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Human Control of Interactions
with Objects – Variability,
Stability and Predictability

Dagmar Sternad

Abstract How do humans control their actions and interactions with the physical1

world? How do we learn to throw a ball or drink a glass of wine without spilling?2

Compared to robots human dexterity remains astonishing, especially as slow neural3

transmission and high levels of noise seem to plague the biological system. What4

are human control strategies that skillfully navigate, overcome, and even exploit5

these disadvantages? To gain insight we propose an approach that centers on how6

task dynamics constrain and enable (inter-)actions. Agnostic about details of the7

controller, we start with a physical model of the task that permits full understanding8

of the solution space. Rendering the task in a virtual environment, we examine how9

humans learn solutions that meet complex task demands. Central to numerous skills10

is redundancy that allows exploration and exploitation of subsets of solutions. We11

hypothesize that humans seek solutions that are stable to perturbations to make12

their intrinsic noise matter less. With fewer corrections necessary, the system is13

less afflicted by long delays in the feedback loop. Three experimental paradigms14

exemplify our approach: throwing a ball to a target, rhythmic bouncing of a ball, and15

carrying a complex object. For the throwing task, results show that actors are sensitive16

to the error-tolerance afforded by the task. In rhythmic ball bouncing, subjects exploit17

the dynamic stability of the paddle-ball system. When manipulating a “glass of wine”,18

subjects learn strategies that make the hand-object interactions more predictable.19

These findings set the stage for developing propositions about the controller: We20

posit that complex actions are generated with dynamic primitives, modules with21

attractor stability that are less sensitive to delays and noise in the neuro-mechanical22

system.23 AQ1
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2 D. Sternad

1 Introduction26

Imagine a dancer, perhaps Rudolf Nureyev or Margaret Fonteyn, both legends in27

classical ballet: we can only marvel at how they are in complete control of their28

body, combining extraordinary flexibility and strength with technical difficulty and29

elegance. And yet, I submit that Evgenia Kanaeva, two-times all-around Olympic30

champion in rhythmic gymnastics, equals, if not surpasses their level of skill: Not only31

does she move her lithe body with perfection and grace, she also plays with numerous32

objects: she throws, catches and bounces a ball, she rolls and swivels a hoop, and33

sets a 6 m-long ribbon into smooth spirals with the most exquisite movements of her34

hands and fingers – and yes, sometimes also using her arms, shoulders, or her legs35

and feet. Her magical actions and interactions with objects arguably represent the36

pinnacle of human motor control.37

How do humans act and interact with objects and tools? After all, tool use is38

what gave humans their evolutionary advantage over other mammals. In robotics,39

manipulation of tools has clearly been one of the primary motivations to develop40

robots, going back to the first industrial robots designed to automate repetitive tasks41

such as placing parts. However, these actions lack the dexterity that not only elite42

performers, but all healthy humans display. Opening a bottle of wine with a corkscrew43

or eating escargot with a fork and tongs are skills that require subtle interactions with44

complex tools and objects. How do humans control these actions and interactions?45

Research in motor neuroscience has only arrived at limited answers. To assure46

experimental control and rigor, computational research has confined itself to sim-47

ple laboratory tasks, most commonly reaching to a point target, while restricting48

arm movements to two joints moving in the horizontal plane [57, 58]. Research on49

sequence learning has typically been limited to finger presses evaluated with simple50

discrete metrics of timing and serial errors [43, 82]. Grasping has been reduced to51

isometric finger presses with predetermined contact points to analyze contact forces52

[37, 83]. The obvious benefit of such simplifications is that the data are accessible53

and tractable for testing theory-derived hypotheses. Over the past 20 years, numerous54

studies in computational neuroscience have embraced control-theoretical concepts,55

such as Kalman filters [39], Bayesian multi-sensory integration [2, 81], and optimal56

feedback control [75] to account for such experimentally controlled human data.57

While advances have been made, nobody would deny that this approach encounters58

challenges when the actions become more complex and realistic. This is particularly59

problematic when actions are no longer free, as in reaching, but involve contact with60

objects, ranging from pouring a glass of wine to moving the ribbon in gymnastics.61

Needless to say, current state-of-the-art movements of robots are still a far cry from62

those of Elena Kanaeva. Why do humans perform so much better, at least to date?63

What can robotic control learn from human neuromotor control?64
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Human Control of Interactions with Objects – Variability … 3

1.1 The Paradox: Delays and Noise in the Human65

Neuromotor System66

A first look into the biological neuromotor control system reveals some puzzling67

facts: information transmission in the human central nervous system is extremely68

slow and also very noisy. Action potentials, the basic unit of information coding,69

travel at a speed of approximately 100 m/s [32]; the shortest feedback loop is around70

50 ms and reserved for startle reactions [35, 47]. When feedback is integral to more71

meaningful responses, loop times of 200 ms and longer are a more realistic estimate.72

In addition to such long delays, the biological neuromotor system displays noise and73

fluctuations at all levels [13]. The biological system is an extremely complex non-74

linear system with multiple levels of spatiotemporal scales, ranging from molecular75

and cellular processes to motor units and muscle contractions, and to overt behavior.76

Noise and fluctuations from all these levels manifest themselves at the behavioral77

level as ubiquitous variability. For example, in simple rhythmic finger tapping even78

trained musicians exhibit at least 5% variance of the period [19, 73]. In a discrete79

throwing action, humans display a limit in timing resolution of 9 ms [8]. Such large80

delays and high levels of noise pose extreme challenges for any control model. And81

yet, humans are amazingly agile and dexterous.82

While the human controller appears clearly inferior to robotic systems, the bio-83

logical “hardware” with its compliant muscles and soft tissues defy any comparison84

with the heavy actuators of robots. It seems highly likely that the dexterous hu-85

man controller exploits these features. More recent developments in robotics have86

developed actuators with variable compliance, such as hands or grippers made of87

soft material [12] or actuators with mechanically adjustable series compliance [79].88

However, the flexibility that comes with variable stiffness may also incur costs, such89

as loss in precision or higher energy demands. How do humans combine their soft-90

ware limitations and use their compliant and high-dimensional actuators to solve91

complex task demands?92

1.2 Intrinsic and Extrinsic Redundancy93

The biological sensorimotor system has a large number of hierarchical levels with94

high dimensionality on each level. One important consequence of this high dimen-95

sionality is that it affords redundancy and thereby an infinite variety of ways a given96

action is performed. At the behavioral level, hammering a nail into a wooden block97

can be achieved with multiple different arm trajectories and muscle activation pat-98

terns. The adage “repetitions without repetition” conveys that the ubiquitous and ever-99

present fluctuations prevent any action to be the same as another one. Importantly,100

this intrinsic redundancy faces an additional extrinsic redundancy that is inherent to101

the task. Imagine dart throwing: the bull’s eye or the rings on the dartboard allow102

a set of hits that achieve a given score. Further, orientation angle of the dart stuck103
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4 D. Sternad

on the board does not change the score. Hence, tasks have extrinsic redundancy that104

permits a manifold of solutions [69]. However, not all solutions are equally suitable:105

some may not be biomechanically optimal, others may be risky, yet others may have106

a lot of tolerance to error and noise. Examining human performance may reveal how107

humans navigate the task’s redundancy and preferences may give insight into the108

controller. Hence, a suitably constructed extrinsic redundancy presents an important109

entry point into examining human control, strategies, or objective functions.110

1.3 An Agnostic Approach to Human Motor Control111

Recognizing these challenges, our research has adopted an approach with minimal112

assumptions about human neuromotor control. Instead of starting with a hypothesized113

controller and the plant, i.e., the brain and the musculo-skeletal system, connected114

by forward and feedback loops transmitting motor and sensory signals, we take an115

agnostic stance. We begin with what is known and can be analyzed: the physical task116

that the actor performs. Under simplified conditions, very few assumptions need to117

be made about the human controller.118

This chapter will review this task-dynamic approach as it was developed in three119

experimental paradigms that examine human interactive skills. These three skills120

progress from the simple action of throwing a ball, to rhythmic intermittent bouncing121

of a ball, to the continuous manipulation of a complex object, a cup with a rolling122

ball inside, mimicking a cup of coffee – or a glass of wine. Mathematical analyses123

and exemplary results will show that variability, stability and predictability matters124

in human motor control. I will close with a still largely speculative hypothesis on125

how the human control system generates such actions, a perspective that may be less126

hampered by long delays and noise: control via dynamic primitives.127

2 A Task-Dynamic Approach to Understanding128

Control of Interactions129

Using mathematical modeling and virtual technology we developed a task-dynamic130

approach to study the acquisition and control of simple and more complex interactive131

skills. Following a brief outline of the methodological steps, three exemplary lines132

of research will be reviewed with some selected results.133
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Human Control of Interactions with Objects – Variability … 5

