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Abstract: Among the various post-quantum techniques that exist (such as multivariate, code or hash-based), the 
most promising is lattice-based cryptography, which has become a very viable alternative to number-theoretic 
cryptography.  Its main advantage is that it allows for extended functionality and is, at the same time, more 
efficient for the basic primitives of public-key encryption and digital signatures. The focus of this presentation will 
be to survey recent developments in lattice-based digital signature schemes and in particular practical schemes 
that have been shown to improve upon the performance of equivalent RSA designs. Propositions for future 
research areas that are essential for the continued development of lattice-based cryptography will also be 
discussed. 
 

1 Introduction 

With the onset of quantum computers ever looming, the computational power it could provide would cause 
instant insecurity to many of today’s universally used cryptographic schemes by virtue of Shor’s [1] algorithm. 
Specifically, schemes based on the discrete-logarithm problem or number-theoretic hard problems, which 
subsume almost all public-key encryption schemes used on the Internet, including elliptic-curve cryptography 
(ECC), RSA and DSA would be vulnerable. Accordingly, this has motivated the post-quantum era of cryptography, 
which refers to the construction of cryptographic algorithms to withstand quantum reductions. Amongst many 
important areas in post-quantum research (such as multivariate, code or hash-based) lattice-based cryptography is 
disputably the most auspicious. Lattice-based cryptographic primitives can be utilised to form more advanced 
schemes, while digital signatures and public-key encryption based on lattices are now more practical than RSA-
based equivalent schemes. Computational problems that exist within the lattice environment, such as finding the 
shortest vector (SVP) or finding the closest vector (CVP) are thought to be immune to quantum reductions [2,3] 
which imply its conjectured intractability. Such properties show promise, with regards to security and 
practicability, for replacing current encryption schemes that would be susceptible to attacks in a post-quantum 
world. 
 

In recent years there has been a tremendous growth in lattice-based cryptography as a research field. As a result, 
concepts such as functional encryption [4], identity-based encryption [5, 6], attribute-based encryption [7], group 
signature schemes [8-10] and fully homomorphic encryption [11, 12] have been developed. On the practical front, 
some constructions of public-key encryption schemes and digital signature schemes based on lattice problems are 
now more practical than traditional schemes based on RSA. The most recent implementation of a lattice-based 
encryption scheme in hardware is shown by Roy et al. [13] with results outperforming those of RSA. More 
specifically, the scheme shows performances an order of magnitude faster in comparison to RSA, for a higher 
security level, and with the added properties of consuming less resources and greater adaptability for scaling. With 
regards to digital signature schemes, the two most notable are by Güneysu et al. [14] and Pöppelmann et al. [15] 
with the former implementation resulting in a 1.5x speed improvement compared to an equivalent RSA design, 
and the latter scheme being faster, consuming less resources, needing less iterations and attaining a higher 
security level (80-bit vs. 128-bit) in comparison to the former scheme. The first use of lattices as a cryptographic 
primitive is due to Ajtai [16], proposing a problem now known as the Short Integer Solution (SIS) problem. The 
concept remained purely academic until recently due to its limited capabilities and inefficiencies; lattice-based 
cryptography has now become available as a future alternative to number-theoretic cryptography. Recent research 
allows virtually any cryptographic primitive, such as those already discussed as well as collision resistant hash 
functions and oblivious transfers, to be built on the hardness of lattice problems. Also, there has been a transition 
into a particular class of lattices, predominantly ideal lattices, as a source of computational hardness. Although the 
robustness of this hardness assumption, in comparison to general lattices, has not been explicitly proven, it is 
generally considered that most problems still remain hard using ideal lattices [17, 18]. Additionally, using ideal 
lattices offers a significant speed-up and reduction in key sizes for almost all cryptographic protocols, in particular, 
in encryption schemes and digital signatures. However, it will be some time before lattice-based crypto schemes 



begin to replace current public-key cryptography and their integration into practical applications needs to be 
explored. For example, ECC was proposed independently by Miller [19] and Koblitz [20] in 1986/1987, but it took 
20 years until it appeared in actual security systems. Even with relatively little cryptanalysis and low confidence in 
parameters sets, the most critical issue to date with lattice-based cryptography is its practicability, and it is clear 
that in order for it to replace widely used number-theoretic primitives, its constructions must be shown to be 
similarly efficient on many of the embedded platforms existing in today’s digital and pervasive environment. 
 

The proposed presentation will evaluate lattice-based digital signature schemes (DSSs), which are an essential 
component of any cryptosystem.  
 

2 Lattice-based Digital Signature Schemes 

DSSs based on the hardness of lattice problems generally fall into three categories: 1) GGH/NTRUSign signatures; 
2) Hash-and-sign signatures; and 3) Fiat- Shamir signatures. 
 

