log-N). Th. 3 -proves the theorem. (Note that the completed
work S of V is small for small (Fl, but not boun,led by -a function of P and N for large tF). 0

4.2 Algorithm X: a binary tree algorithm

\Wo present a-new algorithm- X for the- Wl'rite-All problem, and show that its completed/total work
(omplexty is S = 0(N. plog 2) using P < N processors in the restartable fail-stop and the strongly

I asynchronous models -of computation. The important propert.y of X is that it has -bomded sub-
(Iiadratic completed woik; in the restartable fail-stop model, this is independent u the failure
pattern. -If a very large number of failures occurs, say F = Q(N • P0'), then the algorithm's

nverhead ratio o becomes optimal: it take, i. fr"ed number-of computing-steps per failure/recovery.

Like algorithm V, algorithm X utilizes a progt : tree of sizt- N, but it is traversed by the
processors independently, not in synchronized phases. This-reflects the local nature of the processor
assignmentin algorithm X-as opposed-to the globk,' assignments used in algorithms V and IV. Each
processor, acting -independently, searches for work in the smallest immediate subtree that has work
i hat needs to be done. It then perform3 the necessary work, and moves out of that subtree when
ino more work remains. We present the algorithm on the-restartable fail-stop model.

I Input: Shared array x[I..N]; x[i] = 0 for I < i < N.

Output: Shared array x[i..L]; x[i] = I for I < i< N.

Data-structures: The algorithm uses a full- binary tree of size 2N - 1, stored as a heap d(1 ... 2N-
11 in shared memory. An internal tree jiode d/i/ (i = ., N - L) has the left child d[2i] and the

I
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01- forall processors PID=O..P - I parbegin-
02 Perform initial processor assignment tothe leaves of the progress tree
03 while there is still work left in the tree do
04 if current subtree is doiu- t.hen move one level up
05 elseif this-is a leaf tbhr ,:, .trn-the work at the leaf
06 elseif this is an inte.no , ,.ode then
07 if both su-4,ces ..c -,, .'.w update the tree node -
08 elseif only onc do! , go to the one that is not, done
09 else move to the ..dtght subtree according to PID-bit values

10 fi I
11 fi
12 od

13 parend

Figure-2: A high level view of the algorithm X. i
right child d[2i AL 1]. The tree is used for progrefs evaluation and processor allocation. The values
stored in the heap are initially 0.

The N elements of the input array x[I ... N] are associated with the-leaves of the tree. Element
.X(i] is associated with di+ 1V- 1], where 1 < i < N. The algorithm also utilizes an array w[O..P- 1]
that is used to store individual processor locations within the prog( -ss tree d.

Each processor uses some constant amount of private memory to perform simple arithmetic
computations. An important private constant is PID, containing the initial processor identifier.

Thus, the overall memo: v used is O(N + P) and -the data-structures are simple.

Control-flow: The algorithm consists of a single initialization and of the parallel loop. A high
level view of the algorithm is in Figure 2; all line numbers refer to this figure. More detailed code
cain be found in Appendix A.

The initialization (line 02) assigns the P processors to the leaves of the progres., tree so that the

processors are assigned to the first P leaves by storing the initial leaf assignment in w[PID]. The
loop (lines 03-12) consists of a multi-way decision (lines 0.1-11). If the current node is marked done,
,he processor moves up the tree (line 04). If the processor is at a leaf, it performs work (line 05). If
Ihe current node is an unmarked interior node and both of its subtrees are done, the interior node
;z marked by changing its value from 0 to 1 (line 07). If a single subtree is not done, the processor
moves down appropriately (line 08).

Forithe final case (line 09), the processors move down when neither child is done. This last case
; where a non-trivial (italicized) Jecision is made. The PID of the processor is used at depth h of I
"h, tree node based on the value of the hth most significant bit of the binary representation of the

PID: bit 0 will send the processor to the left. and bit I to the right.

Regardless of the decision made by a processor within the loop body, each iteration of the body I
,'i, iqts of no more than four shared memory reads, a fixed time computation using private memory,
:,r1l one shared memory write (see Appen!i: A for the detailed algorithm). Therefore the body

r'an be implemented as an update cycle.

I
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I"

0 2 - 4 5 6 [17]

Figure 3: Proressor traversal of the progress tree.

Exanple C: Consider alg.r dim X for N = P = 8. The progress tree d of size 2N - 1 = 15
* is used to represent the full binary progress tree with eight leav.- The 8- processors have PIDs

in the range 0 through 7. Their initial positions are indicated ,, Figure 3 under the le.ves of

ihe- tree. The diagram illustracit the state of a computation where the processors were subject
Sto some failures and restarts. Heavy dots indicate nodes whose subtrees are finished. The paths
I being traversed by the processors are indicated by the arrows. Active processor locations (at the

time whePnthe snapshot was-taken) are indicated by their PIDs in brackets. In this configuration,
should the active processors complete the next cycle, they will move in the directions indicated by
othe arrows:- processors 0 and 1 will descend to the left and right respectively, processor ,-willmove

t~o the unvisited-leaf to its-right, and- processors 6-and 7 will move up. 0 po cesr4wl

Analysis of algorithm X:

'V begin by showing the correct ss and termination-of algorithm X in the following simple lemma.

