A242 764
||||l|\|||i||l|!i|lli|lllll\llll|Nllllll||| D TIC

w CLECTE
Novag 19914 )

BROWN UNIVERSITY

Parallel Algorithms with Processor
Failures and Delays

Jonathan F. Buss!
Paris C. Kanellakis?
Prabhakar L. Radge®
Alex A. Shvartsman®

Technical Report No. CS-91-34

Department
T PISTRIBUTON snmwfﬁi"f \
¢ releaseE, O
Bomred e puic o | f
Computer Science

91 g 26 039




_ Acessaios For
NTIS GRAAI

——r

¥24C faB
Unaraoanead
Juastificat i

oo

By.

Distribution/

Availabllity Cosies

Parallel Algorithms with Processor
Failures and Delays

Jonathan F. Buss?
Paris C. Kanellakis?
Prabhakar L. Radge®
Alex A. Shvartsman*

Technical Report No. CS-91-54
August 1, 1991

91-15829
HllllllﬂrI:ll’l’lﬂlhmlzllﬂ!ll!ﬂ”lll

*Department of Computer Science, Uziversity of Waterloo, Ontaric N2L 3G1, Canada
?Department of Computer Science, 2rewn University, Providence, RI 02912
*Department of Computer Science, Uziversity of Waterloo, Ontario N2L 3Gi, Canada

$Department of Compiter Science. Srewn b..wcmty, Providence, RI 02912

9_1___,8,,21(}\6.8,9;-

{Dist Spocijal

A

. Aiuil-a;é)o;




Parallel Algorithms with Processor Failures and Delays

Jonathan F. Buss® Paris-C. Kanellakis* Prabhakar L. Ragde* Alex A. Shvartsman®

August 6, 1991

Abstract

We study efficient deterministic parallel algorithms-on two models: restartable fail-stop
CRCW PRAMs and strongly asynchronous PRAMs. In the first model, synchronous processors
are subject to arbitrary stop failures and restarts determined by an on-life adversary and involv-
ing loss of private but not shared memory: the complexity measures are completed -work (where
processors are charged for completed fixed-size update cycles) and overhead ratio (completed
work amortized over necessary work and failures). In the second-model, the result of the com-
putation is a serializaton of the.actions of the processors determined by an on-line adversary;
the complexity measure is {ofal work (number-of steps taken by all processors). Despite their
differences the two models share key algorithmic techniques.

We present new algorithms for the Write- All problem (in which P processors write ones into
an array of size V) for the two models. These algorithms can be used to impiement a simulation
strategy for any N processor PRAM on a restartable fail-stop P processor CRCY PRAM such
that it guarantees a terminating execution of each simulated ¥ processor step, with Oflog® ¥)
overhead ratio. and O(min{N + Plog® ¥ + Mlog ¥, .V - P%59}) (sub-quadratic) completed
work (where M is the number of failures during this step’s-simulation). We also show that the
Write-All tequirtes N — P + Q(P log P) completed/total work on these models for P-< .V.
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I INTRODUCTION 1
1 Introduction

1.1 Context of this work

The model of parallel computation known as the Parallel Random Access Machine or 2RAM
[FW 78] has attracted much attention in recent years. Many efficient and optimal algorithuis have
been designed for it; see the surveys [EG 88, KR 90]. The PRAM is a convenient abstraction that
combines the power-of parallelism with the simplicity of a RAM, but it has several unrealistic
features. The PRAM requires: (1) simultaneous -access (requiring significant bandwidth) to-a
shared -resource, namely memory; (2) global processor synchronization; and (3) perfectly reliable
processors, -memory and interconnection between them. The gap between the abstract models
of parallel computation and realizable parallel computers is being bridged by current research.
For example, memory access-simulation in other architectures is the subject of a large body of
literature surveyed in [Val 90a]; for some recent work see [HP 39, Ran 87, Upf 89]. Asynchroncus
PRAMs are-the-subject of {CZ 89, CZ:90,.Gib 89, MSP 90, Nis 90]. Here-we adclress the issues of
synchronization-and reliakbility of PRAM processors.

In [KS 89] it is shown that it is possible to combine efficiency and fault-tolerance in many key
PRAM algorithms in the presence of arbitrary dynamic fail-stop processor errors (when-processors
fail by stopping and do not perform any further actions). The key to such algorithm design js the
following fundamental problem, called the Write-All problem:

Given a P-processor PRAM and a 0-valued array
of N elements, write value 1 into all array locations.

This problem was formulated to capture the essence of thc computational progress that can be
natu-ally accomplished in unit time by a PRAM (when P = N). In the absence of failures, this
problem is solved by a trivial and optim:l parallel assignment. However, it is not obvious how
to design solutions that are efficient in the presence of failures or asynchrony. [KS §9] give an
algorithm for the Write-All problem that does a total of O(:V log® N) work.

The iterated Write-All paradigm i¢ employed (independently) in [KPS 90] and [Shv 89] to
extend the results of [KS 89) to arbitrary PRAM algorithms (subject to fail-stop errors without
restarts). In addition to the general simulation technique, [KPS 90] analyzes the expected behavior
of several solutions to IWrite-All using a particular random failure model. [Shv 89] presents a

deterministic optimal work execution of PRAM algorithms subject to worst case failures given
parallel slackness (as in [Val 90b}).

A simple randomized algerithm that serves as a basis for simulating arbitrary PRAM algorithms
on an asynchronous PRAM is presented in [MSP 90]. This randomized asynchronous simulation has
very good expected performance for the Write-All problem when the adversary is off-line. Recently,
'KPRS 90] further refined the results-of [KPS 90] to produce an approach that leads to constant
~xpected slowdown of PRAM algorithms when the power of the adversary is restricted. [KPRS 90]
also improved the fail-stop deterministic lower and upper bounds of [KS 89] (by loglog V' factors).

The work presented here deals with dynamic patterns of faults and the dynamic assignment of
processors to tasks. Processors in our algorithms have very little private information and commu-
nicate via shated memory. For recent advances on coping with static fault patterns. see [K* 90].
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We consider fault granularity at the processor level; for recent work on gate granularities, see
[AU 90, Pip 85, Rud 85). The general problem of assigning active processors to tasks has similari-
‘ties to the problems of resource management in a distributed setting, such as distributed controllers
of [LGFG 86] and [AAPS 87). Fault-tolerance of particular network architectures is also studied in
[DPPU-86]. However, the distributed computation models, the algorithms, and their analysis are
-quite different from the parallel setting studied here.

1.2 Contributions of this paper

In this paper, we extend the fail-stop model of [KS 89] by allowing arbitrary dynamic restarts of
-processors (with loss of private memory). We also consider a model in which private memory is
safe, but the interactions of processors with each other through shared memory can no longer be

-assumed to be synchronous. Although the models differ in their formal definjtion, some algorithms
work equally well in both models.

In the restartable fail-stop model, defined precisely in Section 2.1, PRAM processors are sub-
ject to on-line (dynamic) failures and restarts. We con:entrate on the worst case analysis of the

completed work of deterministic algorithms-that are subject to arbitrary adversaries, and oz the

overhead ratio, which amortizes the work over the necessary work and failures/restarts. Ip this
model, processors fail and then restart in-a way that makes it possible tc develop terminating algo-
rithms, while relaxing the requirement that-one processor must never fil (which was necessary in
the fail-stop without restart model). To guarantee algorithm termination and sensible accounting of
resources, we introduce an update cycle, that generalizes the standard PRAM read/compute/write
cvcle. In the absence of update cycles, a thrasking adversary exploiting the separation of read and
write instructions in PRAMSs can force quadratic work for any Write-All solution. The restartable

PRAM model is defined in Section 2.1, which also-contains a discussion of the technical choices
made.

The strongly asynchronous model is defined in Seciion 2.2. In this r.odel, we use Lamport’s
notion of rerializability [Lam 86), which states that the effect of a parallel computation should be
consisteni with some serialization of atomic processor actions. We consider the serialization to
be chosen by an on-line adversary, and use atomic reads and atomic writes (other primitives are
considered -as well). This model is related to other models known as asynchronous PRAMs {CZ 89,
("Z 90, Gib-89, MSP 90, Nis 90}; perhaps the closest of these is [MSP 90], although this reference
considers only off-line (pre-specified) adversaries and randomized algorithms. The relationship of
the two models in Sections 2.1 and 2.2 is discussed in Section 2.3; some practical motivation is aiso
discussed in Section 1.3 below.

In Section 3, we present lower bounds for the Write-All problem. When reads and writes
are accounted together in update cycles of the restartable fail-stun model, the quadratic lowe;
hound :mentioned above no longer applies. Instead, we show-that the Write-All problem of size i/
requires N — P + Q(Plog P) completed work for P < V. This bound also holds in the strongly
asynchronous model. It holds when processors can read and locally process the entire shared
memory at unit cost. Under these assumptions it is the tightest possible bound. An Q(.Viog.V)
lower bound when P = .V was recently showr in [KPRS 90] using a different technique and different
assumptions for a fail-stop no-restart model. Qur lower bound results are of interest because:
fa) they demonstrate that any improvement to the lower bound must take account of the fact that
processors can read only a constant number of cells in constant time, and (b) they present a simple

- . " I . IR R PR T
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I INTRODUCTION 3

processor allocation strategy that we use to advantage-in Section 4. We aiso-demonstrate a lower
bound of N + Q(Plog N) (when 3 < P < N) for the strongly asynchronous PRAM, when certain
atomic primitives (such as-compare-and-swap or test-and-set) are used to access shared- memory.

In Section 4 we present three efficient algorithms for the Write-All problem. The first (algorithm
1")is a modification of the algorithm developed in [KS 89]-for the hil-stop no-restart model, and
runs on the restartable fail-stop model with completed work O(.¥ + Plog? N + M log N'), where M
is the number of failures. This algorithm-is based on an analysis of the lower bounds in Sectlon 3.
The second (algorithm X') runs on both models in time O(¥ - . plog2 3 7). The third (algorithm T')
runs on both models in the case P = 3, using N + O(log N) compare-and-swap operations on the
strongly-asynchronous model and .Y + O(log N') update cycles in the fail-stop restart model. This
inatches the lower bound when three processors are used.

