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a b s t r a c t

Biometrics, an integral component of Identity Science, is widely used in several large-scale-county-wide
projects to provide a meaningful way of recognizing individuals. Among existing modalities, ocular bio-
metric traits such as iris, periocular, retina, and eye movement have received significant attention in the
recent past. Iris recognition is used in Unique Identification Authority of India’s Aadhaar Program and the
United Arab Emirate’s border security programs, whereas the periocular recognition is used to augment
the performance of face or iris when only ocular region is present in the image. This paper reviews the
research progression in these modalities. The paper discusses existing algorithms and the limitations
of each of the biometric traits and information fusion approaches which combine ocular modalities with
other modalities. We also propose a path forward to advance the research on ocular recognition by (i)
improving the sensing technology, (ii) heterogeneous recognition for addressing interoperability, (iii) uti-
lizing advanced machine learning algorithms for better representation and classification, (iv) developing
algorithms for ocular recognition at a distance, (v) using multimodal ocular biometrics for recognition,
and (vi) encouraging benchmarking standards and open-source software development.

! 2015 Elsevier B.V. All rights reserved.

1. Introduction

With the increasing requirement of establishing the identity of
individuals, a number of identity programs are being instituted
across the globe. Therefore, the design of accurate and robust
methods for identity recognition has become a very important
research challenge. Traditional approaches rely on the use of iden-
tification cards, passwords, or PINs to determine or verify one’s
identity. However, due to several challenges associated with tradi-
tional methods such as the ease to forge or forget, use of biometrics
is gaining significant importance. Biometrics refers to the use of
physiological and behavioral characteristics of humans for estab-
lishing their identity. Among physiological characteristics, several
body parts have been studied that demonstrate biometric proper-
ties such as universality, uniqueness, permanence, and collectabil-
ity. It has been observed that the ocular region, including iris, is
one of the most stable ones and can be effectively used for recog-
nition [1].

The field of ocular biometrics has undergone significant pro-
gress in the last decade. Researchers have developed a number of
techniques to leverage the information present in the ocular
region. Ocular region is an important and interrelated system
(organ) that consists of several subsystems such as cornea, lens,

optic nerve, retina, pupil, iris, and the periocular region. Out of
these, iris, periocular, retina, and sclera have been well studied
for being potential biometric modalities (Fig. 1). Related research
started with iris recognition in 1987 [2], followed by sclera [3],
retina [4], and then periocular recognition [5] in 2009. A number
of noteworthy contributions have been made to improve the
state-of-the-art in ocular related biometrics. Currently, there are
several identification and verification systems in deployment that
use one or more of these ocular biometric modalities. For instance,
the United Arab Emirate’s immigration program, deployed in 2001,
uses iris recognition for frequent travelers [6]. Retina recognition is
being used in high security military and nuclear instalments [7].

After decades of research in individual biometric modalities by
the research community, it is observed that none of the individual
modalities can satisfy every biometric characteristic at every point
in time. For instance, fingerprint of laborers and farmers and iris
patterns of individuals suffering from certain eye diseases can
change over time. To address such instances, researchers and
practitioners have proposed multi-modal fusion or selection of
biometric modalities to improve the recognition performance [8].
The Aadhaar program in India is using iris and fingerprint for
de-duplication and verification [10]. Office of Biometric Identity
Management (OBIM), formerly US-VISIT, is using fingerprints and
face for recognition [11]. Therefore, the current best practice is to
combine or fuse multiple modalities for improved coverage and
performance. Under the same principle, ocular modalities are also
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combined with other ocular and non-ocular modalities for
improved performance.

In this survey article, we review the advancements made in
individual ocular biometric modalities and the research that has
been conducted in combining multiple ocular modalities or ocular
and other non-ocular modalities. The advancements and develop-
ments are measured in terms of the contributions provided to
higher recognition performance, to higher computational effi-
ciency, and to the collection of databases that help researchers in
addressing interesting and important challenges which continue
to emerge. Therefore, the paper summarizes the contributions in
terms of both technologies and databases prepared. Section 2 pro-
vides a review of technical contributions made in individual ocular
biometric modalities and Section 3 summarizes the contributions
in terms of combining multiple ocular biometric modalities.
Section 4 summarizes publicly available databases related to ocu-
lar biometric modalities. Section 5 discusses the authors’ view of
the path forward in ocular biometrics – where the technology
should be heading to improve recognition performance.

2. Ocular biometrics

As discussed earlier, multiple biometric modalities have been
established in the ocular region. This section presents a detailed
summary of the research conducted in the field of ocular biomet-
rics between 2010 and 2014.1 Section 2.1 presents a comprehensive
survey of iris biometrics, Section 2.2 explores the advances in perioc-
ular biometrics, Section 2.3 covers the work done in the field of
retina biometrics, and Section 2.4 summarizes several emerging ocu-
lar modalities.

2.1. Iris

Ocular biometrics has become an established biometric trait,
primarily due to the extensive efforts made by the biometrics com-
munity in the field of iris recognition. The possibility that the iris
may be used as an optical fingerprint was first explored by Flom
and Safir [2]. Since then, it has evolved into a reliable biometric
trait and has been explored extensively by the biometric research
community. The popularity of iris biometrics has resulted in the
large-scale deployment of commercial and public iris recognition
systems around the world. One of the foremost examples of such
a system includes the Aadhaar Unique Identification Authority of
India (UIDAI) Program [10], which performs approximately 100
trillion iris matches everyday.

