
A

A Scalable Framework for Provisioning Large-scale IoT Deployments

Michael Vögler, Johannes M. Schleicher, Christian Inzinger, and Schahram Dustdar,
{lastname}@dsg.tuwien.ac.at, Distributed Systems Group, TU Wien

Internet of Things (IoT) devices are usually considered as external application dependencies that only pro-
vide data, or process and execute simple instructions. The recent emergence of IoT devices with embedded
execution environments allows practitioners to deploy and execute custom application logic directly on the
device. This approach fundamentally changes the overall process of designing, developing, deploying, and
managing IoT systems. However, these devices exhibit significant differences in available execution en-
vironments, processing, and storage capabilities. To accommodate this diversity, a structured approach is
needed to uniformly and transparently deploy application components onto a large number of heteroge-
neous devices. This is especially important in the context of large-scale IoT systems, such as in the smart
city domain. In this paper, we present LEONORE, an infrastructure toolset that provides elastic provision-
ing of application components on resource-constrained and heterogeneous edge devices in large-scale IoT
deployments. LEONORE supports push-based as well as pull-based deployments. To improve scalability
and reduce generated network traffic between cloud and edge infrastructure, we present a distributed pro-
visioning approach that deploys LEONORE local nodes within the deployment infrastructure close to the
actual edge devices. We show that our solution is able to elastically provision large numbers of devices using
a testbed based on a real-world industry scenario.

CCS Concepts: •Computing methodologies → Distributed computing methodologies; •Computer
systems organization→ Distributed architectures;

Additional Key Words and Phrases: IoT, framework, provisioning, large-scale, resource-constrained, gateway

ACM Reference Format:
Michael Vögler, Johannes M. Schleicher, Christian Inzinger, and Schahram Dustdar, 2015. A Scalable
Framework for Provisioning Large-scale IoT Deployments ACM Trans. Internet Technol. V, N, Article A
(January YYYY), 20 pages.
DOI: http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
Traditional approaches for developing and designing Internet of Things (IoT) appli-
cations, such as AWS IoT1 and Bluemix IoT Solutions2, are based on rigid layered
architectures [Agrawal et al. 2010]. The bottom layer, consisting of deployed IoT de-
vices and their communication facilities, is managed using a middleware layer that
exposes the underlying hardware in a unified manner for consumption by a top-level
application layer, which executes relevant business logic and visualizes processed sen-
sor data [Li et al. 2014]. Such a layered architecture implies that business logic is only
executed in the application layer, and IoT devices are assumed to be deployed with ap-
propriate software and readily available [Da Xu et al. 2014]. However, in practice this
is not the case. Currently, configuration and provisioning of IoT devices must largely
be performed manually, making it difficult to quickly react to changes in application or

1http://aws.amazon.com/iot/
2https://www.ibm.com/cloud-computing/bluemix/solutions/iot/

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
c© YYYY ACM. 1533-5399/YYYY/01-ARTA $15.00
DOI: http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 M. Vögler, J. M. Schleicher, C. Inzinger, and S. Dustdar

infrastructure requirements. Moreover, we see the emergence of IoT devices (e.g., Intel
IoT gateway3, SmartThings Hub4, and Raspberry Pi5) that offer functionality beyond
basic connected sensors and provide constrained execution environments with limited
processing, storage, and memory resources to execute device firmware. These currently
unused execution environments can be incorporated in IoT systems to offload parts of
the business logic onto devices. In the context of our work, we refer to these devices as
IoT gateways.

In large-scale IoT systems, such as in the smart city domain, leveraging the pro-
cessing capabilities of gateways is especially promising, as their currently untapped
processing capabilities can be used to improve dependability, resilience, and perfor-
mance of IoT applications by moving parts of the business logic towards the edge of
the infrastructure. Incorporating edge devices as first-class execution environments in
the design of IoT applications allows them to dynamically adapt to inevitable changes,
such as new requirements or adjustments in regulations, by modifying their compo-
nent deployment topology and edge processing logic. System integrators can avoid
infrastructure silos and vendor lock-in by implementing custom business logic to be
executed on gateways, and even purchase and sell such application components in
IoT application markets [Vögler et al. 2015a]. However, the heterogeneity of currently
available IoT gateways poses challenges for application delivery due to significant dif-
ferences in device capabilities (e.g., available storage and processing resources), as well
as deployed and deployable software components. Furthermore, the large number of
devices in typical IoT systems calls for a scalable and elastic provisioning solution that
is specifically tailored to the resource-constrained nature of IoT devices.

In this paper, we present LEONORE, an infrastructure and toolset for provisioning
application components on edge devices in large-scale IoT deployments. To accommo-
date the resource constraints of IoT gateways, installable application packages are
fully prepared on the provisioning server and specifically catered to the device plat-
form to be provisioned. Our solution allows for both, push- and pull-based provisioning
of devices. Pull-based provisioning, a common approach in contemporary configuration
management systems, allows devices to independently schedule provisioning runs at
off-peak times, whereas push-based provisioning allows for greater control over the
deployed application landscape by immediately initiating critical software updates or
security fixes. We illustrate the feasibility of our solution using a testbed based on a
real-world IoT deployment from one of our industry partners. We show that LEONORE
is able to elastically provision large numbers of IoT gateways in reasonable time. By
deploying application packages with significantly different sizes, we furthermore show
that our distributed provisioning mechanism can successfully scale with the size of IoT
deployments and can substantially reduce required network bandwidth between edge
devices and the central provisioning component. A preliminary version of our approach
has been presented in [Vögler et al. 2015c] where we introduce the basic concepts of the
LEONORE framework, along with a centralized mechanism for provisioning edge de-
vices. In this work, we extend the framework with a distributed provisioning approach
to reduce network overhead, provide a detailed discussion of our prototype implemen-
tation, and significantly extend the evaluation of our framework.

The remainder of this paper is structured as follows: In Section 2 we motivate our
work and outline the specific problems to be tackled. In Section 3 we introduce the
LEONORE infrastructure and toolset to address the identified problems in deploying
large-scale IoT systems, and present our distributed provisioning approach in Sec-

3https://www-ssl.intel.com/content/www/us/en/embedded/solutions/ iot-gateway/overview.html
4http://www.smartthings.com/
5https://www.raspberrypi.org/

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A Scalable Framework for Provisioning Large-scale IoT Deployments A:3

tion 4. We provide detailed evaluations in Section 5, discuss relevant related research
in Section 6, followed by a conclusion and an outlook on future research in Section 7.

2. MOTIVATION
One of the most demanding aspects in the smart city domain is the ability to con-
nect and manage millions of heterogeneous devices, which are emerging from the IoT.
The extremely fast-paced evolution within the IoT and the changing requirements in
the smart city domain itself make this not only a matter of handling large-scale de-
ployments, but more importantly about supporting the ability to manage this change.
A specifically demanding area facing these specific challenges is large-scale Building
Management and Operations (BMO). BMO providers not only need to be able to man-
age and stage large numbers of new devices, they also need to be able to react on
rapidly changing requirements to their existing infrastructure. However, current so-
lutions are mostly manual and only deal with fragments of a BMO providers’s infras-
tructure, which leads to the incapability of dealing with the vast amount of devices and
changing requirements in an efficient, reliable, and cost-effective way. BMOs dealing
with large-scale IoT systems need to be able to handle two distinct stages. The first is
the initial deployment and staging of devices, the second is the management of updates
of varying frequency and priorities. To illustrate this, we consider the case of a BMO
that manages several hundreds of buildings with a broad variety of tenants in a large
city. These buildings are equipped with a huge amount of heterogeneous IoT devices
including simple sensors to detect smoke and heat, elevator and door controls, as well
as complex cooling and heating systems. To reliably operate this infrastructure, the
BMO relies on physical gateways [Zhu et al. 2010], which provide constrained execu-
tion environments with limited processing, storage, and memory resources to execute
the device firmware and simple routines. These gateways are usually installed once
in a specific location in a building and then connected and integrated into an infras-
tructure solution to enable the basic bundling and management of a wide variety of
connected devices. The current lack of standardization in this novel field combined
with the current market situation leads to a significant heterogeneity in terms of soft-
ware environments when it comes to these gateways. Initially, the gateways need to be
staged with the necessary capabilities to ensure their basic functionality. They need
to support the connected sensors, must run the latest firmware and have to be inte-
grated into a specific deployment structure. This is followed by long term evolution
requirements like changing deployments, shifting capabilities, as well as updating the
software environment or firmware. A special case of updates are security updates and
hot fixes that need to be deployed quickly to ensure that the infrastructure stays op-
erational. Delays in these updates can expose severe security risks, which make them
time critical. The increasing number of connected devices leads to an increased vulner-
ability to hacks and exploits, and in the IoT domain, where these devices are connected
to the real world, this poses a major threat.