In Section 5, we show how to use algorithms V' and X to simulate any & processor PRAM
on a restartable fail stop P processor CRCW PRAM. A terminating execution of each simulated
Y processor step is guaranteed with O(log? V) overhead ratio, and (sub-quadratic)- completed
work O(min{N + Plog? N + Mlog N, ¥ . Plog 2}) where A is the number of failures during
the.simulation of the particular step. The strategy is work-optimal when the number of simulating
processors is P < N/log® N and the total number of failures per each simulated step is O(N/log V).

The lower bounds presented in Section 3 apply to the worst-case work of deterministic algorithms
and to the expected work of randomized and deterministic algorithms. Randomization does not
<cem to help, given on-line (non-prespecified) patterns of failures. For example, it is easy to
construct on-line failure and restart (resp. no-restart) patterns that lead to exponential (resp.
quadratic) in N expected performance for the algorithms presented in [MSP 90]. These stalking
adversaries are described in Section 6, where we also conclude with some open problems.

Preliminary versions of this work were reported in [BR 90, KS 91).

1.3 Motivation and relation to physical systems

The models we present and study are intended to capture certain features of actual systems.

Processor delay is a feature of any multi-user environment, in which processing priorities are not

specified by a single user. Processing time may be required at a moment’s notice by another user
or by the underlying operating system.

Processor failure may occur either because of a physical fault or because another entity in the
system preempts processing time without saving the old state.

Communication delay is a well-known feature of multi-processor systems. Small communication
Jdelays are compatible with synchronization if the step time is sufficient for the longest possible

weeoss time, but rynchronizing by counting up to the longest possible access time eliminates any
advantages due to caching and similar techniques.

Communication failure may be due to memory operations of other processors. The interacting
nperaiions need not involve the same memory module. If the communication network reports the
failure of an operation, the processor can re-attempt the access. and the situation can be modelled
1¢ a communication delay. If unannounced failures can occur. an algorithm must either explicitly
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Figure 1: A robust fail-stop-multiprocessor.

check its write operations or ensure in-some other way that omission of a write is not detrimental
to performance.

In this paper, we-treat delay and/or failure as occurring to the processors only. If -memory
operations are atomic:and serializable,.they may be assumed to be-instantaneous, and the-commu-
nication delays or access failures may-be charged to the processor.

An-architecture for a restartable fail-stop multiprocessor: The main goal of this work is to
study algorithmic techniques that enable efficient parallel computation on realizable multiprocessor
systems. We now suggest one way of realizing the abstract model of computation where processors
are subject to fail-stop errors-and restarts, i.e., the model formalized-in Section 2.1.

‘Engineering and technological approaches-exist that allow implementing electronic components
and-systems that operate correctly when subjected to-certain failures (for examples, see [IEEE 90,
C'ri 91]). The technologies cited in the next paragraph are instrumental in providing basic hardware
fault-tolerance for a foundation on which the algorithmic-and software fault-tolerance can be built.

Semiconductor memories are the essential components of shared memory parallel systems.
\Mlemories are routinely manufactured with- built-in fault tolerance u.ing replication and coding
rnchniques without appreciably degrading performance (see the survey [SM 84]). Interconnection
nouworks are typically used in 2 multiprocessor system to provide comsnurication among processors,
memory modules and other devices (e.g., as in the Ultracomputer [Sch 80]). The fault-tolerance of
interconnection networks has been the subject of much work in its own. turn. The networks are
made more reliable by employing redundancy (see the survey [AAS 87]). A comébining interconnec-
tinn network that is perfectiy suited for implementing synchronous concurrent reads and writes is

formally treated in [KRS 88]. Finally, fail-stop processors are formally presented and justisied in
[SS 83
[SS &

The abstract modeél that we are studying can be realized (Figure 1 in the following architecture,
using the components-we have just discussed:
There are P fail-stop processors,.cach with a unique address and some amount of local mem-

ory. Processors are unreliable.

2. There are Q addressable-shared memory cells. The input of size ¥ < @ iv stored in shared
memory. This memory is assumed to be reliable.

1 Interconnection of processors and memory is provided by a synchronous combining intercon-
nection network. This network is assumed to be reliable.
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With this architecture,.our-algorithmic techniques-become completely applicable; i.e., the algo-
rithms and simulations we develop will work:correctly, and within the complexity bounds-(under
the unit cost memory access assumption) for all patterns-of processor failures and restarts when
the-underlying components are subject to the failures within their respective design parameters.

2 Models of computation

2.1 The restartable fail-stop CRCW PRAM

We use as a-basis the PRAM model [FW 78}, where all concurrently writing_processors write the
same value (coMMON-CRCW). Processors are subject to stop failures and restarts as in [SS 83].
Our algorithms are described using-the forall/parbegin/parend parallel construct.

1. There are P synchronous processors. Each processor has a unique permanent identifier (PID)
in-the range 0,..., P~ 1, and-each processor has access to P and its own PiD.

2. The global memory accessible to all processors is denoted as shared:-in addition, each pro-
cessor has a constant size local memory denoted as private. All memory cells are capable of
storing O(logmax{.V, P}) bits on inputs of size V.

3. The input is stored in &V cells in shared memory, and the rest of the shared memory is cleared
(i-e., contains zeroes). The processors have access to the input and its size N.

In all our algorithms:

¢ The PRAM processors execute sequences of instructions grouped in update cycles. Each up-
date cycle consists of reading a small fixed number of shared memory cells (e.g.. -1). performing

some fixed time computation, ard writing a small number of shared memory cells (e.g., 2).

The parameters of the update cycle, i.c., the number of read and- write instructions, are fixed,
hut depend on the instruction set of the PRAM; see [FW 78] for a typical PRAM instruction set.
The values quoted (4 and 2) are sufficient for our exposition. It is an interesting question whether
«<maller values would suffice to implement efficient algorithms.

We use the fail-stop with restart failure model, where time instances are the PRAM synchronous
rlock-ticks:

. A failure pattern F (i.e., failures and restarts) is determined by an on-line -adversary, that
knows evervthing about the algorithm and is unknown to the algorithm.

(™)

Any processor may fail at any time during any update cycle, or having failed it may restart
at any time. provided that:

1i) at any time at least one processor is exccuting an update cycle that successfully completes;

(ii) single bit writes are atomic, i.c., failures can occur before or after a write of a single bit.

-
——

Failures do not affect the shared memory, but the failed processors lose their private memory.
Processors are restarted at their initial state with their PID as their only knowledge.
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The failure and restart-patterns-are-syntactically defined as follows:

Definition 2.1 A failure pattern Fis a set of tripies <lag, PID, & > where:lag is cither failure
indirating processor failure,-or restart indicating a processor restart, PID is the processor:identifier,

and-t is the time.indicating when the-processor-stops or restarts. The size of the failure pattern F
is defired as the cardinality |F|. O

For:simplicity -of presentation. we-assume that the shared memory writes of O(logmax{N, P})
bit words are atomic. Algorithms using this assumption can be easily converted to use only single
bit atomic writes-as in [KS-89).

We-investigate two natural complexity measures, completed work and overhead ratio. The
completed work measure generalizes the standard Parallel-time x Processors product and the
avaijlable processor steps of:[KS 89]. The overhead ratio is an amortized measure.

Definition 2.2 Consider-an algorithm with P initial processors that terminates in parallel-time 7
after completing its task on some input data I and in the presence of a failure pattern F. If
P{(I,F) < P is the number-of processors completing an update cycle at time i, and ¢ is the-time
required to complete one update cycle, then we define S(I, F, P) as:

SU,F,P)= ci P(I.F). O
i=]

Update cycles are units of accounting. They do not constrain the instruction set of the PRAM,
and-failures can occur between the instructions of an update cycle. However, in S(J, F, P) the pro-
ressors are not charged for the read and write instructions of update cycles that are not completed.

Definition 2.3 A P-processor PRAM .algorithm on any input data I of size [I] = .V, and in the
presence of any pattern F of failures and restarts of size [F] < M,

o uses completed work S = Syagp = IIII%\'{S(I FP)}, and

s has overhead ralio 6= oy p = n,\.:}.__\' {'-S'i%—:%)‘-)} .0

Consider a definition of total work S'(I, F, P) that also counts incomplete update cycles. Clearly
S'(I,F, P)Y< S(I, F, P)+c|F|. Thus. using S’ does asymptotically affect the measure of work (when
i Fl is very large), but it does not asymptotically affect .

One might also generalize the overhead ratio as r—s(f—)f':—‘;’}-i where T(}/{) is the time complexity

~f the best sequential solution known to date for the particular problem at hand. For the purposes
»f this exposition. it is sufficient to express ¢ in terms of the ratio %‘,L—’;:—? This is because for

I¥rite-All (by itself and as used in the simulation) T'(]/]) = O(|/])-

Now let us briefly comment on the technical choices made in Definitions 2.2 and 2.3.
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Work vs. overhead ratio: For arbitrary processor failures and restarts. the completed work
measure S (or-the total work 5’) depends on the size ¥ of the input [/, the number of processors
P, and the size of the failure pattern F. The ultimate performance goal for a parallel fault-tolerant
algorithm is to perform the required computation at a work cost as close as possible to tke work
performed:by the best sequential algorithm known. Unfortunately, this goal is not attainable when
an adversary succeeds in causing too many processor failures during 2 computation.

Example A: Consider a 1Write-All solution, where it takes a processor one instruction to recover
from a failure. If an adversary in a failure pattern F with the number of failures and restarts
IF] = Q(N'*¢) for € > 0, then the completed work will be Q(N!*¢), and thus already non-optimal
and potentially large, regardless of how-efficient the algorithm is otherwise. Yet the algorithm may
be extremely efficient, since it takes only one instruction-to handle a failure. O

This illustrates the need for a measure of efficiency that is sensitive to both the size of the
input &, and the number of failures and restarts M = |F|. When A = O(P) as in the case of
the stop failures without restarts in [KS $9], S properly describes the aigorithm efficiency, and
7= O(M) However, when F can be large relative to N and P (as is the case when restarts
are allowed) o better reflects the efficiency of a fault-tolerant algorithm. Recall that o is insensitive

to the choice of § or §’, and to using update cycles, as 2 measure of work. However, update cycles
are necessary for the following two reasons.