Daugman’s IrisCode algorithm [14] has served as the basis for a
number of efforts made by researchers in the biometrics commu-
nity. The feature descriptor consists of a compact sequence of mul-
ti-scale quadrature 2D Gabor wavelet coefficients. In [15],

Daugman analyzes the statistical variability which forms the basis
of iris recognition. The principle driving the algorithm is the failure
of a test of statistical independence on the iris sample image
encoded by multi-scale quadrature wavelets as discussed in [14].
The combinatorial complexity of this method of information
description across individuals spans approximately 249 degrees-
of-freedom. It generates a discrimination entropy of about
3.2 bits/mm2 over the iris such that it enables real-time identifica-
tion to support exhaustive searches through very large databases.
In [16], Daugman presents (1) several advances towards the
IrisCode algorithm for iris recognition: more accurate detection
and modeling of iris boundaries with active contours, (2) statistical
inference methods for detecting and excluding eyelashes, and (3)
the possibility of employing score normalizations, depending on
the amount of valid iris data available.

Kong et al. [17] also analyze the IrisCode algorithm. The study
proves the equivalent relationship between bit-wise hamming dis-
tance and bit-wise phase distance and studies the role of the Gabor
function as a phase-steerable filter. These studies lead up to the
most significant contribution of the paper, which is the precise
phase-representation algorithm for iris recognition. Experiments
conducted on the WVU Iris database show precise phase represen-
tation is more accurate than IrisCode, though its computation time
is considerably longer. The authors propose that the precise phase
representation may be considered as a flexible representation for
balancing the trade-off between matching speed and identification
accuracy.

As shown in Fig. 2, the flow of information in an iris recognition
system can be organized as acquisition, preprocessing, segmenta-
tion, feature extraction, and matching. Section 2.1.1 reviews iris
acquisition in visible light and near infrared light. Section 2.1.2 pre-
sents the various preprocessing techniques developed for treating
iris images and improving recognition performance. Section 2.1.3
examines the segmentation methodologies that have evolved to
handle ideal as well as non-ideal iris images. A brief overview of
feature selection techniques is provided in Section 2.1.4.
Publications focusing on matching and indexing of iris templates
are surveyed in Section 2.1.5. The emerging field of non-ideal iris
recognition and associated methodologies are presented in
Section 2.1.6.

2.1.1. Acquisition
Researchers have explored multiple kinds of acquisition tech-

niques in iris recognition. These techniques vary in spectrums,
devices, and also the distances at which the images are captured.
Early research in iris recognition relied exclusively on the acquisi-
tion of high-resolution iris images. Daugman [14] proposed the use
of the Near Infrared (NIR) spectrum in the wavelength range 750–
950 nm for iris acquisition. The evolution of sensor technology has
permitted greater flexibility in the development of acquisition
modalities. Some recent advances in iris acquisition systems have
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Fig. 1. Ocular biometric modalities.

1 For a literature review prior to 2010, readers are referred to [12,13].
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involved the use of lower resolution systems, visible spectrum
cameras, and set-ups which permit the user to walk through them,
allowing image acquisition at multiple distances. Moreover, acqui-
sition by mobile devices has also been explored.

Proença and Alexandre [18] designed a setup to capture iris
images in the visible spectrum. A Nikon E5700 camera with a halo-
gen lamp set up behind the acquisition apparatus and the subject,
captures grayscale images of size 400! 300. They created the first
large visible spectrum iris database known as the UBIRIS v1 [18]
database that contains 1877 images collected from 241 persons.
The UBIRIS v2 [19] database is the second version of the database
collected using a Canon EOS 5D at distances of 3–10 m. The data-
base contains 11,102 color images from 261 subjects and is the lar-
gest database collected for irises in the visible spectrum.

Venugopalan and Savvides [20] investigate unconstrained iris
acquisition and recognition using a single pan-tilt-zoom camera.
The apparatus acquires images at a distance of 1.5 m from the sub-
ject, yielding an iris diameter in the range of 150–200 pixels. Face
detection is used to localize the position of the user and track the
user’s movements. Active Shape Models are applied for localization
of facial landmarks. The camera captures the face when the user is
detected. The authors claim that the proposed system eliminates
the need for calibration adjustments prior to acquisition. The hard-
ware entirely consists of Commercial Off-The-Shelf equipment.
Experiments are conducted on 12 test subjects using the proposed
apparatus to demonstrate the efficacy of the system.

McCloskey et al. [21] explore the problem of capturing sharp iris
images from subjects in motion. Images are captured using the
computational photography flutter-shutter technique. Instead of
capturing an image with traditional motion blur, the shutter is
opened and closed several times during capture in order to effect
invertible motion blur. Following automated blur estimation and
de-blurring, de-convolution is used to estimate the sharp image
from the captured image. Multiple synthetic experiments are per-
formed on the Iris Challenge Evaluation dataset. Motion-blurred
capture and deblurring is simulated and compared to the original
images. The results with synthetic images illustrate the potential
upper bound of the performance of the system.

