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Abstract— In this paper, the problem of distributed detection in
tree networks in the presence of Byzantines is considered. Closed
form expressions for optimal attacking strategies that minimize
the miss detection error exponent at the fusion center (FC)
are obtained. We also look at the problem from the network
designer’s (FC’s) perspective. We study the problem of designing
optimal distributed detection parameters in a tree network
in the presence of Byzantines. Next, we model the strategic
interaction between the FC and the attacker as a leader–follower
(Stackelberg) game. This formulation provides a methodology
for predicting attacker and defender (FC) equilibrium strategies,
which can be used to implement the optimal detector. Finally,
a reputation-based scheme to identify Byzantines is proposed and
its performance is analytically evaluated. We also provide some
numerical examples to gain insights into the solution.

Index Terms— Distributed detection, data falsification,
Byzantines, tree networks, error exponent, leader-follower game,
reputation based mitigation scheme.

I. INTRODUCTION

D ISTRIBUTED detection deals with the problem of
making a global decision regarding a phenomenon based

on local decisions collected from several remotely located
sensing nodes. Distributed detection research has traditionally
focused on the parallel network topology, in which nodes
directly transmit their observations or decisions to the Fusion
Center (FC) [1]–[3]. Despite its theoretical importance and
analytical tractability, parallel topology may not always reflect
the practical scenario. In certain cases, it may be required
to place the nodes outside their communication range with
the FC. Then, the coverage area can be increased by forming
a multi-hop network, where nodes are organized hierarchically
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into multiple levels (tree networks). Some examples of tree
networks include wireless sensor and military communication
networks.

Typically, a network embodies a large number of inexpen-
sive sensors, which are deployed in an open environment to
collect the observations regarding a certain phenomenon and,
therefore, are susceptible to many kinds of attacks. A typical
example is a Byzantine attack. While Byzantine attacks
(originally proposed in [4]) may, in general, refer to many
types of malicious behavior, our focus in this paper is on data-
falsification attacks [5]–[18], where an attacker sends false
(erroneous) data to the FC to degrade detection performance.
In this paper, we refer to such data falsification attackers as
Byzantines, and the data thus fabricated as Byzantine data.

A. Related Work

Recently, distributed detection in the presence of Byzantine
attacks has been explored in [8] and [9], where the problem
of determining the most effective attacking strategy for
the Byzantines was investigated. However, both works
focused only on parallel topology. The problem considered
in this paper is most related to our earlier papers [10], [14].
In [10] and [14], we studied the problem of distributed
detection in perfect tree networks (all intermediate nodes in the
tree have the same number of children) with Byzantines under
the assumption that the FC does not know which decision
bit is sent from which node and assumes each received bit
to originate from nodes at depth k with a certain probability.
Under this assumption, the attacker’s aim was to maximize
the false alarm probability for a fixed detection probability.
When the number of nodes is large, by Stein’s lemma [19],
we know that the error exponent of the false alarm probability
can be used as a surrogate for the false alarm probability.
Thus, the optimal attacking strategy was obtained by making
the error exponent of the false alarm probability at the FC
equal to zero, which makes the decision fusion scheme
completely incapable (blind). Some counter-measures were
also proposed to protect the network from such Byzantines.

There are several notable differences between this paper and
our earlier papers [10], [14]. First, in contrast to [10] and [14],
in this paper, the problem of distributed detection in regular
tree networks1 with Byzantines is addressed in a practi-
cal setup where the FC has the knowledge of which bit

1For a regular tree, intermediate nodes at different levels are allowed to
have different degrees, i.e., number of children.
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is transmitted from which node. Note that, in practice,
the FC knows which bit is transmitted from which node,
e.g., using MAC schemes,2 and can utilize this information
to improve system performance. Next, for the analysis of the
optimal attack, we consider nodes residing at different levels
of the tree to have different detection performance. We also
allow Byzantines residing at different levels of the tree to
have different attacking strategies and, therefore, provide a
more general and comprehensive analysis of the problem as
compared to [10] and [14]. We also study the problem from
the network designer’s perspective. Based on the information
regarding which bit is transmitted from which node, we
propose schemes to mitigate the effect of the Byzantines.

B. Main Contributions

In this paper, it is assumed that the FC knows which
bit is transmitted from which node. Under this assumption,
the problem of distributed detection in tree networks in the
presence of Byzantines is considered. The main contributions
of this paper are summarized below:
• Detection performance in tree networks with Byzantines

is characterized in terms of the error exponent and a
closed form expression for the optimal error exponent
is derived.

• The minimum attacking power required by the Byzantines
to blind the FC in a tree network is obtained. It is shown
that when more than a certain fraction of individual
node decisions are falsified, the decision fusion scheme
becomes completely incapable.

• The problem is also investigated from the network
designer’s perspective by focusing on the design of
optimal distributed detection parameters in a tree
network.

• We model the strategic interaction between the FC and
the attacker as a Leader-Follower (Stackelberg) game and
identify attacker and defender (FC) equilibrium strategies.
The knowledge of these equilibrium strategies can later
be used to implement the optimal detector at the FC.

• We propose a simple yet efficient reputation based
scheme, which works even if the FC is blinded, to identify
Byzantines in tree networks and analytically evaluate its
performance.

The rest of the paper is organized as follows. Section II
introduces the system model. In Section III, we study
the problem from Byzantine’s perspective and provide
closed form expressions for optimal attacking strategies.
In Section IV, we investigate the problem of designing optimal
distributed detection parameters in the presence of Byzantines.
In Section V, we model the strategic interaction between the
FC and the attacker as a Leader-Follower (Stackelberg) game
and find equilibrium strategies. In Section VII, we introduce
an efficient Byzantine identification scheme and analyze its
performance. Finally, Section VII concludes the paper.

2In practice, one possible way to achieve this is by using the buffer-less
TDMA MAC protocol, in which, distinct non-overlapping time slots are
assigned (scheduled) to the nodes for communication. One practical example
of such a scheme is given in [20].

Fig. 1. A distributed detection system organized as a regular tree
(a1 = 2, a2 = 3, a3 = 2) is shown as an example.

II. SYSTEM MODEL

We consider a distributed detection system organized as
a regular tree network rooted at the FC (See Figure 1).
For a regular tree, all the leaf nodes are at the same level
(or depth) and all the intermediate nodes at level k have
degree ak . The regular tree is assumed to have a set
N = {Nk}Kk=1 of transceiver nodes, where |Nk| = Nk is
the total number of nodes at level k. We assume that the
depth of the tree is K > 1 and ak ≥ 2. The total number
of nodes in the network is denoted as N = ∑K

k=1 Nk

and B = {Bk}Kk=1 denotes the set of Byzantine nodes with
|Bk | = Bk , where Bk is the set of Byzantines at level k.
The set containing the number of Byzantines residing at each
level k, 1 ≤ k ≤ K , is referred to as an attack configuration,
i.e., {Bk}Kk=1 = {|Bk |}Kk=1. Next, we define the modus operandi
of the nodes.

A. Modus Operandi of the Nodes

We consider a binary hypothesis testing problem with
two hypotheses H0 (signal is absent) and H1 (signal is
present). Under each hypothesis, it is assumed that the obser-
vations Yk,i at each node i at level k are conditionally
independent. Each node i at level k acts as a source in the sense
that it makes a one-bit (binary) local decision vk,i ∈ {0, 1}
regarding the absence or presence of the signal using the
likelihood ratio test (LRT)3

p(1)
Yk,i

(yk,i )

p(0)
Yk,i

(yk,i )

vk,i=1
≷

vk,i=0
λk , (1)

where λk is the threshold used at level k (it is assumed
that all the nodes at level k use the same threshold λk) and
p( j )

Yk,i
(yk,i ) is the conditional probability density function (PDF)

of observation yk,i under hypothesis H j for j ∈ {0, 1}.
We denote the probabilities of detection and false alarm
of a node at level k by Pk

d = P(vk,i = 1|H1) and
Pk

f a = P(vk,i = 1|H0), respectively, which are functions of λk

and hold for both Byzantines and honest nodes. After making
its one-bit local decision vk,i ∈ {0, 1}, node i at level k sends

3Notice that, under the conditional independence assumption, the optimal
decision rule at the local sensor is a likelihood-ratio test [21].
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uk,i to its parent node at level k − 1, where uk,i = vk,i if i is
an honest node, but for a Byzantine node i , uk,i need not be
equal to vk,i . Node i at level k also receives the decisions uk′, j
of all successors j at levels k ′ ∈ [k + 1, K ], which are
forwarded to node i by its immediate children, and forwards4

them to its parent node at level k − 1. We assume error-free
communication between children and the parent nodes. Next,
we present a mathematical model for the Byzantine attack.