We therefore identify the following requirements in the context of this scenario:
(1) A provisioning framework must consider that participating gateways are resource-
constrained in terms of their processing, memory, and storage capabilities. (2) Sce-
narios dealing with large-scale deployments comprising thousands of gateways with a
wide variety of different execution environments must be supported. (3) Requirements
of deployed applications change over time, which makes updates necessary. These up-
dates can either be non-time-critical or time-critical. (4) In order to sustain operations,
updates need to be efficient and fast, and therefore have to be performed at runtime.

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 M. Vögler, J. M. Schleicher, C. Inzinger, and S. Dustdar

LEONORE

Package Management
IoT Gateway
Management

Package Repository

D
ependency M

anagem
ent Provisioning Handler

A
rtifact R

epository

Repository API

IoT Gateway Repository

D
evice A

P
I

IoT Gateway HandlerPackage Builder

R
epository A

P
I

IoT Gateway

P
rovisioning C

onnectivity

Provisioning Agent

Profiler

Package Container

Package

Package

B
alancer

User API

Fig. 1: LEONORE – Overview

3. APPROACH
In order to address the previously defined requirements, we present LEONORE, an
infrastructure to provision application components on gateways in large-scale IoT de-
ployments. The overall architecture of our approach is depicted in Figure 1 and con-
sists of the following components: (i) Application Packages, (ii) IoT gateways, and
(iii) LEONORE, the provisioning framework. In the following, we discuss these com-
ponents in more detail.

3.1. Application Packages
Usually an application in the IoT domain consists of different application components
and supporting files (e.g., libraries and binaries), which we refer to as artifacts. To en-
able automatic provisioning of these artifacts, LEONORE builds gateway-specific ap-
plication packages, which are a compound of various artifacts and have the following
structure. First, each package has an id, which uniquely identifies the package. Sec-
ond, each package contains a binary folder, to store required artifacts. Furthermore,
it also contains the resolved application dependencies to avoid expensive dependency
resolution on the gateway. Finally, in the control folder all instructions for installing,
uninstalling, starting and stopping this package are included. Additionally, a path file
defines the installation paths and the order of installing/uninstalling artifacts. With
this approach the heavy lifting is done by the framework, and gateways only have to
unpack the package and execute the provided installation instructions, which usually
just copy artifacts in place without any additional processing.

3.2. IoT Gateway
To efficiently provision edge devices, we first need a general and generic representation
of such devices. We analyzed the capabilities of several gateways that are commonly
applied by our industry partners in the domain of Building Management Systems.
Our findings show that in general such gateways have limited hardware components
and use some rudimentary, tailored operating system (e.g., a BusyBox6 user land on
a stripped down Linux distribution). Installing or updating software components is
a tedious manual task, since there are no supporting packaging or updating tools in
place, as known from full-featured operating system distributions7. Furthermore, due
to limited resources in terms of disk space, adding new capabilities often requires the
removal of already installed components. Taking all these limitations into account, we
derived the final representation of a gateway for our approach as depicted on the right-
hand side in Figure 1. The IoT gateway has the following components: (i) a container,

6http://www.busybox.net
7e.g., apt (https://packages.qa.debian.org/a/apt.html) or rpm (http://www.rpm.org/)

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

http://www.busybox.net
https://packages.qa.debian.org/a/apt.html
http://www.rpm.org/

A Scalable Framework for Provisioning Large-scale IoT Deployments A:5

hosting application packages, (ii) a profiler, monitoring the current status of the gate-
way, (iii) an agent, communicating with the provisioning framework, and (iv) a connec-
tivity layer, supporting different communication protocols and provisioning strategies.

3.2.1. Profiler. As mentioned above, gateways are usually resource-constrained, which
means that they only provide limited disk space, memory and processing power. There-
fore, keeping track of these resources is of utmost importance. In order to do that the
profiler uses pre-defined interfaces to constantly monitor the underlying system (e.g.,
static information like ID, MAC-address, and instruction set, or dynamic information
like disk- and memory-consumption). The profiler sends the collected information ei-
ther periodically or on request to the provisioning framework. Based on this heart-
beat information the provisioning framework can detect failures (e.g., gateway has a
malfunction), which allows notifying the operator. Once the framework receives the
heartbeat again, the gateway is considered back and running.

3.2.2. Application Package and Container. All packages that are not pre-installed on the
IoT gateway have to be provisioned by the framework at runtime. Therefore, the IoT
gateway uses a runtime container to store and run application packages. By using a
separate container we ensure that installing or removing packages does not interfere
with the underlying system, and avoids expensive reboots or configuration procedures.

3.2.3. Provisioning Agent. An essential part of the overall provisioning framework is the
provisioning agent. The pre-installed agent runs on each IoT gateway and manages
application packages that are locally hosted and stored. The management tasks of the
agent comprise installing, uninstalling, starting, and stopping packages. Furthermore,
the agent is responsible for handling requests from the framework and triggers the
respective actions on the IoT gateways (e.g., gather latest information via the profiler
or trigger the provisioning of an application package).

3.2.4. Connectivity Layer. Since gateways usually use different software communica-
tion protocols in large real world deployments (e.g., oBIX8 or CoAP9), our approach
provides a pluggable connectivity layer. This layer can either reuse the deployed soft-
ware communication protocols or extend services provided by the underlying operating
system. Additionally, this layer provides extensible strategies to provision the gateway.
In the current implementation, we provide two strategies: (i) a pull-based approach
where the provisioning agent queries the framework for provisioning tasks, and (ii) a
push-based approach where the framework pushes new updates to the gateway and
the agent triggers the local provisioning.

3.3. The LEONORE Provisioning Framework
The enabling framework to provision edge devices in large-scale deployments is de-
picted on the left-hand side in Figure 1. LEONORE is a cloud-based framework and
the overall design follows the microservice architecture [Newman 2015]. This approach
enables building scalable, flexible, and evolvable applications. Especially the flexible
management and scaling of components is important for LEONORE when dealing
with large-scale deployments. In the following, we introduce the main components of
LEONORE and discuss the balancer-based scaling approach.

3.3.1. Repositories. To manage all relevant information for LEONORE, the framework
relies on a number of repositories:

8http://www.obix.org
9http://coap.technology

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

http://www.obix.org
http://coap.technology

A:6 M. Vögler, J. M. Schleicher, C. Inzinger, and S. Dustdar

Artifact repository. Usually, an application consists of multiple artifacts that are
linked together to fulfill specific requirements. To handle these artifacts and make
them reusable, a repository is used. The repository manages artifacts by storing source
code, pre-built binaries, dependencies, possible configurations, and further necessary
information that is required for the application building process. Furthermore, the
repository provides a mechanism to store different versions of an artifact.

IoT gateway repository. This repository stores relevant gateway specific information
that is needed for creating the deployable application package. This information in-
cludes: hardware configuration (e.g., disk space, memory, processor), software (e.g.,
kernel version, installed components/tools), as well as supported provisioning strate-
gies and communication protocols. Additionally, for each IoT gateway the repository
stores the provisioned application packages, which is important in case a different
version of an installed package needs to be provisioned, since this might require the
removal of an already installed version.

Package repository. Application packages specifically built for a set of IoT gateways
are stored in the package repository. This approach guarantees that packages are only
built once, and all compatible gateways are provisioned with the same package. Fur-
thermore, by storing the packages in a repository it is easier to scale the framework,
since no data is stored in memory and therefore components can be easily replicated.
After IoT gateways are successfully provisioned, the package is removed after a con-
figurable amount of time to avoid storing unnecessary data.

3.3.2. Package Management. To provision application packages with LEONORE, users
have to add artifacts via the package management component. This component is re-
sponsible for retrieving all necessary information (e.g., name and version), required
binaries, available source files, configurations, policies, and dependencies on other ar-
tifacts, from the user. After the user has provided this information along with the arti-
facts, the package management stores them in the respective repository. The structure
of the repository follows the layout of conventional software package management sys-
tems (e.g., Maven10).