2.1 GGH/NTRUSign signatures 
The GGH [21] and NTRUEncrypt [22] cryptosystems were among the first shown to be based on the hardness of 
lattice problems, specifically based on solving the approximate closest vector problem. The difference between 
these schemes is that the latter can be viewed as a special instantiation of the former. The GGH cryptosystem 
included a DSS, in turn forming the basis of NTRUSign [23] which combined almost the entire design of GGH but 
uses the NTRU lattices employed in NTRUEncrypt. The predecessor to NTRUSign, NSS [24], was broken by Gentry 
et al. [25, 26] and incidently NTRUSign suffered the same fate with works by Nguyen and Regev [27], which shows 
experimental results recovering the secret-key with 400 signatures. Since Nguyen and Regev categorically show 
NTRUSign (without perturbation) to be absolutely insecure and further countermeasures and a version with 
perturbations have also been broken [28], this scheme will not be covered as implementation results currently do 
not have practical applications. However, recent research such as Melchor et al. [29] hold some promise for the 
future of this form of DSS, such that someday the security and efficiency issues of NTRUSign may be amended. 
 

2.2 Hash-and-sign signatures 
DSSs based on the hash-and-sign paradigm follow seminal work by Diffie and Hellman [30]. The concept follows 
the criterion that a message, μ, should be hashed before being signed. That is, to sign a message, first hash μ to 
some point h = H(μ), which must be in the range of the trapdoor function f, the then acclaimed RSA being such a 
function. Once the message has been hashed, it is signed σ =  f

-1
(h) and a verification algorithm checks that f(σ) = 

H(μ) to confirm whether (σ,μ) is a valid message/signature pair. This theory became the foundation for full-domain 

hash (FDH) [31], with the hash function H() being modelled on a random oracle. Where f is a trapdoor 
permutation, the scheme is shown to be existentially unforgeable under a chosen-message attack. The relation 
lattices have to hash-and-sign signatures is the intuition that a short basis for a lattice could provide such a 
trapdoor function. This led to the first proposal by Gentry et al. [32] (GPV), showing a DSS based on the hardness of 
lattice problems. Central to the scheme is the construction of trapdoor functions with the necessary property that 
every output value has several preimages, the Gaussian sampling algorithm and also the use of modular lattices. A 
more recent scheme by Micciancio and Peikert [33] also adopts hash-and-sign, introducing a more efficient 
trapdoor than the one used in GPV. Improvements to the key generation were also made by Alwen and Peikert 
[34].  
 

2.3 Fiat-Shamir Signatures 
An alternative way of constructing a DSS is to first build an identification scheme of a certain form, then converting 
it into a DSS by means of the Fiat-Shamir transformation [35, 36]. Lattice-based signature schemes which use the 
Fiat-Shamir transformation are mainly due to research by Lyubashevsky et al. [14, 37-41]. The procedures in the 
first publication by Lyubashevsky [37] are shown to be based on the short integer solution problem (SIS), that is, if 
a solution is found for the DSS then a solution is also found for SIS. The initial step taken in this scheme is to first 
construct a lattice-based identification scheme whereby the challenge is treated as a polynomial in R. The security 
of the identification scheme is based on the hardness of finding the approximate shortest vector in the standard 
model as well as the random oracle model. The identification scheme is then transformed into a DSS where 
optimisations are made to the tight parameter settings improving elements such as the length of the signature and 



making it computationally infeasible to find collisions in the hash function family H. The security of the scheme is 
dependent on the hardness of finding collisions in certain hash function families. An adversary who is able to forge 
a signature can then use this to find a collision in a hash function chosen randomly from H. Therefore, forging a 

signature and furthermore finding a collision in a randomly chosen h  H is equivalent to finding short vectors in a 
lattice over R, that is, the ring-SIS problem. 
 

The subsequent improvements made by Lyubashevsky [38] (LYU) were twofold. The most significant change is that 
of the hardness assumption used, adapting from ring-SIS to ring-LWE, which is shown to significantly decrease the 
sizes of the signature and the keys, thereby improving efficiency. The second improvement is during the signing 
procedure, which involves asymptotically shorter signatures. This stage requires more complicated rejection 
sampling, so that the signatures are independent from the secret-key, and sampling from the normal distribution, 
wherein highly accurate computations are needed [38]. The scheme, as in the previous scheme, is shown to be 
strongly unforgeable and is based on the worst-case hardness of finding short vectors in a lattice.  
 

The current state-of-the-art in lattice-based DSSs is the proposed scheme by Ducas et al. [41] named BLISS. The 
main contribution of this work is the significant improvement in the rejection sampling stage. As a consequence, 
this scheme presents an important bridge between theoretical and practical lattice-based DSSs. 
 