2.1 Identifying a Motor Task134

The important initial step is choosing a motor task that satisfies several desiderata:135

First, it should represent a core aspect germane to many other tasks that is “inter-136

esting” from a control perspective. Second, the motor task should have redundancy:137

the well-defined goal should allow for a variety of solutions to achieve the task goal.138

Third, the task should be novel and sufficiently challenging to require practice to139

achieve success. The changes over practice provide an important lens to reveal how140

humans navigate through the space of solutions. (Note this differs from studying141

everyday behaviors, such as reaching or grasping, where only adaptations to novel142

scenarios produce change.) Fourth, improvement should happen within one or few143

experimental session(s), but should also allow for fine-tuning over a longer time144

scale. These stages are likely to reveal processes underlying motor learning.145

We selected and designed three tasks: The arguably simplest (inter-)active task146

is to throw a ball to a target. While the ball only needs to be released, the size and147

location of the target imposes constraints on the release that fully determine the148

projectile’s trajectory and thereby the hitting accuracy. A next step in interaction is149

to repeatedly contact the ball – such as in bouncing a ball rhythmically in the air.150

This intermittent interaction extends the control demands, as the propelled object151

needs to be intercepted again. Any error at one contact influences the subsequent152

contact – these repeated interactions render the task a dynamic system. The third task153

takes interactions one significant step further: motivated by the seemingly mundane154

action of carrying a cup of coffee, we designed a simplified task that exemplifies the155

continuous interaction with a complex object.156

2.2 Mathematical Model of the Task157

Once the core control challenge is identified, the task is modeled mathematically to158

formalize and prune away irrelevant aspects of the real-life task. A simple physical159

model also facilitates subsequent analyses of both model and human data. What160

system captures the essential demands of ball release and permits a full analysis of161

the solution space? What is the simplest intermittent dynamical system that lends162

itself to mathematical analysis? What is the simplest physical system that captures the163

continuous interaction between the human and a dynamically complex object? One164

core element in our mathematical modeling and analysis is the distinction between the165

execution variables x and the result variables r: The result variable(s) are defined by166

the task goal and the instruction to the subject and quantify the quality of performance.167

This is typically an error measure, although this error measure can take many forms.168

Execution variables are under control of the performer and determine the task result.169

For the analysis it is important to identify all execution variables that fully determine170

the result, in order to have an analytic or numerical understanding of the space of171
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6 D. Sternad

solutions. The functional relation between execution and result is the essence of the172

model and analysis: r = f (x).173

2.3 Mathematical Analysis and Derivation of Hypotheses174

Based on the physical model, the space of all possible solutions to the task can be175

derived. As the model system is typically nonlinear, the space of solutions may be176

complex and solutions have additional properties, such as dynamic stability, risk, or177

predictability, as elaborated below. The model structure determines the mathematical178

tools that can be used to derive predictions. Core to our task-dynamic approach are179

analyses of stability, error sensitivity, or robustness to perturbations and noise. Im-180

portantly, exact quantitative hypotheses can be formulated that define those solutions181

with the greatest probability of success.182

2.4 Implementation in a Virtual Environment183

Based on the explicit mathematical model, the task is rendered in a virtual envi-184

ronment that permits precise measurement of human execution and errors, i.e., the185

execution and result variables. The execution variables are those that the subject con-186

trols via interfacing with the virtual system. For example, while the subject performs187

a throwing task, the real arm trajectory controls the ball release, but the ball and the188

target are virtual. The virtual rendering has the advantage that it confines the task to189

exactly the model variables and its known parameters. There are no uncontrolled as-190

pects as would occur in a real experiment. Further, the parameters and result variables191

can be freely manipulated to test hypotheses about human control strategies.192

2.5 Measurement, Analysis, and Hypothesis Testing193

of Human Performance194

Subjects interact with the virtual physics of the task via manipulanda that simul-195

taneously render the task dynamics and measure human performance strategies.196

The measured execution variables and the task result are then evaluated against the197

mathematical analysis of the solution space. The virtual environment affords easy198

manipulation of the model, its parameters, and specific task goals. Hypotheses about199

preferred solutions are derived from model analysis and can be evaluated based on200

the human data. As shown below, the task can be parameterized to create interesting201

task variations to contrast alternative control hypotheses.202
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Human Control of Interactions with Objects – Variability … 7

2.6 Interventions203

Based on the findings, the controlled virtual environment can also be used to create204

interventions that guide or shape behavior. This is significant for clinical applications,205

where scientifically-grounded quantitative assessments and interventions are still206

rare. While this review will focus on the basic science issues, some applications207

to questions on motor control in children with dystonia or on interventions for the208

elderly can be found in Sternad [61], Chu et al. [5], Hasson and Sternad [24].209

3 Throwing a Ball to Hit a Skittle – Variability, Noise,210

and Error-Tolerance211

3.1 The Motor Task212

This experimental paradigm was motivated by a ball game found in many pubs and213

playgrounds around the world: The actor throws a ball that is tethered to a virtual214

post by a string like a pendulum; the goal is to hit a target skittle (or skittles) on the215

opposite side of the pole (Fig. 1a). Accurate throwing requires a controlled hand/ball216

trajectory that prepares the ball release at exactly the right position with the right217

velocity to send the ball onto a trajectory that knocks over the target skittle. The218

practical advantage of this game is that the tethered ball cannot be lost and the219

game can be played in a small space; the theoretical advantage is that the pendular220

motions of the ball introduce “interesting” dynamics with a nonlinear solution space221

including discontinuities that present challenges to trivial learning strategies such as222

gradient descent. Importantly, the task has redundancy and thereby offers a manifold223

of solutions with different properties.224

Target

Ball

Center Post

2D Model

Error

C

PC

force 
sensor

optical
encoder

(a) (b) (c)

Fig. 1 The virtual throwing task. a Schematic of the real task. b The 2D model from a top-down
view. c The experimental set-up with force and position sensors for recording of human movement.
Measured movements are shown in real time on the screen (Reproduced from [69])
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8 D. Sternad

3.2 The Model and Its Virtual Implementation225

To simplify the three-dimensional task, the ball was confined to the horizontal plane,226

eliminating the pendular elevation during excursion (Fig. 1b). In the model, the ball227

is attached to two orthogonal, massless springs with its rest position at the center228

post. In the virtual implementation, the actor views the workspace from above on229

a backprojection screen (Fig. 1c). S/he throws the virtual ball by moving his/her230

real arm in a manipulandum that measures the forearm rotations with an optical231

encoder; these measured movements are shown online by a virtual lever arm (Fig. 1b).232

Deflecting the ball from the rest position and throwing the ball with a given release233

angle and velocity, the ball traverses an elliptic path generated by the restoring forces234

of the two springs. The following equations describe the ball motion in the x − y235

coordinates of the workspace:236

(
x(t)
y(t)