3.3.3. Dependency Management. Since many applications depend on libraries or other
applications, LEONORE utilizes the following mechanism to resolve these application
dependencies. The data model for the dependency management consists of artifacts,
releases, and dependencies between these releases. Each artifact has a set of releases,
and each release has a set of dependencies to other artifacts. Thus, the releases and
dependencies create a well-structured directed graph where releases are nodes and de-
pendencies are directed edges. This model allows us to reuse well-known graph algo-
rithms (i.e., depth-first search) to find all dependencies for a specific release. Therefore,
according to the desired artifact, the dependency management finds a list of suitable
artifacts and provides a plan that can be used to build the actual application package.
The plan includes a dependency tree and all needed artifacts. The dependencies are
represented as a directed graph, with nodes representing artifacts like applications,
libraries, operating system tools, and hardware components, whereas edges represent
dependencies between nodes. As an example, let us consider a Java application, where
the application code is packaged as a jar file. In order to execute this application, it has
a dependency on the JVM 1.8 for ARM runtime.

3.3.4. Package Builder. To create the actual application package that can be provi-
sioned, the package builder is used. In order to build an application package, the

10http://maven.apache.org

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

http://maven.apache.org

A Scalable Framework for Provisioning Large-scale IoT Deployments A:7

LEONORE

LEONORE node 1

B
alancer

D
ependency M

anagem
ent

User API

R
epository A

P
I

Package
 Management

IoT Gateway
Management

Provisioning
Handler

IoT Gateway
Handler

Package
Builder

D
evice A

P
I

Deployment 1

IoT Gateway
1_1

IoT Gateway
1_n

Repository API

Deployment 2

IoT Gateway
2_1

IoT Gateway
2_2

IoT Gateway
2_3

IoT Gateway
2_4

IoT Gateway
2_5

IoT Gateway
2_n

LEONORE
node 2

Deployment n

IoT Gateway
n_1

IoT Gateway
n_n

LEONORE
node n

Fig. 2: LEONORE – Balancer

builder performs the following steps: (i) retrieve gateway-specific information from
the IoT gateway management, (ii) gather a list of suitable plans using the dependency
management, (iii) build an application package based on the plan, (iv) notify the pro-
visioning handler to trigger the actual provisioning if the build was successful, (v) try
next plan in list if the build failed, (vi) store application package in package repository.

3.3.5. IoT Gateway Management and IoT Gateway Handler. In order to deal with the boot-
strapping problem, i.e., to know which IoT gateways are available for provisioning,
LEONORE follows the following approach. When an IoT gateway starts for the first
time, the local provisioning agent registers the gateway with the framework by pro-
viding its unique identifier (e.g., derived from name, ID and mac-address) and the
gathered profile data. Based on this information the IoT gateway management creates
an entry in the IoT gateway repository and stores the provided information. The reg-
istration process is finalized by negotiating the supported provisioning strategy and
communication protocol. This is possible, since each IoT gateway is pre-configured and
provides some already installed communication protocols and provisioning strategies.
Next, a suitable IoT gateway handler is assigned to this gateway. The handler is re-
sponsible for handling any further communication with the gateways, by providing the
required communication protocols and provisioning strategies. IoT gateways that use
the same protocols and strategies are grouped together and managed by a designated
IoT gateway handler. This assures more flexibility and avoids mediating between pro-
tocols. Once the registration process is successful, the IoT gateway can be provisioned
via the framework.

3.3.6. Provisioning Handler. To provision application packages, the provisioning handler
first chooses a suitable provisioning strategy according to the information provided by
the IoT gateway management. Then the handler checks if the respective package is
already present in the package repository. If it is available it will be used, if not the
handler triggers the building of gateway-specific application packages by invoking the
package builder. Then, the provisioning handler executes the provisioning strategy.
This means that the IoT gateway can either query the framework for application pack-
ages or the handler delegates the provisioning request to the respective IoT gateway
handler, which pushes the update to the gateway and triggers the provisioning.

3.3.7. Balancer. Since LEONORE needs to provision large-scale deployments of IoT
gateways, scalability is essential. Therefore, we provide several strategies to deal with
the immense workload. First, the framework’s design follows the microservice architec-
ture principle. Thus, optimizing single components is relatively easy by moving them
from one host to a more powerful host. Additionally, it is possible to scale components

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 M. Vögler, J. M. Schleicher, C. Inzinger, and S. Dustdar

by replicating them and therefore distributing the workload across multiple computing
resources. Following this approach, components of LEONORE are classified in scal-
able and not scalable. Components that should be scaleable are grouped together in
so-called LEONORE nodes. These nodes comprise all components that are required
to handle and provision IoT gateways. The classification in scalable and not scalable
is flexible and can be adapted depending on the requirements. Now that LEONORE
provides the ability to replicate components via the notion of nodes, we further need a
component that is responsible for creating and destroying these nodes, as well as dis-
tributing incoming requests to them. To this end, we introduce a balancer. In general,
a balancer aims to optimize resource usage, to minimize response time and to maxi-
mize throughput. Figure 2 depicts how LEONORE scales up with a growing number
of deployments by using the balancer. In Figure 2 we see that the balancer receives in-
coming requests from IoT gateways deployed in different areas. Based on a pluggable
strategy the balancer gathers a suitable node from the pool of available LEONORE
nodes and assigns the gateway to this node. The node is then responsible for han-
dling any further interaction with the respective IoT gateway. LEONORE nodes are
deployed using a N + 1 strategy with one active node and one hot standby initially. As
load increases above the capacity of one node, the framework will immediately start to
use the standby node for handling device provisioning requests, and furthermore start
another LENORE node to again maintain a hot standby node. Currently, LEONORE
scales nodes based on the number of gateways to be provisioned. In the future, we will
provide additional strategies, such as a location-aware strategy that aims at deploying
nodes close to affected IoT gateways to reduce network overhead.

3.4. Provisioning of Application Packages
Whenever an artifact is requested for a certain deployment, LEONORE performs the
following steps: (1) check if the requested artifact is available; (2) resolve the given
deployment to retrieve the set of IoT gateways that need to provisioned; (3) find the
responsible LEONORE nodes, group the gateways according to their node assignment
and delegate the provisioning task to the node; (4) on each node: analyze if the re-
quested artifact is compatible with every IoT gateway, and group gateways that re-
quire the same application package (e.g., equal hardware or installed packages); (5) on
each node: for each group of IoT gateways resolve dependencies and create application
package; (6) on each node: execute required provisioning strategy for each IoT gate-
way; (7) on each node: wait until IoT gateways successfully provisioned the package to
complete the provisioning task; (8) check if all nodes have completed their provisioning
task to finalize the overall provisioning.

4. DISTRIBUTED PROVISIONING
After presenting the overall approach and the realization in the previous section, we
now want to discuss certain limitations of our approach and propose an optimization
addressing these shortcomings. In the approach presented so far, we assumed that the
communication between the cloud and edge infrastructure is always available, reli-
able, and cheap. However, real world deployments use wireless communication links
like 3G or GPRS that are not only slow and unreliable [Shrestha and Jasperneite
2012], but also expensive as they are usually charged based on transferred data. Addi-
tionally, the current approach puts the server-side framework under heavy load, which
we already partly addressed by introducing a scalable LEONORE node concept. Nev-
ertheless, by scaling LEONORE across several nodes and therefore provisioning more
resources in the cloud, operating expenses increase along with the additional overhead
of managing the provisioning and releasing of these nodes. In order to tackle these lim-
itations, we apply the core notion of offloading business logic to the infrastructure edge

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A Scalable Framework for Provisioning Large-scale IoT Deployments A:9

LEONORE

LEONORE node

B
alancer

D
ependency

M
anagem

ent

User API

S
ervice A

P
I

Package
 Management

IoT Gateway
Management

Provisioning
Handler

IoT Gateway
Handler

Package
Builder

D
evice A

P
I

Deployment 1

IoT Gateway
1_1

IoT Gateway
1_n

Repository API

Deployment 2

IoT Gateway
2_1

IoT Gateway
2_2

IoT Gateway
2_n

LEONORE local node

Local
Provisioner

Local
Repository

Bootstrapper

Local Gateway
Manager

M
onitoring

Local Node Repository

Fig. 3: LEONORE – Local Provisioner

to LEONORE itself, moving parts of the provisioning logic to suitable gateways in the
field.

4.1. Server-side Extensions
To allow for the new concept of LEONORE local nodes, we extend LEONORE by adding
several new components, which we describe in the following and are depicted on the
left-hand side in Figure 3.