B. Byzantine Attack Model

We define the following strategies P H
j,1(k), P H

j,0(k) and
P B

j,1(k), P B
j,0(k) ( j ∈ {0, 1} and k = 1, · · · , K ) for the honest

and Byzantine nodes at level k, respectively:
Honest nodes:

P H
1,1(k) = 1− P H

0,1(k) = P H
k (x = 1|y = 1) = 1 (2)

P H
1,0(k) = 1− P H

0,0(k) = P H
k (x = 1|y = 0) = 0 (3)

Byzantine nodes:

P B
1,1(k) = 1− P B

0,1(k) = P B
k (x = 1|y = 1) (4)

P B
1,0(k) = 1− P B

0,0(k) = P B
k (x = 1|y = 0) (5)

where Pk(x = a|y = b) is the conditional probability that
a node at level k sends a to its parent when it receives b
from its child or its actual decision is b. For notational conve-
nience, we use (Pk

1,0, Pk
0,1) to denote the flipping probability

of the Byzantine node at level k. Furthermore, we assume
that if a node (at any level) is a Byzantine, then none of
its ancestors and successors are Byzantine (non-overlapping
attack configuration); otherwise, the effect of a Byzantine
due to other Byzantines on the same path may be nullified
(e.g., Byzantine ancestor re-flipping the already flipped deci-
sions of its successors). This means that every path from a
leaf node to the FC will have at most one Byzantine. Notice
that, for the attack configuration {Bk}Kk=1, the total number
of corrupted paths (i.e., paths containing a Byzantine node)
from level k to the FC are

∑k
i=1 Bi

Nk
Ni

, where Bi
Nk
Ni

is the
total number of nodes covered5 at level k by the presence
of Bi Byzantines at level i . If we denote αk = Bk

Nk
, then,

∑k
i=1 Bi

Nk
Ni

Nk
=∑k

i=1 αi is the fraction of decisions coming from
level k that encounter a Byzantine along the way to the FC.
For a large network, due to the law of large numbers, one can
approximate the probability that the FC receives the flipped
decision x̄ of a given node at level k when its actual decision
is x as βk

x̄,x =
∑k

j=1 α j P j
x̄,x , x ∈ {0, 1}.

C. Binary Hypothesis Testing at the Fusion Center

We consider the distributed detection problem under
the Neyman-Pearson (NP) criterion. The FC receives
decision vectors, [z1, · · · , zK], where zk for k ∈ {1, · · · , K }

4For example, IEEE 802.16j mandates tree forwarding and IEEE 802.11s
standardizes a tree-based routing protocol.

5Node i at level k′ covers (or can alter the decisions of) all its children at
levels k′+1 to K and itself. In other words, the total number of covered nodes
is equivalent to the total number of corrupted paths (i.e., paths containing a
Byzantine node) in the network.

is a decision vector with its elements being z1, · · · , zNk ,
from the nodes at different levels of the tree. Then the FC
makes the global decision about the phenomenon by employ-
ing the LRT. Due to system vulnerabilities, some of the nodes
may be captured by the attacker and reprogrammed to transmit
false information to the FC to degrade detection performance.
We assume that the only information available at the FC is the
probability βk

x̄,x , which is the probability with which the data
coming from level k has been falsified. Using this information,
the FC calculates the probabilities πk

j,0 = P(zi = j |H0, k)

and πk
j,1 = P(zi = j |H1, k), which are the distributions of

received decisions zi originating from level k and arriving
to the FC under hypotheses H0 and H1. The FC makes its
decision regarding the absence or presence of the signal using
the following likelihood ratio test

K∏

k=1

(
πk

1,1

πk
1,0

)sk
(

1− πk
1,1

1− πk
1,0

)Nk−sk
H1
≷
H0

η (6)

where sk is the number of decisions that are equal to one and
originated from level k, and the threshold η is chosen in order
to minimize the missed detection probability (PM ) while keep-
ing the false alarm probability (PF ) below a fixed value δ.6

Using Stein’s lemma [19], we know that the Kullback-Leibler
divergence (KLD) represents the best error exponent of the
missed detection error probability in the NP setup.

Lemma 1 [19]: For a fixed false alarm probability,
PF ≤ δ, the missed detection probability for an optimal NP
detector asymptotically behaves as

lim
N→∞

1

N
log PM = −D(H0‖H1)

where N is the number of samples used for detection and
D(H0‖H1) is the Kullback-Leibler divergence (KLD).

A direct consequence of Lemma 1 is that PM decays, as N
grows to infinity, exponentially, i.e.,

PM ≈ f (N)e−D(H0‖H1),

where f (N) is a slow-varying function compared to the
exponential, such that lim

N→∞
1
N log f (N) = 0. Therefore, given

a number of observations, the detection performance depends
exclusively on the KLD between the hypotheses. We can
conclude that the larger the KLD is, the less is the likelihood
of mistaking H0 with H1 and, therefore, KLD can be used as a
surrogate for the probability of missed detection during system
design for a large network.7 Next, we derive a closed form
expression for the optimal missed detection error exponent
for tree networks in the presence of Byzantines, which will
later be used as a surrogate for the probability of missed
detection.

Proposition 1: For a K level tree network employing the
detection scheme as given in (6), the asymptotic detection

6This type of problem setup is important, for instance, in Cognitive Radio
Networks (CRN). In order to coexist with the primary user (PU), secondary
users (SUs) must guarantee that their transmissions will not interfere with the
transmission of the PU who have higher priority to access the spectrum.

7Kullback-Leibler divergence based detection approaches perform reason-
ably well even for a small size network as observed in [8] and [22]–[24].
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performance (i.e., N1 → ∞) can be characterized using the
missed detection error exponent given below

D =
K∑

k=1

Nk

⎡

⎣
∑

j∈{0,1}
πk

j,0 log
πk

j,0

πk
j,1

⎤

⎦. (7)

Proof: Let Z = [Z1, · · · , ZN1 ] denote the received deci-
sion vectors from the nodes at level 1, where Zi is the decision
vector forwarded by the node i at level 1 to the FC. Observe
that, Zi for i = 1 to N1 are independent and identically
distributed (i.i.d.). Therefore, using Stein’s lemma [19], when
N1 →∞, the optimal error exponent for the detection scheme
as given in (6) is the Kullback-Leibler divergence (KLD) [25]
between the distributions P(Z|H0) and P(Z|H1). The sum-
mation term in (7) follows from the additive property of the
KLD for independent distributions.

Note that, (7) can be compactly written as∑K
k=1 Nk Dk(π

k
j,1||πk

j,0) with Dk(π
k
j,1||πk

j,0) being the
KLD between the data coming from node i at level k
under H0 and H1. The FC wants to maximize the detection
performance, while, the Byzantine attacker wants to degrade
the detection performance as much as possible which can
be achieved by maximizing and minimizing the KLD,
respectively. Next, we explore the optimal attacking strategies
for the Byzantines that degrade the detection performance
most by minimizing the KLD.