Venugopalan et al. [22] present the design of an acquisition
system for non-cooperative subjects. The equipment consists of
Commercial-Off-The-Shelf hardware and an infrared sensor. The
authors incorporate velocity estimation and focus tracking mod-
ules for acquisition so that images may be acquired from subjects
on the move as well. For mobile subjects, a sensor is included
with a wide angle lens to track the subject’s movement during
the acquisition process. While the subject is moving, their speed
is estimated and used to continuously tune the focus of the
system.

Connaughton et al. [23] compare three commercially available
iris sensors – the LG TD100, the LG IrisAccess 4000, and the
IrisGuard AD100. The performance of each sensor is analyzed and
single-sensor as well as cross-sensor experiments are performed
to investigate how factors such as changes in environmental condi-
tions and pupil dilation affect sensor performance, in what manner
cross-sensor performance corresponds to single-sensor perfor-
mances, whether relative sensor performance is consistent across
matching algorithms, and whether a ranking of sensors can be
established. The sensors are evaluated using three iris recognition
algorithms – one of the three matchers is an in-house implementa-
tion by the authors, while two are commercially available systems.

Tankasala et al. [24] design and implement a hyper-focal imag-
ing system for acquiring iris images in the visible spectrum. The
proposed acquisition system uses a DSLR Canon T2i camera to cap-
ture videos of the ocular region at multiple focal lengths. The video
frames are fused in order to yield a single image with higher pre-
cision. The authors use a combination of focus bracketing with lat-
eral white LED lighting to overcome problems associated with RGB
iris exposure and adjustment of the depth-of-field. It is observed
by the authors that the proposed hyper-focal imaging system pro-
duces better results compared to fixed focus systems.

Boehnen et al. [25] present a standoff biometric system having
an operation range of up to 7 m. The proposed system captures
high quality 12 megapixel Near Infrared videos allowing for mul-
ti-sample and multi-modal comparisons. The proposed system is
used to capture data from 50 subjects in order to demonstrate
the efficacy of the system. Experiments show a 100% rank-1 recog-
nition performance for the system on standoff recognition of non-
cooperative subjects. Recognition experiments for multiple sam-
ples achieve an improvement of 24% in Rank-1 accuracy.
However, a non-significant improvement is observed for multi-
modal recognition.

Ortiz et al. [26] present a dilation-aware iris enrollment scheme
based on assuming a linear relationship between match scores and
dilation difference. The paper analyzes several eye images per sub-
ject to determine the optimal choice based on pupil dilation.
Several observations are made by the authors: the optimal image
for enrollment has a pupil dilation near the mean or median
depending on the measure used for dilation difference, minimiza-
tion of the difference in dilation between pairs of images is more
critical even though a constricted pupil has a greater pixel resolu-
tion of the iris, accounting for dilation in the enrollment phase
overcomes a few differences introduced due to difference in dila-
tion. Experiments performed on image samples collected by the
authors over the period 2008–2013 show the effectiveness of the
enrollment scheme.

Table 1 summarizes the acquisition methods in the literature.
The current acquisition systems are generally constrained towards
capturing images at a distance of approximately one feet (Fig. 3).
To increase the usability of iris as a biometric, researchers are
attempting to design hardware that can capture good quality
images without requiring significant cooperation from the user.
Sarnoff is designing one such system that can function as a ‘‘walk
through’’ recognition system. The possibility of combining infor-
mation in the ocular region is also prompting researchers to
explore the possibility of moving towards iris recognition in the
visible spectrum. The acquisition of ocular images in the visible
spectrum serves the purpose of permitting the extraction of multi-
ple ocular modalities from the same image.

2.1.2. Pre-processing
In the last five years, iris recognition has moved towards explor-

ing real-word large-scale applications. Due to the unconstrained
nature of image acquisition in current research, quality assessment
and preprocessing of biometric samples has become an important
challenge for researchers. Different types of imperfect images may
be acquired which require quality assessment based pre-process-
ing techniques to be applied to them prior to recognition (Fig. 4).
Bharadwaj et al. [27] discuss different image features utilized in
the literature for quality assessment, and the application of rele-
vant pre-processing methods. This sub-section expands upon

Acquisition SegmentationPreprocessing Feature
Extraction

Matching

Fig. 2. Flow of information in an iris biometric system.
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several important techniques that have been used to process the
image before the iris texture is segmented from the image.
Table 2 summarizes these pre-processing techniques.

Liu et al. [29] propose a novel image deblurring method to
enhance the quality of defocused and motion blurred iris
images. Each image is classified as either defocused or motion
blurred. The initial point spread function is refined based on
selected gradient maps in conjunction with a noise model.
Image deconvolution is performed by adopting a more accurate
noise model. Extensive experiments are performed on a dataset
collected for the purpose of the study. The experiments demon-
strate that the proposed technique improves accuracy and
robustness, and enhances the effective capture range of iris
recognition systems.

Ortiz and Bowyer [30] posit that the incorporation of pupil dila-
tion information obtained during iris image acquisition results in a
noticeable improvement in recognition rates. The study examines a
strategy to improve system performance by incorporating a dila-
tion-aware enrolment phase that selects eye images based on their
respective dilation ratio distribution. Experimental results from
the study show that there is significant improvement when pupil
dilation is accounted for during the enrolment phase as compared
to the random scenario.