)
=

(
xp

yp

)
cos ωt +

(
cos φr − sin φr

− sin φr cos φr

) (
l cos ωt
vr/ωt

)
(1)237

ω denotes the natural frequency of the springs, (xp, yp) denotes the lever’s pivot238

point, and l the length of the arm (Fig. 1b). Damping of the springs can be added;239

asymmetric damping and also stiffness may be used to introduce a more complex240

force field in the workspace. For a given throw, the two execution variables angle φr241

and velocity vr of the virtual hand at ball release fully determine the ball trajectory242

in the workspace x(t), y(t) (for more details see [7]).243

The actor’s goal is to throw the ball to hit the target skittle, without hitting the244

center post. The latter restriction eliminates simple ball releases with zero velocity.245

Post hits are therefore penalized with a large fixed error. Otherwise, error is defined246

as the minimum distance between the ball trajectory and the target center (Fig. 1b).247

Thus, the result variable is the scalar error that is fully determined by φr and vr .248

Importantly, there is more than one combination of φr and vr that leads to zero249

error, i.e. the task has the simplest kind of redundancy: two variables map onto one.250

While this low dimensionality permits easy visualization in 3D to develop intuitions,251

the solution manifold for zero-error solutions can also be analytically derived and252

expressed in implicit form:253

vr

ω
=

∣∣(−l sin φr − yp
)

xt + (
l cos φr + xp

)
yt

∣∣√(
l + cos φrxp + sin φryp

)2 − ( cos φrxt + sin φryt)
2

(2)254

3.3 Geometry of the Solution Space255

Figure 2 illustrates two different target constellations that generate two different256

topologies of the result space [62]. Figure 2a, b show the top-down view of the257
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Human Control of Interactions with Objects – Variability … 9

1 2 3

y

x

180
90

-90

0

(a)

(0,0)

1 23

-90

90

1800

y

x

(b)

0 180

1 2

3

-180

1000

500

0

(c)

1

2

3

0 180-180

1000

500

0

(d)
60

30

0

Fig. 2 Two target constellations (a, b) and their corresponding result spaces (c, d). For each task,
three exemplary ball trajectories are shown which correspond to the three release points plotted
in the result spaces (green dots). White denotes zero-error solutions, increasing error is shown by
increasingly darker grey shades, black denotes a post hit. In both constellations, two ball trajectories
exemplify how different release variables can lead to the same result with zero error (1, 2, dashed
lines). Trajectory 3 shows a trajectory that does not intersect the target (Modified from [62])

workspace with the red circle representing the center post and the yellow circle the258

target. The manipulandum is shown at the bottom with its angular coordinates. The259

three elliptic trajectories are three exemplary ball trajectories with different release260

angles and velocities. In both work spaces two ball trajectories (1, 2) go through the261

target and have zero error, while one (3) has a non-zero error. Figure 2c, d show262

the respective result spaces, spanned by release angle and velocity; error is depicted263

by shades of gray, with lighter shades indicating smaller errors. White denotes the264

zero-error solutions, or the solution manifold. Black signifies those releases that hit265

the center post, which incur a penalty in the experiment. The three points are the ball266

releases pertaining to the three ball trajectories above.267

The two result spaces present several interesting features: In target constellation268

A the solution manifold has a nonlinear J-shape that represents solutions over a269

wide range of release velocities and angles. As indicated by the grey shades, the270
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10 D. Sternad

regions adjacent to the solution manifold have different gradients and the sensitivity271

of the zero-error solution changes along the solution manifold. Further, the region272

on the J-shaped manifold with the lowest sensitivity is directly adjacent to the black273

penalty region. Hence, strategies with the lowest velocity were adjacent to penalized274

post hits; this poses risk and a simple gradient descent may run into problems. In275

target constellation B the zero-error solutions are independent of velocity and fully276

specified by the release angle, as the solution manifold runs parallel to velocity. As277

visible from color shading, low-velocity solutions have slightly less error tolerance278

compared to high-velocity solutions and again transition directly into the penalty279

region. Note that other target locations have yet different geometries of the solution280

manifold creating different challenges to the performer [69].281

3.4 Generating Hypotheses from Task Analysis282

One study created two result spaces with different topologies to generate specific283

predictions [62]. Given that humans have limited control accuracy due to the per-284

vasive noise in their neuromotor system, we hypothesized that in such redundant285

tasks humans seek solutions that are tolerant to their intrinsic noise and also to286

extrinsic perturbations (Hypothesis 1). Such error-tolerant solutions have higher like-287

lihood to be accurate and would therefore also obviate some error corrections. This288

is advantageous as error corrections incur computational cost and, importantly, the289

sensorimotor feedback loop suffers from the long delays in the human system. Note290

that our definition of error tolerance differs from standard sensitivity analyses that291

assess local sensitivity in a linearized neighborhood. As humans make relatively292

large errors and the topology is highly nonlinear, we calculated error tolerance as the293

average error over an extended neighborhood around a chosen solution; this neigh-294

borhood is defined by the individual’s variability. An alternative hypothesis was that295

humans select strategies that minimize velocity at release to avoid costs associated296

with higher effort or signal-dependent noise (Hypothesis 2). There is much evidence297

that movements at slow velocity are preferred, as higher speed tends to decrease298

accuracy (speed-accuracy trade-off) [16, 17, 42]. This observation concurs with the299

information-theoretical expectation that noise increases with signal strength. In mo-300

tor control, signal strength is typically equated with firing rate of action potentials,301

i.e. force magnitude or, in the dynamic case, movement velocity. A third hypothesis302

discussed in the human motor control literature is that risk is avoided, and participants303

stay at a distance from the penalty area (Hypothesis 3) [6, 40, 48].304

3.5 Error Tolerance Over Minimizing Velocity and Risk305

Nine participants practiced 540 and 900 throws with Task A and B, respectively.306

Figure 3 illustrate the predictions as computed for Hypothesis 1 and 2 in the top307
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Fig. 3 Hypotheses and experimental results for two task a (left column) and task b (right column).
The top row shows the expected results, E(R) for Hypothesis 1: Maximizing error tolerance; the sec-
ond row shows simulated predictions for Hypothesis 2: Minimizing velocity and signal-dependent
noise. The expected result E(R) was computed as average error over a neighborhood scaled by a
softmax function (for details see [62]). The peaks highlighted by the red circles denote the expected
solutions. The third row shows the data as histograms plotted over the result spaces to compare
against the predicted solutions (Modified from [62])
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two rows. Error tolerance was quantified as the expected error over a neighborhood308

around each strategy, simulating that human strategies are noisy, scaled by a softmax309

function, E(R). For Hypothesis 2, expected velocity was computed over the same310

neighborhood, again scaled by a softmax function. The solutions that are most error-311

tolerant and those with lowest velocity are indicated by red circles in the middle312

panels. Examining all throws after removing the initial transients, the bottom panels313

show the histograms of all subjects’ releases in both result spaces (from Fig. 2c, d).314

In Task A the data distribution clustered along the solution manifold at low velocities315

and close to the discontinuity. The mode at angle 236◦ and velocity 136 deg/s was316

close to the maximally error-tolerant point as predicted by Hypothesis 1. However,317

the solutions also had relatively low velocity, which was consistent with Hypothesis318

2. These two benefits seemed to outweigh that these solutions were close to the high-319

penalty area, i.e. risky strategies were not avoided, counter to Hypothesis 3. Task B320

was designed to dissociate Hypotheses 1 and 2. The histograms on the right panel321

illustrate that the data were distributed across a large range of velocities between322

140 and 880 deg/s, with the mode of the data distribution at 544 deg/s, although323

individual preferences were more clustered on the velocity axes. The fact that indi-324

viduals chose solutions over a wide range of velocities, without a specific preference325

for low-velocity or the high-tolerance point was at first sight inconsistent with both326