Update cycles and termination: Our failure model requires that at any time, at least one
processor is executing an update cycle that completes. (This condition subsumes the condition of
KRS 89] that one processor does not fail during the computation). This requirement is formulated
in terms of update cyvcles and assures that.some progress is made. Since the processors lose their
rontext after a failure, they have to read something to regain it. Without at least one active update
cvele completing, the adversary can force the PRAM to thrash by allowing only these reads to be
performed. Similar concerns are discussed in [SS S3].

Update cycles as a unit of accounting: In our definition of completed work we only count
rompleted update cycles. Even if the progress and termination of a computation is assured (by
always completely executing at least one update cycle), but the processors are charged for incom-
plete update cycles. the work 5’ of any algorithin that simulates a single &' processor PRAM step
is at least Q(P-.N). The reason for this quadratic behavior in §” is the following simple and rather
uninteresting thrashing adversary.

Example B: We evaluate the work of any solution for the I¥rite- 1l problem under the arbitrary
failure and restart model. Consider the standard PRAM read-compute-write cycle (if processors
hegin writing without reading, a simple modification of the argument leads to the same result).
\ thrashing adversary allows all processors to perform the read and compute instructions; then it
fails all but one processor for the write operation. Failed processors are then restarted. Since one
write operation is performed per cycle, .V cycles will be required to initialize .V array clements.
Each of the P processors performs O(.V) instructions which results in work of (P - N). O

By charging the processors only for the completed fixed size update eyeles we do not charge for
thrashing adversaries. This change in cost measure allows sub-quadratic solutions.
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2.2 The strongly asynchronous PRAM

The strongly asynchronous PRAM model departs from the standard PRAM models in that the
processors are completely asynchronous. The only synchronizing assumption is that reads and
writes to memory are atomic and serializable, in the sense of Lamport {L.am $6]. Serializability
means that the result of a computation is consistent with some total ordering of atomic actions.
(Note that this-does not mean that the actions are in fact ordered this way, but that the effect of
the computation is as if they were.) This is a restriction on the possible-outcome of simultaneous
events. VWith- asvnchronous processors, the distinction between exciusive writes and concurrent
writes disappears. Among the traditional synchronous PRAM models. the ARBITRARY CRCW
PRAM is closest to the strongly asynchronous model.

One important situation that is modelled by the strongly asynchronuus PRAM is the casé
in which the processors are *nearly synchronous.” If identical processors access shared memory
across a comimon communication channel or network, then they wiil run-at approximately the same
speed, but the-precise interleaving of memory operations may net be under the direct control-of
the processors. To model the lack of control over the interleaving, we-posit an on-line adversary
that chooses the interleaving to maximize the cost of the compuiaiion. The adversary is free to
delay any processor for any length of time.

Definition 2.4 We define an interlcaving to be a sequence of processor numbers, each in the range
{0.P ~ 1). An ezecution of a PRAM algorithm consistent with 2 particular interleaving is the
exccution of steps by the processcrs in the order specified by the interleaving. O

Definition 2.5 The measure of the efficiency of a strongly asyachronons PRAM is the toial number
of steps completed, which we term the total work of the computation {expressed in terms of P and
the input size V). To define total work. we assume that each processor éxecutes a halt instruction
when it terminates work on the algorithm. In order for the algorithm to be correct. it must be the
ease that at this point, the postconditions for the algorithm are satisfied. The total work of an
algorithm with respect tc a given interleaving is the length of the smallest halt-free prefix of that
interlcaving. The total work required by an algorithm is then the maximum total work over all
possible interleavings of the processors. (Note that in this worst case, all processors will be ready
10 exccute halt instructions.)O

Previous work along these lines has assumed either that randomized algorithms can be used
to defeat off-line adversaries {{MSP 90]) or that interleavings are chosen according to some proba-
hilistic distribution 1{CZ 90. Nis 90]). Some of the models in these last two papers are similar to
our restartable fail-stop model. but failures are probabilistic and restarts do not destroy private
memory. Because of our worst case assumptions, these analvses are inappropriate. Furthermore.
notions of time used in {CZ 90] do not work here. because onr scheduling adversary may introduce
arbitrarily long delays.

The notion of wait-free asynchronous computation. in which ans one processor terminates in a
sinite number of steps regardless of the speeds of the other processors. is introduced in {Her 38]. In
he strengly asynchronous PRAM. by definition any algorithm with bounded work must he wait-
free. The same paper shows that atomic reads and writes are insufficient to solve two-processor
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consensus, and demonstrates a hierarchy of stronger primitives for accessing memory- (such as test-

and-set -or compare-and-swap). A later paper ([AH 90]) demonstrates wait-free data structures
ausing only atomic reads and writes.

‘Finally, we note-that the strongly asynchronous model is.a very general one, and it is subject
to fewer definitional restrictions than is its fail-stop restartable counterpart. However, as a result
of such restrictions, the fail-stop model can be used for general synchronous PRAM simulations (as

we-show in Section 5), while the strongly asynchronous model-cannot be used for such simulations
due to impossibility results such as [Her 88].

2.3 Comparison of the models

On- the surface, the two models of restartable fail-stop processors-and of asynchronous processors
are=designed for quite different situations. The fail-stop model treats failure as an abnormal event,
which occurs with sufficient frequency that it cannot be ignored. The asynchronous model treats
delay as a normal occurrence. Nevertheless, the two models are closely related.

Consider an execution of an asynchronous algorithm. Because the events are serializable, we
may assume without loss of generality that the events occur at discrete times. In other words, a set
of time slices is fixed in advance, and the scheduling adversary chooses at each-time slice whether or

not-each processor will start running during that time slice. From this viewpoint, the two models
differ in the following ways.

1. Processors that miss a time slice lose their internal state in the restartable fail-stop case, and
keep their internal state in the asynchronous case.

2. The adversary can stop a processor after any memory operation within a time slice in the
restartable fail-stop case while this has no effect on the asynchronous case.

3. The time slices are long enough for several memory operations in the restartable fail-stop case
but allow only a single operation in the asynchronous case.

From- the algorithmic point-of view, the difference between the models concerns the number of
failures during an execution of the algorithm. In the restartable fail-stop model, failure 1s treated
ns a significant event, and the number of failures may be taken into account when measuring the
officiency of the algorithm. In the asynchronous model, delay is the rule rather than the exception,

and the number of delays is not a particularly meaningful quantity. A normal execution may involve
many delays-of each processor between each consecutive step.

An algorithm that performs a bounded amount of work for any number of failures, and has-a
«mall amount of state information, is suitable for either model. An algorithm whose performance
degrades significantly as the number of failures increases, however, may only be-suitable for the
restartable fail-stop model. Algorithms 1 and 1 (as presented in Section 4) are examples of the
latter case; algorithms X and T exemplify the former case.
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3 Lower bounds for the Write-All problem

3.1 Lower bounds with-memory snapshots

As we have shown in Example B in Section 2.1, without the update- cycle accounting there is
a thrashing adversary that exhibits a quadratic lower bound for the Write-All problem in the
restartable fail-stop model. ‘With the update cycle accounting -and for the asynchronous model,
we show N — P + Q(P log P) work lower bounds (when P < N) for-both models, even when the

processors can take unit time memory snapshots, i.e., processors can .read:and locally process the
entire shared memory at unit-cost.

Theorem 3.1 Given any prrocessor CRCW PRAM algorithm that solves the Write-All problem
of size N (P £ N), an-adversary (that can cause arbitrary processor failures and restarts) can force
the algorithm to perform N =:P 4 Q(Plog P) completed work steps.

Proof: Let Z be any algorithm for the Write-All problem subject to -arbitrary failure/restarts
nsing update cycles. Consider-each PRAM cycle. The adversary uses the following strategy:

Let U > 1 be the number -of unvisited- array elements. Ior as long as U > P, the adversary

induces no failures. The work:needed to visit N — P array elements when-there were no failures is
at least N — P.

As soon as a processor is.about to visit the element ¥ — P + 1 making U < P, the adversary
fails and then restarts all N processors. For the upcoming cycle, the adversary determines how
the algorithm assigns processors tc write to array elements. By an averaging argument, for any
pxocossor assignment to the U elements, there is a set of I_Uj unvisited elements with no more
than [ | processors assigned to them. The adversary fails these processors, allowing all others to

pmceed Therefore at least [P %] processors will complete this step having visited no more than half
of the remaining unvisited array locations.

This strategy can be continued for at least log P iterations. The work performed by the algo-
rithm will be § > N = P+ |§]log P = N — P+ Q(Plog P). O

Vote that the bound holds even if processors are only charged for writes into the array of size V

and do not have to only write the value 1. The simplicity of this strategy ensures that the results
hold in the strongly asynchronous model.

Theorem 3.2 Any N-processor strongly asynchronous PRAM algorithm-that solves the Write-All
problem of size N has total work N — P + Q(Plog P).

Proof: Any possible execution of an algorithm on the restartable fail-stop model can be duplicated’
hv an appropriate interleaving on the strongly asynchronous model. The argument in Theorem 3.1

works even if failed processors do not lose local state, and so the same strategy will work in the

strongly asynchronous model. O

This lower bound is the tightest possible bound under the assumption that the processors can
rendd and locally process the entire shared memory at unit cost. Although such an assumption is
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very strong, we-present the matching upper bound for two reasons. First, it demonstrates that
any improvement to the lower bound must take-account of the fact that processors can read only a

constant number-of cells per update cycle. Second, it-presents a-simple processor allocation strategy
that we use-to advantage in the:next section.

Theorem- 3.3 If processors can read and: locally process the-entire shared memory at unit cost,
then a_solution for the Write-All problem in the restartable fail-stop model can -be constructed

such that its completed work using P processors on-input of size N is § = N — P 4 O(Plog P),
when P < N.