Robustly estimating iris masks is one of the key factors to
achieve high iris recognition rates. Li and Savvides [31] propose
to use Figueiredo and Jain’s Gaussian Mixture Models (FJ-GMMs)
to model distributions of regions on iris images for robust occlu-
sion estimation. The authors find that Gabor Filter Bank (GFB)
descriptors provide the most discriminative information.
Simulated Annealing technique is applied to optimize the parame-
ters of GFB to achieve a high recognition accuracy. Experimental
results show that the masks generated by the proposed algorithm
increase recognition accuracy on both the ICE dataset as well as the
UBIRIS v1 dataset, verifying the effectiveness of the method. The
major contributions of the work are: formulating a feature set
which is an optimal combination of visual features, sequential
optimization of the parameters for GFB, the requirement of a single
training image from each class to obtain satisfactory results for

Table 1
Summary of iris acquisition research.

Authors Database Summary

Daugman [14] In-house
collection

Proposed NIR imaging (750–950 nm) for iris
recognition

Venugopalan
and Savvides
[20]

In-house
collection

Proposed apparatus that acquires images at
1.5 m from subject. Face detection is used to
localize user’s face. Tracks face and segments
iris region

McCloskey et al.
[21]

ICE [28] Images captured using computational
photography flutter-shutter technique.
Deconvolution is used to estimate sharp
image from captured image

Venugopalan
et al. [22]

In-house
collection

Hardware constitutes Commercial Off The
Shelf (COTS) components. Incorporate
velocity estimation and focus tracking
modules. Subject’s speed is estimated and
used to tune focus of system

Connaughton
et al. [23]

In-house
collection

Compare three commercially available iris
sensors. Performance of each sensor is
analyzed. Experiments are performed to
investigate how external factors affect
acquisition

Tankasala et al.
[24]

In-house
collection

Capture video sequence of ocular region at
multiple focal lengths. Fuse frames to yield
single image. Combination of focus
bracketing and lateral white LED lighting is
used

Boehnen et al.
[25]

In-house
collection

System captures high quality Near Infrared
videos. Significant improvements in
recognition on increasing images are
reported

Ortiz et al. [26] In-house
collection

[Acquisition] Dilation-aware iris enrollment
scheme; shows that optimal dilation is near
the median or mean if relationship between
match scores and dilation is linear

Fig. 3. Iris images captured with different acquisition devices.
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estimating iris masks, and the computational efficiency associated
with the evaluation of the Gaussian function.

Sgroi et al. [32] propose a diffuse illumination system to reduce
specular reflections in iris template acquisition. For the purpose of
this study, the authors collected a database of more than 8000
images using an LG IrisAccess 4000 sensor and an in-house appa-
ratus assembly to cause diffusion of the infrared illumination.
Matching algorithms are used to study the resulting diffused image
templates. The authors observe that an (in-house) recognition sys-
tem performs significantly better for diffused illumination com-
pared to normal illumination. This observation supports the
authors’ hypothesis regarding diffused illumination as a hardware
level pre-processing technique.

Tan and Kumar [33] propose to model the relationship between
the bit consistency of iris codes and the accompanying noise using
a non-linear relationship. The noise perturbed bits are modeled
using small weights while consistent bits are given high weights.
The noise estimation can be regarded as a process of determining
the inconsistent bits in iris codes. The relationship between the iris
code stability and the accompanying noise in feature space is mod-
eled as a power-law. The effectiveness of the proposed iris match-
ing strategy is demonstrated using 1D log Gabor filters on the

CASIA v4-distance and UBIRIS v2 datasets. The proposed method
results in an improvement of the rank-1 accuracy for the CASIA
v4-distance database by 13.9%, and an improvement of the rank-
1 accuracy for the UBIRIS v2 database by 47.2%.

2.1.3. Segmentation approaches
Iris sensors acquire not only the iris but also some surrounding

regions. Depending on the acquisition device, the amount of neigh-
boring regions varies. Therefore, it is important to have a robust iris
segmentation algorithm. Fig. 5 shows some sample iris images
with significantly different amount of acquired ocular areas that
require adaptive and robust segmentation algorithms.

Daugman [14] initially proposed circular edge detection using
an integro-differential operator to segment the iris boundaries.
However, this model assumed circular iris and only accounted
for occlusion due to upper eyelid and specular reflections. It did
not consider non-circular boundaries and occlusion due to eye-
lashes. Since then iris recognition has steadily moved towards
unconstrained acquisition and matching. This has led to the need
for a robust class of segmentation schemes which can tolerate
occluded, noisy, and off-angle iris images. In 2007, Daugman [16]
proposed a new segmentation scheme, using active contour

Fig. 4. Iris images which require pre-processing.

Table 2
Summary of iris preprocessing techniques.