Lemma 4.3 Algorithm X with N -processors is a correct, terminating and faui, -tolerant solution
for the P-processor IVrite-All problem of size N. The algorithm terminates in at least f(logN)
and at -most O(P. N) time steps.

U P'-oof: We iirst observe that the processor loads are-localized in the sense that a processor exhaust;
al' ork in the vicinity-of its original position in the tree, before-moving to other areas of the tree.

If ? processor moves up out of a subtree then all the leaves in that subtree were visited. We also

nbserve -that it takes exactly one update cycle to: (i) change the value of a progress tree node from
0 to 1, (ii) to move up from a (noa, rcst) node, or (iii) to move down left, or (iv) down right from
-i-(non leaf) node. Therefore, given any node of the progress tree and any processor, the processor
will visit and spend exactly one complete update cycle at the node no more than four times.

Since there are 2N - I nodes in the progress tree, any processor will be able to execute no moreIhan O(N)-completed update cycles. If -there are P processors, then all processors wit, be able to
r-omplete no more than O(P. N) update cycles. Furthermore, at any point in time, there is at
noast one update cycle that will-complete. Therefore it will take no more than O(P. N) sequential

u ,,pdate cycles of constant size for the algorithm to terminate.

-Finally, we also observe that all paths from a leaf to the root are at least log N long, therefore
v least logN update cycles per processor will be required for the algorithm to terminate. 0

I
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Now we prove the main work lemma. In the rest of this section, the-expression "SN,p" denotes 3
-the completed ; work on inputs of size N using P initial processors and for any failure pattern. Note
that in this lemma we assume P > N.

Lemma 4.4 The completed-work of algorithm X for the Write-Ail problem of size N with P> N
initial processors and for any -pattern of failures and restarts is SN.p=O(P- N10 92)

Proof: We show by induction on the h;:ght of the progress tree that there are positive constants
Cl,C 2,C3 such that SN,p < -cP- NIog - -2 PlogN - c3.

For the base case: we have a tree of height 0 that corresponds to an input array of size 1 and-

at least as many initial processors P. Since at least one processor, andat most P processors will
be active, this single leaf will be visited in- a constant-number of steps. Let the work expended be I
c'P for some constant c' that depends only oa the lexical structure of the algorithm. Therefore

SIp = -P < c 1P" 11g - c2 - 0 - c3 P when ci is chosen to be larger than or equalto c3 + c.

Now consider a tree of-height log N (> 1). The root has two subtrees (left and right) of height
log N - 1. By the definition of agoritl., X, no processor will leave a- subtree until the subtree
is marked-one, i.e., the value- of t!-e root of the subtree-is changed from 0 to 1. We consider the
following sub-cases: (1) both-subt.ees are marked-one simultaneously, and (2) one of the subtrees I
is marked-one before the other.

Cuse 1: If both subtrees are marked-one-simultaneously,-then the algorithm will terminate after I
tie two independent subtrees terminate plus some smMJ constant number of steps c (when a
processor moves to the root and determinet that-both of.Lhe subtrees are finished). Both the work
SL expended in the left subtree of, and the work SR intie right subtree are bounded- by SN/2,P/2. I
The added work needed for the algorithm to terminate is at most c'P, and so the total work is:

S Sh + SR + c'P < 2SV/2.P/2 + cP <2 ( P -c2- log !N) + C2 1

C) PN '°os - c2Plog - - c3P + c'P _ cP" N"F51 - c2Plog N - caP
3 02

for sufficiently large cl and any C2 depending on c', e.g., ci >_ 3(C2 + c').

Case 2: Assume without loss of generality that the left subtree is marked-one first with SL =

q.X72.P/2 work-being expended-in this subtree. Any active processors from the left subtree will start
moving via the root to time right subtree. The path traversed by any processor as it moves to the I
right subtree after the left subtree is finished is bounded by the maximum path length from a leaf
"o another leaf c'logN for a predefined constant c' V.- ,aore than the original P/2 processors of

itov left subtree will move, and so the work of moving the processors is bounded by c'(P/2)log N.