Hypothesis 1 and 2. However, in further analysis the observed variability of each327

individual was regressed against release velocity and revealed that variability did not328

increase at higher velocities, as would be expected from Hypothesis 2. Instead, these329

analyses showed that strategies were better explained by error-tolerance, consistent330

with Hypothesis 1 (for details see [62]).331

Taken together, this first study showed how a task analysis can generate predictions332

that permit direct tests based on human data. The conclusion from this study is that333

humans seek out error-tolerant strategies, i.e., those where variability at the execution334

level has minimal detrimental effect on the result. As these strategies attenuate noise335

effects on the result, fewer errors occur that in turn require fewer corrections to stay336

on target. This not only reduces computations but also diminishes the negative effect337

that delays may cause.338

3.6 Tolerance, Covariation, and Noise339

Increasing error-tolerance is only one of three avenues to deal with unavoidable340

variability in execution. Two more, conceptually different avenues exist for how341

variability can be transformed to lessen its effect on the task result. Figure 4 illustrates342

this notion with data from a representative subject who practiced the same throwing343

task for 15 days, 240 throws per day [7]. The geometry of the result space shows a U-344

shaped solution manifold due to a different target constellation. The broad scatter of345

the data on Day 1 reflects initial exploratory attempts with inferior results compared346

to those after some practice. Most visibly, on Day 6 the data not only translated to a347

location on the solution manifold with more error-tolerance (shown as a wider band348
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Fig. 4 Data from an
exemplary subject who
practiced the throwing task
for 15 days. The initially
broad scatter translated to a
more error-tolerant strategy,
rotated to covary with the
solution manifold (white)
and scaled of reduced the
amplitude of dispersion over
the course of practice
(Modified from Cohen and
Sternad [7])
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of white), but the observed variability also started to covary with the direction of349

the solution manifold, while overall variability was only moderately reduced. The350

distribution on Day 15 clearly reveals a third transformation: the overall dispersion351

was significantly reduced or scaled, over and above the further enhanced covariation.352

These three data transformations, corresponding to the matrix transformations of353

translation, rotation, and scaling, were numerically quantified from individual data354

distributions as costs: The average result of a given data set could be improved by355

1.2 cm on Day 1, if it were translated to the optimal location. The difference in average356
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14 D. Sternad

result from actual to optimal renders Tolerance-cost. If the actual data were rotated357

or permuted optimally, the difference in result with the real data would quantify358

Covariation-cost. If the real data distribution was scaled or its noise was reduced359

optimally, the difference between initial and optimal data quantifies Noise-cost. The360

parallel but differential evolution of the three costs was shown in Cohen and Sternad361

[7].362

3.7 Covariation, Sensitivity to Geometry of Result Space363

in Trial-by-Trial Learning364

A separate study specifically focused on covariation and examined not only the365

distributions of the data, but also their temporal evolution to assess whether subjects’366

trial-by-trial updates were sensitive to the direction of the solution manifold [1]. Three367

detailed hypotheses guided our experimental evaluation: Hypothesis 1: Humans are368

sensitive to the direction of the solution manifold reflected in preferred directions369

of their trial-to-trial updates. Hypothesis 2: This direction-sensitivity becomes more370

pronounced with practice. Hypothesis 3: The distributional and temporal structure371

is oriented in directions orthogonal and parallel to the solution manifold. Note that372

sensitivity to the directions of the null space is also core to several other approaches,373

which employ covariance-based analyses that linearize around the point of interest374

using standard null space analysis [10, 55]. In contrast to our approach, those analyses375

do not exploit the entire nonlinear geometry of the result space.376

Thirteen subjects practiced for 6 days throwing to the same target as above, with377

240 throws per day (4 blocks of 60 trials). To assess the distribution and also trial-378

to-trial evolution, each block of 60 throws was examined as illustrated in Fig. 5a.379

To assess whether the trial-to-trial changes had a directional preference, the 60 data380

points were projected onto lines through the center of the data set (red lines in Fig. 5a).381

The center was typically on or was close to the solution manifold. The direction382

parallel to the solution manifold was defined as θpar , the direction orthogonal to the383

solution manifold was defined as θort . The time series of the projected data was then384

analyzed using autocorrelation and Detrended Fluctuation Analysis (DFA).385

This line was then rotated through 0 < θ < π rad, in 100 steps, with its pivot386

at the center of the data. At each rotation angle θ , the data were projected onto the387

line and time series analyses conducted. We expected that in directions orthogonal388

to the solution manifold θort successive trials show negative lag-1 autocorrelation,389

reflecting error corrections; in the parallel direction θpar correction was not necessary,390

as deviations have no effect on the task result. Note that the result space is spanned391

by angle and velocity, i.e. with different units; hence, both axes had to be normalized392

to each individual’s variance to ensure orthogonality and a metric.393

Figure 5b shows two time series of projected data from those directions that394

rendered maximum and minimum anti-correlation. Note the visible difference in395

temporal structure, reflecting that direction in the result space does matter. Plotting396
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Fig. 5 a Result space with solution manifold (green), with angle and velocity normalized to variabil-
ity of each individual. Red lines denote directions parallel and orthogonal to the solution manifold.
The black line denotes = 0 rad. Data are projected onto lines between 0 < θ < π rad and autocor-
relations are computed for each projection. b Time series of projected data where autocorrelation
was at a minimum and a maximum. Note that these directions do not necessarily correspond to
parallel and orthogonal directions (Reproduced from [1])

the results of the lag-1 autocorrelations across angle of the projection in Fig. 6 reveals397

a marked modulation: The red lines (with variance across subjects) show autocor-398

relation values for each rotation angle. The modulation supports Hypothesis 1 that399

trial-by-trial updates are sensitive to the angle, and implicitly, the direction of the400

solution manifold. The green vertical lines denote the direction of the solution mani-401

fold. The minima and maxima of the autocorrelation values are indicated by triangles.402

Consistent with Hypothesis 2, the modulation gets more pronounced across the three403

practice blocks, expressing that after the initial stage, trial-to-trial dynamics became404

more directionally sensitive. The structure in the orthogonal direction changed from405

initially positive autocorrelations to white noise and eventually very small negative406

values [1].407
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πππ 000 0.5π 0.5π 0.5π

Fig. 6 Autocorrelation of time series of projected data in all directions in result space. The mod-
ulation across directions becomes more pronounced with practice, expressing increased sensitivity
to the geometry of the result space. Note that while the extrema are close to the directions of the
solution manifold (SMpar and SMort) they are not coincident (Modified from [1])

3.8 Orthogonality and Sensitivity to Coordinates408

This analysis also revealed important discrepancies to Hypothesis 3. The directions409

of minimum and maximum autocorrelation were near, but not coincident with the410

orthogonal and parallel directions, as hypothesized. This finding alerts to an411

important issue: orthogonality is sensitively dependent on the chosen variables. In412

the present case, the original physical variables, angle and velocity, had different413

units and required normalization. While technically correct, it raises the question414

whether these units accurately reflect the units of the central nervous system. One415

important caveat for this and related approaches is that the structure of variability is416

fundamentally sensitive to the chosen coordinates.417

This fact was highlighted in a separate study, which showed that this sensitivity is418

particularly pertinent for covariance-based analyses [70]. Even simple linear transfor-419

mations can critically alter the results, as demonstrated by a simulation that analyzed420

variability in joint space: for two different definitions of joint angles, anisotropy of a421

data distribution can change. While covariance-based analysis of anisotropy of data422

is dependent on the coordinates, we demonstrated that our analysis of error tolerance,423

covariation and noise is significantly less sensitive, as it projects the execution vari-424

ables into the result space. Nevertheless, these critical questions open an interesting425

avenue for conceptually deeper questions: What are the coordinates of the nervous426

system? What is the appropriate metric? What is the best or most suitable represen-427

tation of the problem? While data may be dependent on the coordinates, can data be428

used to reversely shed light on the coordinates that the nervous system uses?429

To pursue these questions, the study by Abe and Sternad further examined how430

a rescaling of the execution variables in a simple model of task performance with431

similar redundancy may reproduce these deviations [1]. While this revealed possible432

sources for these observations, much more work is needed. For example, scaled433

noise in different execution variables or sensory signals might also give rise to434