III. OPTIMAL BYZANTINE ATTACK

As discussed earlier, the Byzantines attempt to make the
KL divergence as small as possible or to blind the FC.
We say that the FC is blind if an adversary can make the data
that the FC receives from the sensors such that no information
is conveyed. In other words, the optimal detector at the FC
cannot perform better than simply making the decision based
on priors. Since the KLD is always non-negative, Byzantines
attempt to choose P(zi = j |H0, k) and P(zi = j |H1, k) such
that Dk = 0, ∀k. This is possible when

P(zi = j |H0, k) = P(zi = j |H1, k) ∀ j ∈ {0, 1},∀k. (8)

Notice that, πk
j,0 = P(zi = j |H0, k) and

πk
j,1 = P(zi = j |H1, k) can be expressed as

πk
1,0 = βk

1,0(1− Pk
f a)+ (1− βk

0,1)Pk
f a (9)

πk
1,1 = βk

1,0(1− Pk
d )+ (1− βk

0,1)Pk
d . (10)

with βk
1,0 =

∑k
j=1 α j P j

1,0 and βk
0,1 =

∑k
j=1 α j P j

0,1.
Substituting (9) and (10) in (8) and after simplification,
the condition to make the D = 0 for a K -level network
becomes

∑k
j=1 α j (P j

1,0 + P j
0,1) = 1, ∀k. Notice that, when

∑k
j=1 α j < 0.5, there does not exist any attacking probability

distribution (P j
0,1, P j

1,0) that can make Dk = 0, and, therefore,

the KLD cannot be made zero. In the case of
∑k

j=1 α j = 0.5,

there exists a unique solution (P j
0,0, P j

1,0) = (1, 1), ∀ j that can
make Dk = 0, ∀k. For the

∑k
j=1 α j > 0.5 case, there exist

infinitely many attacking probability distributions (P j
0,1, P j

1,0)
which can make Dk = 0, ∀k. Thus, we have the following
result.

Lemma 2: In a tree network with K levels, the minimum
number of Byzantines needed to make the Kullback-Leibler
divergence (KLD) between the distributions P(Z|H0) and
P(Z|H1) equal to zero (or to make Dk = 0, ∀k) is given
by B1 =

⌈
N1
2

⌉
.

Proof: The proof follows from the fact that the condition∑k
j=1 α j = 0.5, ∀k, is equivalent to α1 = 0.5, αk = 0,

∀k = 2, · · · , K .
Next, we explore the optimal attacking probability distrib-

ution (Pk
0,1, Pk

1,0) that minimizes Dk when
∑k

j=1 α j < 0.5,
i.e., in the case where the attacker cannot make D = 0.
To analyze the problem, first we investigate the properties
of Dk with respect to (Pk

0,1, Pk
1,0) assuming (P j

0,1, P j
1,0),

1 ≤ j ≤ k − 1 to be fixed. We show that attacking with
symmetric flipping probabilities is the optimal strategy in the
region where the attacker cannot make Dk = 0. In other words,
attacking with Pk

1,0 = Pk
0,1 is the optimal strategy for the

Byzantines.
Lemma 3: In the region where the attacker cannot make

Dk = 0, i.e., for
∑k

j=1 α j < 0.5, the optimal attack-
ing strategy comprises of symmetric flipping probabilities
(Pk

0,1 = Pk
1,0 = p). In other words, any non zero deviation

εi ∈ (0, p] in flipping probabilities (Pk
0,1, Pk

1,0) =
(p − ε1, p − ε2), where ε1 �= ε2, will result in an increase
in Dk .

Proof: Please see Appendix A.
In the next theorem, we present the solution for the optimal

attacking probability distribution (Pk
j,1, Pk

j,0) that minimizes
Dk in the region where the attacker cannot make Dk = 0.

Theorem 1: In the region where the attacker cannot make
Dk = 0, i.e., for

∑k
j=1 α j < 0.5, the optimal attacking

strategy is given by (Pk
0,1, Pk

1,0) = (1, 1).
Proof: Observe that, in the region where the attacker

cannot make Dk = 0, the optimal strategy comprises of
symmetric flipping probabilities (Pk

0,1 = Pk
1,0 = p). The proof

is complete if we show that Dk is a monotonically decreasing
function of the flipping probability p.

After plugging in (Pk
0,1, Pk

1,0) = (p, p) in (9) and (10),
we get

πk
1,1 = [βk−1

1,0 (1− Pk
d )+ (1− βk−1

0,1 )Pk
d ]

+ [αk(p − Pk
d (2 p))+ Pk

d ] (11)

πk
1,0 = [βk−1

1,0 (1− Pk
f a)+ (1− βk−1

0,1 )Pk
f a]

+ [αk(p − Pk
f a(2 p))+ Pk

f a]. (12)

Now we show that Dk is a monotonically decreasing function
of the parameter p or in other words, d Dk

dp < 0. After plugging

in πk′
1,1 = αk(1 − 2Pk

d ) and πk′
1,0 = αk(1 − 2Pk

f a) in the

expression of d Dk
dp and rearranging the terms, the condition

d Dk
dp < 0 becomes

(1− 2Pk
d )

(
1− πk

1,0

1 − πk
1,1

− πk
1,0

πk
1,1

)

+ (1− 2Pk
f a) log

(
1− πk

1,1

1− πk
1,0

πk
1,0

πk
1,1

)

< 0 (13)
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Fig. 2. KLD Dk vs. flipping probabilities when Pk
d = 0.8, Pk

f a = 0.2, and
the probability that the bit coming from level k encounters a Byzantine is∑k

j=1 α j = 0.4.

Since Pk
d > Pk

f a and βk
x̄,x < 0.5, we have πk

1,1 > πk
1,0.

Now, using the fact that
1−Pk

d

1−Pk
f a

>
1−2Pk

d

1−2Pk
f a

and (33), we have

1− 2Pk
d

1− 2Pk
f a

[
1− πk

1,0

1− πk
1,1

− πk
1,0

πk
1,1

]

<(πk
1,1−πk

1,0)

[
1

πk
1,1

+ 1

1− πk
1,0

]

⇔ 1− 2Pk
d

1− 2Pk
f a

[
1− πk

1,0

1− πk
1,1

− πk
1,0

πk
1,1

]

+
[

πk
1,0

πk
1,1

− 1

]

< 1− 1− πk
1,1

1− πk
1,0

. (14)

Applying the logarithm inequality (x − 1) ≥ log x ≥ x−1
x , for

x > 0 to (14), one can prove that (13) is true.
Next, to gain insights into the solution, we present some

numerical results in Figure 2. We plot Dk as a function of
the flipping probabilities (Pk

1,0, Pk
0,1). We assume that the

probability of detection is Pk
d = 0.8, the probability of false

alarm is Pk
f a = 0.2, and the probability that the bit coming

from level k encounters a Byzantine is
∑k

j=1 α j = 0.4.
We also assume that Pk

0,1 = P0,1 and Pk
1,0 = P1,0,∀k.

It can be seen that the optimal attacking strategy comprises of
symmetric flipping probabilities and is given by (Pk

0,1, Pk
1,0) =

(1, 1), which corroborates our theoretical result presented in
Lemma 3 and Theorem 1.

We have shown that, for all k,

Dk(Pk
0,1, Pk

1,0) ≥ Dk(1, 1). (15)

Now, by multiplying both sides of (15) by Nk and summing
it over all K we can show that the KLD, D, is minimized by

(Pk
0,1, Pk

1,0) = (1, 1), for all k, in the region
K∑

k=1
αk < 0.5.

Now, we explore some properties of Dk with respect
to

∑k
j=1 α j in the region where the attacker cannot make

Dk = 0, i.e., for
∑k

j=1 α j < 0.5. This analysis will later
be used in exploring the problem from the network designer’s
perspective.

Fig. 3. min
(Pk

j,1,Pk
j,0)

Dk vs probability that the bit coming from level k

encounters a Byzantine for Pk
d = 0.8 and Pk

f a = 0.2.

Lemma 4: D∗k = min
(Pk

j,1,Pk
j,0)

Dk(π
k
j,1||πk

j,0) is a continuous,

decreasing and convex function of
∑k

j=1 α j for
∑k

j=1 α j < 0.5.
Proof: The continuity of Dk(π

k
j,1||πk

j,0) with respect
to the involved distributions implies the continuity of D∗k .
To show that D∗k is a decreasing function of t = ∑k

j=1 α j ,
we use the fact that arg min

(Pk
0,1,Pk

1,0)

Dk(π
k
j,1||πk

j,0) is equal to (1, 1)

for
∑k

j=1 α j < 0.5 (as shown in Theorem 1). After plugging
(Pk

0,1, Pk
1,0) = (1, 1), ∀k, in the KLD expression, it can be

shown that d Dk
dt < 0. Hence, D∗k is a monotonically decreasing

function of
∑k

j=1 α j for
∑k

j=1 α j < 0.5. The convexity of
D∗k follows from the fact that D∗k (πk

j,1||πk
j,0) is convex in

πk
j,1 and πk

j,0, which are affine transformations of
∑k

j=1 α j

(Note that, convexity holds under affine transformation).
It is worth noting that Lemma 4 suggests that minimization/

maximization of
∑k

j=1 α j is equivalent to minimization/
maximization of Dk . Using this fact, one can consider the
probability that the bit coming from level k encounters a
Byzantine (i.e., t = ∑k

j=1 α j ) in lieu of Dk for optimizing
the system performance.