Authors Database Summary

Liu et al. [29] In-house collection Image is classified as either defocused or motion blurred. PSF is refined based on gradient maps and noise model. Image
deconvolution is performed

Ortiz and
Bowyer [30]

Notre Dame Iris [28] Implement dilation-aware enrolment phase to choose image based on empirical dilation ratio distribution

Li and Savvides
[31]

ICE, UBIRIS v1 [18] GMMs used to model probabilistic distributions of valid and invalid regions on iris images. Simulated Annealing technique
is applied to optimize parameters

Sgroi et al. [32] In-house collection Propose diffuse illumination system. Matching algorithms are used to study diffused image templates
Tan and Kumar

[33]
CASIA v4 [34], UBIRIS
v2 [19]

Noise treated as inconsistent fragile bits. Model relationship between iris codes and noise. Features are extracted using 1D
log Gabor filters
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models, which is capable of modeling non-circular non-concentric
irises and pupils. The improved segmentation scheme also
accounted for variations in the boundaries due to eyelashes
occluding the iris pattern.

Tan et al. [35] present an efficient algorithm for noisy non-coop-
erative iris segmentation. An eight-neighbor connection based
clustering scheme is proposed to cluster iris image pixels in differ-
ent regions. The genuine iris region is extracted, and the non-iris
regions are explicitly identified and excluded to reduce the possi-
bility of mis-localizations on non-iris regions. An integro-differen-
tial constellation is applied to enhance global convergence for
pupillary and limbic boundary localization. A horizontal rank filter
and an eyelid curvature model are applied to account for eyelashes
and shape irregularity, respectively. The eyelash and shadow
occlusions are detected through a learned prediction model based
on intensity statistics between iris regions. Exhaustive experi-
ments are performed on the UBIRIS v1 database [18] and the algo-
rithm performs optimally among all submissions to the NICE v1
Contest [36].

Zhang et al. [37] propose the removal of local gradient extremes
for robust iris segmentation. Orthogonal ordinal filters are applied
to obtain a robust gradient map. Hough transform is used to local-
ize the iris region on the gradient map. A Semantic Iris Contour
Map is generated by combining spatial information of the coarse
iris location and the gradient map. A new convergence criterion
and an adaptive parameter are proposed by the authors to improve
the performance of the level set method. Experiments performed
on the ICE dataset and CASIA v3 dataset show the effectiveness
of the proposed method.

Roy et al. [38] apply a parallel game-theoretic decision making
procedure to segment iris images. The proposed algorithm inte-
grates region based segmentation and gradient based boundary
localization methods and fuses the complementary strengths of
each of these individual methods. Experiments are performed on
the ICE 2005 dataset [39], the CASIA v3 dataset, and the UBIRIS

v1 dataset [18]. The reported genuine accept rate at a false accept
rate of 0.001% is 98.23% for ICE, 97.18% for CASIA v3, and 97.61% for
UBIRIS v1 databases. The genuine accept rate on the combined
dataset is 97.47%.

Pundlik et al. [40] describe a non-ideal iris segmentation
approach based on graph cuts. The image texture gradient is used
to discriminate between eyelash and non-eyelash regions. The
intensity differences between the iris, the pupil, and the back-
ground are utilized for the segmentation process. The image is
modeled as a Markov Random Field and energy minimization is
achieved via graph cuts to assign each image pixel to iris, pupil,
background, or eyelash classes. The authors further model the iris
region as an ellipse to refine the segmented region. Experiments
performed on the WVU Non-Ideal Iris Database and the WVU
Off-Angle Iris Database demonstrate significantly improved results
as compared to prior state-of-the-art approaches.

Zuo and Schmid [41] propose a methodology for robust iris seg-
mentation, which is directed towards treating non-ideal irises. The
pupil is pre-processed and segmented by fitting an ellipse to the
pupil boundary. In order to be able to reliably detect the iris
boundary under the condition of uneven illumination, a contrast-
balancing pre-processing step is introduced, which is followed by
segmentation of the iris. An ellipse based model is used to contour
the estimated boundaries for pupil and iris regions, which demon-
strates the robustness of the algorithm towards evaluating non-
frontal iris images. Exhaustive experiments performed on the
CASIA v3, ICE, WVU, and WVU-OA datasets confirm the effective-
ness of the algorithm compared to prior methods.

De Marisco et al. [42] present an iris segmentation method, ISIS

(Iris Segmentation for Identification Systems). Pre-processing is
performed by applying a posterization filter to the image. Canny
filtering and Taubin method for circle fitting are applied to the
image to locate the pupil boundary. The image is then transformed
to polar coordinates to be able to identify the boundary between
the iris and the sclera. The authors compare the results of the

Fig. 5. Sample images showing variations in the difficulty of segmentation of iris images.
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proposed system with prior state-of-the-art for segmentation as
well as recognition. Experiments are performed on the UBIRIS v1
and CASIA v3 databases. It is observed that ISIS improves the per-
formance of Daugman’s approach to recognition. The run-time of
the algorithm also suggests that ISIS supports high resolution iris
images, with a higher precision compared to a stand-alone imple-
mentation of Daugman’s approach.

Proença [43] makes significant contributions to segmenting
degraded iris images in the visible wavelength. The author sug-
gests that the sclera is the most easily distinguishable part of the
eye in degraded images, and proposes a novel feature that mea-
sures the proportion of sclera in each direction. Specific color com-
ponents are used to calculate local features for segmentation of the
sclera. The iris is segmented by exploiting the mandatory adja-
cency between the iris and the sclera and using the proportion-
of-the-sclera as a feature to localize the iris. A constrained polyno-
mial fitting procedure is used after classification to compensate for
classification inaccuracies. Experiments on the UBIRIS v2 dataset
show that the entire procedure runs in deterministically linear
time with respect to the size of the image, making the procedure
suitable for real-time applications.