such “deviations”. These are clearly important issues for understanding biological435
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movement control, and possibly also worth reflection when designing control in436

robotic systems.437

3.9 Interim Summary438

The throwing skill illustrated our model-based approach and its opportunities to439

shed light on human control. The findings showed that humans choose strategies that440

obviated the potentially detrimental effects of intrinsic noise. With less noise and441

variability, less error corrections are needed. Error corrections are not only compu-442

tationally costly, they are also hampered by the slow transmission speed in biologi-443

cal systems. Are similar strategies also possible in different tasks, especially when444

interacting with an object?445

4 Rhythmic Bouncing of a Ball – Dynamic Stability446

in Intermittent Interactions447

4.1 The Motor Task448

Rhythmically bouncing a ball on a racket is a playful and seemingly simple task. Yet,449

it requires a high degree of visually-guided coordination to intercept the ball at the450

right position and with the right velocity to reach a target amplitude and perform in451

a rhythmic fashion (Fig. 7a–c). As in the throwing task, success is determined at one452

critical moment when the racket intercepts the ball, as this impact fully determines453

its amplitude. Hence, the core challenge of this task is the control of collisions, a454

feature germane to numerous other behaviors, ranging from controlling foot-ground455

impact in running to playing the drums. One key difference to throwing is that these456

impacts are performed in a repeated fashion, and errors from one contact propagate457

to the next. Hence, the actor becomes part of a hybrid dynamical system combining458

discrete and continuous dynamics [11, 44, 46, 53].459

4.2 The Model460

The physical model for this task is again an extremely simple dynamical system,461

originally developed for a particle bouncing on a vibrating surface [21, 76]. The462

model consists of a planar surface moving sinusoidally in the vertical direction; a463

point mass moving in the gravitational field impacts the surface with instantaneous464

contact (Fig. 7b). The vertical position of the ball xb between the kth and the k + 1th465

racket-ball impact follows ballistic flight:466
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Fig. 7 Bouncing a ball with a racket. a The real task. b The physical and mathematical model.
c Simulated time series assuming invariant sine waves of the racket. d Redundancy of the result
space: Racket position and velocity and ball velocity determine ball amplitude. Blue data points are
from early practice, yellow data points are from late practice (Reproduced from [69])

xb(t) = xr(tk) + v+
b (t − tk) − g/2(t − tk)

2

where xr is racket position, v+
b is the ball velocity just after impact, tk is the time of the467

kth ball-racket impact, and g is the acceleration due to gravity. With the assumption468

of instantaneous impact, the ball velocity just after impact v+
b is determined by:469

v+
b = ((1 + α)v−

r − αv−
b )

where v−
b and v−

r are the ball and racket velocities just before impact, and the energy470

loss at the collision is expressed in the coefficient of restitution α. The maximum471

height of the ball between tk and tk+1 depends on v−
b and v−

r and the position at impact472

xr :473

maxtk≤t≤tk+1 xb(t) = xr(tk) + (((1 + α)v−
r − αv−

b )(t − tk))
2/2g (3)474
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4.3 Redundancy475

The task goal is to bounce the ball to a target height, and the error is defined as476

the deviation from the maximum height (Fig. 7c). Even in this simplified form, the477

task has redundancy, as the result variable error is determined by three execution478

variables: v−
b , v−

r and xr . Figure 7d shows the execution space with the solution479

manifold, i.e. the planar surface that represents all solutions leading to zero error.480

The blue and yellow data points are two exemplary data sets from early and late481

practice, respectively; each data point corresponds to one ball-racket contact. As to482

be expected, the early (blue) data show a lot of scatter, while the late practice data483

(yellow) cluster around the solution manifold.484

4.4 Dynamic Stability485

While the redundancy analysis is performed on separate collisions, the racket and486

ball model also lends itself to dynamic stability analysis. To facilitate analysis, the487

racket movements are assumed to be sinusoidal, such that racket position and velocity488

at impact collapse into a single state variable, racket phase θk . Applying a Poincare489

section at the ball-racket contact, where xr and xb are identical, a discrete map can490

be derived with v+
k and θk as state variables:491

v+
k+1 = (1 + α)Aω cos θk+1 − αv+

k + gα(θk+1 − θk)/ω

0 = Aω2( sin θk − sin θk+1) + v+
k ω(θk+1 − θk) − g/2(θk+1 − θk)

2
(4)492

A and ω are the amplitude and frequency of the sinusoidal racket movements [11,493

53, 66]. This nonlinear system displays dynamic stability and, despite its simplicity,494

shows the complex dynamics of a period-doubling route to chaos [21, 76]. For495

present purposes, only stable fixed-point solutions are considered as they correspond496

to rhythmic bouncing. Local linear stability analysis of this discrete map identifies a497

stable fixed point, if racket acceleration at impact ar satisfies the inequality:498

− 2g
(1 + α2)

(1 + α)2
< ar < 0 (5)499

4.5 Hypotheses500

In this dynamically stable state, small perturbations of the racket or ball die out501

without requiring corrections. Hence, if subjects establish such dynamically stable502

regime, they need not correct for small perturbations that may arise from the per-503

sistent neuromotor noise. Thus, we hypothesized that subjects learn these “smart”504

solution and exploit dynamic stability by hitting the ball with negative racket acceler-505
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ation (Hypothesis 1). Further, due to the system’s redundancy infinitely many stable506

solutions can be adopted. Hence, we administered perturbations to test if subjects507

established and re-established such stable states (Hypothesis 2).508

4.6 Virtual Implementation509

In the experiments, the participant stood in front of a projection screen and rhythmi-510

cally bounced the virtual ball to a target line using a real table tennis racket. Similar511

to the throwing task, the projected racket movements were shown on the screen in512

real time impacting the ball. The display was minimal and only showed the modeled513

and measured elements, a horizontal racket and a ball both moving vertically to a514

target height (Fig. 7b). A light rigid rod was attached to the racket and ran through515

a wheel, whose rotations were registered by an optical encoder, which measured516

the vertical displacement of the racket, in analogy with the model, and shown on517

the screen. Racket velocity was continuously calculated. The vertical position of the518

virtual ball was calculated using the ballistic flight equation initialized with values at519

contact. To simulate the haptic sensation of a real ball-racket contact, a mechanical520

brake, attached to the rod, was activated at each bounce and decelerated the up-521

ward motions. Racket acceleration at or just before the impact was analyzed after the522

experiment and served as the primary measure of dynamic stability to test523

Hypothesis 1 [80]. Ball position and velocity and racket velocity at contact were524

measured and analyzed to evaluate the data with respect to the solution manifold525

(Hypothesis 2).526

4.7 Learning and Adaptation to Perturbations527

Did human subjects seek and exploit dynamic stability of the racket-ball system?528

How robust is this system if the actor has to change and adapt to new situations? An529

experiment tested these questions in two stages: On Day 1, 8 subjects performed a530

sequence of 48 trials of rhythmic bouncing to a target height, each trial lasting 60 s.531

With the target height at 0.8 m from lowest racket position, and α = 0.6, the average532

period between repeated contacts was 0.6 s, leading to approximately 100 contacts533

per trial. On Day 2, subjects performed 10 trials under the same conditions as on534

Day 1, but then performed another 48 trials after a perturbation was implemented.535

Stage 1: Figure 8a shows the ball amplitude errors averaged of all subjects across536

48 trials. As expected, the error decreased with practice with a close-to exponential537

decline. Concomitantly, the acceleration of the racket at contact decreased from an538

initially positive to a negative value, indicative of performance attaining dynamic539

stability (Fig. 8b). Importantly, it took approximately 11 trials for subjects to “dis-540

cover” this strategy, showing that it was not trivial and required practice to learn it.541

The parallel evolution of both error and racket acceleration with practice provide542

strong support for Hypothesis 1 that subjects seek dynamic stability.543
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Fig. 8 Ball amplitude errors and racket accelerations over 48 trials. All data points are averages
over 8 subjects. a, b Stage 1 of the experiment. c, d Stage 2 of the experiment. The shading denotes
the perturbed trials