3 Evaluation of Hardware and Software Implementations of Lattice-based Digital Signature Schemes 

As previously discussed, there are currently no practical instantiations of the GGH [21] signature schemes and 
implementations of NTRUSign such as [42] are vulnerable to cryptanalysis, so they are not considered in this 
evaluation. Lattice-based schemes investigated here for which implementation results are available are GPV [32,  
33], LYU [38], GLP [14] and BLISS [41]. For a quick overview, all schemes considered for evaluation, their secret-key, 
public-key and signatures sizes as well as available software (CPU) results are summarised in Table I, however since 
these benchmarks are not all on the same platform they are not all directly comparable (similarly in Table II). The 
fastest scheme with regard to signing and also with the smallest signature (5.6 kb) is currently BLISS (implemented 
in C) due to the low amount of rejections, fast Gaussian sampling using a large cumulative distribution table (CDT), 
and small parameters for the dimension, n and the modulus, q. The structural disadvantage of GLP (more 
rejections, larger n and q) is almost compensated by the optimised implementation by Güneysu et al. [2013] using 
assembly optimisation and vectorisation (i.e. AVX extensions). As verification almost only requires polynomial 
multiplication, the vectorised GLP implementation is twice as fast as BLISS. 
 

Thus in the future, it is expected that BLISS could be further improved by applying the vectorisation ideas of 
Güneysu et al. [43]. Moreover, for the signing procedure of BLISS, the impact of higher security levels on 
performance is moderate as n and q stay the same, with the significant changes being in the Gaussian sampler and 
number of rejections. As Gaussian sampling is not needed for verification, the runtime of verification is basically 
independent of the security level. The LYU implementation by Weiden et al. [44] is not competitive, mainly due to 
larger parameters and also because the implementation uses slow rejection sampling and relies on the NTL library 
for basic arithmetic. For GPV [32], initial outputs and key sizes were many megabits long and even with 
improvements by Bansarkhani and Buchmann [45], signature and key sizes are still large in practice, around 250 kb 
for security of around 100-bits. With the improvements proposed by Micciancio and Peikert [33], their scheme 
alleviates the sizes of the signatures and keys to roughly 100 kb, a drastic improvement over GPV; however for 
practical applications this is still significantly large and the implementation cannot compete with GLP or BLISS. 
Regarding those implementations on constrained devices or microcontrollers; Oder et al. [46] target an ARM 
Cortex-M4F microcontroller, which compares different samplers (Bernoulli, Knuth-Yao and Discrete Ziggurat) and 
running at 168 MHz; the device produces 28 signing, 167 verification and 0.46 key generation operations per 
second. Boorghany et al. [47] and Boorghany and Jalili [48] provide an implementation of GLP and BLISS used as an 
identification scheme on 8-bit architectures (Atmega and ATxmega), showing that lattice-based DSSs perform well 
even on very constrained devices. The Gaussian sampler is based on the CDT and the table currently fills a large 
part of the flash. However, the ideas of Pöppelmann et al. [15] should be directly applicable to reduce the table 
size with a hopefully moderate impact on runtime. As the signature schemes are implemented as identification 
schemes their runtimes are not discussed.  
 



Table I: A summary of lattice-based DSSs and schemes based on classical assumptions. 
 

Scheme Security Sign. Size sk Size pk Size Sign./s Ver./s 

GPV 100-bits 240 kb 191 kb 300 kb 48 370 

LYU 100-bits 103 kb 103 kb 65 kb 36 260 

GLP-I 80-bits 9.5 kb 2 kb 12 kb 5300 75500 

Bliss-I 128-bits 5.6 kb 2 kb 7 kb 8000 33000 

Bliss-II 128-bits 5 kb 2 kb 7 kb 2000 33000 

Bliss-III 160-bits 6 kb 3 kb 7 kb 5000 32000 

Bliss-IV 192-bits 6.5 kb 3 kb 7 kb 2500 31000 

RSA-2048 112-bits 2 kb 2 kb 2 kb 800 27000 

RSA-4096 128-bits 4 kb 4 kb 4 kb 100 7500 

ECDSA-256 128-bits 0.5 kb 0.25 kb 0.25 kb 9500 2500 

ECDSA-384 192-bits 0.75 kb 0.37 kb 0.37 kb 5000 100 

* Most results are benchmarked on an Intel Core i7 at 3.4 GHz, 32GB RAM with OpenSSL 1.0.1c. [41]  
The GLP-I, LYU, GPV performances have been scaled to 3.4 GHz based on cycle counts. 