4.1.1. Monitoring. We introduce a central (i.e., not replicated) monitoring component
that collects the following information of the overall framework: (i) The number of pro-
visioned packages. (ii) The consumed bandwidth based on the number of provisioned
packages and incoming pulling requests. (iii) The overall time that is needed for provi-
sioning the edge infrastructure. (iv) Information about the provisioned gateways, e.g.,
used disk space, memory and processing power. (v) For each deployed LEONORE node,
relevant metrics of the node (e.g., average response time, uptime, and load average).
Based on this monitoring data, collected by LEONORE, it is possible to decide that a
LEONORE local node needs to be provisioned and where in the edge infrastructure it
is feasible to do so.

4.1.2. Service API. Since in the current version LEONORE does not automatically de-
cide when and where to provision a LEONORE local node, we created a service API
that allows operators to retrieve the collected data from the monitoring component.
Additionally, operators query for gateways that are suitable for hosting a LEONORE
local node. Finally, the service API allows operators to trigger the provisioning and
releasing of LEONORE local nodes in the edge infrastructure.

4.1.3. Local Node Repository. To keep track of provisioned LEONORE local nodes, we
added a separate repository. For each LEONORE local node deployment, we store in
this repository the ID of the node and the gateway in the edge infrastructure that
is provisioned with the respective node. The combination of node ID, gateway ID,
and gateway IP uniquely identifies the node deployment. Furthermore, the repository
stores the current status of a LEONORE local node using the monitoring component.

4.2. LEONORE Local Node
In essence, the LEONORE local node provides the same capabilities as the server-side
LEONORE node, but is specifically catered to be more lightweight in terms of memory
consumption and CPU usage. This approach allows to execute LEONORE local nodes
on gateways residing in the edge infrastructure, which only provide a fraction of the
processing power of cloud resources. The architecture of the LEONORE local node

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 M. Vögler, J. M. Schleicher, C. Inzinger, and S. Dustdar

is depicted on the right-hand side in Figure 3. In the following, we outline the basic
components of a LEONORE local node.

4.2.1. Local Gateway Handler. Like the gateway handler on the server-side LEONORE
node, this component manages a local cluster of gateways. In order to know which gate-
ways need to be handled, how to communicate with them, and what kind of provision-
ing strategy needs to be used, LEONORE provides this information when provisioning
a LEONORE local node. Compared to the server-side manager, this approach is not
as flexible, but since the local gateway handler is specifically built for this local clus-
ter of gateways, we keep the overall footprint of the node small by avoiding resource
expensive protocol mediation and bootstrapping of gateways.

4.2.2. Local Repository. In order to save bandwidth, the application package that needs
to provisioned is not transferred to each gateway, but only sent to the LEONORE local
node, which then takes care of provisioning the respective gateways. The node stores
the package in a local cache repository using available RAM and/or disk resources if
available. This allows for fast read and write access, while explicitly considering the
underlying resources of the gateway. After successful provisioning, the cache is cleared
to save memory on the gateway.

4.2.3. Local Provisioner. In contrast to the provisioner on the server-side LEONORE
node, the local provisioner is more lightweight, since it does not have to deal with the
process of building application packages, but only uses the already transferred appli-
cation package to provision the gateways. Furthermore, the local provisioner provides
an optimized local provisioning strategy, which solely supports the push mechanism,
since it consumes less resources and puts the node under less load compared to polling
in short intervals.

4.2.4. Bootstrapper. Once a LEONORE local node gets provisioned, the bootstrapper
component of the local node takes care of the following two tasks. First, it registers the
respective local node at LEONORE, which guarantees that the framework is aware of
all deployed local nodes. Second, once the registration was successful and the frame-
work accepted the registration request, the bootstrapper gathers health and status
information about the local node. This information is then periodically published at a
configurable interval, which is then collected by LEONORE.

4.3. LEONORE Local Node Deployment
In order to deploy a LEONORE local node in the edge infrastructure, the operator uses
the previously described LEONORE service API to retrieve a list of suitable gateways
that are capable to run a local node. Next, the operator chooses how to distribute the
local nodes across the edge infrastructure. Since the distribution of nodes can depend
on various factors, such as available connectivity or logical location, LEONORE pro-
vides a pluggable distribution mechanism that can be easily extended. Following our
microservice architecture, this can be done by adding an additional microservice to
the framework that specifically implements a new distribution approach. In the cur-
rent implementation, we form clusters of gateways based on physical proximity (e.g.,
all gateways that are residing on the same floor). Based on these clusters, the distri-
bution mechanism elects a suitable gateway to host the LEONORE local node. Next,
after selecting the gateways that will host the local nodes, LEONORE provisions them
using the same approach we use for ordinary artifacts. This means that the local node
artifacts, which are already residing in the artifact repository, get bundled to an appli-
cation package and then transferred to the gateway. On the gateway the application
package is installed and started by the provisioning agent. Finally, after the startup of

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A Scalable Framework for Provisioning Large-scale IoT Deployments A:11

the local node the bootstrapper registers the local node at LEONORE. After registra-
tion, the LEONORE local node is ready for serving provisioning requests.

4.4. Application Provisioning with LEONORE Local Nodes
As described in Section 3.4, when an artifact is requested for a specific deployment,
LEONORE checks if the artifact is available, finds the responsible LEONORE node
according to the retrieved set of gateways and delegates the provisioning to the respec-
tive server-side node. On the server side, the gateways are grouped based on available
capabilities and application packages are created. Additionally, each server-side node
now clusters gateways based on their physical proximity. For each cluster, the server-
side node queries the local node repository for an available LEONORE local node. If
no local node is present, the server-side node follows the original approach described
in Section 3.4 and executes the required provisioning strategy for each gateway. How-
ever, if a local node is available, it transfers the application package and the directive
to provision the cluster of gateways to this local node. The local node then takes care
of provisioning these gateways by executing the optimized push-based approach.

5. EVALUATION
To evaluate our provisioning framework we created a test setup in the cloud using
CoreOS to virtualize devices as Docker containers. IoT gateways in our experiments
use two types of provisioning strategies – a pull and a push based approach.

When an IoT gateway uses the pull approach, the gateway’s agent polls the provi-
sioning framework for new tasks in a configurable interval (e.g., every second). The
framework only provides new provisioning tasks for the IoT gateway, which collects
and executes these tasks. With short polling intervals, this approach generates in-
creased load on the framework, consumes more bandwidth, and uses more resources
on the IoT gateways, but is more fault-tolerant in case of connectivity problems due to
inherently frequent retries. For the push-based approach, the IoT gateway’s agent only
registers the gateway once at the framework and then remains idle until the frame-
work pushes an update. When the agent gets pushed by the framework, it collects the
provisioning task, executes it and returns to the idle state. In general, the push-based
approach generates less load on both the IoT gateway and framework, but is more vul-
nerable to connectivity problems and operators need to take care to not inadvertently
disrupt gateway operations by placing additional load on it.

To simulate real-world provisioning requests, we use the following two application
packages. The first package uses the Sedona Virtual Machine11 (SVM). SVM is written
in ANSI C and is highly portable by design. It allows to execute applications written
in the Sedona programming language and is optimized to run on platforms with less
than 100KB of memory. For our experiments we developed a small sample application
and used SVM Version 1.2.28. The final application package created by LEONORE has
approximately 120KB – including the application code (.sab, .sax, .scode and Kits-file)
and the required SVM binary. As second package we use Java 8 for ARM12 (JVM).
In general, using Java on an embedded device is a challenging task, since the JVM
binary is quite big and often does not fit due to limited disk space. However, for our
experiments we created a compact13 Java package specifically for our gateway. Addi-
tionally, we developed a small sample application that pushes temperature readings
to a web server. In total, the JVM application package created by LEONORE has ap-
proximately 12MB – including the application code (compiled .class files), JVM binary,

11http://www.sedonadev.org
12http://www.oracle.com/technetwork/java/javase/downloads/jdk8-arm-downloads-2187472.html
13http://docs.oracle.com/javase/8/embedded/develop-apps-platforms/jrecreate.htm

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

http://www.sedonadev.org
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-arm-downloads-2187472.html
http://docs.oracle.com/javase/8/embedded/develop-apps-platforms/jrecreate.htm

A:12 M. Vögler, J. M. Schleicher, C. Inzinger, and S. Dustdar

and libraries. In the remainder of this section we give an overview of the used cloud
setup, present four scenarios, and analyze the gathered results.