Koh et al. [44] propose a robust localization method that uses
an active contour model and a circular Hough transform to seg-
ment the pupillary boundary and the limbic boundary.
Histograms are generated from the binarized image. The center
of the pupil is estimated based on the histograms. Iris segmenta-
tion based on active contour models is performed to correct for
possible false estimates of the pupil center. The pupillary bound-
ary is computed by applying the Hough transform. The Hough
transform is used again for localizing the limbic boundary.
Experiments performed on 100 images from the CASIA v3 data-
base show that the proposed method is accurate and approxi-
mately 2.5 times faster than Daugman’s approach in segmenting
the iris.

Du et al. [45] propose a video based non-cooperative iris image
segmentation scheme. The method incorporates a quality filter to
eliminate images that do not consist of a valid iris and employs a
coarse-to-fine segmentation scheme, which uses a direct least-
squares ellipse fitting function to model the deformed pupil and
limbic boundaries. A window gradient based method is employed
to remove noise in the iris region. Experiments are performed on
images acquired from a customized iris acquisition system set up
to collect non-cooperative iris video images. Experimental results
suggest that the proposed method can segment irises accurately
from non-cooperative iris video images.

Tan and Kumar [46] tackle the problem of segmenting iris
images acquired at-a-distance using visible spectrum imaging.
Iris features are extracted by exploiting localized Zernike
moments. Sclera features are extracted using discriminant color
features. The authors also propose a robust approach for post-pro-
cessing of classified iris image pixels. Such post-classification is
shown to be effective in reducing iris segmentation errors by over-
coming limitations in the classification stage. Rigorous experi-
ments performed on the UBIRIS v2 database corroborate the
usefulness of the proposed approach. An improvement of 42.4%
in the average segmentation error is achieved. The best of the seg-
mentation results are obtained using feed-forward network (FFN)
classifier. However, they require rigorous training. The authors
suggest that the SVM classifier is used as an alternative to the
FFN. However, the performance achieved using FFN is reported to
be marginally superior to SVM.

Tan and Kumar [47] present an iris segmentation framework
which uses multiple higher order dependencies among local pixels
to robustly classify the eye region pixels into iris or non-iris regions
using visible wavelength as well as Near Infrared imaging. Face and
eye detection modules are incorporated in the framework to

provide localized eye region from facial image for segmentation.
The authors develop robust post-processing operations to effec-
tively tackle the noisy pixels caused by misclassification. One of
the novel features of the proposed approach is its ability to seg-
ment iris images acquired under varying illumination conditions.
Experimental results presented suggest significant improvement
in segmentation errors over other previously proposed approaches
on the UBIRIS v2, the FRGC, and the CASIA v4 databases. The exper-
imental results suggest improvement in the iris segmentation error
by 32–47% for these databases.

Sutra et al. [48] present an iris segmentation technique that
finds the contour of the iris by optimizing a cost function which
maximizes the summation of gradients. An optimal path is
searched for, joining points of significant gradients, using the
Viterbi algorithm. The iris is pre-processed by anisotropic smooth-
ing before computing the gradient by a Sobel filter. The Viterbi
algorithm is first applied at a high resolution to find precise con-
tours. It is applied again to retrieve coarse contours to improve
the accuracy of the normalization. The authors conduct experi-
ments on the ICE 2005, the ND-IRIS-0405, and the CASIA v3 data-
sets. The results indicate state of the art performance for the
proposed algorithm.

Iris edge detection techniques suffer from generation of a large
number of noisy edge points in non-ideal scenarios. Li et al. [49]
propose a robust iris segmentation method based on specific edge
detectors to overcome this problem. Intensity, gradient, and tex-
ture features are used to characterize edge points on the iris
boundary. The AdaBoost algorithm is employed to learn six class-
specific boundary detectors for localization of pupillary bound-
aries, limbic boundaries, and eyelids. The inner and outer bound-
aries of the iris are localized using weighted Hough transforms.
Finally, the edge points on the eyelids are detected and fitted as
parabolas using robust least squares fitting. Experiments per-
formed on the CASIA Iris-Thousand database demonstrate the effi-
cacy of the proposed method.

Fernandez et al. [50] present a method for iris segmentation
which focuses on NIR iris recognition in low-constrained environ-
ments. The algorithm is based on energy minimization of one-di-
rectional graphs. Pupil localization is achieved by a sliding
average pattern, model fitting by direct search, and defocusing of
irrelevant regions. The Herta Iris Database [51] is collected for iris
segmentation. The authors claim accurate segmentation is possible
in presence of clutter, lenses, glasses, motion blur, and variable
illumination using the proposed methodology.

Tan and Kumar [52] present an efficient iris segmentation
approach based on the cellular automata using the grow-cut algo-
rithm. The authors propose that the computational simplicity of
the approach is its advantage compared to prior methods, without
any compromise in recognition performance. Experiments per-
formed on the UBIRIS v2, the FRGC, and the CASIA v4 databases
achieve an average improvement of 34.8%, 31.5%, and 31.4%,
respectively, in the average segmentation error. The results indi-
cate the superiority of the proposed segmentation approach in
terms of computational complexity as well as recognition perfor-
mance for segmentation of distantly acquired iris images.