Stage 2: The second experimental session presented an even stronger test. Starting544

with 10 regular trials as on Day 1, subjects were exposed to a perturbation over the545

subsequent 48 trials (yellow shading in Fig. 8c, d). This perturbation was calculated546

using the redundancy of the execution: three execution variables, v−
b , v−

r and xr ,547

determined the one result variable, absolute error of ball peak amplitude to the target548

height. Following Day 1, the average and standard deviations of v−
b and v−

r and549

xr of the first 10 baseline trials were calculated for each individual to render an550

ellipsoid in result space representing the individually preferred solution (9). In the551

subsequent perturbed trials this preferred strategy was penalized with an error in ball552

amplitude. This error was delivered by replacing the veridical ball release velocity553

with one calculated based on the execution ellipsoid. This new ball velocity over-554

or undershot the target height as calculated. By simply replacing the ball velocity555

at the discontinuity, subjects did not explicitly perceive the perturbation. Within556

the ellipsoid, the penalty was maximal at its centroid and it linearly decreased to557

zero towards the boundaries (defined by one standard deviation around its centroid).558

Hence, assuming sensitivity to the gradient in result space and the redundancy of559

the task, subjects were expected to search for a new un-penalized solution. This560

437818_1_En_13_Chapter � TYPESET DISK LE � CP Disp.:30/12/2016 Pages: 37 Layout: T1-Standard

A
u

th
o

r 
P

ro
o

f



U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

22 D. Sternad

Impact Position (m)
Ball Velocity (m/s)

R
ac

ke
t V

el
oc

ity
 (m

/s
) 

0.40.30.20.10-2.5
-3.0

-3.5
-4.0

-4.5

1.6
1.4
1.2
1.0
0.8
0.6
0.4

Impact Position (m)Ball Velocity (m/s)

R
ac

ke
t V

el
oc

ity
 (m

/s
) 

-2.5
-3.0-3.5-4.0-4.5 0.40.30.20.10

1.6

1.4
1.2

1.0
0.8

0.6

0.4

(a) (b)

Fig. 9 Presentation of performance in execution space; the planar surface is the solution manifold.
a The large execution ellipsoid represents the initially preferred strategy that is subsequently pe-
nalized during the perturbation phase. The smaller ellipsoid represents the final strategy that is
established during the perturbation phase to avoid the penalty. b The right panel shows the same
data and execution ellipsoid. The points are the sequence of trial means following the perturbation
onset. It shows that subjects stay on the manifold but migrate outside the penalty ellipsoid

perturbation was calculated and delivered only in the virtual display such that subjects561

saw their drop in performance, but did not notice its cause explicitly.562

Figure 9 illustrates the performance of one representative subject. Starting with the563

(larger) execution ellipsoid from the initial 10 trials (Fig. 9a), upon onset of the pertur-564

bation the subject gradually translated her execution along the planar solution mani-565

fold to a new location. The smaller and darker ellipsoid on the right depicts the aver-566

age execution of the last trial: The strategy shifted and the variability decreased even567

further; importantly, there was no overlap with the initial ellipsoid (Hypothesis 2).568

This illustrates that the subject not only found a new successful solution without569

penalty, but the non-overlap also suggested that the subject was aware of her vari-570

ability.571

Returning to the measures or error and racket acceleration at impact for these same572

data, shown in Fig. 8c, d, reveals that upon perturbation onset, both errors and racket573

acceleration changed significantly as expected. However, over the course of the 48574

perturbed trials, subjects incrementally decreased their errors and reestablished the575

previously preferred racket acceleration of −3 m/s2. In fact, this acceleration value576

was determined to be optimal for the given parameters in additional Lyapunov analy-577

ses of the model system [53]. This result shows that subjects successfully established578

dynamic stability in multiple different ways.579

Experimental evidence that subjects learn to hit the ball with a decelerating racket580

has been replicated in several different scenarios. The different experimental set-ups581

included a pantograph linkage with precise control of the haptic contact, a real tennis582

racket to bounce a real ball attached to a boom, and freely bouncing a real ball in583

3D [66, 67]. The findings were robust: with experience performers learn to hit the584

ball with negative racket acceleration; based on stability analyses of the model we585
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concluded that they learn to tune into the dynamic stability of the racket-ball system.586

Based on these findings, we also designed an intervention to guide subjects towards587

this dynamically stable solution. Manipulating the contact parameters via a state-588

based shift indeed successfully accelerated subjects’ learning the dynamically stable589

solution, which correlated with faster performance improvement [30].590

4.8 Interim Summary591

These studies provided strong evidence that humans seek dynamic stability in a592

task, a solution that is computationally efficient as small errors and noise converge593

without necessitating explicit error correction. In the face of perturbations, subjects594

successfully navigated the result space and established new solutions available due to595

the redundancy. There was also evidence that they were aware of their own variability.596

As in skittles, subjects seek solutions where noise matters less.597

5 Chaos in a Coffee Cup – Predictability in Continuous598

Object Control599

5.1 The Motor Task600

Leading a cup of coffee to one’s mouth to drink is a seemingly straightforward action.601

However, transporting a cup filled with sloshing fluid to safely contact the mouth602

without spilling remains a challenge not to be underestimated for both humans and603

robots. Carrying a cup of coffee (or a glass of wine) exemplifies a class of tasks that604

require continuous control of an object that has internal degrees of freedom. How605

do humans control interactions with such an object, where the sloshing fluid creates606

time-varying, state-dependent forces that have to be preempted and compensated to607

avoid spill? Can humans or robots really have a sufficiently accurate internal model608

of the complex fluid dynamics to online predict and react to the complex interaction609

forces? In search of human strategies that apparently deal with this problem easily,610

we started again with the analysis of the task dynamics, following the steps outlined611

above.612

5.2 The Model613

In principle, the task presents a problem in fluid dynamics [38, 49]. To make this614

complex infinitely-dimensional system more tractable, several simplifications were615

made [23]: (1) the 3D cup was reduced to 2D, (2) the sloshing coffee was reduced to616
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(a) Actual 

φ
m

Mx

φ

Cup Ball

(c) Model (d) Virtual Interface

(e) Display

(b) Conceptual Model

l

Fig. 10 Carrying a cup of coffee. a The model task. b The conceptual model: a 2D arc with a
ball rolling inside. c Control model of the cart-and-pendulum. d Virtual implementation with the
HapticMaster robot to control the cup in the horizontal direction. e The interactive screen display;
the green rectangles specify the amplitude of the cup movement. The lower panel shows a sequence
of moving cups with the arrows depicting the respective forces of cup and ball (Reproduced from
[60])

a ball with point mass rolling in a cup, (3) the hand contact with the cup was reduced617

to a single point of interaction, (4) the cup transport was limited to a horizontal618

line (Fig. 10a–c). More precisely, the moving liquid is represented by a pendulum619

suspended to a cart that is translated in the horizontal x-direction. The pendulum is620

a point mass m (the ball) with a mass-less rod of length l with one angular degree of621

freedom θ . Subjects control the ball indirectly by applying forces to the cup, and the622

ball can escape if its angle exceeds the rim of the cup. The cup is a point mass M that623

moves horizontally. The hand moving the cup is represented by a horizontal force624

F(t). Despite these simplifications, the model system retained essential elements of625

complexity: it is nonlinear and creates complex interaction forces between hand and626
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object. The equations of the system dynamics are:627