5.1. Setup
To see how LEONORE deals with large-scale deployments, we created an IoT testbed
in our private OpenStack14 cloud. In order to simulate large-scale deployments, we
first created a snapshot of a real-world gateway that is used by our industry part-
ner. Based on this snapshot, we created an image that can be run in Docker15. The
running image (Docker container) is then used to virtualize and mimic the physi-
cal gateway in our cloud. Since for our evaluation we want to use several thousand
virtualized gateways, we employed CoreOS16 clusters. In general, CoreOS is a light-
weight Linux distribution designed for security, consistency, and reliability. Instead of
installing packages via a package management system like apt, CoreOS uses Docker
to manage services at a higher level of abstraction. The service code and all dependen-
cies are packaged within a container that can be run on one or many CoreOS machines.
Containers provide benefits similar to full-blown virtual machines, but focus on appli-
cations instead of entire virtualized hosts. Since containers use the Linux kernel of
the host, they have very little performance overhead, reducing the amount of required
compute resources compared to VMs. CoreOS also provides fleet17, a distributed init
system that allows to treat a CoreOS cluster as if it is a single shared init system. We
used fleet’s notion of service units to dynamically generate according fleet unit files
and use fleet for the automated deployment of virtualized gateways.

For our experiments we used the following setup: a CoreOS cluster of 8-16 virtual
machines (depending on the scenario), where each VM is based on CoreOS 647.0.0
and uses the m1.medium flavor (3750MB RAM, 2 VCPUs and 40GB Disk space).
Our gateway-specific framework components are pre-installed in the containers. The
LEONORE framework is initially distributed over 2 VMs using Ubuntu 14.04. The
first VM hosts the balancer and uses the m1.medium flavor (3750MB RAM, 2 VCPUs
and 40GB Disk space). In order to represent a LEONORE node we created a reusable
snapshot of a VM hosting all necessary LEONORE framework components and repos-
itories. For the initial deployment of LEONORE two instances of this snapshot are
started at the beginning of the experiment. However, only of of them is initially used
by the framework, whereas the other acts as standby node. During the experiments
LEONORE, more precisely the balancer, spins up this additional standby node to dis-
tribute the load created by the gateways. The VMs hosting the LEONORE nodes use
the m2.medium flavor (5760MB Ram, 3 VCPUs and 40GB Disk space).

In the following scenarios we measured the overall execution time needed for provi-
sioning an increasing number of devices. The provisioning time includes analyzing de-
sired gateways, building gateway-specific application packages, transferring the pack-
ages to the gateways, installing the packages on the gateway, and executing them.

5.2. Scenario 1: 100 - 1000 IoT Gateways
For the first experiments we picked a scenario with 1000 virtual gateways. The scale
of this scenario corresponds to a medium building management system, containing
several big buildings (each with more than 10 floors). The 1000 virtual gateways are
distributed among a CoreOS cluster consisting of 8 machines, where each machine
hosts 125 containers. To demonstrate the scalability of our framework we show how

14http://www.openstack.org
15https://www.docker.com
16https://coreos.com
17https://github.com/coreos/fleet

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

http://www.openstack.org
https://www.docker.com
https://coreos.com
https://github.com/coreos/fleet

A Scalable Framework for Provisioning Large-scale IoT Deployments A:13

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

���� ���� ���� ���� ���� ���� ���� ���� ���� �����

�
��
�

�
��
�
�

����������������������

����������
���������������

�����������������

(a) Provisioning Time for SVM

������

������

������

������

������

������

������

������

���� ���� ���� ���� ���� ���� ���� ���� ���� �����

�
��
�

�
��
�
�

����������������������

����������
���������������

�����������������

(b) Provisioning Time for JVM

Fig. 4: Provisioning Time – Pull Strategy

our approach behaves with increasing load (number of gateways). For this scenario the
balancer uses a scaling strategy that spins up another standby node when reaching
500 IoT gateways.

Figure 4 shows the overall execution time of the provisioning process for different de-
ployments using the pull-based (gateways poll the framework every second) approach.
In Figure 4a we show the execution time for provisioning the SVM application pack-
age. We see that the execution time increases almost linear until reaching 300 IoT
gateways and then shows a sharper increase up to 500. When reaching 500 gateways,
the balancer spins up another standby node and evenly schedules requests to the two
active nodes. Therefore, provisioning time slightly decreases and at approximately 600
becomes constant. When reaching 900 IoT gateways, the provisioning time starts to
rise again, which means that at this point both LEONORE nodes are fully loaded.
In order to investigate possible outliers during the evaluation, we created a scatter
plot, which is also depicted in Figure 4a. Since the SVM application is quite small and
the polling interval of one second has a strong impact on the overall execution time,
we executed each experiment 30 times. In the scatter plot we notice that at 600 IoT
gateways we have some executions that finished more slowly, which is caused by the
high network load and small polling interval. In general, the deviation of provisioning
times is small. This shows that provisioning using the polling strategy is stable and
provides reliable results. Figure 4b shows the execution time when provisioning the
JVM application package. We clearly see that due to the increased size of the package
the provisioning takes noticeably longer than for the SVM package. When the deploy-
ment reaches 500 IoT gateways, the balancer kicks in, which leads to a slight increase.
In general, we notice that the provisioning of the JVM package scales linearly and
produces almost no outliers, as one can see in the scatter plot in Figure 4b. Since this
application package is quite big and therefore the provisioning time also increases
significantly, the overhead of the polling approach is not noticeable. Figure 5 shows
the overall execution time of the provisioning process for different deployments using
the push-based (framework pushes provisioning tasks to IoT gateways) approach. In
Figure 5a we see the overall execution time for provisioning the SVM application pack-
age. We notice a sharp increase up to 500 IoT gateways, which is due to the framework
pushing requests to all gateways at once and therefore leads to a high load on both the
IoT gateways and the framework. Once the balancer spins up another standby node,
the execution time is almost constant, because the load is evenly distributed. When
the deployment size reaches 900 IoT gateways, the execution time starts to rise again,
which indicates that at this scale both nodes are fully loaded. The corresponding scat-
ter plot is also depicted in Figure 5a, which reveals that there is only a very small
deviation among the data points. Figure 5b depicts the provisioning time when using

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 M. Vögler, J. M. Schleicher, C. Inzinger, and S. Dustdar

�����

�����

�����

�����

�����

�����

�����

���� ���� ���� ���� ���� ���� ���� ���� ���� �����

�
��
�

�
��
�
�

����������������������

����������
���������������

�����������������

(a) Provisioning Time for SVM

������

������

������

������

������

������

������

������

���� ���� ���� ���� ���� ���� ���� ���� ���� �����

�
��
�

�
��
�
�

����������������������

����������
���������������

�����������������

(b) Provisioning Time for JVM

Fig. 5: Provisioning Time – Push Strategy

the JVM application package. Taking the results of the polling approach into account,
we notice that the initial execution times are identical. However, at 300 IoT gateways
we see that the initial overhead of the pushing approach is compensated and there-
fore the execution time decreases a little bit. From 400 to 500 IoT gateways, the node
reaches maximal load. After the deployment size reaches 500, the balancer schedules
the load evenly on two LEONORE nodes. The corresponding scatter plot, depicted in
Figure 5b, shows that the deviation of data points is very small and the execution time
increases linearly. After comparing both approaches, we see that our framework scales
almost linearly and that for smaller application packages the pull-based approach is
faster. For bigger packages both approaches put the framework under heavy load, but
produced similar results.

5.3. Scenario 2: 500 - 4000 IoT Gateways
For the second experiment we used a scenario with 4000 virtual gateways, which cor-
responds to a large building management system containing dozens of big buildings
(each with more than 10 floors). The 4000 virtual gateways are distributed among two
CoreOS clusters, each consisting of 8 machines, where each machine hosts 250 contain-
ers. With this scenario we investigate how our framework scales when dealing with a
large-scale deployment by using a scaling strategy that spins up another standby node
when reaching 2500 IoT gateways.