We observe that the cost of an execution in which P processors begin at the leaves of a tree
('iti N/2 leaves) differs from tie cost of an execution where P/2 processors start at the leaves,
"ind P/2 arrive at a later -ie via the root, by no more than the cost c'(P/2) logN accountedI

for above. This can be simply shown by constructing a scenario in which the second set of P/2
processors do-not arrive through the root, but instead start their execution with a failure, and then
traverse along a path of L's (if any) in the progress t:ec, until they reach a 0 node that is either a I

I
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leaf, or whose descendants are marked. -Having accounted for-thedifference. -we see that the work
Sa to complete the right subtree using up to P proces.ors is- bounded by Sv/2,p (by the definition
of S, if'P, : P2, then SN,Pi _< SN,p2 ). After this, each processor will spend some constant number
of steps moving to the root and terminating-the algorithm. This work is-bounded by c"P for some

-. smnall constant c". The total work-S is:

P : 0 V+ R+C' V2 P/+ClgI,+S P+ c"

- c - log -2P N\' -)6 P1 N P ,P 2(N CP 0 NC1_ C2log C3 -+ c - log-IV+ cP - c2P log-Pc1  ~) c2o 2  -2- 2 T)2 2 cPcP3V( -&)-cp(3 c" 3C
= c1PN09 2- c2PlogN -19 22 - c3 3 c2c < ' - c2PlogN - c3P

for sufficiently large c2 and-c3 depending on fixed c' and c", e.g., c2 > c' and C3 > 3C2 + 2c".

Since the constants c', c" depend only on the lexical structure of the algorithm, the constants
C .c2, c3 can always be chosen sufficiently large to-satisfy the base case and both the cases (1) and

(2) of the inductive step. This completes the-proof of the lemma. 0

The quantity P N l* 2 is about. P - N 0 "5s . We next show a particular pattern of failures for
wich the completed work of algorithm X matches this upper bound.

Lemma 4.5 There exists a pattern of fail-stop/restart errors that cause the algorithm X to per-
form S = f1(No g3) work on the input of size N using P = N processors.

Proof: We can compute the exact work performed by the algorithm when the adversary adheres
to the following strategy:

(a) The processor with PID 0 will be allowed to sequentially traverse the progress tree in post-order3 sAarting at the leftmost leaf and finishing at the rightmost leaf.

h I) The processors that find themselves at the same leaf as processor 0 are (re)started and are

-llowed to traverse the progress tree until they reach a leaf, where they are failed.

(c) Procedure (b) is repeated until all leaves are visited.

Thus the leaves of the progress tree are visited left to right, from the leaf number I to the leaf
inumber N. At any-time, if i is the number of the rightmost visited leaf, then only the processors

with PIDs 0 to i - I have performed-at least one update cycle thus far.

3The cost of such strategy can be expressed inductively as follows:

The cost C, of traversing a tree of size 1 using a single processor is I (unit of completed work).

lmhe cost C,+, of traversing a tree of size 2+1 is computed as -follows: first, there is the cost Ci of
iravorsing the left subtree of size 2'. Then, all processors move to the right subtree and participate
kibject to failures) in the traversal of the right subtree at the cost of 2C, - the cost is doubled,
hcause the two processors whose PIDs are equal modulo i behave identically. Thus Ci.+ = 3C,

;ind ClogV = 
3

l gN = Nlog3. 0

Now we show how to use algorithm X with P processors to solve I1rite-Aill problems of size N
StfV-'mch that P < .V. civen an array of size N. we break the N elements of the input-into 7) gr~tul)s

I
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of P elements-each (the last group maythave fewer than P elements). The P processors-are then
used to solve Write-All problems of size P one at a time. We call- this algorithm X', and-we-will
use X' in the general simulations.

Remark: Strictly speaking, it is not -necessary to modify algorithm X for P < N processors.
Algorithm- X can be used with P < N -processors by initially assigning the P processors to the
first P elements of the array to be visited. It can also be shown that X and X' have the same
asymptotic complexity; however, the analysis of x' is very simple, as we show below. 3
Theorem4.6 Algorithm X' with P processors solves the Write-All problem of size N (P < N)
using completed work S = OkN" plo ). In addition, there is an adversary that forces algorithm I
X' to perform S = fl(N -po 2) work.

Proof: By Lemma 4.4, Spp = O(P. p 2s
1 ) = o(p1 93 ). Thus the overall work will be S =I

O(LVSp.p) - O(Np zog3) = O(N.pos 1).

Using -the strategy of Lemma 4.5,-an adversary causes the algorithm to perform work Spp =
Q(p log 3 ) on each of the N segments of -the input array. This results in the overall work of: S =

q(Lpbog3)(NpO) 03= , _ f(Nv -P10 Y

Remark: Lemma 4.3 gives only a loose upper bound for the worst-time performance of algorithm
X\ - there we are primarily concerned- with termination. The actual worst case time for algorithm
X can be no more than the upper bound on the completed work. This is because at any point in
time there is-at least one update cycle that will complete. Therefore, for algorithm X' with P _< N,
the time is bounded by O(N P1o51). In particular, for P = N, the time is bounded by O(N0g3 ).

In fact, using the worst case strategy of-Lemma ,1.5, an adversary can "time share" the completed
rycles of the processors so only one processor is active at any given time, with the processor with

PID 0 being one step ahead of other processors. The resulting time is then.Q(N1,5 3).