Uhl and Wild [53] propose a novel two-stage algorithm for
localization and mapping of the iris texture. The work aims to
achieve robust segmentation independent of the acquisition sen-
sor. An adaptive Hough transform is applied at multiple resolutions
to estimate the approximate position of the iris center. A subse-
quent polar transform detects the first elliptic pupillary boundary,
and a subsequent ellipsopolar transform finds the second bound-
ary based on the results of the detection of the first boundary.
Experiments conducted on the CASIA VI database, the CASIA-L
database, and the Notre Dame ND-IRIS-04055 database confirm
the robustness of the proposed method.

I. Nigam et al. / Information Fusion 26 (2015) 1–35 7



Li et al. [54] present an efficient segment search algorithm that
takes advantage of shape information and learned iris boundary
detectors. An efficient segment search algorithm, which utilizes
both shape information and Learned Boundary Detectors (LBD),
designed for assembling pupillary contour segments. The assem-
bled pupillary contour segments exclude (most) noises and can
be accurately fitted as an ellipse. The limbic boundary points are
detected by the LBD. Unseen boundary points are inferred in the
eyelid occluded regions. Extensive experiments on a challenging
subset of the CASIA v4 database demonstrate that the proposed
method achieves state-of-the-art iris localization accuracy.

Alonso-Fernandez and Bigun [55] present an iris segmentation
algorithm based on the Generalized Structure Tensor (GST).
Circular complex filters encode local orientations. The response is
penalized in case of disagreement of local orientations of the image
with those of the filter. The algorithm accommodates a certain
degree of non-circularity through the control of the filter width.
Experimental results reported on the CASIA v3 Interval database
show the efficacy of the proposed algorithm, either performing at
par with or outperforming prior segmentation methods. The GST
segmentation methodology is used by Alonso-Fernandez and
Bigun [56] to evaluate iris segmentation performance by employ-
ing quality measures such as defocus blur, motion blur, edge con-
trast, edge circularity, grayscale spread, and occlusion.
Experimental results on the BioSec baseline corpus [57] show that
local measures are generally better predictors of the segmentation
performance. The authors also evaluate the impact of quality com-
ponents in the performance of two iris matchers based on Log-
Gabor wavelets and SIFT key-points. Recognition experiments with
the two matchers indicate that segmentation and matching perfor-
mance may not necessarily be affected by the same factors.

Tan and Kumar [58] develop a segmentation approach which
exploits a random walker algorithm to estimate coarsely seg-
mented iris images. The input image is preprocessed to enhance
the quality of the image. The image is segmented using the random
walker algorithm followed by post-processing techniques to refine
the coarsely segmented result. The iris is modeled as a graph such
that each pixel corresponds to a node and the linkage between any
two pixels corresponds to the edge of a graph. Experiments are
performed to measure segmentation accuracy using the proposed
algorithm. The algorithm demonstrates improvements of 9.5%,
4.3%, and 25.7%, respectively, for the UBIRIS v2, the FRGC, and
the CASIA v4 databases. The authors also exploit periocular fea-
tures to study their effect on improvements in the recognition per-
formance. The joint segmentation and combination strategy
achieves average improvements of 132.3%, 7.45%, and 17.5% on
the UBIRIS v2, FRGC, and CASIA v4 databases.

Jillela and Ross [59] explore the suitability of using iris texture
for biometric recognition in mobile devices. The study focuses on
iris segmentation in the visible spectrum, while succinctly
describing the complete iris recognition process. The authors uti-
lize the color component analysis approach, the Zernike
moments approach, the multi-stage refinement approach, the
boundary regularization approach, and the clustering and seman-
tic rules approach. The paper summarizes the challenges and
future directions associated with iris segmentation in the visible
spectrum.

Hu et al. [60] propose an algorithm for color iris segmentation
that demonstrates the utility of sparsity induced by l1-norm in
overcoming noise and degradations in color iris images. The limbic
and pupillary boundary and eyelids are fitted using l1-norm regres-
sion on a set of estimated boundary points. A coarse iris region is
determined by super-pixel based correlation histogram method;
the technique is capable of locating iris region in images captured
at a distance in the presence of noise such as specular reflection

and glasses. Experiments performed on the UBIRIS v2 and FRGC
databases show the effectiveness of the proposed segmentation
method.

Table 3 presents a summary of iris segmentation; it also shows
that the growing interest in unconstrained recognition ensures
active interest in optimizing segmentation schemes. Researchers
are also actively pursuing the development of novel non-linear
algorithms to meet the demands of the increasing complexity of
iris biometric systems.

2.1.4. Feature extraction methods
The extraction of useful features from the iris has been one of

the most well-explored areas in iris biometrics. Daugman [14] pro-
posed the use of 2D Gabor filters to capture the textural informa-
tion present in iris codes. The DC response to the Gabor filter
output is suppressed, which allows for robustness towards illumi-
nation. The Gabor filter, due to its intrinsic properties, has recipro-
cal effects on Fourier transforms without any change in functional
form. This motivates researchers to actively pursue Gabor filters
and other robust texture modeling techniques. The diversification
of acquisition modalities has allowed a number of feature descrip-
tors to be explored for accurate recognition. The remainder of this
section outlines the feature extraction techniques which have been
developed for iris recognition in the last five years.