Proof: The processors follow the following simple strategy: at each step that a processor PID is
active, it reads the N-elements of the-array z[1..N] to be visited. Say U of these elements are still
not visited.. The processor numbers these U elements from 1 to U based on their -position in the
array, and assigns itself to the ith unvisited element such that i = [PID - %] This achieves.load’

balancing with no more than [5] processors assigned to each unvisited element. The reading and-
local processing is done as-a snapshot at unit cost.

We list the elements of the Write-All array in ascending order according to the time at which
the elements are visited (ties are-broken arbitrarily). We divide this list into adjacent segments
numbered sequentially starting with 0, such that the segment 0 contains Vo = N ~ P .elements,
and segment j > 1 contains V; = LW | elements, for j = 1,...;m and for some m < VP. Let
[7; be the least possible number of unvisited elements when processors were being assigned to the
clements of the jth segment U;. can be computed.as U, = N - E;’:& Vi. Uy is of course N, and
forj>1,U;=P- Z,_l Vi2P-(P- —E) = -}3 Therefore no more than [U'] processors were
assigned to each element.

The work performed by such an algorithm is:

o= | P L P P .
'SSZ(:,VJ'[U?]SV”,-_Z_:,[T(TEHP/J 10+0(p2 1):1\—P+O(PlogP).D

J—l

A similar situation holds in the strongly asynchronous model.

Theorem 3.4 If processors can read and locally process the entire shared memory at unit cost,
then a solution for the Write-All-problem in the strongly asynchronous model can be constructed
with total work ¥ — P + O(Plog P) using P processors on input of size IV, for P < V.

Proof: We use the same algorithm as in the previous proof. The proof itself applies to the strongly
nsynchronous model with the following modifications: (1) one unit of total work is charged for each
read and the write that (potentially) follows; (2) as soon as a processor performs a read, it is
rharged. one unit work; this-is done to take care of the situation when a processor performs a write
only after all elements in a given segment have been initialized. O
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3.2 Lower bounds: with test-and-set operations

Under certain assumptions on the way that memory is-accessed in the strongly asynchronous model,
we can prove a-different lower bound. Assume for the moment that, instead of atomic reads-and
writes, memory is-accessed by means of test-and-set-operations. That is, memory can only-contain
zeroes and ones, and- a single test-and-set operation on- a-memory cell sets the value of that cell

to 1 and returns the old value of the cell. (We will discuss shortly how this assumption can be
generalized.)

Theorem 3.5 Any-strongly asynchronous PRAM algorithm for the Write-All problem:which uses
test-and-set as an atomic operation requires N + Q(Plog(V/P)) total work, for P > 3.

Proof: Consider the following class of interleavings. A round will be a length of time-in which
processors take one step each in PID order; formally, it is the sequence of PIDs (1,2,...P). We
will run the algorithm- in phases. To define a phase, suppose that U cells out of the original N
remain unset at the beginning of a phase. We imagine running the algorithm in rounds until a
collision occurs; that is, until a test-and-set operation is-done on a cell that is already set to-one.

Suppose-this happens in the ¢th round. The actual definition of the phase depends on the nature
of the collision; there are two cases.

If the cell involved in the collision was set in this round, then it was initially set by some
processor with PID 7, and set again_by some processor with-PID j. Then to define the phase, welet
only processors 7 and j alternate steps, instead of running all processors; that is, the phase consists
of the PIDs 1,7 repeated ¢ times. A total of 2t steps are-taken and one of them is wasted work.

On the other hand, if the cell was set in a previous round, then consider the processor with-PID-

j that set it in this round and let only this processor take steps. That is, the phase consists of the
PID 7 repeated ¢ times, for a total of ¢ steps and one wasted step.

We now note that t must be at most [U/P], and so a-recurrence for the-amount of wasted work
W(U)is W(U) > 1+ W(U - 2[U/P] +1). By induction, we can show that W(U) > ¢PIn(U/2P)
for a suitable constant ¢ > 0; the result follows by noting-that unwasted work N is necessary.

The trivial base case of the induction is U < 2P. Now suppose that the inequality W(z) >
e PIn(z/2P) holds for all integer z < U. By the induction hypothesis, we have W(U) > ¢PIn((U -

2AU/ P +1)/2P) 2 1+ cPIn(U/2P) + cPln(1 —2/P ~1/U). It thus suffices to prove 14 cPln(1 -
2/P - 1/U) > 0. But

1+ cPIn(1-=2/P = 1/U) > 1+ cPln(l1-5/(2P)) > 1+ cP(-5/(2P - 5)) > 0.

The first inequality is valid because U > 2P; the second -inequality uses In(1 — z) > ~z/(1 ~ 2),

which can be seen by comparing power series; the third inequality is valid for P > 3 and any choice
of ¢ € 1/15. No attempt was made to optimize the constant ¢. O

The argument used in this lower bound can be applied equally well if the atomic operation is
rompare-and-swap, or to any set of atomic read-modify-write operations where the read and writes
are constrained to be to the same cells. It also applies to-atomic read and atomic write, but in this
rase there is no known matching upper bound, whereas algorithm T (presented in the next section)
can match the lower bound (for some choices of atomic operation) in the case P = 3. The above

pronf technique also applies to the fail-stop restartable model, when each update cycle accesses
only one array element used by the 1Write-All problem.
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4 Algorithms for the Write-All problem

The original motivation for studying the VWrite~AIl problem was that it intuitively captured ‘the
essential nature:of a single synchronous PRAM step. This intuition was made:concrete when it-was
shown-([KPS 90, Shv 89]) how to use any aigorithm for the Write-All problem in general PRAM

simulations. This application is discussed in the next section; in this section, we will present new
algorithms for the Write-All-problem.

In what follows, we assume that the number of array elements N and the number of processors

P are -powers of 2. Nonpowers of 2 can be handled using conventional padding techniques. All
logarithms are base 2.

4.1 Algorithm V: a modification-of a no-restart algorithm

Algorithm W of [KS 89]is an efficient fail-stop-(no restart) Write-All solution. The algorithm uses
two full binary trees-as its basic data-structures (the processor counting and the progress measure-

ment trees). The algorithm uses an iterative approach in which all active processors-synchronously
execute the following four phases:

\W1: Processors are counted and enumerated using a static bottom-up, logarithmic time traversal
of the processor counting tree data structure.

W2: Processors are allocated to the unvisited array locations according to a divide-and-conquer
strategy using a dynamic top-down traversal of the progress tree datastructure.

\W3: Array assignments are done.

\W4: Progress is evaluated by a dynamic bottom-up traversal of the progress tree data structure.

This algorithm has efficient completed work when subjected to arbitrary failure patterns without
restarts. It .can be extended to handle processor restarts by introducing an iteration counter, and
having the revived processors wait for the start of a new iteration. However, this algorithm may
not terminate if the adversary does not allow any of the-processors that were alive at the beginning

of an iteration to complete that iteration. Even if the extended algorithm were to terminate, its
completed work is not bounded by a function of N and P.

In addition, the proof framework of [KS $9] does not easily extend to include processor restarts:
the processor enumeration and allocation phases become inefficient and possibly incorrect, since no

aceurate estimates-of active processors can be obtained when the adversary can revive any of the
failed processors at any time.

On the other hand, the second phase of algorithm 1V can implement processor assignment (in a
manner similar to that used in the proof of Theorem 3.3) in O(log V) time by using the permanent
pracessor PID in the top-dowh divide-and-conquer allocation.. This also suggests that the processor
« numeration phase of algorithm W does not-improve its efficiency when processors can ‘be restarted.

Therefore we present a modified version of algorithm W, that we call V", To avoid a complete
restatement of the details of algorithm V. the reader is urged to refer to [KS 89].

1" uses the data structures of the optimized algorithm W of [KS 89] (i.e., full binary trees
with ﬁﬁ leaves) for progress estimation and processor allocation. There are log ¥ array elements
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associated with each leaf. When using.P-processor such that P > l_T\T on such data structures, it
is sufficient for each processor to take:its PID modulo e N N to assure that there is s uniform-initial
assignment of at least | P/; T NJ and:no-more than [P/ Tog N] processors to a work element.

Algorithm V' is an iterative algorithm-using the following three phases.

V1: Allocate processors-using PIDs:in a-dynamic top-down traversal of the progress tree to-assure
load balancing (O(log V) time).

V2: The processors now pérform— work at the leaves they reached in phase V1 (there are-log N
array elements per leaf).

V3: The processors begin at the leaves of the progress tree where they ended phase V2 and update
the progress tree dynamically, bottom up (O(log V) time).

Processor re-synchronization. after.a-failure and a restart 1s an important implementation detail.
One way of realizing processor-re-synchronization is through the utilization of an iteration: wrap-
around counter that is based on the synchrcnous PRAM clock: If a processor fails, and then is
restarted, it waits for the counter wrap-around to rejoin the computation. The point at which the
counter wraps arour.d depends on the length of the program code, but it is fixed at “compile time”.

Analysis of algorithm V:

We now analyze the performance of this. algorxthm first in the fail-stop, and then in the fail-stop
and restart setting.

Lemma 4.1 The completed work of .algorithm V using P < N precessors that are subject to
fail-stop errors without restarts is § = O(N + Plog? V).

Proof: We factor out any work that is wasted due to failures by charging this work to the failures.
Since the failures are fail-stop, there can be at most P faidures, and each processor that fails can
waste at most O(log V) steps corresponding to a single iteration of t..e algorithm. Therefore the
work charged to the failures is O(Plog N); and it will be absorbed by the rest of the work.

We next evaluate the work that directly contributes to the progress of the algorithm by distin-
gnishing two cases below. In each of the cases, it takes O(log TolgLN') = O(log N') time to perform
processor allocation, and O(log N) time to perform the work at the leaves. Thus each iteration of
the algorithm takes O(log V) time. We use the allocation technique of Theorem 3.3, where-instead
nf reading and locally processing the entire-memory-at unit cost, we use an O(log V) time-iteration
for processor allocation.