In algorithm X, processors work for the most part independently of other processors; -they
; timpt to avoid duplicating already-completed work but do not co-ordinate their actions with
wher processors. It is this property which allows the algorithm to run on the strongly asynchronous I
model with the same work and time bounds.

Lemma 4.7 Algorithm X with P processors solves the W1rite-All problem of size ," (P-> N) on I
dhe strongly asynchronous model with total work O(P. *yO2-).

Proof: If we let Sv.p be the total work done by algorithm X on a problem of size N with P I
processors, then Sv.p satisfies the same recurrence as given in the proof of Lemma 4.4. The proof,
which never uses synchroneity, goes through exactly as in that lemma, except that case I (where
le't and right subtrees have their roots marked simultaneously) does not occur. 0

The final result of this section is similar to Theorem 4.6: 3
Theorem 4.8 Algorithm X' with P processors solves the lW'ritc-lll problem of size N (P < N)

on the strongly asynchronous model with total work O(N . p1*1 3).
I
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I 4.3 Algorithm T: a three-processor algorithm

Quite different techniques are necessary when designing a parallel algorithm in which the number
of processors is much smaller than the size of the input. The goal in this situation, when theI ,,nderlying machine is synchronous, is to find a method whose parallel time complexity is at most
the sequential time complexity divided by the number of processors plus a small additive overhead;
S[And 90] for an example of such an algorithm. Note that constant factors are important and
cannot be hidden in O-notation. When considering algorithms on fail-stop or asynchronous models,

ihe goal is to have the parallel work complexity be equal to the sequential complexity plus small5 overhead.

For the Write-All problem, it is easy to achieve this goal with two processors. The processor
with PID 0 (henceforth, Po) reads and then writes locations sequentially starting at 1 and moving
ip:_ processor P reads and then writes locations sequentially starting at ,N and moving down. Both

processors stop when-they read a 1. The completed work is exactly N + 1.

The first non-trivial case is that of three processors. Here is an intuitive description of an
algorithm that works in this situation. Processor P works left-to-right, processor P works right-
to-left, and P2 fills starting from the middle and alternately expanding in both directions. If Po
and P2 meet, they both know that an entire prefix of the memory cells has been written. ProcessorIP0 then jumps to the leftmost cell not written by itself or P2, and P2 jumps to the new "middle"
of unwritten cells. A meeting of P and P2 is symmetric. When P and P meet, the computation
i; complete. Intuitively, processors can maintain an- upper bound on the number of empty cells
rmnaining that starts at N and is halved every time a collision occurs. Thus at most log , collisions
are experienced by each processor. High-level pseudo-code for the algorithm is given in figure -4.

Implementation of the high-level algorithm requires some form of communication among theIrwnchronous processors. At a collision, a processor must determine which processor previously
wrote the cell. In the case of a collision with P)2, a processor must also determine what portion
nf the array to jump over. This communication may be implemented either by writing additional
information to the cells of the array or by using auxiliary variables.

If the array in which processors are writing is also used to hold auxiliary information, imple-Imentation is straightforward. When processor P2 writes to a cell at the left (resp. right) end of its
area. it writes the location of the next unwritten cell to the right (resp. left). Po and P, write the
values -I and N + I respectively, to signal no unwritten cells. A total of N + 0(logN) reads and
V - O(logJN) writes are required on the asynchronous model. If an atomic compare-and-swap is
iused, the total work is reduced to N + O(log N) operations.

To solve the pure Write-All problem, in which only I's are written to the array, auxiliary shared
variables are required. These variables must be carefully managed to ensure that the processors
,aintain a consistent view of the progress of the algorithm. Because a processor may be delayed
h~iween reading an auxiliary variable and writing to the array, complete consistency is impossible.
-\pproximate consistency is sufficient, however, if the processors are-appropriately pessimistic. The
precise code is presented and analyzed in Appendix B.

I In summary, algorithm T provides tie following bounds.

Theorem 4.9 The Ilritc-AIl prolblem for three processors can be solved with N O(log N) writes
1o and N + 0(log.N) reads from the array.

I
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To: |I
set current position to I
repeat

if no collision then write 1 and-increment current position
-else if collision with P1 then exit I
-else (collision with P2) set current position at the right of P2's area
-fi

until current position > N.

TI:

set-current position to NJ
repeat

ifno collision then write 1 and decrement current position

-else if collision with PoA then exit
else (collision with P2) set current position at the left of P.2's area-
fi

until current position < 1.

T:
initialize middle and boundaries of current-write area
repeat

if no collision then write the next 2 cells away from the middle
else if collision with P then

set left boundary at rightmost cell written by P2
set middle halfway between left and right boundaries

else (collision with PI)
set right boundary at leftmost cell-written by P2,
set-middle halfway between left and right boundaries 3

untildone

Figure .: A high-level description of algorithm T. Processor Pi executes Ti.

In most applications. the array also has room for communication variables, a1nd no auxiliary -ar-
ables are necessary.