Next, to gain insights into the solution, we present some
numerical results in Figure 3. We plot min

(Pk
j,1,Pk

j,0)
Dk as a

function of the probability that the bit coming from level k
encounters a Byzantine, i.e., t . We assume that the probabili-
ties of detection and false alarm are Pk

d = 0.8 and Pk
f a = 0.2,

respectively. Notice that, when t = 0.5, Dk between the
two probability distributions becomes zero. It is seen that
D∗k is a continuous, decreasing and convex function of the
fraction of covered nodes, t , for t < 0.5, which corroborates
our theoretical result presented in Lemma 4.

Until now, we have explored the problem from the attacker’s
perspective. In the rest of the paper, we look into the problem
from a network designer’s perspective and propose techniques
to mitigate the effect of Byzantines. First, we study the
problem of designing optimal distributed detection parameters
in a tree network in the presence of Byzantines.
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IV. SYSTEM DESIGN IN THE PRESENCE

OF BYZANTINES

For a fixed attack configuration {Bk}Kk=1, the detection
performance at the FC is a function of the local detectors
used at the nodes in the tree network and the global detector
used at the FC. This motivates us to study the problem of
designing detectors, both at the nodes at different levels in
a tree and at the FC, such that the detection performance is
maximized. More specifically, we are interested in answering
the question: How does the knowledge of the attack configura-
tion {Bk}Kk=1 affect the design of optimal distributed detection
parameters?

By Stein’s lemma [19], we know that in the NP setup
for a fixed false alarm probability, the missed detection
probability of the optimal detector can be minimized by
maximizing the KLD. For an optimal detector at the FC, the
problem of designing the local detectors can be formalized as
follows:

max
{Pk

d ,Pk
f a}Kk=1

K∑

k=1

Nk

∑

j∈{0,1}
P(zi = j |H0, k) log

P(zi = j |H0, k)

P(zi = j |H1, k)
.

(16)

The local detector design problem as given in (16) is a
non-linear optimization problem. Furthermore, it is difficult
to obtain a closed form solution for this problem. Next, we
show that likelihood ratio tests remain optimal (under the
conditional independence assumption) even in the presence
of Byzantines and optimal decision rule for each node is
independent of Byzantines’ parameters.8 To solve the problem,
we need to find the pairs {Pk

d , Pk
f a}Kk=1 which maximize the

objective function as given in (16). However, Pk
d and Pk

f a are
coupled and, therefore, cannot be optimized independently.
Thus, we first analyze the problem of maximizing the KLD
for a fixed Pk

f a . We assume that Pk
f a = yk and Pk

d = yk + xk .
Next, we analyze the properties of KLD with respect to xk ,
i.e., (Pk

d − Pk
f a) in the region where attacker cannot blind the

FC, i.e., for
∑k

j=1 α j < 0.5, in order to study the local detector

design problem. Notice that, in the region
∑k

j=1 α j ≥ 0.5,
Dk = 0 and optimizing over local detectors does not improve
the performance.

Lemma 5: For a fixed Pk
f a = yk , when

∑k
j=1 α j < 0.5,

the KLD, D, as given in (7) is a monotonically increasing
function of xk = (Pk

d − Pk
f a).

Proof: To prove this, we calculate the partial derivative
of D with respect to xk . By substituting Pk

f a = yk and
Pk

d = yk+ xk into (7), the partial derivative of D with respect
to xk can be calculated as

∂ D

∂xk
= Nk

∂

∂xk

[

πk
1,0 log

πk
1,0

πk
1,1

+ (1− πk
1,0) log

1− πk
1,0

1− πk
1,1

]

⇔ ∂ D

∂xk
= Nkπ

k′
1,1

(
1− πk

1,0

1− πk
1,1

− πk
1,0

πk
1,1

)

,

8In other words, under the assumption of conditional independence, an
optimal decision rule for each node takes the form of a likelihood ratio
test (LRT), with a suitably chosen threshold. In turn, optimization over the
set of all thresholds can yield the desired solution.

where πk
1,0 and πk

1,1 are as given in (9) and (10), respectively

and πk′
1,1 = (1− βk

0,1 − βk
1,0). Notice that,

(
1− πk

1,0

1− πk
1,1

− πk
1,0

πk
1,1

)

> 0⇔ πk
1,1 > πk

1,0.

Thus, the condition to make ∂ D
∂xk

> 0 simplifies to

πk′
1,1 > 0⇔ 1 > (βk

0,1 + βk
1,0) (17)

Substituting the values of βk
1,0 and βk

1,1, the above condition
can be written as:

k∑

j=1

α j P j
1,0 +

k∑

j=1

α j P j
0,1 < 1 (18)

⇔
k∑

j=1

α j (P j
1,0 + P j

0,1) < 1 (19)

The above condition is true for any 0 ≤ P j
0,1, P j

1,0 ≤ 1 when
∑k

j=1 α j < 0.5. This completes the proof.

Lemma 5 suggests that one possible solution to maxi-
mize D is to choose the largest possible xk constrained to
0 ≤ xk ≤ 1 − yk . The upper bound results from the fact
that {Pk

d , Pk
f a}Kk=1 are probabilities and, thus, must be between

zero and one. In other words, the solution is to maximize
the probability of detection for a fixed value of probability
of false alarm. In detection theory, it is well known that the
likelihood ratio based test is optimum for this criterion. Thus,
under the conditional independence assumption, the likelihood
ratio based test as given in (6) is optimal for local nodes,
even in the presence of Byzantines, and the optimal operating
points {Pk∗

d , Pk∗
f a}Kk=1 are independent of the Byzantines’

parameters {αk}Kk=1.
The above result has the following important consequences:

1) search space is reduced from any arbitrary detector to
likelihood ratio based detectors, 2) the threshold in the LRT
can be optimized without any prior knowledge about the
Byzantines’ parameters {αk}Kk=1. We further explore the prob-
lem from the network designer’s (FC) perspective. In our
previous analysis, we have assumed that the attack config-
uration {Bk}Kk=1 is known and shown that the optimal local
detector is independent of {αk}Kk=1. However, notice that the
KLD is the exponential decay rate of the error probability of
the optimal detector. In other words, while optimizing over
KLD, we implicitly assumed that the optimal detector, which
is a likelihood ratio based detector, is used at the FC. Taking
logarithm on both sides of (6), the optimal decision rule
simplifies to

K∑

k=1

[ak
1sk + ak

0(Nk − sk)]
H1
≷
H0

log η (20)

where the optimal weights are given by ak
1 = log

πk
1,1

πk
1,0

and

ak
0 = log

1−πk
1,1

1−πk
1,0

. To implement the optimal detector, the FC

needs to know the optimal weights ak
j , which are functions

of {αk}Kk=1. In the next section, we are interested in answering
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the question: Is it possible for the FC to predict the attack
configuration {Bk}Kk=1 in the tree? The knowledge of this attack
configuration can be used for determining the optimal detector
at the FC to improve the system performance. Notice that,
learning/estimation based techniques can be used on data to
determine the attack configuration. However, the FC has to
acquire a large amount of data coming from the nodes over a
long period of time to accurately estimate {Bk}Kk=1.

In the next section, we propose a novel technique to
predict the attack configuration by considering the following
scenario: The FC, acting first, commits to a defensive strategy
by deploying the defensive resources to protect the tree
network, while the attacker chooses its best response or attack
configuration after surveillance of this defensive strategy.
Both, the FC and the Byzantines have to incur a cost to
deploy the defensive resources and attack the nodes in the
tree network, respectively. We consider both the FC and the
attacker to be strategic in nature and model the strategic
interaction between them as a Leader-Follower (Stackelberg)
game. This formulation provides a framework for identifying
attacker and defender (FC) equilibrium strategies, which
can be used to implement the optimal detector. The main
advantage of this technique is that the equilibrium strategies
can be determined a priori and, therefore, there is no need to
observe a large amount of data coming from the nodes over
a long period of time to accurately estimate {Bk}Kk=1.