Case 1: 1< P < ﬁ}ﬂ- In this case,-at most 1 processor is initially allocated to each leaf. As-in

the proof of Theorem 3.3, when the first —0—‘7 P leaves are visited, there-is no.more than one
nrocessor allocated to each leaf by the balanced allocation phase. When the remaining P or less
lraves are visited, the work is O(Plog:P) by Theorem 3.3 (not counting processor allocation). Each
leaf visit takes O(log V) work steps;-therefore the completed work is:

N 2
$=0 ((m - P+ Plogl’) . logN) =QO(N+ P logP logN)=0O(N + Plog” N).

| | . . . .
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Case 2: Y‘"V < P < N. In this-case, no more than [P/

cach leaf. An) two processors that areinitially allocated to i,he same leaf, should they both survive,
will behave -identically throughout the computation. Therefore we can use Theorem 3.3 with the
[Pl g N = | processor allocation as a multiplicative factor. From this, the completed work:is:

N N
[P/l gN] 0 (log,N l og N

"The results-of the two-cases combine-to yield § = O(N +Plog® N).

) -O(log N) = O(Plog? N).

The following-theorem expresses the completed work of the algorithn. in the presence of restarts:

Theorem 4.2 The completed work of algorithm V using P < .V processors subject to an-arbitrary

failure and restart pattern I of size M is: § = O(N + Plog? N + Mlog V).

Proof: The proof of Lemma 4.1 does not rely on the fact that in the -absence-of restarts, the-

number of active-processors:is non-increasing. However, the lemma does not account for:the work
that might be performed by processors that zrz active during a part of-an iteration but do not
contribute to the progress of the algorithm due to failures. To account for all work, we are going to
charge to the array being processed the work that contributes to progiess, and any work that was
wasted-due to failures will be charged to the failu es and restarts. Lemma 4.1 accounts for the work
charged to the array. Otherwise, we observe that a processor can-waste no more than:O(log ) time
steps without contributing to the progress due tc a failure and/or a restart. Therefore this amount
of wasted work is bounded by O(M logN). Th.s proves the theorem. (Note that the completed
work § of V is small for small |F|, but.not bounr'ed by a function of P and N for large |F|). O

4.2 Algorithm X: a binary tree algorithm

We present a new algorithm-X for the Write-All problem, and show that its completed/total work
complexity is § = O(V - P‘°5%) using P < NV processors in the restartable fail-stop and the strongly
asynchronous models-of computation. The important property of X is that it has -bouuded sub-
quadratic completed work; in the restartable fail-stop model. this is independent wt the failure
pattern. If a very large rumber of failures occurs, say |F| = Q(& - P%%9), then the aigorithm’s
nverhead ratio o becomes optimal: it takes 2 fied number-of computing steps per failure/recovery.

Like algorithm V, algorithm X utilizes a progs .: tree of size .V, but it is {raversed by the
processors independently, not in synchronized phases. This reflects the local nature of the processor
assignment in algorithm X as opposed to the globa! assignments used in algorithms V" and W. Each
processor, acting-independently, searches for work in the smallest immediate subtree that has work
that needs to be done. It then performs the necessary work, and moves out of that subtree when
no more work remains. We present the aigorithm on the réstartable fail-stop model.

Input: Shared array 2[1..N}; z[{] = 0for 1 £ i < N.
Output: Shared array z[l..FN]; z[i] =1 for L < i< V.

Data-structures: The algorithm uses a full-binary tree of size 2V -1, stored as a heap d[1...2N ~
1] in shared memory. An internal tree pode d(i] (i = 1,..., ¥ — 1) has the left child d[2i] and the

] processors-are initially allocated to-
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01 forall processors:PID=0..P — 1 parbegin:
02 Perform initial processor assignment to:the leaves of the progress tree
-03- while there is-still work left in the trée-do
04 if current-subtree is dor:» “hen move one level up
05 elseif this-is a leaf thes .0 .zm-the work at the leaf
06- elseif thisis an intenior ., v 1.0de-then
07 if both sulirces ..« ¢~ao #hon update the tree node-
08- elseif only onc 5 :46n: vito. go to the one that is not done
09 else move to the .k -2 ght subtree according to PT5-bit values
10- fi
11 fi
12 od
13 parend

Figure 2: A high level view of the algorithm X.

right child d[27 ++ 1]. The tree is used for progress evaluation and processor allocation. The values
stored in the heap are initially 0.

The N elements of the input array z[!....V] are associated with the:leaves of the tree. Element
x{i] is associated with d[i+ ¥ —1], where 1 < i < N. The algorithm also-utilizes an array w(0..P—1]
that is used to store individual processor locations within the progress tree d.

Each processor uses some constant amount of private memory to perform simple arithmetic
computations. An important private constant is ID, containing the initial processor identifier.

Thus, the overall memo: v used is O(N + P) and the data-structures are simple.

Control-flow: The algorithm consists of a single initialization and of the parallel loop. A high

lovel view of the algorithm is in Figure 2; all line numbers refer to this figure. More detailed code
can be found in Appendix A.

The initialization (line 02) assigns the P processors to the leaves of the progress tree so that the
processors are assigned to the first P leaves by storing the initial leaf assignment in w{PID]. The
lnnp (lines 03-12) consists of a multi-way decision (lines 04-11). If the current node is marked done,
the nrocessor moves up the tree (line 04). If the processor is at a leaf, it performs work (line 05). If
the current node is an unmarked interior node and both of its subtrees arc done, the interior node
i« marked by changing its value from 0 to 1 (line 07). If a single subtree is not done, the processor
moves down appropriately (line 08).

For:the final case (line 09), the processors move down when neither child is done. This last case
i« where a non-trivial (italicized} lecision is made. The PID of the processor is used at depth & of
the iree node based on the value of the A™* most significant bit of the binary representation of the
PID: bit 0 will send the processor to the left. and bit 1 to the right.

Regardless of the decision made by a processor within the loop body, each jieration of the body
ennsists of no more than four shared memory reads, a fixed time computation using private memory,

and one shared memory write (see Appenilic A for the detailed algorithm). Therefore the body
can be implemented as an update cycle.




Figure 3: Proressor traversal of-the progress tree.

Exa:nple C: Consider algar thm X for ¥ = P = 8. The progiass tree-d of size 28N -1 =15
is used to represent the full binary progress tree with-eight leav:« The 8 processors have PIDs
in the range 0 through 7. Their initial positions are indicated :n Figure 3 under the lerves of
the tree. The diagram illustrates the state of a computation where the nrocessors were subject
1o some failures and restarts. Heavy dots indicate nodes whose subtrees are finished. The-paths
heing traversed by the processors are indicated by the arrows. Active processor locations (at the
time wher-the snapshot was-taken) are indicated by their PIDs in brackets. In this configuration,
should the active processors ccmplete the next cycle, théy will move in the directions indicated by
the-arrows:- processors 0 and 1 will descend to the left and-right respectively, processor 4-will. move
to the unvisited leaf to itsright, and processors 6-and 7 will move up. O

Analysis of algorithm X:

We begin by showing the correct s and termination of algorithm X in the following simple lemma.

Lemma 4.3 Algorithm X with-.V processors is a correct, terminating and faui: -volerant_solution
for the P-processor Write-All problem. of size N. The algorithm terminates in at least Q(log V)
and at -most O(P - Ny time steps.

Pnof: We first observe that the processor loads are localized in the sense that a processor exhausi:
all ork in the vicinity-of its original position in-the tree, before-moving to other-areas of the tree.
Il + processor 1n0ves up-out of a subtree then all the leaves in-that subtree were visited. We also
nhservethat it takes exactly-one update cycle to: {i) change the value of-a progress tree node from
0 to 1, (ii) to move up from a {non rc3i) node, or (iii) to move down left, or {iv) down right fromn
a-fnon leaf) node. Therefore, given any node of the progress tree and-any processor, the processor
will visit and spend exactly one complete update cycle at the node no more than four times.

Since there are 2N ~ 1 nodes in the progress tree, any processor will be able to exerute no more
than O(NV)-completed update cycles. If‘there are P processors, then all processors wil. be able to
romplete no more than O(P - V) update cycles. Furthermore, at any point in time, there is at
least one update cycle that will.complete. Therefore it will take no more than O(P - ¥) sequential
update cycles of constant size for the algorithm to terminate.

Finally, we also observe that all paths from a leaf to the root are at least log ¥ long, therefore
at least log iV update cycles-per processor will be required for the algorithm to ‘erminate. O
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Now we prove the main Work lemma. In-the rest of this section, the-expression “Sy p” Jdenotes

‘the completed-work on inputs of size N using P initial processors and for any failure pattern. Note
that in this lemma we assume P > N.

Lemma 4.4 The completed-work of algorithm X for the-}¥Vrite-All problem of size N -with P>N
initial processors and for any-pattern of failures and restarts is Sy p-=-O(P- N '°52)

Proof: We show by induction on the h.'ght of the progress tree that there are positive constants
¢1, €2, ¢3 such-that Sy p <.¢iP - Niog? _ czPlog N —c3P.

For the base case: we have a tree of height 0 that corresponds to an input array-of size 1 and
at least as many initial processors P. Since at least one:processor,-and.-at most P processors will.
be active, this single leaf will‘be visited in:a coastant-number of steps. Let the work-expended be

' P for some constant ¢’ that depends only on the-lexical structure-of the algorithm. Therefore
Sip=cP <P o83 _ 2P - 0 - c3P-when ¢, is chosen to be larger than or equal-to c3 +¢'.

Now consider a tree of height g N (2 1). The root has two subtrees (left and right) of height
log N — 1. By the definition of a:goritl..u1r X, no processor will leave a-subtree until the subtree
is marked-one, i.e., the value-of t*e root of the subiree-is- changed from 0 to 1. We consider the
following sub-cases: (1) both:subt. 2es are-marked-one simultaneously, and (2) one of the subtrees
is marked-one before the other.

(“ase 1: If both subtrees are marked-one-simultancously; -then the algorithm will terminate after
the two independent subtrees terminate plus some smzll constant number of sieps ¢’ (when a
processor moves to the root and determines that-both of.ihe subtrees are finished). Both the work
S1,-expended in the left subtree-of, and theé work Sg in-tlie right subtree are bounded-by S N/2,P[2:
The added work needed for the algorithm to terminate is at most ¢’ P, and so the total work is:

P /(N log2 p N P?
S LS+ Sp+ P <25uppp2+¢'P <2 (01 (2/ —cz-glog?—cs?)_—)-i-c'P

7

N
§PN'°52 - chloar 85 = caP+cP<LeP- Nlos3 _ c2Plog N — ¢3P

for sufficiently large ¢; and any ¢, depending on ¢/, e.g., ¢1 2 3(c2-+ ¢').