5 General simulations on restartable fail-stop processors

We now present a major extension to the algorithms presented so far. This is an efficient deter-
ministic simulation of any .- processor synchronous PRAM on P restartable fail-stop processors
P < N). Note that-due to the impossibility results for asynchronous motXels 'iler 881. we are able

to show this result only for the restartable fail-stop model-

We first formally state the main result and then discuss its proof.

iI
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3 Theorem 5.1 Any- N-processor PRAM algorithm can be executed on a restartable fail-stop P-
processor CRCW PRAM, with P-< N. Each N-processor PRAM step is-executed-in the presence
of any pattern- F of failures and restarts of size -AT with:

-completed work: S- = O(min{N + P log2 N + M log N, N • P'09 2 D)

* overhead ratio: o, = O(log2 N).

EREW, CREW, and WEAK and COMMON CRCW PRAM algorithms are simulated on fail-stop
COMMON CRCW PRAMs; ARBITRARY and STRONG CRCW PRAMs are simulated on fail-stop

I CRCW PRAMs of the same type. o

Remark:- PRIORITY CRCW PRAMS cannot be directly simulated using the same framework,
for one of the algorithms used (namely algorithm X in Section 4)-does not possess the processor
allocation-monotonicity property that assures that higher numbered- processors simulate the-steps
of the higher numbered original processors.

An approach for executing arbitrary PRAM programs on fail-stop CRCW PRAMs (without
restart) was presented independently in [KPS 90] and [Shy 89]. The execution is based on simu-
lating individual PRAM computation steps using the- Write-All paradigm. It was-shown -that the
complexity of solving a N-size instance-of the Write-All problem using P fail-stop processors is
equal to the complexit3, of executing a- single N-processor PRAM step -on a fail-stop P-processor
PRAM. Here we describe-how-algorithms V and X' are combined with the framework of [KPS 90] or
[Shy 89] to -yield- efficient-executions of PRAM programs on PRAMs that are subject-to stop-failuresi and- restarts as- stated in Theorem 5.1.

Theorem 5.2 There exists a Write-All solution using P < N processors on instances of size
N such that for any pattern F of -failures and restarts with IF < M, the completed work is

S = O(min{N + Plog2 N + M logN, N. plo I}), and the overhead ratio is a = O(log2 N).

Proof: The executions of algorithms V and X' can be interleaved to yield an algorithm that
achieves the performance as stated. The completed work complexity -is asymptotically equal to
-he minimum of the completed work performed by V and X'. This is because the number -of

eycles performed by eachalgorithm-in the interleaving-differs by at most a multiplicative constant.

The overhead ratio is directly inherited from algorithm V by the same reasoning because of the-
Definition 2.3 of o, and S. 01

D3The simulations of the individual PRAM steps are based- on- replacing the trivial array assign-
ments in a Write-All solution with-the appropriate components of thePRAM steps. These steps are
( Tocotnposed-into a fixed-number of-assignments corresponding to the standard fetch/decode/execute

R1A\, instruction cycles in which the data words- are moved between the shared memory and- the
intornal processor registers. The resulting algorithm is then used to interpret the individual cycles
,iqing the available fail-stop processors and to ensure that -the results-of -computations are stored
in temporary memory before-simulating the synchronous updates of the shared memory with the
tiow values. For the-details on this technique, the -reader is referred to [KS 89, KPS 90, Shy 89].3 \pplication of these techniques in -conjunction with the algorithms V and X' yield efficient and

I
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terminating executions of any non-fault-tolerant PRAM programs-in the-presence of arbitrary fail-
ure and-:restart patterns. Tl, ,rem 5.1 follows from Theorem 5.2-and the results of [KPS 90] or I
[Shv 89]-. The following-cor, ies are also interesting:

Corollary 5.3 Under the hypothesis of Theorem:5.1, and if IF[ < P < N, then:

S =:O(N + P log2 N), and a = O(log .V).

The fail-stop (without restarts) behavior of the-combined algorithm is subsumed by this corol-
lary. The exact analysis of algorithm V without restarts is still unknown. Without restarts,
[KPRS 90] have an algorithm with S = O(N + P)1 N , and [Mar 91] Ihas shown that the-same
performance is achieved by algorithm W from [KS 89].

Corollary 5.4 Under the hypothesis of Theorem 5.1:

* when IF1 is S(N log N), then a is O(log N),

0 when IFI is !Q(N'g9 ), then-a is O(1).

Thus-the overhead efficiency Of our algorithm actually improves for large failure patterns. These
resultsalso-suggest that it is:harder to deal efficiently with a few worst case failures than with a
large number of failures.

Our:-next corollary demonstrates a non-trivial- range of parameters for which the completed

work is optimal; i.e., the work performed in executing a parallel algorithm on a faulty PRAM is
asymptotically equal to the Parallel-timex Processors product for that algorithm.