(m + M)ẍ = ml(−θ̈cosφ + θ̇2sinφ) + F(t)628

lθ̈ = −ẍcosθ − gsinθ (6)629
630

where θ, θ̇ , and θ̈ are angular position, velocity, and acceleration of the ball/pendulum;631

x, ẋ, and ẍ and are the cart/cup position, velocity, and acceleration, respectively; F632

is the force applied to the cup by the subject; g is gravitational acceleration. The633

model has four state variables x, ẋ, θ, θ̇ and the externally applied force F(t) that634

determines the behavior of the ball and cup system. Hence, only one variable F(t) is635

under direct control of the subject, but this is co-determined by the ball/pendulum636

interacting with the cart. These instantaneous interaction forces make the distinc-637

tion into execution and result variables significantly more complicated than in the638

previous two examples.639

5.3 Virtual Implementation640

The ball-and-cup system was implemented in a virtual environment. The cart and the641

pendulum rod was hidden, leaving only the ball visible. In addition, a semicircular642

arc with radius equal to was drawn on the screen so that the ball appeared to roll643

in the cup (Fig. 10d, e). Subjects manipulate the virtual cup-and-ball system via644

a robotic arm, which measures hand forces FExternal applied to the cup but also645

exerts forces from the virtual object onto the hand (HapticMaster, Motek [77]).646

φ and φ̇ were computed online and the ball force FBall was computed based on647

system equations such that the force that accelerated the virtual mass ((m + M))648

was Fapplied = Mẍ = FExternal + FBall. Two rectangular target boxes set the required649

movement distance and spatial accuracy (for more details see [23]).650

5.4 Model Analysis and Hypothesis651

The cup of coffee can be moved as a relatively short discrete placement to a target, or652

in a more continuous fashion, as for example carrying the cup while walking. A pre-653

vious study examined a single placement onto a target focusing on the discontinuous654

aspect of the task: the coffee can be spilled [23, 24]. Given the noise intrinsic to the655

neuromotor system and the fluctuations created by the extrinsic cart-and-pendulum656

system, avoiding failure became the core challenge when the task was to move as657

fast as possible. The “distance” from losing the ball was quantified by an energy658

margin, defined as the difference between the current energy state and the one where
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the ball angle would exceed the rim angle. Results showed that this continuous met-659

ric sensitively captured performance quality and learning in healthy and also older660

subjects.661

Here, we review another study that examined more prolonged interaction, where662

the nonlinear dynamics manifests its full complexity and, technically, displays663

chaos [41, 68]. To this end, the task instruction was to move the cup rhythmically664

between two very large targets leaving amplitude under-specified; the task-specified665

frequency defined the result variable. Movement strategies were fully described666

by the execution variables cup amplitude, frequency, and initial angle and velocity667

of the ball, A, f , θ0, θ̇0. To derive hypotheses about the space of solutions, inverse668

dynamics analysis was conducted to calculate the force F(t) required to satisfy the669

task. Numerical simulations were run for combinations of the scalar execution vari-670

ables A, f , θ0, θ̇0. To keep the number of simulations manageable, frequency f was671

fixed to the task-required frequency, and θ̇0 was set to zero.672

Figure 11 shows two example profiles generated by inverse dynamics calculations673

with two different initial ball states θ0(θ̇0 = 0) that both result in a sinusoidal cup674

trajectory x(t). The left profile F(t) shows irregular unpredictable fluctuations for675

θ0 = 0.4 rad, while the right profile initialized at θ0 = 1.0 rad shows a periodic676

waveform with high regularity. To characterize the pattern of force profiles with677

respect to the cup dynamics, F(t) was strobed at every peak of cup position x(t). The678

marginal distributions of the strobed force values are plotted as a function of initial679

ball phase θ0 in the bottom panel. This input-output relation reveals a bifurcation680

diagram with a pattern similar to the period-doubling behavior of chaotic systems,681

indicating chaos in the cup-and-ball system.682

5.5 Hypotheses for Human Control Strategies683

It seems uncontested that controlling physical interaction requires “knowledge” and684

prediction of object dynamics. On the other hand, it is reasonable to doubt that685

the complex details of object dynamics are known or faithfully represented in an686

internal model. In chaotic dynamics, small changes in initial states can dramatically687

change the long-term behavior and, technically, lead to unpredictable solutions. Can688

or should internal models be able to represent this complex dynamics? To make689

this challenge more tractable for the neural control system we hypothesized that690

subjects seek solutions that render the object behavior more predictable to reduce691

computational effort and facilitate at least some prediction.692

To quantify the concept of predictability of the object dynamics based on the693

human’s applied force, we computed mutual information MI between the applied694

force and the kinematics of the cup, i.e. long-term predictability of the object’s695

dynamics [9]. MI is a nonlinear correlation measure defined between two probability696

density distributions and measures the information shared by two random variables,697

F(t) and the kinematics of the cup x(t):698
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Fig. 11 Inverse dynamics simulations of the cart-and-pendulum model. Top panels show two
different simulation runs with different initial ball angles θ0, requiring a complex and a relatively
simple input force (top row). Strobing force values at maxima of the cup profile x and plotting
the marginal distributions against all ball angles renders the bifurcation-like diagram (Reproduced
from [41])

MI (x, F) =
∫∫

p (x, F) loge
p(x, F)

p (x) p(F)
dxdF (7)699

MI presents a scalar measure of the performer’s strategy calculated at each point700

of the 4D result space spanned by A, f , θ0, θ̇0. The higher MI, the more predictable the701

relation between force and object dynamics. Hence, we expected that subjects would702

seek strategies with high MI (Hypothesis 1, Fig. 12a). Predictability as a control prior-703

ity had to be tested against alternative hypothesis. The experiments permitted testing704

two alternative control priorities: minimizing effort (Hypothesis 2, Fig. 12b) and705

maximizing smoothness (Hypothesis 3, Fig. 12c); both are commonly accepted and706
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Fig. 12 Result space computed for three different hypothesized control priorities. The space is
computed for different initial ball angles and cup amplitudes; frequency is set to 1 Hz, and ball
velocity is set to zero. a Mutual information. b Effort defined as mean squared force over a given
trial. c Smoothness or mean squared jerk defined over a given trial. The optimal strategy for each
hypothesis is noted by the large dot (Reproduced from [41])

widely supported criteria in free unconstrained movements. To calculate the effort re-707

quired for each strategy, the Mean Squared Force of the force profile was calculated:708

MSF = 1
nT

nT∫
0

F(t)2dt, where n denoted the number of cycles and T = 1/f the period709

of each cycle. Mean Square Jerk was calculated as MSJ = 1

T(

...

θmax − ...

θmin)

T∫
0

|θ |
...

2dt,710

where the value was normalized with respect to ball jerk amplitude to make it di-711

mensionless [27]. Similar to MI, MSF-values were calculated for all strategies in 4D712

result space. To constrain the calculations, the initial value of the angular velocity713

θ̇0 was set to zero, consistent with the experimental data. Figure 12 compares the714

corresponding predictions for MI, MSF, and MSJ. Color shades express the degree as715

explained in the legend. The large dots denote the points of maximum MI, minimum716

MSF and MSJ. Importantly, these predicted strategies are at very different locations717

in result space.718

To test these hypotheses, equivalent measures had to be calculated from the719

experimental data to evaluate observed human strategies against the simulated result720

space. In contrast to the simulations, the experimental trajectories were not fully721

determined by initial values as online corrections were likely. Therefore, to attain722

better estimates of the execution variables from the experimental trajectories, esti-723

mates were extracted at each cycle k of the cup displacement x during each 40 sec724

trial (see Fig. 11); trial averages Ā, f̄ , θ̄0,
¯̇θ0 served as correlates for the variables725

in the simulations. MI, MSF, and MSJ were calculated for each measured strategy726

Āk, f̄k, θ̄k,
¯̇θk .727
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5.6 Predictable Interactions728

An experimental study provided first evidence that subjects indeed favored pre-729

dictable solutions over those that minimized the expended force and smoothness730

[41]. Subjects performed rhythmic cup movements paced at the natural frequency731

of the pendulum, which corresponded to the anti-resonance of the coupled system.732

This facilitated the emergence of the system’s nonlinear characteristics with chaotic733

solutions that maximized the challenge. Amplitude was free to choose and relative734

phase between ball and cup was also unspecified. Each subject performed 50 trials735