("ase 2: Assume without loss of generality that the left subtree is marked-one first with S, =
Sx/2.p/2 Work being expended-in this subtree. Any active processors from the left subtree will start
moving via the root to the right subtree. The path traversed by any processor as it moves to-the
right subtree after the left subtree is finished is bounded by the maximum path length from a leaf
*o another leaf ¢'log V for a predefined constant ¢’ V. .aore than the original /2 processors of
e left subtree will move, and so the work of moving the processors is bounded by ¢/(P/2)log .

Ve observe that the cost of an execution in which P processors begin at the leaves of a tree
vith V/2 leaves) differs from the cost of an execution where P/2 processors start at the leaves,
and P2 arrive at a later time via the root, by no more than the cost ¢'(P/2)log N accounted-
for above. This can be simply shown by constructing a scenario in which the second set of P/2
processors do-not arrive through the root, but instead start their execution with a failure, and then
rraverse along 2 path of U's (if any) in the progress t:ee, until they reach a 0 node that is either a
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leaf, or-whose descendants are marked. Having accounted for the-difference, we see that the-work

Sg to complete the right subtree using up to.P proces:ors is-bounded by Sy, p (by the definition-
of-S,if P; <.P,, then Sy, P, < Sn,p,). After this, each-processor will spend some constant number

of-steps-moving to the root and terminating the algorithm. This work is-bounded by ¢"”P for some
small-constant ¢”. The total-work-S is:

P P
S<SL+ GIE logN + Sp+c"P< Sxpa.pp2+ c'-;i- log N + Sny2.p + ¢'P

log T ) log 7
< cl‘;) (2{) B czglog%r- - C3§ P log N+ P (N) ‘- c2Plog —12!—'— c3P 4+ c"P

I\ ) 1
= CIPNIOS% — o Plog lV(g- - }%-2') - C3P“<g - %; - gj:) <c¢P- .Nlosz — coPlog N — C3P

for sufficiently large ¢;-and:-¢3 depending on fixed ¢’ and ¢”, e:g., ¢2 > ¢"-and ¢3 > 3¢z + 2¢".
g g g

Since the constants-c¢’,¢” depend only on-the lexical-structure-of the algorithm, the-constants
r1.c2,¢3 can-always be chosen sufficiently large to-satisfy the-base case and both-the cases (1)-and-

(2) of the-inductive step. This completes the proof of the lemma. O

The quantity P -} /083 is about P - N059_ Ve next show a particular pattern of failures for
which the completed work of algorithm X matches this upper bound.

Lemma 4.5 There exists a pattern of fail-stop/restart errors that cause the algorithm X to per-
form § = Q(N'983) work on the input of size N using P = N processors.

Proof: We can compute the exact work performed by the algorithm when the adversary adheres
to the following strategy:

ta) The processor with PID 0 will be allowed to sequentially traverse the progresstree in post-order
starting-at the leftmost leaf and finishing at the rightmost leaf.

ib) The processors that find themselves at the same leaf as processor 0-are (re)started and are
allowed to traverse the progress tree until they reach a leaf, where they are failed.

(c) Procedure-(b) is repeated until-all leaves are visited.

Thus the leaves of the progress tree are visited left to right, from the leaf number 1 to the leaf
number . At any time, if 7 is the number of the rightmost visited leaf, then only the processors
with PIDs 0 to z — 1 have performed at least one update cycle thus far.

The cost of such strategy can be expressed inductively as follows:
The cost. Cy- of traversing a tree of-size 1 using a-single processor is 1 (unit of completed work).

The cost Cy41 of traversing a tree of size 2**! is computed as-follows: first, there is the cost C; of
traversing the left subtree of size 2'. Then, all processors move to the right subtree and participate
Tsubject to failures) in the traversal of the right subtree at the cost of 2C, — the cost is doubled,

hecause the two processors whose PIDs are equal modulo ¢ behave identically. Thus Ciyy = 3Ci,
and Ciogiv = gV = ylogd g

Now we show how to use algorithm X' with P processors to solve Write-All problems of size NV
~uch that P £ V. Given an array of size N. we break the & elements of the input.into - ,, groups
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of P elements:- each (the last group-may-have fewer than P elements). The P processors-are-then
used to solve Write-All problems:of:size P one at a time. We call this algorithm X', and-we-will
use X’ in the- general simulations.

Remark: Strictly speaking, it is not necessary to modify algorithm X for P < .V processors.
Algorithm: X can be used with P < N -processors by initially assigning the P processors-to the
first P clements of the array to be visited. It can also be shown-that X and X’ have the same
asymptotic complexity; however, the analysis of X’ is very simple, as we show below.

Theorem-4.6 Algorithm X’ with P processors solves the Write-All problem of size N (P < N)

using completed work § = C‘\N . Plo8 3 z). In addition, there is an-adversary that forces a.lgorxthm
X’ to perform S = Q(N - - P83 )-work.

Proof: By Lemma 4.4, Spp = O(P - P'°5%) = O(Pl°53). Thus the overall work will be § =
O( SPP) = (N}ﬂogS) - O(N Pl°52)

Using :the'strategy of Lemma 4.5;.an adversary-causes the algorithm to perform work Spp =
Q(P83)-on. each of the %’ segments of the input array. This results in the overall work of: § =
Q(%:_Plog3) = Q(N - Plog%). g

Remark: Lemma 4.3 gives only a loose.upper bound for the worst.time performance of algorithm
X — there we are primarily concerned- with termination. The actual worst case time for algorithm
X can be no more than the upper bound on the completed work. This is because at any point in
time there is-at least one update cycle that will complete. Therefore, for algorithm X’ with P < N,
the time is bounded by O(V - Pl°52) In particular, for P = .V, the time is bounded by 0(N'°53)
In fact, using the worst case strategy of-Lemma 4.5,-an adversary can “time share” the completed
rycles of the processors so only one processor is active at any given time, with the processor with
PID 0 being one step ahead of other processors. The resulting time is then-Q(N1083).

In algorithm X, processors work for the most part independently of other processors; -they
attempt to avoid duplicating already-completed work but do not co-ordinate their actions with
nther processors. It is-this property which allows the algorithm to run on the strongly asynchronous
model with the same work and time bounds.

Lemma 4.7 Algorithm X with P processors solves the 1Write-All problem of size ¥ (P> V) on
the strongly asynchronous model with total-work O(P - ¥ log 3 )-

Proof: If we let Sy p be the total work done by algorithm X on a problem of size .V with P
processors, then Sy, p satisfies the same recurrence-as given in the proof of Lemma «.4. The proof,
which never uses synchroneity, goes through exactly as in that lemma, except that case 1 (where
left and right subtrees have their roots marked simultaneously) does not occur. O

The final result of this section is similar to Theorem .6:

Theorem 4.8 Algorithm X" with P processors solves the 'rité-All problem of size .V (P £ V)
on the strongly asynchronous model with total work O(N - P'°5§).
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4.3 Algorithm T: a three-processor algorithm

Quite different techniques are necessary when designing a parallel algorithm in which the number
of processors is much smaller than the size of the input. The goal in this situation, when the
underlying machine is synchronous, is to find a method whose parallel time complexity is at-most
the sequential time complexity divided by the number of processors plus a small-additive overhead;
see-[And 90] for-an example of such an algorithm. Note that constant factors are important and
cannot be hidden in O-notation. When considering algorithms on fail-stop or asynchronous models,

the goal is to have the parallel work complexity be equal to the sequential complexity plus small
overhead.

For the Write-All problem, it is easy to achieve this goal with-two processors. The processor
with PID 0 (henceforth, P;) reads and then writes locations sequentially starting at 1 and moving
up: processor Py reads and then writes locations sequentially starting at .V and moving down. Both.
processors stop when-they read a 1. The completed work is exactly & + 1.

The- first non-trivial case is that of three processors. Here is an intuitive description of an
algorithm that works in this situation. Processor Py works left-to-right, processor Py works right-
to-left, and P, fills starting from the middle and alternately expanding in both directions. If Fp
and P> meet, they both know that an entire prefix of the memory cells has been written. Processor
Py then jumps to the leftmost cell not written by itself or P, and P, jumps to the new “middle”
of unwritten cells. A meeting of P, and P, is symmetric. When Py and Py meet, the computation
is complete. Intuitively, processors can maintain an-upper bound on the number of empty cells
remaining that starts at NV and is halved every time a collision occurs. Thus at most log V' collisions
are experienced by each processor. High-level pseudo-code for the algorithm is given in figure 4.

Implementation of the high-level algorithm requires some form of communication among the
asyichronous processors. At a collision, a processor must determine which processor previously
wrote the cell. In the case of a collision with P, a processor must also determine what portion
of the array to jump over. This communication may be implemented either by writing additional
information to the cells of the array or by using auxiliary variables.

If the array in which processors are writing is also used to hold auxiliary information, imple-
mentation is straightforward. When processor P> writes to a cell at the left (resp. right) end of its
area, it writes the location of the next unwritten cell to the right (resp. left). Py and P write the
values —1 and ¥ + 1 respectively, to signal no unwritten cells. A total of ¥ 4+ O(log V') reads and

V = O(log N) writes are required on the asynchronous model. If an atomic compare-and-swap is
used, the total work is reduced to N + O(log V) operations.

To solve the pure Write-All problem, in which only 1's are written to the array, auxiliary shared
variables are required. These variables must be carefuily managed to ensure that the processors
maintain a consistent view of the progress of the algorithm. Because a processor may be delayed
hotween reading an auxiliary variable and writing to the array, complete consistency is impossible.
\pproximate consistency is sufficient, however, if the processors are-appropriately pessimistic. The
precise code is presented and analyzed in Appendix B.

In summary, algorithm T provides the following bounds.