V. STACKELBERG GAME FOR ATTACK CONFIGURATION

PREDICTION PROBLEMS

We model the strategic interaction between the FC and the
attacker as a Leader-Follower (Stackelberg) game. We assume
that the FC has to incur a cost for deploying the network and
the Byzantine has to incur a cost9 for attacking the network.
It is assumed that the network designer or the FC has a cost
budget Cnetwork

budget and the attacker has a cost budget Cattacker
budget

10.
More specifically, the FC wants to allocate the best subset
of defensive resources (denoted as {c̃k}Kk=1)11 from a set of
available defensive resources C = (c1, · · · , cn) (arranged in
a descending order, i.e., c1 ≥ c2 · · · ≥ cn), where n ≥ K ,
complying with its budget constraint Cnetwork

budget to different
levels of the tree network. After the FC allocates the defensive
resources or budget to different levels of the tree network, an
attacker chooses an attack configuration, {Bk}Kk=1 complying

9Due to variations in hardware complexity and the level of tamper-resistance
present in nodes residing at different levels of the tree, the resources required
to capture and tamper nodes at different levels may be different and, therefore,
nodes have varying costs of being attacked.

10In this paper, we assume that the attacker budget Cattacker
budget is such that

K∑

k=1
αk < 0.5, i.e., the attacker cannot make Dk = 0, ∀k. Notice that, if

the attacker can make Dk = 0 for some k = l, then, it can also make
Dk = 0, ∀k ≥ l. Also, Dk = 0 implies that πk

1,1 = πk
1,0 and, therefore, the

weights (ak
1 , ak

0 ) in (20) are zero. In other words, the best the FC can do in
the case when Dk = 0, ∀k ≥ l is to ignore or discard the decisions of the
nodes residing at level k ≥ l. This scenario is equivalent to using the tree
network with (l − 1) levels for distributed detection.

11Let c̃k denote the resources deployed or budget allocated by the FC to
protect or deploy a node at level k.

with his budget constraint Cattacker
budget to maximally degrade the

performance of the network.
Next, we formalize the Stackelberg game as a bi-level

optimization problem. For our problem, the upper level
problem (ULP) corresponds to the FC who is the leader of
the game, while the lower level problem (LLP) belongs to the
attacker who is the follower.

maximize
{c̃k}Kk=1∈C

D({c̃k}Kk=1)

subject to
K∑

k=1

c̃k Nk ≤ Cnetwork
budget

minimize
Bk∈Z+

D({Bk}Kk=1)

subject to
K∑

k=1

c̃k Bk ≤ Cattacker
budget

0 ≤ Bk ≤ Nk , ∀ k = 1, 2, . . . , K (21)

where Z
+ is the set of non-negative integers. Notice that the

bi-level optimization problem, in general, is an NP-hard
problem. In fact, the LLP is a variant of the packing for-
mulation of the bounded knapsack problem with a non-linear
objective function. This is, in general, NP-hard. Using existing
algorithms, cost set {c̃k}Kk=1 and attack configuration {Bk}Kk=1
can be determined at the cost of computational efficiency. In
this paper, we identify a special case of the above problem
which can be solved in polynomial time to determine the equi-
librium strategies. To solve the bi-level optimization problem,
we first solve the LLP assuming the solution of the ULP to be
some fixed (c̃1, · · · , c̃K ). This approach will give us a structure
of the optimal {Bk}Kk=1 for any arbitrary {c̃k}Kk=1. Next, using
the structure of the optimal {Bk}Kk=1, the bi-level optimization
problem simplifies to finding the solution {c̃k}Kk=1 of the ULP.
Finally, we present a polynomial time algorithm to solve
the bi-level optimization problem, i.e., to find {c̃k}Kk=1 and,
thus, {Bk}Kk=1.

Next, we discuss the relationships that enable our problem
to have a polynomial time solution. We define profit P(S) of
an attack configuration S = {Bk}Kk=1 as follows12

P(S) = D(φ)− D(S) = D(φ)− D({Bk}Kk=1),

where D(φ) is the KLD when there are no Byzantines in the
network and D(S) = D({Bk}Kk=1) is the KLD with {Bk}Kk=1
Byzantines in the tree network. Next, we define the concept
of dominance which will be used later to explore some useful
properties of the optimal attack configuration {Bk}Kk=1.

Definition 1: We say that a set S1 dominates another
set S2 if

P(S1) ≥ P(S2) and C(S1) ≤ C(S2), (22)

where P(Si ) and C(Si ) denote the profit and cost incurred by
using set Si , respectively. If in (22), P(S1) > P(S2), S1 strictly
dominates S2 and if P(S1) = P(S2), S1 weakly dominates S2.

12In this section, we assume that the optimal operating point,
i.e., (Pk∗

d , Pk∗
f a), is the same for all the nodes in the tree network. It has

been shown that the use of identical thresholds is asymptotically optimal for
parallel networks [26]. We conjecture that this result is valid for tree networks
as well and employ identical thresholds.
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To solve the bi-level optimization problem, we first solve
the LLP assuming the solution of the ULP to be some
fixed (c̃1, · · · , c̃K ). We refer to LLP as a maximum damage
Byzantine attack problem. Observe that, knowing that the FC
chooses (c̃1, · · · , c̃K ), the LLP can be reformulated as follows:

minimize
Bk∈Z+

K∑

k=1

Nk Dk({Bi}ki=1)

subject to
K∑

k=1

c̃k Bk ≤ Cattacker
budget

0 ≤ Bk ≤ Nk , ∀k = 1, · · · , K .

We discuss the relationships that enable maximum damage
Byzantine attack problem to admit a polynomial time solution.

A. Analysis of the Optimal Attack Configuration

In this section, we identify a special case of the bounded
knapsack problem (LLP) which can be solved in polynomial
time. More specifically, we show that if the set of defensive
resources C = (c1, · · · , cn) satisfy the cost structure cmax ≤(

min
k∈{1,··· ,K−1}

Nk+1

Nk

)

× cmin
13 or c1 ≤ min

k
ak × cn , then, the

optimal solution {Bk}Kk=1 exhibits the properties given in the
lemma below.

Lemma 6: Given a K level tree network with cost structure

satisfying cmax ≤
(

min
k∈{1,··· ,K−1}

Nk+1

Nk

)

× cmin , the best

response of an attacker with cost budget Cattacker
budget is {Bk}Kk=1

with

B1 =
⌊

Cattacker
budget

c̃1

⌋

and the remaining elements of Bk for 2 ≤ k ≤ K can be
calculated recursively.

Proof: Please see Appendix B.
It can also be shown that the solution {Bk}Kk=1 will be

non-overlapping and unique under the condition that the
attacker cannot make Dk = 0, ∀k.

B. Bi-Level Optimization Algorithm

Based on Lemma 6, in this section we will present a polyno-
mial time algorithm to solve the bi-level optimization problem,
i.e., to find {c̃k}Kk=1 and {Bk}Kk=1. Using the cost structure

cmax ≤
(

min
k

Nk+1

Nk

)

×cmin , the attack configuration {Bk}Kk=1

as given in Lemma 6 can be determined in a computationally
efficient manner. Due to the structure of the optimal {Bk}Kk=1,
the bi-level optimization problem simplifies to finding the
solution {c̃k}Kk=1 of the ULP.

To solve this problem, we use an iterative elimination
approach. We start by listing all

( n
K

)
combinations from the

set C, denoted as, S = {si }(
n
K)

i=1. Without loss of generality, we
assume that the elements of si = {ci

1, · · · , ci
K } are arranged

13Notice that, in the case of the perfect M-ary tree networks, the proposed
cost structure simplifies to cmax ≤ M × cmin .

Algorithm 1 Bi-Level Optimization Algorithm

Require: C = {ck}nk=1 with cmax ≤
(

min
j

N j+1

N j

)

× cmin

1: S ← All K out of n combinations {si }(
n
K)

i=1 with elements
of si arranged in decreasing order

2: for i = 1 to
( n

K

)
do

3: if
K∑

k=1
ci

k × Nk > Cnetwork
budget then

4: S← S/si

5: end if
6: end for
7: if S is an empty set then
8: return (φ, φ)
9: else

10: for k = 1 to K do
11: c̃k = min

j∈s
c j

k where s has elements which are solutions

of arg min
i

⌊
Cattacker

budget

ci
k

⌋

12: Bk ←
⌊

Cattacker
budget

c̃k

⌋

13: Cattacker
budget ← (Cattacker

budget − c̃k Bk)
14: end for
15: return ({c̃k}Kk=1, {Bk}Kk=1)
16: end if

in descending order, i.e., ci
k ≥ ci

k+1,∀k. Notice that, all these
( n

K

)
combinations will satisfy ci

k ≤ Nk+1
Nk

ci
k+1, because

ci
k ≤ cmax ≤ min

j

N j+1

N j
cmin ≤ min

j

N j+1

N j
ci

k+1 ≤
Nk+1

Nk
ci

k+1.