Figure 6 shows the overall execution time of the provisioning process for different
numbers of gateways using the push-based approach. In Figure 6a we notice that due
to the deployment scale the overall execution time for provisioning the SVM appli-
cation package got slower compared to the first scenario. This is expected since for
this scenario we doubled the amount of CoreOS hosts and deployed twice as many
containers on each CoreOS machine. This increase, in both the hosts and containers,
generates a lot of traffic for the underlying network infrastructure of our cloud, which
causes slower response times and therefore the overall provisioning takes longer. Fur-
thermore, for this scenario we configured the balancer to handle 2500 IoT gateways
per LEONORE node. We clearly see that up to 2500 IoT gateways, the execution time
increases almost linearly. At 2500 the balancer schedules the requests evenly to two
nodes, which causes a constant execution time. When reaching 3000 deployments, the
execution time rises again, but once more starts to flatten at 4000. When looking at the
scatter plot depicted in Figure 6a we see that at the beginning of the experiments the
deviation among data points is very small and gets bigger with increasing number of
IoT gateways. Figure 6b depicts the provisioning time when using the JVM application
package. Compared to the first scenario, we also notice that the overall execution time
got slower. However, now we see that the execution time increases linearly throughout

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A Scalable Framework for Provisioning Large-scale IoT Deployments A:15

��

������

������

������

������

������

������

������

������

���� ����� ����� ����� ����� ����� ����� �����

�
��
�

�
��
�
�

����������������������

����������
���������������

�����������������

(a) Provisioning Time for SVM

��

�������

�������

�������

�������

�������

�������

�������

�������

�������

���� ����� ����� ����� ����� ����� ����� �����

�
��
�

�
��
�
�

����������������������

����������
���������������

�����������������

(b) Provisioning Time for JVM

Fig. 6: Provisioning Time – Push Strategy, Large Deployment

the complete experiment, which provides stable provisioning results. This fact is also
supported by the scatter plot that shows only small deviations among the results. Tak-
ing both experiments into account, we clearly see that our framework deals well with
this rather large scenario and provides almost linear scale.

Distributed Provisioning using LEONORE Local Nodes. In order to evaluate the
LEONORE local node optimization, we reused the setup discussed in Section 5.1. How-
ever, for this evaluation we spawn additional IoT gateways for hosting the LEONORE
local nodes. For the first scenario, where we evaluate the provisioning time by using
up to 1000 virtual gateways, we start 8 additional gateways. These 8 additional gate-
ways, are distributed across the IoT testbed, so that on each CoreOS-Host one of these
additional gateways is running. For the second scenario, where we provision up to
4000 virtual gateways, we use 16 additional gateways (i.e., one on each CoreOS Host).
After distributing these additional gateways, we then provisioned them to run the
LEONORE local node. Once these gateways got provisioned, their sole purpose is to
host the local nodes and they are not changed throughout the evaluation. We decided to
pre-provision the local nodes to conduct experiments that follow the same provisioning
process as used in the evaluation above. Additionally, we argue that the provisioning
and distribution of LEONORE local nodes will only happen sporadically and therefore
this additional time should not contribute to the overall provisioning time.

5.4. Scenario 3: 100 - 1000 IoT Gateways
For the first experiments we picked a scenario with 1000 virtual gateways, which cor-
responds to a medium building management system. The 1000 virtual gateways are
distributed among a CoreOS cluster consisting of 8 machines, where each machine
hosts 125 containers and an additional container hosting the LEONORE local node.
To demonstrate the scalability of our framework we show how our approach behaves
with increasing load (number of gateways). Figure 7 shows the overall execution times
of the provisioning process for different deployments by using the push-based approach
(framework pushes provisioning tasks to IoT gateways), with LEONORE local nodes
in place. In Figure 7a we see the overall execution time for provisioning the SVM ap-
plication package. Compared to the basic provisioning approach (Figure 5a), we notice
an initial steeper increase of the provisioning time for the LEONORE local node ap-
proach. This initial overhead is expected, since the local nodes deployed on the gateway
are not as powerful as the server-side nodes and therefore need considerably longer for
serving the gateways. However, after 500 the initial overhead is compensated and the
local node provisioning provides faster results. We see that the provisioning time for
the local node stays stable after 500 gateways and results in better overall provision-
ing times, compared to the original approach. This fact can also be seen in the included

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 M. Vögler, J. M. Schleicher, C. Inzinger, and S. Dustdar

�����

�����

�����

�����

�����

�����

�����

���� ���� ���� ���� ���� ���� ���� ���� ���� �����

�
��
�

�
��
�
�

����������������������

����������
���������������

�����������������

(a) Provisioning Time for SVM

������

������

������

������

������

������

������

������

���� ���� ���� ���� ���� ���� ���� ���� ���� �����

�
��
�

�
��
�
�

����������������������

����������
���������������

�����������������

(b) Provisioning Time for JVM

Fig. 7: Provisioning Time – LEONORE local node

scatter plot. The overall improvement can be explained by the fact that the overall load
on the framework is more evenly distributed among the local nodes and therefore pro-
vides faster provisioning times. We see that the provisioning time improves on average
by 10% using the SVM package with the LEONORE local node approach. Figure 7b
depicts the provisioning time when using the JVM application package. We notice that
initially the execution times of both the original (Figure 5b) and local node provision-
ing approach are identical. However, after reaching 200 gateways we see that the opti-
mized approach starts to outperform the server-based provisioning. The improvement
becomes more significant after reaching 500 gateways, since from that scale onwards
the provisioning using LEONORE local nodes provides a constant and good execution
time, compared to the ever increasing server-side provisioning. This effect is expected,
since each local provisioning node only has to handle a fraction of the total gateway
deployment. Additionally, considering the fact that the JVM package is quite big, the
local node provisioning approach generates significantly less cloud to edge communi-
cation, since the application package gets only sent once to each local node and fur-
ther provisioning happens only within the edge infrastructure. These facts lead to an
average improvement of 17% when provisioning the JVM application package. Fur-
thermore, in general the local node approach creates more stable results, which can be
seen in the scatter plot depicted in Figure 7b.

5.5. Scenario 4: 500 - 4000 IoT Gateways
For the second experiment we used a scenario with 4000 virtual gateways, which cor-
responds to a large building management system containing dozens of big buildings
(each with more than 10 floors). The 4000 virtual gateways are distributed among two
CoreOS clusters, each consisting of 8 machines, where each machine hosts 250 contain-
ers and an additional container hosting the LEONORE local node. With this scenario
we want to see how our framework scales when dealing with a large-scale deployment.

Figure 8 shows the overall execution times of the local node provisioning process
for different numbers of deployments by using the push-based approach and the SVM
respectively the JVM application package. Once again we compare the provisioning
times with (Figure 8) and without (Figure 6) local nodes in place. In Figure 8a we no-
tice that the execution time increases almost linearly when using the SVM application
package. However, due to the scale of the scenario we see that the server-side nodes
need to handle a lot of load, compared to the distributed local node setup, which ex-
plains why the local node setup provides better provisioning times from the beginning.
When reaching 2000 IoT gateways, the execution time using the local node provision-
ing stays constant and does not increase anymore. Here, the LEONORE local node
approach generates only a fraction of the load on the server-side framework, com-

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A Scalable Framework for Provisioning Large-scale IoT Deployments A:17

��

������

������

������

������

������

���� ����� ����� ����� ����� ����� ����� �����

�
��
�

�
��
�
�

����������������������

����������
���������������

�����������������

(a) Provisioning Time for SVM

��

������

�������

�������

�������

�������

�������

���� ����� ����� ����� ����� ����� ����� �����

�
��
�

�
��
�
�

����������������������

����������
���������������

�����������������

(b) Provisioning Time for JVM

Fig. 8: Provisioning Time – Large Deployment, LEONORE local node

pared to the original approach, which causes the drastic improvement in execution
time. On average, the distributed work model and reduced bandwidth consumption of
LEONORE local nodes, improves the provisioning time by 49%. In Figure 8b we notice
that the local node provisioning approach for the JVM package also provides signifi-
cantly better results than the server side approach. Since the JVM package is quite big,
the distributed work model performs even better and therefore improves the overall
provisioning time on average by 64%. Furthermore, by looking at the included scatter
plots in both figures we see that the optimized provisioning approach provides stable
results, since the deviation among data points is very small. We clearly see that even
though our framework already dealt well with this rather large scenario, by introduc-
ing LEONORE local nodes we were able to further improve the overall provisioning
time.