Theorem 4.9 The Wrile-All problem for three processors can be solved with &V +O(log V) writes
to and ¥ 4 O(log V) reads from the array.
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To:

set-current- position to 1

repeat
-ifno collision then write 1 and increment current position
-else if collision with P; then exit
-else (collision with P») set-current-position at the right of P2’s area
f

until-current position > N.

set:current position to N

‘repeat
‘if no collision then write 1 and decrement current position
-else if collision with Py then exit

‘else (collision with P») set-current position at the left of P»’s area
fi

until current position < 1.

initialize middle and boundaries of current-write arca
repeat
if no collision then write the next 2 cells away from the middle
clse if collision with P, then
set left boundary at rightmost cell written by Pa
set middle halfway between left and right boundaries
clse (collision with Py)
set right boundary at leftmost cell written by P» *
set-middle halfway between left and right boundaries
fi
until done

Figure 4: A high-level description of algorithm T. Processor P; exccutes T;.

In most applications,-the array also has room for communication variables, and no auxiliary vari-
ables are necessary.

5 General simulations on restartable fail-stop processors

We now present-a major extension to the algorithms presented so far. This is an efficient deter-
ministic simulation of any .V-processor synchronous PRAM on P restartable fail-stop processors
¢ P € N). Note that-due to the impossibility results-for-asynchronons models {Her S8], we are able
to show this result only for the restartable fail-stop model.

We first formally state the main result and then discuss its proof.
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Theorem 5.1 Any- N -processor PRAM algorithm can bé executed on a restartable fail-stop P-
processor CRCW PRAM, with P-< N. Each N-processor-PRAM step is-executed-in the presence
of any pattern F' of failures and restarts of size M with:

o completed work: §"= O(min{N + Plog? N + Mlog N, N - P'E’g%}'),
o overhead ratio: o = O(log® V).

EREW, CREW, and WEAK and coMmMoN CRCW PRAM algorithms are simulated on fail-stop

coMMON CRCW PRAMSs; ARBITRARY and STRONG-CRCW PRAMs are simulated on fail-stop
CRCW PRAMs of the same type.. O

Remark: PrIOrITY CRCW PRAMs cannot be directly simulated using the same framework,
for one of the algorithms used (namely algorithm X in Section 4)-does not possess the processor

allocation-monotonicity property that assures that higher numbered: processors simulate the:steps
of the higher numbered-original processors.

An approach for executing arbitrary PRAM programs on. fail-stop CRCW PRAMs (without
festart) was presented independently in [KPS 90] and [Shv 89]. The execution is -based on-simu-

lating individual PRAM computation steps using the Write-All paradigm. It was.shown that the

complexity of solving a N-size instance-of the Write-All problem using P fail-stop processors is
equal to the complexity of executing a single N-processor PRAM step-on a fail-stop P-processor
PRAM. Here-we describe how.algorithms V and X’ are combined with the framework of [KPS 90] or

{Shv 89] toyield efficient-executions of PRAM programs on PRAMs that are subject to stop-failures
and-restarts as stated in Theorem 5.1.

Theorem 5.2 There exists a Write-All solution using P < N processors on instances of size
N such that for any pattern F of failures and restarts with [F| < M, the completed work is
S = O(min{N + Plog? N + MlogN, N - P"’s%}i), and the overhead ratio is ¢ = O(log® N) .

Proof: The executions of algorithms V' and X’ can be interleaved to yield an algorithm that
achieves the performance as stated. The completed work complexity is asymptotically equal to
the minimum of the completed work performed by V and X’. This is because the number-of
cvcles performed by each-algorithm-in the interleaving:differs by at most a multiplicative constant.

The overhead ratio-is directly inherited from algorithm V' by the same reasoning because of the-
Definition 2.3 of o and §. O

The simulations of the individual PRAM steps are based on replacing the trivial array assign-
ments in a Write-All solution with the appropriate components of the PRAM steps. These steps are
decomposed-into a fixed number of assignments corresponding to the standard fetch/decode/ezecute
RAM instruction cycles in which the data words-are moved between the shared memory and. the
internal processor registers. The resulting algorithm is then used to interpret the individual cycles
nsing the available fail-stop processors and to ensure that the results-of -computations are stored
in temporary memory before simulating the synchronous updates of the shared memory with the
new values. For the details on this technique, the reader is referred to [KS 89, KPS 90, Shv 89].
\pplication of these techniques in conjunction with the algorithms V' and X' yield efficient and
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terminating executions of any-non-fault-tolerant PRAM programsin the-presence of arbitrary fail-
ure and-restart patterns. Th-~orem 5.1 follows from Theorem 5.2-and the results of {KPS:90] or
[Shv 89]. The following-corc ies are also interesting:

Corollary 5.3 Under the hypothesis of Theorem 5.1, and if |F| < P-< N, then:
S =:O(N 4+ Plog? N), and-o = O(log? ¥).

Thgiziﬂ-stop (without restarts) behavior of the-combined algorithm-is subsumed by this.corol-
lary. The exact analysis of algorithm V without 'rfstarts is still unknown. Without restarts,
[KPRS-90] have an algorithm with § = O(N +-Piﬂ—‘g’%), and [Mar 91]*has shown that the:same
performance is achieved by-algorithm W from [KS-89].

Corollary 5.4 Under the hypothesis of Theorem 5.1:
o when |F| is Q(N log N); then o is O(log N),
o when |F| is Q(N'5), then o is O(1).

Thus:the overhead efficiency of our algorithm actually improves for large failure patterns. ihgse
results-also-suggest -that it is ‘harder to deal efficiently with a few worst case failures than with a
large number of failures.

Our-next corollary demonstrates a non-trivial: range of parameters for which the completed
work is-optimal; i.e., the work performed in executing a parallel algorithm-on a faulty PRAM is.
asymptotically equal to the Parallel-timex Processors product for that algorithm.

Corollary 5.5 Any N -processor, 7-time PRAM algorithm can- be executed on a P < N/log® N
processor fail-stop CRCW PRAM, such that when- during the execution of each- N-processor step

of that algorithm the total number of processor ‘failures and restarts is O(N/log N), then- the
completed work'is § = O(r- N).

6 Discussion and Open Problems:

We conclude with a brief discussion of open problemis and the effects of on-line adversaries on the
expected performance of randomized algorithms.

Lower -bounds: We have shown an Q(Vlog V). lower bound (When N = P) for the Write-
{/l problem in both the restartable fail-stop and the strongly asynchronous models under the
assumption that processors can read and locally process the entire shared -memory at unit -cost.
Under this assumption, these are-the best possible lower bounds.

Under the same assumption, it can be shown ‘that the Q(V log V/loglog N') lower bound of
fIKS 89] is the best possible bound for failures without restarts. This is done by adapting the
analysis-of algorithm W by [Mar 91]. According to the analysis, the number of “block-steps” of W
for P = N s O(N log N/ loglog N) and each block-step can be realized: at unit cost each, under
the above assumptions.

b
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Under-different assumptions, an-Q(N log N) lower bound-is shown for failures without restarts
in [KPRS 90].

Can these lower bounds be further improved? Can thelower-bound of N 4-Q(Plog N-) be proved

for the restartable fail-stop model, or improved for the strongly asynchronous model with atomic
reads and writes?

Upper bounds: Is O(N lqgo(l) N) completed/total work for solving Write-All with N processors
and input of size- N achievable in the restartable fail-stop/strongly asynchronous model? Recently;
an existence proof for-an algorithm- achieving O(N*¢) work was given in [AW 91].

What is the worst-case comipleted work §, and: overhead ratio o of the algorithm X in the
fail-stop (without restart) framework of [KS 89]? Algorithm X appears to perform well in this
context. For example, the-adversary used to show the lower bound in [KS 89] causes completed
work § = O(Nlog? N/loglogNV) for the N-processor Write-All solution in- [KS89]. The same
adversary causes algorithm X to do completed work § = O(N log ¥V loglog N/ logloglog V). We

conjecture that the fail-stop (no restart) performance of X has § = O(N log NV loglog N) using N
processors.

Can algorithm T be generalized to work with more than three processors, or can another (more
general) algorithm be found that achieves truly optimal speedup for small numbers of processors?

Model issues: What-is the-minimum number of reads and writes necessary in an update cycle to
ensure efficient algorithms? What is the precise relationship between the complexity of problems
(as opposedto algorithms) on the two models presented here? Finally, are there efficient algorithms
for important problems that do.not come from simulation of synchronous PRAM algorithms?

On randomization and lower bounds: Analyses-of randomized solutions for Write-All have so
far considered only off-line-(non-adaptive) adversaries. In contrast, the lower bounds of Section 3
apply to both the worst case performance of deterministic algorithms and the expected performance
of randomized algorithms subject to on-line adversaries.

A randomized asynchronous coupon clipping (ACC) algorithm for the Write-All problem was
analyzed in [MSP 90). Assuming off-line adversaries, it was shown in [MSP 90] that ACC algorithm
performs expected O(N) work using P = N/(log N log™ N) processors on inputs of size V.

In the on-line case, we observe that a simple stalking adversary causes the ACC algorithm t% per-
form (expected) work of Q(N?/ polylog N) in the case of fail-stop errors, and Q((W%gw)m)
work in the-case of fail-stop errors with restart even when using P < 55%27\7 processors. The
stalking adversary strategy consists of choosing a single leaf in a binary tree-employed by ACC,
and failing all processors that touch that leaf until only one processor remains-in the fail-stop case,
or until all processors simultaneously touch the leaf in the fail-stop/restart case. This performance
is not improved-even when using the completed work accounting. On a positive note, when the
adversary is made off-line, the AC'C algorithm becomes efficient in the fail-stop/restart setting.
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fdi‘all—éroceésors?lD:O..P’-— 1 f;arbe'gin 7

shared x(1..N]; ——shared-memory
shared d[1..2N-1]; —— “one” heap (progress. tree)
shared w[0..P-1]; —— “where” array
private done, where; ——currenl node- done/where
private left, right; ——left/right child values
action,recovery
w(PID] := 1 +PID; ——the initial positions
end;
action,recovery
while w[PID] # 0.-do ——while haven't ezited the tree
‘where := w[PID]; —=current heap location
done-:= d[where]; ——doneness of this subiree
if done then w[PID] := where div 2; ——move up one level

elseif not done A where > N —-1 then —=a! a-leaf
if x{where=N] = 0 then x[where—N) := 1; ——nitialize leaf
elseif x[where—N] =1 then d[where]) := 1; ——indicate “done”

elseif not done A where < ¥ —-1 then ——inlerior iree node

left := d[2+where];.right := d[2xwhere+1}; ——read left/right child values

if left A right then d[where]-:= 1; ——both children done

elseif. not left A right then w(PID] := 2xwhere; ——go left

elseif left A not right then w[PID) := 2xwhere+1; ——=go right

elseif not left A.not right then ——both subtrees are not done

——move down according-lo the PID bil

if not PID{log(where)] then w[PID] := 2xwhere; ——move left
elseif PID{log(where)] then-w[PID] := 2xwhere+1; ——move right
fi

fi
od
end

parend .