 

Table II: A summary of hardware instantiations of DSSs on Virtex-5 and Spartan- 6 FPGAs 
 

Scheme Security Description Device Resources Ops/s 

GLP-I (Sign) 80-bits q = 8383489, n = 512 S6 LX16 7465 LUTs; 8993 FF; 28 DSP; 29.5 BRAM18 931 

GLP-I (Ver) 80-bits q = 8383489, n = 512 S6 LX16 6225 LUTs; 6663 FF; 8 DSP; 15 BRAM18 998 

Bliss-I (Sign) 128-bits CDT Sampler S6 LX25 7491 LUTs; 7033 FF; 6 DSP; 7.5 BRAM18 7958 

Bliss-I (Sign) 128-bits Bernoulli Sampler S6 LX25 9029 LUTs; 8562 FF; 8 DSP; 6.5 BRAM18 8081 

Bliss-I (Ver) 128-bits - S6 LX25 5275 LUTs; 4488 FF; 3 DSP; 4.5 BRAM18 14438 

RSA (Sign) 103-bits RSA-2048; private key V5 LX30 3237 LS; 17 DSP; 89 

ECDSA (Sign) 128-bits Full ECDSA; secp256r1 V5 LX110 32299 LUT/FF pairs 139 

ECDSA (Ver) 128-bits Full ECDSA; secp256r1 V5 LX110 32299 LUT/FF pairs 100 

 

For reconfigurable hardware, results are available for GLP and BLISS and are summarised in Table II. While the 
speed of the GLP implementation, with roughly 1000 signing and verification operations per second, is good in 
comparison with classical schemes, the implementation in [14] and particularly the usage of schoolbook 
multiplication is suboptimal given works on fast multiplication such as [13]. The BLISS implementation by 
Pöppelmann et al. [15] uses the Number Theoretic Transform (NTT) multiplier proposed by Pöppelmann and 
Güneysu [49] and achieves high throughput for signing and verification. The resource consumption is also 
reasonable and the design fits on low-cost Spartan-6 devices. Usage of the improved NTT multiplier design by Roy 
et al. [13] might give a further reduction of the resource consumption. For BLISS, two variants are given; one 
implementing the improved CDT approach and another one using the Bernoulli techniques of Ducas et al. [41]. 
 
4 Conclusion and Future Work 

Due to the favourable results shown by Fiat-Shamir signatures and in particular the recent instantiations of BLISS 

on FPGAs by Pöppelmann et al. [15] ( 8000 signatures per second) and on microcontrollers by Oder et al. [46] (28 
signatures per second), in both instances outperforming RSA and ECC for comparable security levels, lattice-based 
digital signature schemes are now at a stage where they can be feasibly considered for real-world applications. 
One of the main areas of future research in lattice-based DSSs is further optimisation and implementation of 
schemes based on the Fiat-Shamir model. In particular, BLISS, which shows very good performance, is a candidate 
for integration into other constrained systems and devices like smart cards and microcontrollers. Integrating the 
scheme with respect to highly-optimised software is also a possible area for future work. Additionally, further 
research is needed into the parameters (and security analyses) of these schemes. This would build upon research 
such as [50], which would mean parameter selection becoming much more explicit in lattice-based cryptography. 
 



One of the most time consuming components for hardware implementations of lattice-based cryptography is 
currently polynomial multiplication. Making this stage efficient has been well studied. However, optimising such a 
stage is arguably the most critical in hardware due to the computationally intensive operations; as such, this is still 
an important focus for research for implementations on both large and lightweight devices. Another module 
pertaining to one of the more computationally expensive in hardware is the Gaussian sampling stage. 
Dwarakanath and Galbraith [51] and Roy et al. [52] look into different approaches to efficiently compute such a 
stage for constrained devices. As shown by [15] and [46] the CDT approach is best suited for larger devices with 
the Bernoulli approach showing efficiencies on smaller devices. Due to its computational importance, further 
research into making this stage more efficient could result in significant improvements overall. As lattice-based 
DSSs become more practical and publicly available, further attack vectors like side-channel analysis (SCA) [53] have 
to be considered. Timing and fault injection attacks, power, electro-magnetic analysis and advanced machine 
learning-based attacks are serious threats to many real-world implementations. Recent work has shown that SCA 
attacks are applicable in real-world situations [54]. There has been very little research conducted on the 
vulnerabilities of lattice-based cryptographic implementations to physical attacks. It is anticipated that there may 
be a particular vulnerability with respect to algorithmic parts with variable runtime, for instance Gaussian and 
rejection sampling, which are major components of many lattice-based algorithms. 
 

An interesting area of theoretical research looks into the security of DSSs in the quantum world, specifically 
relating to the DSSs that use random oracle constructions and whether they are still secure to a quantum 
adversary. Although making the DSSs less efficient, schemes by Gentry et al. [32] and Lyubashevsky [38] are 
respectively shown by Boneh and Zhandry [55] and Dagdelen et al. [56] to be secure to such an adversary, creating 
the quantum random oracle model. This could also motivate an important area for future research, such as 
proving security for more DSSs to a quantum adversary or possibly creating a generic technique, which could turn a 
DSS secure in the random oracle model to that in the quantum random oracle model. 
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