5.6. Final Remarks
After finishing our experiments and evaluating the results, we see that the introduc-
tion of LEONORE local nodes leads to a significant improvement in terms of provi-
sioning time. Additionally, next to the measurement of the provisioning time, we also
monitored the amount of data that gets transferred from the cloud to the edge infras-
tructure during the provisioning of gateway deployments. Our findings show that by
using local nodes deployed in the edge, which are managing a cluster of gateways, we
reduce the bandwidth usage drastically, since by using local nodes we avoid sending
the provisioning package to each gateway, but only send this package once to a local
node managing this cluster. Even by taking into account that the LEONORE local
nodes need to be provisioned initially, does not diminish the savings. In order to illus-
trate the bandwidth savings, we will use some numbers from the evaluation scenario
above. Let us consider the scenario where we need to provision 1000 gateways with
the SVM application package, which has a size of 120KB. With the original provision-
ing approach, two server-side nodes of LEONORE would transfer the package to each
gateway, resulting in 120MB of data that gets sent from the cloud to the edge for each
provisioning request. Compared to that, by using LEONORE local nodes we cluster the
gateway deployment to 8 clusters and therefore deploy 8 LEONORE local nodes. The
local node application package has a size of 14MB and therefore the transferred data
sums up to 112MB. Additionally, when provisioning the 1000 gateways we now trans-
fer the SVM application package only to these 8 local nodes and therefore produce
in total 112.96MB. For a the relatively small SVM application package, we already
save 6% for the initial provisioning cycle. After that, since the LEONORE local nodes
are already deployed, we save 99% of the bandwidth for every additional provisioning
request.

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 M. Vögler, J. M. Schleicher, C. Inzinger, and S. Dustdar

6. RELATED WORK
Since current applications in IoT are receiving a lot of attention, we notice that the
scale of these applications can vary from embedded services to enterprise applications.
In order to address different ways of designing, developing, deploying and managing
applications not only in the cloud, but also in the underlying IoT infrastructure, [Ori-
woh et al. 2013] presents initial guiding principles. In addition, [Theodoridis et al.
2013] presents challenges for building a city-scale IoT framework, where among oth-
ers the important challenge of fine-grained provisioning and management of resources
is discussed. To tackle some of the aforementioned challenges, [Bauer et al. 2013] de-
fines an abstract IoT reference architecture for standardizing the Internet of Things.
In addition, [Sehgal et al. 2012] addresses general problems of managing resource con-
strained devices, which are often used for building IoT solutions, by adopting existing
network management protocols. Based on general challenges and reference architec-
tures, platforms specifically targeted for deploying and provisioning of IoT applica-
tions emerged. INOX [Clayman and Galis 2011] is a robust and adaptable Platform
for IoT that provides enhanced application deployment capabilities by creating a re-
source overlay to virtualize the underlying IoT infrastructure. An additional abstrac-
tion layer on top of the IoT infrastructure is frequently used in the literature (e.g., [Li
et al. 2013a; Murphy et al. 2013; Li et al. 2013b]), which allows keeping the underlying
infrastructure untouched when deploying an IoT solution. In contrast, our approach
also considers IoT devices as first-class execution environments, which provides more
control and better resource utilization. The Smart-M3 platform [Korzun et al. 2013]
aims to create a M3 space by deploying agents on IoT devices that interact based on a
space-based communication model. Although the authors mention the provisioning of
IoT devices, they solely focus on the actual application design. [Chen et al. 2011] intro-
duce over the air provisioning of IoT devices using Self Certified ECDH authentication
technology. Although this approach shares the same general idea, the authors explic-
itly focus on one specific device and do not provide a general and scalable approach.
[Papageorgiou et al. 2014] presents a solution for automatic configuration of IoT de-
vices based on interpretable configurations. Compared to our approach, the authors
assume pre-installed application components on IoT devices and only focus on provi-
sioning application-specific configurations. [Li et al. 2013b] presents an approach to
deploy applications on IoT devices by facilitating TOSCA. Since changing applications
at runtime is not addressed, our approach can be considered an extension to this work.

Configuration management (CM) solutions represent another important area of in-
terest, which in general address a similar problem. The most prominent representa-
tives being Chef18 and Puppet19. However, current tools come with the following limi-
tations that make them unsuitable for the IoT domain. First, they are inherently pull
based approaches with clients running on the respective machines, making push based
hot fixes (e.g. important security updates) impossible. Second, dependency resolution
is usually handed off to a distribution package manager, which is not suitable for the
strongly resource-constrained environments we are dealing with.

Finally, since our approach provides an optimization for provisioning edge devices
in the domain of building management, we also have to consider relevant work in this
research topic. Among others, [Petri et al. 2014] presents an approach that achieves
energy related optimizations for buildings by running simulations in the cloud. In ad-
dition, [Petri et al. 2015] proposes a service-oriented platform that allows performing
(near) real-time energy optimizations for buildings. While these approaches specifi-

18http://chef.io
19http://puppetlabs.com

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

http://chef.io
http://puppetlabs.com

A Scalable Framework for Provisioning Large-scale IoT Deployments A:19

cally focus on energy optimizations in buildings at the application level, our framework
aims at optimizing deployment topologies on the infrastructure level.

7. CONCLUSION
In this paper we presented LEONORE, a novel infrastructure and toolset to elastically
provision application packages on resource-constrained, heterogeneous edge devices
in large-scale IoT deployments. LEONORE enables push-based as well as pull-based
deployments supporting a vast array of different IoT topology and infrastructure re-
quirements. By introducing the concept of LEONORE local nodes we further enabled
efficient distributed deployments in these constrained environments in order to fur-
ther improve scalability and reduce generated network traffic between cloud and edge
infrastructure. For evaluation purposes we utilized a large scale testbed based on a
real-world industry scenario. Our evaluation clearly demonstrated that LEONORE is
able to elastically provision large numbers of devices in an efficient manner. We fur-
ther showed that our local node extension significantly improved provisioning time
while drastically reducing bandwidth consumption, a factor that is crucial in such con-
strained environments.

In our ongoing and future work, we plan to further extend LEONORE to address
additional challenges. We see the necessity to improve our IoT gateway representation
to better utilize the underlying device-specific capabilities and develop techniques to
allow the creation and deployment of more flexible IoT applications. Additionally, we
want to introduce update priorities, in order to allow for clear distinctions between
ordinary and important (e.g., security patches) updates, since delays in these impor-
tant updates can expose the infrastructure to severe security risks. Next, to allow
LEONORE to scale across privately managed infrastructure boundaries, we aim to
address emerging security aspects such as authentication and authorization. In order
to provide more efficient provisioning, we intend to evaluate a hybrid push/pull pro-
visioning strategy. Furthermore, we plan to integrate and align LEONORE with our
work on software-defined IoT systems, where it will serve as an integral part of IoT
infrastructure management [Schleicher et al. 2015; Vögler et al. 2015b]. Finally, we
will explore how different application development methodologies (e.g., [Inzinger et al.
2014]) can be extended in order to efficiently support application design, deployment,
and composition considering large numbers of IoT gateways to perform certain parts
of application business logic.

REFERENCES
Divyakant Agrawal, Sudipto Das, and Amr El Abbadi. 2010. Big data and cloud computing: new

wine or just new bottles? Proceedings of the VLDB Endowment 3, 1-2 (Sept. 2010), 1647–1648.
DOI:http://dx.doi.org/10.14778/1920841.1921063

Martin Bauer, Mathieu Boussard, Nicola Bui, Jourik De Loof, Carsten Magerkurth, Stefan Meiss-
ner, Andreas Nettsträter, Julinda Stefa, Matthias Thoma, and JoachimW Walewski. 2013. IoT
Reference Architecture. In Enabling Things to Talk. Springer Berlin Heidelberg, 163–211–211.
DOI:http://dx.doi.org/10.1007/978-3-642-40403-0 8

Deji Chen, Mark Nixon, Thomas Lin, Song Han, Xiuming Zhu, Aloysius Mok, Roger Xu, Julia Deng, and
An Liu. 2011. Over the air provisioning of industrial wireless devices using elliptic curve cryptography.
In Computer Science and Automation Engineering (CSAE), 2011 IEEE International Conference on.
594–600. DOI:http://dx.doi.org/10.1109/CSAE.2011.5952541

Stuart Clayman and Alex Galis. 2011. INOX: a managed service platform for inter-connected smart objects.
In IoTSP ’11: Proceedings of the workshop on Internet of Things and Service Platforms. ACM Request
Permissions. DOI:http://dx.doi.org/10.1145/2079353.2079355

Li Da Xu, Wu He, and Shancang Li. 2014. Internet of Things in Industries: A Survey. IEEE Transactions on
Industrial Informatics 10, 4 (2014), 2233–2243. DOI:http://dx.doi.org/10.1109/TII.2014.2300753

Christian Inzinger, Stefan Nastic, Sanjin Sehic, Michael Vögler, Fei Li, and Schahram Dustdar. 2014.
MADCAT - A Methodology for Architecture and Deployment of Cloud Application Topologies. In Pro-