Next, we discard all those subsets si from S which violate the
network designer’s cost budget constraint. If the set S is empty,
then there does not exist any solution for the ULP. Otherwise,
the problem reduces to finding the subset si which maximizes
the KLD. To find the subset si which maximizes the KLD,
using the dominance relationship we start with assigning the
cost c̃1 = min

k∈s
ck

1, where s has the elements which are solutions

of arg min
i

⌊
Cattacker

budget

ci
1

⌋

. Next, we discard all those subsets si

from S which do not have c̃1 as their first element and solve
the problem recursively.

The pseudo code of the polynomial time algorithm to find
{c̃k}Kk=1 and {Bk}Kk=1 is presented as Algorithm 1.

C. An Illustrative Example

Let us consider a two-level network with N1 = 6 and
N2 = 12. We assume that C = {4, 3, 2}, Cnetwork

budget = 60
and Cattacker

budget = 11. Next, we solve the bi-level optimization
problem. Observe that, costs satisfy c1 ≤ 2 × c3. So the
algorithm chooses the solution of the ULP as (c̃1 = 4,
c̃2 = 3) and the solution of the LLP as (B1 =

⌊ 11
4

⌋ = 2,
B2 =

⌊11−2×4
3

⌋ = 1). To corroborate these results, in
Figure 4, we plot the min

P1,0,P0,1
KLD for all combinations of
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Fig. 4. min KLD vs. attack configuration (B1, B2) for Pd = 0.9, Pf a = 0.1.

the parameters B1 and B2 in the tree. We vary the parameter
B1 from 0 to 6 and B2 from 0 to 12. All the feasible solutions
are plotted in red and unfeasible solutions are plotted in blue.
Figure 4 corroborates the results of our algorithm.

Notice that, the attack configuration {Bk}Kk=1 is the set con-
taining the number of Byzantines residing at different levels
of the tree. However, the FC cannot identify the Byzantines
in the network. Also, notice that when the adversary attacks
more than 50% of the nodes at level 1, the decision fusion
scheme becomes completely incapable. In these scenarios,
where the FC is blind, the knowledge of attack configuration
will not incur any performance benefit. Next, we present a
reputation-based Byzantine identification/mitigation scheme,
which works even when the network is blind, in order to
improve the detection performance of the network. We propose
a simple yet efficient Byzantine identification scheme and
analyze its performance.

VI. AN EFFICIENT BYZANTINE IDENTIFICATION SCHEME

In this section, we propose and analyze a Byzantine
identification scheme to be implemented at the FC.

A. Byzantine Identification Scheme

We assume that the FC has the knowledge of the
attack model and utilizes this knowledge to identify the
Byzantines. The FC observes the local decisions of each
node over a time window T , which can be denoted by
(k, i) = [u1(k, i), . . . , uT (k, i)] for 1 ≤ i ≤ Nk at level
1 ≤ k ≤ K . We also assume that there is one honest anchor
node with probability of detection P A

d and probability of
false alarm P A

f a present and known to the FC. We employ
the anchor node to provide the gold standard which is used
to detect whether or not other nodes are Byzantines. The
FC can also serve as an anchor node when it can directly
observe the phenomenon and make a decision. We denote
the Hamming distance between reports of the anchor node
and an honest node i at level k over the time window T by
d A

H (k, i) = ||U A −U H (k, i)||, that is the number of elements
that are different between U A and U H (k, i). Similarly, the
Hamming distance between the reports of the anchor node

and a Byzantine node i at level k over the time window T
is denoted by d A

B (k, i) = ||U A − U B(k, i)||. Since the FC
is aware of the fact that Byzantines might be present in the
network, it compares the Hamming distance of a node i at
level k to a threshold ηk , ∀i,∀k (a procedure to calculate ηk

is discussed later in the paper), to make a decision to identify
the Byzantines. In tree networks, a Byzantine node alters its
decision as well as received decisions from its children prior to
transmission in order to undermine the network performance.
Therefore, solely based on the observed data of a node i at
level k, the FC cannot determine whether the data has been
flipped by the node i itself or by one of its Byzantine parent
node. In our scheme, the FC makes the inference about a
node being Byzantine by analyzing the data from the node
i as well as its predecessor nodes’ data. FC starts from the
nodes at level 1 and computes the Hamming distance between
reports of the anchor node and the nodes at level 1. FC declares
node i at level 1 to be a Byzantine if and only if the Hamming
distance of node i is greater than a fixed threshold η1. Children
of identified Byzantine nodes C(B1) are not tested further
because of the non-overlapping condition. However, if a level
1 node is determined not to be a Byzantine, then, the FC tests
its children nodes at level 2. The FC declares node i at level k,
for 2 ≤ k ≤ K , to be a Byzantine if and only if the Hamming
distance of node i is greater than a fixed threshold ηk and
Hamming distances of all predecessors of node i is less than
equal to their respective thresholds η j .

In this way, it is possible to counter the data falsification
attack by isolating Byzantine nodes from the information
fusion process. The probability that a Byzantine node i at
level k is isolated at the end of the time window T , is denoted
as Piso

B (k, i).

B. Performance Analysis

As mentioned earlier, local decisions of the nodes are
compared to the decisions of the anchor node over a time
window of length T . The probability that an honest node i
at level k makes a decision that is different from the anchor
node is given by

P AH
di f f (k, i)

= P(u A
i = 1, u H

k,i = 0, H0)+ P(u A
i = 0, u H

k,i = 1, H0)

+ P(u A
i = 1, u H

k,i = 0, H1)+ P(u A
i = 0, u H

k,i = 1, H1)

= P0[(Pk
f a + P A

f a)− 2Pk
f a P A

f a] + P1[(Pk
d + P A

d )− 2Pk
d P A

d ]
.= P0[P AH

di f f (k, i, 0)] + P1[P AH
di f f (k, i, 1)].

where the prior probabilities of the two hypotheses H0 and H1
are denoted by P0 and P1, respectively. The probability that
a Byzantine node i at level k sends a decision different from
that of the anchor node is given by

P AB
di f f (k, i)

=P(u A
i = 1, u B

k,i = 0, H0)+ P(u A
i = 0, u B

k,i = 1, H0)

+P(u A
i = 1, u B

k,i = 0, H1)+ P(u A
i = 0, u B

k,i = 1, H1)

=P0[P A
f a Pk

f a + (1− P A
f a)(1− Pk

f a)]
+P1[P A

d Pk
d + (1− P A

d )(1− Pk
d )]

.=P0[P AB
di f f (k, i, 0)] + P1[P AB

di f f (k, i, 1)].
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The difference between the reports of a node and the anchor
node under hypothesis l ∈ {0, 1} (i.e., d A

I (k, i, l), I ∈ {H, B})
is a Bernoulli random variable with mean P AH

di f f (k, i, l) for
honest nodes and P AB

di f f (k, i, l) for Byzantines. FC declares
node i at level k to be a Byzantine if and only if the Hamming
distance of node i is greater than a fixed threshold ηk and
Hamming distances of all predecessors of node i are less than
equal to their respective thresholds η j . The probability that a
Byzantine node i at level k is isolated at the end of the time
window T can be expressed as

Piso
B (k, i)

= P
[
(d A

B (k, i) > ηk),

(d A
H (k − 1, i) ≤ ηk−1), · · · , (d A

H (1, i) ≤ η1)
]

=
∑

l∈{0,1}
Pl

[

P[d A
B (k, i, l) > ηk]

k−1∏

m=1

P[d A
H (m, i, l) ≤ ηm ]

]

=
∑

l∈{0,1}
Pl

T∑

j=ηk+1

(
T

j

)

(P AB
di f f (k, i, l)) j (1−P AB

di f f (k, i, l))T− j

×
k−1∏

m=1

⎡

⎣
ηm∑

j=0

(
T

j

)

(P AH
di f f (m, i, l)) j (1−P AH

di f f (m, i, l))T− j

⎤

⎦.