Figure 5: Algorithm X.
A Algorithm X pseudocode

Ilere we give detailed pseudocode for algorithm X -on the restartable fail-stop model.

In the pseudocode, the action, recovery end construct of [SS-83] is used to denote the actions
and the recovery procedures for the processors. In the algorithm this signifies that an action 1s also
its own recovery action, should-a processor fail at any point within the action block.

The notation “PID[log(k)]"” is used to denote the binary true/false value of the [log(k)]-th bit
of the Jog(V)-bit representation of PID, where the most significant bit is the bit number 0, and the
Irast significant bit is-bit number log V. Finally, div stands for integer-division with truncation.

The action/recovery construct can be implemented by appropriately checkpointing the instruc-
tion counter in stable storage as the last instruction of an action, and reading the instruction
rounter upon a restart. This is amenable to automatic implementation by a-compiler.




B ALGORITHM T PSEUDOCODE 30-

To: - - 7 7 T]Zr 7

shared o= 1;
shared I;;
private temp0;
shared z[1..N};

shared I := N;

shared z(1..N);

repeat repeat

——Invariant: z(k) =1 for all k < Ty
if z[I] = 0 then
fE[Io] =1
To:=I+1;
elseif Iy > I) or Tp-> Right2 then
==Collision-with. P,
Iy:=N+1;
else
—=Collision-with P,
-temp0 :="Mid2;.
if Iy < Left2 then
——Left2-has-been updated
Io:= Left2
else
——The-correct Mid2 was-read
Io := max{2%temp0— Io,To + 1}

--—Invariant: z{k) =1 for all:k > I
if z[1] = 0-then-
z[h] := ;.
Il Z='[1——:’1;
elseif I) < Ip-or I; < Left2 then
——Collision with P,
I == 0;
else
——Collision with P>
templ :=Mid2;
if I} > Right2 then
——Right2 has been-updated
Iy :=-Right2
-else )
——The-correct Mid2 was read
L) := min{2 x templ' = Iy, I; — 1}

fi B
f , 3
until I 2:N +1; until I <0;

Figure 6: Algorithms Tg and T,

It is possible to perform.local optimization of the- algorithm by: ‘(i) evenly spacing the P
processors N/ P leaves apart-by when P < .V, and by (ii)- using the integer values at the progress
tree nodes to répresent the known number.of descendent leaves visited by the algorithm. Our worst
case-analysis-does not benefit from these modifications.

The algorithm can be used to solve Write-All “in place” using the array x[] as a tree of height
log( N /2) with:the leaves x[V/2..N-1], and doubling up tlie processors at ‘the leaves, and using x([N]
as the final element to be initialized and-used as the algorithm termination sentinel. With this
modification, array d[] is not needed. The-asymptotic efficiency of the algorithm is not affected.

B Algorithm T pseudocode

The code for algorithm T in- Figures 6 and 7 is given -in- three parts, one for each of the three

processors (algorithm T, -for processor ;). The code given-is designed for-easy-proof of:correctness,
rather than optimality.

o
‘- -l
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Ta:
shared Left2 :=1; ——left boundary of current wrile-area
shared Right2:= N; ——right boundary. of current wrile drea
shared Mid2 := [N/2]; ——middle-of current-write_grea
-shared Iy, I;;
shared z{1..V];
private i := (0; ——number of writes in current area

repeat
=—Invariant: At all times, z[k] = 1 for all values of k that satisfy
——1< k < Left2 or Mid2 — i < k < Mid2+i or Right2 <k < N
case (z[Mid2 - i], z[Mid2 + i]) is
(0,0): ——Continue writing in curreni area
z[Mid2 - 4] := 1;
z[Mid2 + i) :=1;

i=it];
(1,0): ——jump to the right
jumpright;
(0,1): ~—jump to the left
jumpleft;
(1,1):
i=i41
if I > mid then jumpright else jumpleft fi
esac

until Left2 > Right2 or Mid2 — i < Left

procedure jumpright:

Left2 := Mid2 + ¢;

i:=0;

Mid2 := [(Left2 +-Right2)/2];
end
procedure jumpleft:

Right2 := Mid2 — i;

i:=0;

Mid2 := [(Left2 + Right2)/2];
end

Figure 7: Algorithm T,

To.and Ty terminate because [y increases and I; decreases with every loop iteration. 1o ter-
ininates because every loop itcration either increases ¢ or decreases Right2 — Left2. Since any

rxecution of algorithm T is equivalent to some serialized execution, the following lemma implies
that all cells of the array z are 1 at termination.

Lemma B.1 Every serialized execution of algorithm T maintains the following invariants.

1. For all £ such that 1 < k < [, cell £ contains I.
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2. For-all'k such that I; <k < M, cell k contains 1.

3. For all-k such that 1 < k < feft2, cell k contains 1.

4. For all:k such that Right2 < k< N, cell k contains 1.

5. For all’k such that Mid2 — i <k < Mid2 + i, cell k_contains 1.

If some cell-k has value 1, then at-least one of the following holds.

6. Cell 'k was written by Py at a-time when Jo had the value £, or
7. Cell kwas written by P, at-a-time when [; had the value k. or

8. Cell-k-was written by P, at atime when the values-of Mid2 and i satisfied k = Mid2 £ 1.

Proof: Inspection of the code reveals:that the consecutive values of Iy and of Left2 are:nondecreas-
inz, and the values-of I; and of Right2 are nonincreasing. Also, no processor writes-to the same
cell twice,.and 0 is never written.

The invariants are vacuous at the start of the algerithm. It is necessary and sufficient to show
that every:-operation preserves the-invariants. The last three are trivial.

The assignments Iy := lo + 1, fp := N + 1 and o := Left2 preserve the invariants because
of the comparisons preceding their .execution and the monotenicity properties. The assignment
I := 2% temp0 — Iy is executed only after-cell Jo has been found to-have been written by P, only.
The variable temp0 holds a value of Mid2 that was valid at some -tir.e after the write and- before
Left2 was increased by a subsequent execution of procedure jumpright. if 2 had not vet jumped,
conditions:8-and 5 imply the pre_.arvation of condition 1. -Otherwise, P, jumped to theleft because
of a collision with -P;, and the entire-array has been written, satisfy:ng all of the invariants.

"The case of assignments to I is-symmetrical.

The assignment Left? --. Mid2 +-i is executed only after Py has written to cell Mid2 - i,
and hence conditions 1, 5 and € imply preservation of condition 3. Similarly, Right2 := Mid2 —
is executed only after Py has written to cell Mid2 + i, and hence conditions 2, 5 and 7 imply
preservation of condition 4, O

To prove the desired work bound, we use the follewing definition of a collision between proces-
5018,

Definition B.1 P, collides with P, (5 € {1,2}) if Py executes the code block labelled “collision
with.-P2,.” Py collides with P, (j € {0,2}) if P executes the code block labelled “collision with
P, P, collides with Fp if P, executes procedure jumpright. P, collides with Py if P, executes
procedure jumpleft.

\ redundant write does not imply that the writing processors collide with one another. Neverthe-
less, the number of collisions.is a bound on-the number of redundant writes.

Lemma B.2 Suppose two processors both write to-cell . Then one (or both).of the processors
will collide in its next loop iteration.
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Proof: One of the two processors must be Py or Py. If it is Py, then the 6ther will next attempt
to write to cell k=1 and collide. If it-is P;,:then-the other will next attempt to-write:to cell £ +1
and collide. (In_either case,-the collision may involve the third processor.) O

Lemma B.3 There are O(log V) collisions.

Proof: When P, jumps, the quantity Right2 — Left2 decreases by a factor of at least 2. Hence P2
collides at most log IV -times. Also, Py can collide with- P, and P; with Py;-at most once each.

Suppose- Py collides with P, in attempting to-write to cell k. Because Py did not.collide with
Py, P, wrote to cell k -with-some value m in Mid2 and the value m = k in 7. If Po-continues to
process, it will collide with-either Py or Py after at most two iterations, when the value-of ¢ has
become m =k + 2. (The worst case occurs if Pp and P, both write cellzk ~ 1.) Hence the only cells
that P, writes with m:in Mid2 are in the interval [k — 1,2m — k-4 1]. Thus Pp attempts to write
at-most four cells-in the interval (i.ec., cells-k — 1,:k, 2m — k-and 2m =% + 1), and can-collide only
at the latter three. Therefore, the number-of collisions of Py with Py is at most three times the
number of -collisio=s of P,.

Similarly; the number-of collisions of Py with P, is at-most three times-the number-of collisions
of P». Hence the total number of collisions-in O(log V), as required. G.

Each collision involves only a constant number of memory accesses. Thus the algorithm satisfies
the required-work bounds.

Theorem B.4 Algorithm T solves the Write-All: problem for three processors using V + O(log N')
writes to and N + O(log V') reads from the array. There are at most ¥ + O(log N) writes and
O(log N) reads involving. auxiliary variables.

Proof: The result follows directly from the above discussion. O

If the cells of array z can hold arbitrary integer values, then the information-communicated by
the values of:the shared auxiliary variables can be stored directly-in the array. Processors Fp and
Py write ~1 and —2 respectively. Processor P; writes the-value AMid2 + i when writing to the left

ol Mid2.and the value Mid2 —.i when writing to the right of Mid2. In this case, only private local
variables are required.