Corollary 5.5 Any N-processor, r-time PRAM algorithm can be executed on a P < Nfloge N
processor fail-stop CRCW PRAM, such that when- during the execution -of each- N-processor step
of that algorithm the total number of processor :failures and restarts -is O(N/logN), then- the
completed work is S = 0(r. N).

6 Discussion and Open Problems-

Wp conclude with a brief discussion of open probleias and the effects of on-line adversaries on the
expected performance of randomized algorithms.

Lower -bounds: We have shown an n(N log N) lower bound (when N = P) for the Write-
Ill problem in both the restartable fail-stop and the strongly asynchronous models under the
iscsumption that processors can read and locally process the entire shared memory at unit cost. I
Under this assumption, these are-the best possible lower bounds.

Under the same assumption, -it can be shown =that the SD(NlogN/loglogN) lower bound of
fKS 89] is the best possible bound for failures without restarts. This is done by adapting the
-nalysis-of-algorith iW by [Mar 91]. According to the analysis, the number of "block-steps" of 1v
for P = N is O(N log N/ loglog.N) and each block-step can be realized- at unit cost each, under
ihe above assumptions.
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Under-different assumptions, an -l(N log N) lower bound- is shown for failures without restarts
in [KPRS 90].

Can these lower bounds- be further improved? Can the lower-bound of N +n(P-log N) be -proved
for the restartable fail-stop model, or improved for- the strongly asynchronous model with atomic
reads and writes?

Upper bounds: Is O(N log 0() N) completed/total work for solving Write-All with N processors
and input of size- N achievable -in the -restartable fail-stop/strongly asynchronous model? Recently,-
an existence proof for-an algorithm- achieving O(N+') work was given in [AW 91]i

What is the -worst-case completed work S, and- overhead- ratio a of the algorithm X in the
fail-stop (without restart) -framework of [KS-89]? Algorithm- X appears to -perform well in this
context. For example, the~adversary used to show -the lower -bound in [KS 89] causes completedI work S = O(N log2 NI loglog-N) for the= N-processor Write-All solution in- [KS-89]. The same
adversary causes algorithm X to do -completed work S = O(-N log N log log-N/ loglog log N). We
conjecture that the fail-stop (no restart) performance of X has S = 0(N log N log log N) using N
p rocessors.

Can algorithm T be generalized to work with more-than three processors, or- can another (more
general) algorithm be found that achieves- truly optimal speedup for small numbers of processors?

Model issues: What- is the-minimum number of reads and writes necessary -in an- update cycle to
onsure efficient algorithms? What is the precise relationship between the complexity of problems
(as opposed-to algorithms) on the two models presented here? Finally, are there efficient algorithms
for important problems that donot come-from simulation of synchronous PRAM algorithms?

On randomization and lower bounds: Analyses-of randomized-solutions for Write-All have so
far considered only off-line-(non-adaptive) adversaries. In contrast, the lower bounds of-Section 3
apply to both the worst case performance of deterministic algorithms and the expected performance
of randomized algorithms subject to on-line adversaries.

A randomized asynchronous coupon clipping (ACC) algorithm for the- Write-All problem was
a nalyzed in [MSP 90]. Assuming off-line adversaries, it was shown in [MSP 90] that ACC algorithm
performs expected O(N) work using P = N/(log N log* N) processors on inputs of size N.

In the on-line case, we observe that a simple stalking adversary- causes the ACC algorithm to per-

form (expected) work of S2(N 2/polylogN) in the case of fail-stop errors, and o/'1"..__.. . . 7

work in the- case of -fail-stop errors with restart even when using P < N - processorb. The
'qtalking adversary strategy consists of choosing a single leaf in a binary tree-employed- by ACC,
,and failing all processors that touch that leaf until only one processor remains-in the fail-stop case,
oir until all processors simultaneously -touch the leaf in the fail-stop/restart case. This performance
is not improved-even when using the completed work accounting. On a positive note, when the

lvorsary is made off-line, the ACC algorithm becomes efficient in the fail-stop/restart setting.
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forall processors PID=0..P-- 1 parbegin
shared x[1..N]; -- shared memory
shared d[1..2N-1]; -- "done" heap (progress tree)
shared w[o..P-1]; -- "where" array
private done, where; -- current node done/where
private left, right; -- left/right child values

action,recovery
w[PID] := I + PID; -- the initial positions

end ;
I action,recovery

while w[PID] - 0 do -- while haven't exited the tree
where-:= w[PID]; -- current heap location
done-:= d[where]; -- doneness of this subtree3if done then w[PID]I:= where div 2; -- move up one level
elseif not done A where > N --1 then -- at a leaf

if x[where-N] = 0 then x(where-N] := 1; -- initialize leaf
elseif x[wlere-N] = 1 then d(where)]:= 1; -- indicate "done"
fi

elseif not done A where < N -4 then -- interior tree node
left := d[2*where];right := d(2*where+1]; -- read left/right child values
if left A right then d[where]-:= 1; -- both children done
elseif not left A right then w[PID] 2*where; -- go left
elseif left A not right then w[PID] 2*where+l; -- go right
elseif not left A-not right then -- both subtrees are not done

-- move down according-to the PID bit
if not PID[log(where)] then w[PID] := 2*where; -- mnove left
elseif -PID[log(where)] thenw[PID] :=-2*where+l; -- imove right
fi

fi

I end od f

I Figure 5: Algorithm X.