For large T , by using the normal approximation, we get

Piso
B (k, i)

=
∑

l∈{0,1}
Pl Q

⎛

⎝
ηk − T P AB

di f f (k, i, l)
√

(T P AB
di f f (k, i, l)(1− P AB

di f f (k, i, l)))

⎞

⎠

×
k−1∏

m=1

Q

⎛

⎝
T P AH

di f f (m, i, l)− ηm
√

(T P AH
di f f (m, i, l)(1 − P AH

di f f (m, i, l)))

⎞

⎠.

This can be written recursively as follows

Piso
B (k + 1, i)

=
∑

l∈{0,1}
Pl

[

(1− b(k, l))

(
a(k + 1, l)

a(k, l)

)

Piso
B (k, i, l)

]

,

(24)

with Piso
B (k, i)

.=
∑

l∈{0,1}
Pl [Piso

B (k, i, l)], and

a(k, l) = Q

⎛

⎝
ηk − T P AB

di f f (k, i, l)
√

(T P AB
di f f (k, i, l)(1− P AB

di f f (k, i, l)))

⎞

⎠,

b(k, l) = Q

⎛

⎝
ηk − T P AH

di f f (k, i, l)
√

(T P AH
di f f (k, i, l)(1− P AH

di f f (k, i, l)))

⎞

⎠.

One can choose ηk such that the isolation probability of honest
nodes at level k based solely on its data under the hypothe-
sis Hl (i.e., b(k, l)) is constrained to some value δk << 0.5.
In other words, we choose ηk such that max

l∈{0,1} b(k, l) = δk ,

i.e.,

ηk = Q−1(δk)
√

T P AH
di f f (k, i, l∗)(1− P AH

di f f (k, i, l∗))

+ T P AH
di f f (k, i, l∗) (25)

where l∗ = arg max
l

b(k, l). Now, the expression for a(k, l)

can be written as given in (23), as shown at the bottom of
this page.

Now using the fact that max
l

P AH
di f f (k, i, l) <

min
l

P AB
di f f (k, i, l), it can be shown that (P AH

di f f (k, i, l∗) −
P AB

di f f (k, i, l)) < 0, ∀i and, therefore, lim
T→∞ a(k, l) = 1.

Lemma 7: For a K level tree network, for our pro-
posed Byzantine identification scheme, the asymptotic
(i.e., T → ∞) probability that a Byzantine node i at level
k + 1, for 1 ≤ k ≤ K − 1, is isolated is lower-bounded by,

k∏

j=2

(1− δ j ).

Proof: Notice that, lim
T→∞ a(k, l) = 1. The asymptotic

performance of the proposed scheme can be analyzed as
follows:

lim
T→∞ Piso

B (k + 1, i)

=
∑

l∈{0,1}
Pl lim

T→∞

[

(1− b(k, l))

(
a(k + 1, l)

a(k, l)

)

Piso
B (k, i, l)

]

≥ (1− δk)
∑

l∈{0,1}
Pl lim

T→∞

[
Piso

B (k, i, l)
]

=
k∏

j=2

(1− δ j ).

Notice that, the parallel network topology is a special case
of the tree network topology with K = 1. For K = 1, our
scheme can identify all the Byzantines with probability one
because lim

T→∞ Piso
B (1, i) = lim

T→∞
∑

l∈{0,1}
Pl [a(1, l)] = 1. When

K > 1, we can choose ηk appropriately such that Byzantines
can be identified with a high probability.

Next, to gain insights into the solution, we present
some numerical results in Figure 5 that corroborate our
theoretical results. We consider a tree network with K = 5
and plot Piso

B (k, i), 1 ≤ k ≤ 5, as a function of the time
window T . We assume that the operating points (Pk

d , Pk
f a),

1 ≤ k ≤ 5, for the nodes at different levels are given by
[(0.8, 0.1), (0.75, 0.1), (0.6, 0.1), (0.65, 0.1), (0.6, 0.1)] and

a(k, l) = Q

⎛

⎝
Q−1(δk)

√
P AH

di f f (k, i, l∗)(1− P AH
di f f (k, i, l∗))+√T (P AH

di f f (k, i, l∗)− P AB
di f f (k, i, l))

√
P AB

di f f (k, i, l)(1 − P AB
di f f (k, i, l))

⎞

⎠ (23)
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Fig. 5. Isolation probability Piso
B (k, i) vs. time window T .

for anchor node (P A
d , P A

f a) = (0.9, 0.1). We also assume that
the hypotheses are equi-probable, i.e., P0 = P1 = 0.5, and
the maximum isolation probability of honest nodes at level
k based solely on its data is constrained by δk = 0.01,∀k.
It can be seen from Figure 5 that in a span of only T = 25
time windows, our proposed scheme isolates/identifies almost
all the Byzantines in the tree network.

VII. CONCLUSION

In this paper, we considered the problem of optimal
Byzantine attacks on distributed detection mechanism in
tree networks. We analyzed the performance limit of detec-
tion performance with Byzantines and obtained the optimal
attacking strategies that minimize the detection error exponent.
The problem was also studied from the network designer’s
perspective. It was shown that the optimal local detector is
independent of the Byzantine’s parameter. Next, we modeled
the strategic interaction between the FC and the attacker as a
Leader-Follower (Stackelberg) game and attacker and defender
(FC) equilibrium strategies were identified. We also proposed
a simple yet efficient scheme to identify Byzantines and
analytically evaluated its performance. There are still many
interesting questions that remain to be explored in the future
work such as analysis of the problem for arbitrary network
topologies. The case where Byzantines collude in several
groups (collaborate) to degrade the detection performance can
also be investigated.
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APPENDIX A
PROOF OF LEMMA 3

To prove the lemma, we first show that any positive
deviation ε ∈ (0, p] in flipping probabilities (Pk

1,0, Pk
0,1) =

(p, p − ε) will result in an increase in Dk . After plugging in

(Pk
1,0, Pk

0,1) = (p, p − ε) in (9) and (10), we get

πk
1,0 = [βk−1

1,0 (1− Pk
f a)+ (1− βk−1

0,1 )Pk
f a]

+ [αk(p − Pk
f a(2 p − ε))+ Pk

f a] (26)

πk
1,1 = [βk−1

1,0 (1− Pk
d )+ (1− βk−1

0,1 )Pk
d ]

+ [αk(p − Pk
d (2 p − ε))+ Pk

d ]. (27)

Now we show that Dk is a monotonically increasing function

of the parameter ε or in other words, d Dk
dε > 0.

d Dk

dε
= πk

1,0

(
πk′

1,0

πk
1,0

− πk′
1,1

πk
1,1

)

+ πk′
1,0 log

πk
1,0

πk
1,1

+ (1− πk
1,0)

(
πk′

1,1

1− πk
1,1

− πk′
1,0

1− πk
1,0

)

−πk′
1,0 log

1− πk
1,0

1− πk
1,1

(28)

where
dπk

1,1
dε = πk′

1,1 = αk Pk
d and

dπk
1,0

dε = πk′
1,0 = αk Pk

f a . After
rearranging the terms in the above equation, the condition
d Dk
dε > 0 becomes

1− πk
1,0

1 − πk
1,1

+ Pk
f a

Pk
d

log
πk

1,0

πk
1,1

>
πk

1,0

πk
1,1

+ Pk
f a

Pk
d

log
1− πk

1,0

1− πk
1,1

. (29)

Since Pk
d > Pk

f a and βk
x̄,x < 0.5, πk

1,1 > πk
1,0. It can also be

proved that
Pk

d

Pk
f a

πk
1,0

πk
1,1

> 1. Hence, we have

1+ (πk
1,0 − πk

1,1) <
Pk

d

Pk
f a

πk
1,0

πk
1,1

⇔ (πk
1,0−πk

1,1)[1+(πk
1,0 − πk

1,1)] >
Pk

d

Pk
f a

πk
1,0

πk
1,1

(πk
1,0 − πk

1,1)

⇔ (πk
1,0 − πk

1,1)

[
1+ (πk

1,0 − πk
1,1)

πk
1,0(1− πk

1,1)

]