(40 s each). By choosing the cup amplitude and phase, subjects could manipulate736

interaction forces of different complexity and predictability.737

The main experimental results are summarized in Fig. 13; the plot shows MI in738

shades of purple (lighter shades denote higher MI) and contours of selected values739

of MSF (green) from the simulations overlaid with the results from human subjects;740

each data point represents one trial (red). The data clearly show how subjects gravi-741

tated towards areas with higher MI, i.e. strategies with more predictable interactions,742

consistent with Hypothesis 1. The left panel shows individual trials pooled over all743

subjects; darker red indicates early practice and lighter red indicates late practice.744

Fig. 13 Result space with Mutual Information as the result variable, shown by shades of purple.
The left panel plots trial data from all 9 subjects showing that they converge to the area with highest
MI. Each data point is one trial; darker color shades denote later in practice. The arrows in the
right panel show each subject with initial trial values the start of the arrow and the final practice
trial the tip of the arrow (Reproduced from [41])
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The right panel shows the same data separated by subject: the red arrows mark how745

each subject’s average strategy changed from early practice (mean of first 5 trials) to746

late practice (mean of last 5 trials). The majority of subjects switched from low- to747

high-predictability regions in the result space. Both figures also show that all subjects748

increased their movement amplitude, associated with an increase in overall exerted749

force. None of the subjects moved toward the minimum force strategy, nor towards a750

strategy with maximum smoothness (counter to Hypotheses 2 and 3). In fact, overall751

force exerted, or MSF, rather increased with practice.752

5.7 Interim Summary753

These results highlight that humans are sensitive to object dynamics and favor strate-754

gies that make interactions predictable. In the case shown, these predictable solutions755

were even favored over those with less effort. This is plausible because unpredictable756

interaction forces are experienced as disturbances that continuously require reactions757

and corrections. Knowing that in real life we carry a glass of wine without pay-758

ing much attention, more predictable strategies appear plausible. Analogous to the759

dynamically stable solutions in ball bouncing, predictable solutions may require760

fewer computations as they obviate error corrections. Given that in chaotic solu-761

tions small changes due to external or internal perturbations lead to unpredictable762

behavior, noise matters less in predictable solutions.763

6 From Analysis to Synthesis: Dynamic Primitives764

for Movement Generation765

This brief overview of our research revealed potential control priorities or cost func-766

tions that humans may use to coordinate simple and complex interactions. Humans767

favor strategies that are sensitive to dynamics and stability, that exploit redundancy768

of the solution space to channel their intrinsic noise into task-irrelevant dimensions,769

and that exploit predictable solutions of potentially very complex task dynamics.770

The review also demonstrated what can be learnt from analysis of human data in771

conjunction with mathematical understanding of the task and its solution space. The772

only assumption is that the dynamics and stability properties of the task are funda-773

mental and determine “opportunities” and “costs”. The known solution space serves774

as reference to evaluate human movement.775

The task-dynamic approach as outlined is analytic and largely agnostic about776

details of the controller. This contrasts with other research in computational mo-777

tor neuroscience that starts with a hypothesized controller and then compares the778

predicted with the experimentally observed behavior. One recent prominent exam-779

ple for this direction is work that has sought evidence that the brain operates like an780
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optimal feedback controller [56, 74, 75]. Other control models include internal mod-781

els with Kalman-filters or tapped-delay lines, to mention just a few [39]. Our approach782

refrains from such assumptions directly borrowed from control theory; rather, we aim783

to extract principles from human data with as few assumptions as possible. Never-784

theless, the question of synthesis remains: what controller or control policy would785

generate these strategies? While still largely speculative, our task-dynamic perspec-786

tive presents a sound foundation for a generative hypothesis.787

To begin, let’s return to the initial pointer to the seemingly inferior features of788

the human neuromotor system - the high degree of noise and the slow informa-789

tion transmission. These features seem puzzling given the extraordinary dexterity790

of humans that by far surpasses that of robots, at least to date. Therefore, the direct791

translation of control policies that heavily rely on central control and feedback loops792

may remain inadequate to achieve human dexterity. As mentioned earlier, the human793

wetware with its compliant actuators and high dimensionality appears to provide794

an advantage. Hence, lower levels of the hierarchical neuromotor system should be795

given more responsibility. Consistent with our task-dynamic perspective, we have796

therefore suggested that the biological system generates movements via dynamic797

primitives, defined over the high-dimensional nonlinear neuromotor system [26, 28,798

45, 50, 51, 59, 65]. We propose that the human neuromotor system exploits attrac-799

tors states, defined over both the neural and mechanical nonlinear system. If the800

neuromotor system is parameterized to settle into such stable states, central control801

may only need to occasionally intervene. In principle, nonlinear autonomous sys-802

tems have three possible stable attractor states: fixed point, limit cycle, and chaotic803

attractors. Putting chaotic attractors aside for now, we proposed fixed-point and limit804

cycle attractors for primitives.805

The two main stable attractors fixed points and limit cycles directly map onto dis-806

crete and rhythmic movements. To understand discrete movements such as reaching807

to a target as convergence to a stable end state is not completely new. Equilibrium-808

point control was first posited by Feldman for simple position control [14, 15].809

Numerous subsequent studies, both behavioral and neurophysiological, have given810

evidence for attractive properties in reaching behavior [4, 20, 25, 36]. This work has811

widened to include a virtual trajectory, even though details are still much contested.812

For rhythmic behavior a similar host of experimental and modeling studies have813

presented support for stable limit cycle dynamics. For example, bimanual rhythmic814

finger movements showed transitions from anti-phase to in-phase coordination that815

bear the hallmarks of nonlinear phase transitions in coupled nonlinear oscillators816

[22, 33]. Our own work has shown how extremely simple oscillator models can817

account for synchronization in bimanual rhythmic coordination, including subtle818

phase differences between oscillators with different natural frequencies [63, 71, 72].819

Several different oscillator models have been developed that produce autonomous820

oscillations to represent central pattern generators in the spinal cord of invertebrates821

[31, 45]. Support for the distinction between rhythmic and discrete movements also822

came from a neuroimaging study [54]. Brain activation revealed that in rhythmic823

movements only primary motor areas were activated, while significantly more areas824

were needed to control discrete movements.825
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In an attempt to synthesize this evidence from largely disparate research groups,826

our own research made first forays into combining the two types of building blocks.827

Playing piano is after all a combination of complex rhythmic finger movements828

combined with reaches across the keyboard. Note that in principle, optimal feedback829

control could also achieve such movements, including those with dynamic stability.830

In fact, there is no inherent limit to what optimal feedback control may achieve.831

It is this omnipotence that contrasts with the well-known coordinative limitations832

that may reveal features of the human controller. Beyond “patting your head while833

rubbing your stomach”, research has revealed that rhythmic bimanual actions tends834

to settle into in-phase and anti-phase coordination [34, 72], humans avoid moving835

very slowly [3, 78], and the 2/3 power law in handwriting and drawing may reveal836

intrinsic geometry or other limitations [18, 52]. Several modeling and experimental837

studies showed the possibilities and limitations of combining two dynamic primitives.838

Wiping a table rhythmically, while translating the hand across the table revealed that839

rhythmic and discrete elements cannot be combined arbitrarily [64, 65].840

However, research is still far from having generated conclusive evidence that841

dynamic motion primitives underlie observed behavior. More specifically,842

interactions with objects cannot be addressed with the two primitives alone. There-843

fore, recently Hogan and myself argued that impedance is needed as a third dy-844

namic primitive to enable the system to interact with objects and the environment845

[28, 29]. Combining discrete and rhythmic primitives with impedance in an equiv-846

alent network is a first proposal on how humans may interact with objects in the847

environment. More details and first theoretical developments can be found in the848

chapter of Hogan in the same volume. With these theoretical efforts under way, also849

further complementary empirical work is needed. The challenge for the future is to850

combine analysis and synthesis. How can dynamic primitives be employed to pour851

a glass of wine?852
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