3 A Algorithm X pseudocode

S here we give detailed pseudocode for algorithm X on the restartable fail-stop model.

In the pseudocode, the action, recovery end construct of [SS-83] is used to denote the actions
and the recovery procedures for the processors. In the algorithm this signifies that an action is also
its own recovery action, should- a processor fail at any point within the action block.

The notation "PID[log(k)J" is used to denote the binary true/false value of the [log(k)j-th bit
()f lie-log(N)-bit representation of PID, where the most significant bit is the bit number 0, and the

Iast significant bit is bit nuiber log N. Finally, div stands for integer division with truncation.

The action/recovery construct can be implemented by appropriately checkpointing the instruc-
'ion counter in stable storage as the last instruction of an action, and rading the instruction
,ouniter upon a restart. This is amenable to automatic implementation by a-compiler.

I!
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To: TI:
shared-Io. 1; sh ared Ir : N;
shared-1i; Shared In:
pri vate-tempO; p rivate te mpi;I

shared 41[. .N]; shared 41. .NJ;

repeat -repeat
-- Invariant: x[k] =I -for all k < 10- --- Invariant: 4xk] =1 for a11k > I,
if 410o] = 0 then if x411] = 0 then-

x[Io] := 1; X[Ii] 1 ;-

elseif Io ! 11 or 1o_ Righ2 then -elseif 11 : 10-or I, < Lcft2-then
-Collision -with- P1 -- Collision with P0

else lo: ;elseIt: .

-- Collision- with P2 -*-Collision with P2
temrpO := Mid2;- temp I :=iMid2:
if 10 < -Left2 th en if Ii >- lRight2 then

-- Left2 :has -been updated -- R ight2 has been-hpdated

els 10:= Left.2 es 11 :=-Right2

-- The-correct Mid2 was-read -- The--correct Mid_2 was read
lo := max{-2 temp0- lo, 1--Io+ 1} A in{2*templ - 11,1,- - 1}

fi I
until 10  NJV+- 1; until 11 5-0;

Figure 6: Algorithms Td and T,

It is possible to perform- -local optimization of the- algorithm- -by: _(i) evenly spacing the P
processors N/P leaves apart -by when P < -N, and by -(]I)- using the integer values at- the progressI

r'o nodes to represent the known number- of descendent leaves visited by the algorithim. Our worst
case -analysis -does not benefit from-these modifications.3

The algorithm can be used to solve -Write-All "in place" sn h arry_ Ja te fhih
loftg(N,/2)-with -the leaves -x[N12..N- 11, and doubling up the processors at--the leaves, and using x(N]

as the final element to be initialized and- used -as the algorithm termination sentinel. With thisI
modlification, array Q[ is not needed. The-asymptotic efficiency of the algorithim is not affected.

B Algorithm T pseudocode U
1:lie code for algorithm T in- Figures -6 and 7 is given -in- three parts, one for each of -the threeI
processors (algorithm T, -for processor P,_). The code given- is designed- for- easy-proof of-correctness,
rathier-than optimality. I
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T2Isae et: 1 -etbudr fcretwa-ae
shared Left2 := 1; -- rigft boundary of current wrie area

Ishared Mid2 [=Nj/21; -- middle of current- write-area
shared 10, -I1;
shared 41. .N];I-private i := 0: -- number of writes in current area

repeat
-- Invariant: At all times, 4k] =-1- for all values of k that-satisfy
-- I < k < Left2 or Mid2 - i-< k < Mid2 + i or Right2 < k < Nr

case (xfMid2 - i], x[Mid2 + iJ)- is
(0,0): -- Continue writing in current area

x[Mid2 + iJ -=1;
i=i+ 1;

(1,0): -- jump to the rightI j umpright.;
(0,1): -- jumnp to the left

Jumnpleft;

i=i+ I
if Io : mid then jumnpright else jumpleft fi

esac

until Left2 > Right2 or Mid2 - i < Left

procedure jumnpright:I Left2 := Mid2 + i;
i: =0;
MWd := f(Left2 +--Righit2)/21;-

end

procedure jumpleft:
Right2 := Mid2 - i

i= 0;
Mid2 := f(Left + Right2)/21;3 end

Figure 7: Algorithm. T2

T0 and TI. terminate because 1o increases and 11 decreases with every loop iteration. T.12 ter-
ininates because every 1001) iteration either increases i or decreases Right2 - Lef2. Since any
'xecution of algorithmn T -is equivalent to some serialized execution, the following lemma implies

S iat all cells of the array x are 1 at termination.