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

http://dx.doi.org/10.14778/1920841.1921063
http://dx.doi.org/10.1007/978-3-642-40403-0_8
http://dx.doi.org/10.1109/CSAE.2011.5952541
http://dx.doi.org/10.1145/2079353.2079355
http://dx.doi.org/10.1109/TII.2014.2300753

A:20 M. Vögler, J. M. Schleicher, C. Inzinger, and S. Dustdar

ceedings of the 8th International Symposium on Service-Oriented System Engineering. IEEE, 13–22.
DOI:http://dx.doi.org/10.1109/SOSE.2014.9

Dmitry G Korzun, Sergey I Balandin, and Andrei V Gurtov. 2013. Deployment of Smart Spaces in Internet
of Things: Overview of the Design Challenges. In Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 48–59–59. DOI:http://dx.doi.org/10.1007/978-3-642-40316-3 5

Fei Li, Michael Vögler, Markus Claeßens, and Schahram Dustdar. 2013a. Efficient and Scalable IoT
Service Delivery on Cloud. In IEEE 6th International Conference on Cloud Computing. 740–747.
DOI:http://dx.doi.org/10.1109/CLOUD.2013.64

Fei Li, Michael Vögler, Markus Claeßens, and Schahram Dustdar. 2013b. Towards Automated IoT Applica-
tion Deployment by a Cloud-Based Approach. In IEEE 6th International Conference on Service-Oriented
Computing and Applications. 61–68. DOI:http://dx.doi.org/10.1109/SOCA.2013.12

Shancang Li, Li Da Xu, and Shanshan Zhao. 2014. The internet of things: a survey. Information Systems
Frontiers (April 2014), 1–17. DOI:http://dx.doi.org/10.1007/s10796-014-9492-7

Sean Murphy, Abdelhamid Nafaa, and Jacek Serafinski. 2013. Advanced service delivery to the Connected
Car. In IEEE 9th International Conference on Wireless and Mobile Computing, Networking and Com-
munications. 147–153. DOI:http://dx.doi.org/10.1109/WiMOB.2013.6673354

Sam Newman. 2015. Building Microservices. O’Reilly Media, Inc.
Edewede Oriwoh, Paul Sant, and Gregory Epiphaniou. 2013. Guidelines for Internet of Things Deploy-

ment Approaches – The Thing Commandments. Procedia Computer Science 21 (2013), 122–131.
DOI:http://dx.doi.org/10.1016/j.procs.2013.09.018

Apostolos Papageorgiou, Manuel Zahn, and Ernö Kovacs. 2014. Auto-configuration System and Algorithms
for Big Data-Enabled Internet-of-Things Platforms. IEEE International Congress on Big Data (2014),
490–497. DOI:http://dx.doi.org/10.1109/BigData.Congress.2014.78

Ioan Petri, Haijiang Li, Yacine Rezgui, Yang Chunfeng, Baris Yuce, and Bejay Jayan. 2014. A modular
optimisation model for reducing energy consumption in large scale building facilities. Renewable and
Sustainable Energy Reviews 38 (2014), 990–1002. DOI:http://dx.doi.org/10.1016/j.rser.2014.07.044

Ioan Petri, Yacine Rezgui, Tom Beach, Haijiang Li, Marco Arnesano, and Gian Marco Revel. 2015. A se-
mantic service-oriented platform for energy efficient buildings. Clean Technologies and Environmental
Policy 17, 3 (2015), 721–734. DOI:http://dx.doi.org/10.1007/s10098-014-0828-2

Johannes M Schleicher, Michael Vögler, Christian Inzinger, and Schahram Dustdar. 2015. Smart Fabric
An Infrastructure-Agnostic Artifact Topology Deployment Framework. In Mobile Services (MS), 2015
IEEE International Conference on. IEEE, 320–327. DOI:http://dx.doi.org/10.1109/MobServ.2015.52

Anuj Sehgal, Vladislav Perelman, Siarhei Kuryla, and Jürgen Schonwalder. 2012. Management of resource
constrained devices in the internet of things. Communications Magazine, IEEE 50, 12 (2012), 144–149.
DOI:http://dx.doi.org/10.1109/MCOM.2012.6384464

Ganesh Shrestha and Jürgen Jasperneite. 2012. Performance Evaluation of Cellular Com-
munication Systems for M2M Communication in Smart Grid Applications. In Communi-
cations in Computer and Information Science. Springer Berlin Heidelberg, 352–359–359.
DOI:http://dx.doi.org/10.1007/978-3-642-31217-5 37

Evangelos Theodoridis, Georgios Mylonas, and Ioannis Chatzigiannakis. 2013. Developing an IoT Smart
City framework. In 4th International Conference on Information, Intelligence, Systems and Applications.
1–6. DOI:http://dx.doi.org/10.1109/IISA.2013.6623710

Michael Vögler, Fei Li, Markus Claeßens, Johannes M Schleicher, Sanjin Sehic, Stefan Nastic, and
Schahram Dustdar. 2015a. COLT Collaborative Delivery of Lightweight IoT Applications. In Internet
of Things. User-Centric IoT. Lecture Notes of the Institute for Computer Sciences, Vol. 150. Springer
International Publishing, 265–272. DOI:http://dx.doi.org/10.1007/978-3-319-19656-5 38

Michael Vögler, Johannes M Schleicher, Christian Inzinger, and Schahram Dustdar. 2015b. DIANE - Dy-
namic IoT Application Deployment. In Mobile Services (MS), 2015 IEEE International Conference on.
IEEE, 298–305. DOI:http://dx.doi.org/10.1109/MobServ.2015.49

Michael Vögler, Johannes M. Schleicher, Christian Inzinger, Stefan Nastic, Sanjin Sehic, and Schahram
Dustdar. 2015c. LEONORE – Large-Scale Provisioning of Resource-Constrained IoT Deploy-
ments. In 9th International Symposium on Service-Oriented System Engineering (SOSE’15). 78–87.
DOI:http://dx.doi.org/10.1109/SOSE.2015.23

Qian Zhu, Ruicong Wang, Qi Chen, Yan Liu, and Weijun Qin. 2010. IOT Gateway: BridgingWireless Sen-
sor Networks into Internet of Things. In IEEE/IFIP 8th International Conference on Embedded and
Ubiquitous Computing. 347–352. DOI:http://dx.doi.org/10.1109/EUC.2010.58

Received July 2015; revised October 2015; accepted November 2015

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

http://dx.doi.org/10.1109/SOSE.2014.9
http://dx.doi.org/10.1007/978-3-642-40316-3_5
http://dx.doi.org/10.1109/CLOUD.2013.64
http://dx.doi.org/10.1109/SOCA.2013.12
http://dx.doi.org/10.1007/s10796-014-9492-7
http://dx.doi.org/10.1109/WiMOB.2013.6673354
http://dx.doi.org/10.1016/j.procs.2013.09.018
http://dx.doi.org/10.1109/BigData.Congress.2014.78
http://dx.doi.org/10.1016/j.rser.2014.07.044
http://dx.doi.org/10.1007/s10098-014-0828-2
http://dx.doi.org/10.1109/MobServ.2015.52
http://dx.doi.org/10.1109/MCOM.2012.6384464
http://dx.doi.org/10.1007/978-3-642-31217-5_37
http://dx.doi.org/10.1109/IISA.2013.6623710
http://dx.doi.org/10.1007/978-3-319-19656-5_38
http://dx.doi.org/10.1109/MobServ.2015.49
http://dx.doi.org/10.1109/SOSE.2015.23
http://dx.doi.org/10.1109/EUC.2010.58

	Introduction
	Motivation
	Approach
	Application Packages
	IoT Gateway
	Profiler
	Application Package and Container
	Provisioning Agent
	Connectivity Layer

	The LEONORE Provisioning Framework
	Repositories
	Package Management
	Dependency Management
	Package Builder
	IoT Gateway Management and IoT Gateway Handler
	Provisioning Handler
	Balancer

	Provisioning of Application Packages

	Distributed Provisioning
	Server-side Extensions
	Monitoring
	Service API
	Local Node Repository

	LEONORE Local Node
	Local Gateway Handler
	Local Repository
	Local Provisioner
	Bootstrapper

	LEONORE Local Node Deployment
	Application Provisioning with LEONORE Local Nodes

	Evaluation
	Setup
	Scenario 1: 100 - 1000 IoT Gateways
	Scenario 2: 500 - 4000 IoT Gateways
	Scenario 3: 100 - 1000 IoT Gateways
	Scenario 4: 500 - 4000 IoT Gateways
	Final Remarks

	Related Work
	Conclusion