>
Pk

d

Pk
f a

πk
1,0

πk
1,1

[
πk

1,0 − πk
1,1

πk
1,0(1− πk

1,1)

]

⇔ (πk
1,0 − πk

1,1)

[
1

1− πk
1,1

+ 1

πk
1,0

]

>
Pk

d

Pk
f a

[
πk

1,0 − πk
1,0π

k
1,1 + πk

1,0π
k
1,1 − πk

1,1

πk
1,1(1− πk

1,1)

]

⇔
[

1− πk
1,1 − (1− πk

1,0)

1− πk
1,1

+ (πk
1,0 − πk

1,1)

πk
1,0

]

>
Pk

d

Pk
f a

[
πk

1,0

πk
1,1

− 1− πk
1,0

1− πk
1,1

]

⇔ 1− πk
1,0

1− πk
1,1

+ Pk
f a

Pk
d

(

1− πk
1,1

πk
1,0

)

>
πk

1,0

πk
1,1

+ Pk
f a

Pk
d

(
1− πk

1,0

1− πk
1,1

− 1

)

. (30)
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To prove that (29) is true, we apply the logarithm inequality
(x − 1) ≥ log x ≥ x−1

x , for x > 0 to (30). First, let us assume

that x = πk
1,0

πk
1,1

. Now using the logarithm inequality we can

show that log
πk

1,0

πk
1,1
≥ 1 − πk

1,1

πk
1,0

. Next, let us assume that x =
1−πk

1,0

1−πk
1,1

. Now using the logarithm inequality it can be shown

that

[
1−πk

1,0

1−πk
1,1
− 1

]

≥ log
1−πk

1,0

1−πk
1,1

. Using these results and (30),

one can prove that condition (29) is true.
Similarly, we can show that any non zero deviation

ε ∈ (0, p] in flipping probabilities (Pk
1,0, Pk

0,1) = (p − ε, p)

will result in an increase in Dk , i.e., d Dk
dε > 0, or

πk
1,0

πk
1,1

+ 1− Pk
f a

1− Pk
d

log
1− πk

1,0

1− πk
1,1

>
1−πk

1,0

1−πk
1,1

+ 1− Pk
f a

1− Pk
d

log
πk

1,0

πk
1,1

.

(31)

Since Pk
d > Pk

f a and βk
x̄,x < 0.5, πk

1,1 > πk
1,0. It can also be

proved that
1−πk

1,0

1−πk
1,1

<
1−Pk

f a

1−Pk
d

. Hence, we have

1− πk
1,0

1− πk
1,1

<
1− Pk

f a

1− Pk
d

[
1− (πk

1,0 − πk
1,1)

]
(32)

⇔ 1− πk
1,0

πk
1,1(1− πk

1,1)
<

1− Pk
f a

1− Pk
d

[
1− (πk

1,0 − πk
1,1)

πk
1,1

]

⇔ 1

πk
1,1(1− πk

1,1)
<

1− Pk
f a

1− Pk
d

[
1− (πk

1,0 − πk
1,1)

πk
1,1(1− πk

1,0)

]

⇔ 1

πk
1,0 − πk

1,1

[
πk

1,0 − πk
1,0π

k
1,1 + πk

1,0π
k
1,1 − πk

1,1

πk
1,1(1− πk

1,1)

]

<
1− Pk

f a

1− Pk
d

[
1− (πk

1,0 − πk
1,1)

πk
1,1(1− πk

1,0)

]

⇔ 1

πk
1,0 − πk

1,1

[
πk

1,0

πk
1,1

− 1− πk
1,0

1 − πk
1,1

]

<
1− Pk

f a

1− Pk
d

[
1

πk
1,1

+ 1

1− πk
1,0

]

(33)

⇔ πk
1,0

πk
1,1

− 1− πk
1,0

1− πk
1,1

>
1− Pk

f a

1− Pk
d

[
πk

1,0 − πk
1,1

πk
1,1

+ πk
1,0 − πk

1,1

1− πk
1,0

]

⇔ πk
1,0

πk
1,1

− 1− πk
1,0

1− πk
1,1

>
1− Pk

f a

1− Pk
d

[
πk

1,0 − πk
1,1

πk
1,1

+ 1− πk
1,1 − (1− πk

1,0)

1− πk
1,0

]

⇔ πk
1,0

πk
1,1

+ 1− Pk
f a

1− Pk
d

[

1− 1− πk
1,1

1− πk
1,0

]

>
1− πk

1,0

1− πk
1,1

+ 1− Pk
f a

1− Pk
d

[
πk

1,0

πk
1,1

− 1

]

. (34)

To prove that (31) is true, we apply the logarithm inequality
(x − 1) ≥ log x ≥ x−1

x , for x > 0 to (34). First, let us assume

that x = 1−πk
1,0

1−πk
1,1

. Now using the logarithm inequality we can

show that log
1−πk

1,0

1−πk
1,1
≥ 1 − 1−πk

1,1

1−πk
1,0

. Next, let us assume that

x = πk
1,0

πk
1,1

. Now using the logarithm inequality it can be shown

that

[
πk

1,0

πk
1,1
− 1

]

≥ log
πk

1,0

πk
1,1

. Using these results and (34), one

can prove that condition (31) is true.

APPENDIX B
PROOF OF LEMMA 6

To prove Lemma 6, it is sufficient to show that:

1) KLD is a monotonically decreasing function of Bk , and,
2) Attacking parent nodes is a strictly dominant strategy.

Lemma 4 suggests that the KLD is a monotonically decreas-
ing function of Bk in the region where attacker cannot make
Dk = 0 and, therefore, (1) is proved. Next, we show that
attacking parent nodes is a strictly dominant strategy. In other
words, given a cost budget Cattacker

budget , it is more profitable for
an attacker to attack the parent nodes. Observe that the KLD
at level k is a function of Byzantines’ parameter (B1, · · · , Bk).
Thus, we denote it as Dk(B1, · · · , Bk).

In order to prove that attacking parent nodes is a strictly
dominant strategy, it is sufficient to show that the attack
configuration S1 = (B1, · · · , B j , B j+1, · · · , BK ) strictly
dominates the attack configuration S2 = (B1, · · · , B j − δ,

B j+1 + δ
N j+1

N j
, · · · , BK ) for δ ∈ {1, · · · , B j }. In other words,

we want to show that P(S1) > P(S2) and C(S1) ≤ C(S2).
From the cost inequality it follows that C(S1) ≤ C(S2)
because cmax ≤ (min

k
Nk+1/Nk ) × cmin ⇒ c̃ j ≤

(N j+1/N j )× c̃ j+1. Also, note that if the attack configuration
S1 strictly dominates the attack configuration S2, then, it
will also strictly dominate any attack configuration S̃2 with
S̃2 = (B1, · · · , B j−δ, B j+1+δγ, · · · , BK ), where γ ≤ N j+1

N j
.

Next, we show that P(S1) > P(S2).
Since D j (B1, · · · , B j−1, B j ) < D j (B1, · · · , B j−1, B j−δ),

for δ ∈ {1, · · · , B j }, ∀ j , it follows that

D j (B1, · · · , B j−1, B j ) < D j (B1, · · · , B j−1, B j − δ)

⇔
j∑

k=1

Dk(B1, · · · , Bk) <

j−1∑

k=1

Dk(B1, · · · , Bk)

+ D j (B1, · · · , B j−1, B j − δ)

⇔
K∑

k=1

Dk(B1, · · · , Bk) <

j−1∑

k=1

Dk(B1, · · · , Bk)

+ D j (B1, · · · , B j−1, B j − δ)

+
K∑

k= j+1

Dk(B1, · · · , B j − δ, B j+1

+ δ
N j+1

N j
, B j+2, · · · , Bk),
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where the last inequality follows from the fact that

B j
N j
+ B j+1

N j+1
= B j−δ

N j
+ B j+1+ N j+1

N j
δ

N j+1
and, therefore,

Dk(B1, · · · , B j , B j+1, · · · Bk)

= Dk(B1, · · · , B j − δ, B j+1 + N j+1

N j
δ, · · · , Bk).

This implies that S1 strictly dominates S2. From Lemma 4,
we know that the profit is an increasing function of attack
nodes. Lemma 4 in conjunction with the fact that attacking
parent nodes is a strictly dominant strategy implies Lemma 6.
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