Lemnma B.1 Every serialized-execution of algorithm T maintains the following invariants.

I I. For all k such that 1 5 k < 1o, cell k contains 1.
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2. For all*k such that I1< k < N, cell k contains 1. 1
3. For all k such that 1 < k < Leftd, cell k contains 1.

,. For all k such that Right2 <k < N. cell k contains 1.

.5. For all k such that Mid2 -i < k < Mid2 + i, cell k contains 1. 1l
If some cell k has value 1, then at least one of the following holds.

6. Cell k was written by Po at a time when 10 had the value k. or I
7. Cell k was written by P at a~time when 1 had the value k. or

S. Cell Vwas written by P2 at a time when the values of Mid2 and i satisfied k = Mid2 : i.

Proof: Inspection of the code revealslthat the consecutive values of lo and of Left2 are nondecreas-
iig, and the values of 1 and of Right2 are nonincreasing. Also, no processor writes -to the same

cell twice,and 0 is never written.

The invariants are vacuous at the start of the algcrithm. It is necessary and sufficient to show
that every-operation preserves the invariants. The last three are trivial.

The assignments Io := Io + 1, Io =N + 1 and Io := Left2 preserv: the invariants because
of the comparisons preceding their -execution and the monotonicity properties. The assignment I
o :=-2 * tempO - Io is executed only- after cell Io has been found to have been written by P2 only.

The variable tempO holds a value of Mid2 that was valid at some tirLe after tile write and before
Left2 was increased by a subsequeit execution of procedure jumpright. if P2 had not yet jumped,
conditions-8 and 5 imply the pit,,rvation of condition 1. Otherwise, P2 jumped to the-left because
of a collision with PI, and the entire array has been written, satisfj'ng all oi the invariants.

The case of assignments to 11 is-symmetrical.

Tile assignment Left- --- Mid2 + i is executed only after PO has written to cell Mid2 - i,
;und hence conditions 1, 5 and 6 imply preservation of condition 3. Similarly, Right2 := Mid2 - i
is executed only after P', has written to cell Mid2 + i, and hence conditions 2, .5 and 7 imply
preservation of condition 4. 01

To prove the desired work bounid, we use the following definition of a collision between proces-
sors.

Definition -B.1 Po collides with P. (i E {1,2}) if Po executes the code block labelled "collision
with P,." Pl collides with P (j E {0,2}) if P, executes the code block labelled "collision with
/)." P2 collides with Po if P2 executes procedure jumpright. P2 collides with P if P2 executes
Procedure jumpleft.

\ re,dundant write does not imply that the writing processors collide with one another. Neverthe-
less, the number of collisions is a bound on the number of redundant writes.

Lemma B.2 Suppose two processors both write to-cell k. Then one (or both) of the processors

will collide in its next loop iteration.
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Proof: One-of the two processors must be -Po or P1. If it is 1o, then the other-will -next attempt
to write to cell k - 1 and collide. -If it is P1, then -the other will next attempt to write to cell k + 1
and collide. -(In- either -case, -the- collision may involve the third processor.)- 0

Lemma B.3 There are O(log N) collisions.

Proof: When P2 jumps, the quantity Right2 - Left2 decreases by a factor of at least 2. Hence P 2

collides at most log N times. Also. P0 can collide with- P1, and P1 with Pon, at most once each.

Suppose P0 collides with P2 in attempting to write to cell k. Because P0 did not-collide with- PI P2 wrote to cell k -with some value m in Mid2 and the value m - k in i. If P2-continues to
process, it will collide with either Po or .P1 after at most two iterations, when the value of i has
lbecome m -- k + 2. (The worst case occurs if Po and P-2 both write cell-k - 1.) Hence the only cells

Ii that P2 writes with min Mid2 are in the interval [k - 1,2m - k-+ 1]. Thus Po attempts to write
at most four cells in the interval (i.e., cells k - 1, k, 2m - k-and 2m -- k + 1), and can collide only
at the latter three. Therefore, the number of collisions of Po with P2 is at most three times the
number of co1lision's of P2.

Similarly, the number of collisions of P with P2 is at most three times the number-of collisions
of P2. Hence the total number of collisions in O(log N), as required. 0

Each collision involves only a constant number of memory accesses. Thus the algorithm satisfies
ithe required -work bounds.

Theorem B.4 Algorithm T solves the Write-All- problem for three processors using N + O(log N)
writes -to and N + O(log N) reads from the array. There are at most N + 0(log N) writes and
0(log N) reads involving auxiliary variables.

Proof: The result follows directly from the- above discussion. 0

If the cells of array x can hold arbitrary integer values, then the information communicated by
ie values of the shared auxiliary variables can be stored directly-in the array. Processors -P0 and

P write -1 and -2 respectively. Processor P2 writes the value Mid2 + i when writing to the left
of Mid2and the value Mid2 - i when writing to the right of Mid2. In this case, only private local
variables are required.

I
I
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