Sunder and Ross [65] investigate the use of macro-features for
iris matching and retrieval, and their feasibility as a soft biometric
trait. The macro-features correspond to structures such as moles,
freckles, nevi, melanoma. Given a macro-feature image, the goal
is to determine if it can successfully retrieve the associated iris
from the database. The Scale-Invariant Feature Transform descrip-
tor is used to represent the macro-features. Experiments are per-
formed on high resolution images taken from the Miles Research
Database [66]. Data captured in visible spectrum suggests that
these structures may be used in addition to traditional features
for the purpose of iris retrieval.

Zhou and Kumar [67] propose an approach for the extraction
and modeling of iris features using Localized Radon Transforms.
The dominant orientation from these Radon transform features is
used to generate a compact feature representation. The similarity
between two feature vectors is computed using matching dis-
tances. The feasibility of the proposed method is evaluated on
the IITD Iris Image Database v1 and the CASIA v3 Database. The
algorithm achieves equal error rates of 0.53% and 2.82% on IITD
v1 and CASIA v3 databases respectively. It is worth noting that
the proposed approach requires significantly smaller computa-
tional operations for feature extraction.

Scotti and Piuri [68] present an adaptive design methodology
for reflection detection and localization systems in irises. The
authors propose that a set of features is extracted from the iris pat-
tern and an inductive classifier is used to perform the reflection
segmentation. A significant contribution of this work is the intro-
duction of the use of the Radial Symmetry Transform (RST) as a fea-
ture. The images in the dataset used for the study are created using
a number of different sensors. Experimental results on the dataset
establish that the RST is a robust feature to detect and localize
reflections in a computationally fast manner. The low computa-
tional complexity of the proposed system indicates that it is suit-
able for real-time applications.

Hosseini et al. [69] explore a noise-resistant pigment melanin
based feature descriptor for iris recognition in visible light. The
algorithm encodes the pattern of pigment melanin in visible light,
independent of the iris texture in near infrared spectrum. Three
features are proposed: Radius Vector Function, Support Function,
and Tangent Angle Function to extract shape information from
the pigment melanin. Each iris is captured in near infrared as well
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as visible light. The fusion of features extracted from the two spec-
tra leads to higher classification accuracy. The authors assert that
visible light imaging can be considered for iris, where the patterns
of pigment melanin are highly meaningful and can produce valu-
able encoded data for classification and complementary features
to NIR images.

Roy et al. [70] propose a framework to extract features from
non-ideal irises for recognition. A region based active contour
model is deployed to segment the irises. The Modified
Contribution-Selection Algorithm, an efficient feature ranking
scheme, is used to select a subset of informative features without
affecting the recognition rate. Experiments are performed on the
UBIRIS v1, the ICE 2005, and the WVU Non-ideal datasets to vali-
date the proposed scheme.

A bit in an iris code is termed fragile if its value changes across
codes representing different images of the same iris. Hollingsworth
et al. [71] explore the possibility of improving iris recognition per-
formance by masking these fragile bits. Rather than ignoring fragile
bits completely, discriminative information from the fragile bits is
considered towards classification of irises. It is observed by the
authors that the locations of fragile bits tend to be consistent
across multiple iris codes belonging to the same eye. A metric ter-
med as the Fragile Bit Distance (FBD) is established, which quanti-
tatively measures the coincidence of the fragile bit patterns in two
iris codes. Low FBDs are associated with genuine comparisons
between two iris codes. High FBDs are associated with impostor

comparisons. It is observed that score fusion of FBD and
Hamming distance works optimally for recognition compared to
Hamming distance alone. The multiplication of FBD and
Hamming distance reduces the equal error rate of the proposed
recognition system by 8%, a statistically significant improvement
from prior research. Proença [72] extends the concept of fragile bits
by modeling the relationship between inter-class iris images. The
concept of bit discriminability is proposed, which takes into account
both the intra-class and the inter-class variabilities. The utility of
the different regions of the iris is compared on the basis of bit dis-
criminability. Experiments are performed on the UBath, FRGC,
UBIRIS v2, and CASIA v4 databases to test the efficacy of the pro-
posed descriptor.

Zhang et al. [73] describe the Deformable DAISY Matcher (DDM)
for robust iris feature matching. Dense DAISY descriptors are
extracted to represent regional iris features, which are robust
against intra-class variations in iris images. The descriptor for each
pixel consists of the weighted orientation gradient of the pixel
itself as well as information from its neighbors. The DDM tech-
nique is robust to noise and illumination changes. A set of iris
key points are localized on the feature map. The algorithm replaces
fixed point matching with dynamic point matching. Thus, it is tol-
erant to misalignment caused due to deformation. All the extracted
key points are matched for deformed iris matching. Experimental
results on the CASIA Iris database demonstrate that DDM outper-
forms prior state-of-the-art iris recognition methods.

Table 3
Summary of iris segmentation approaches.

Authors Database Summary

Tan et al. [35] UBIRIS v1 [18] Clustering based coarse iris localization. Localization of pupillary and limbic boundaries and localization of
eyelids is performed

Zhang et al. [37] ICE 2005, CASIA v3 [61] Robust gradient map is used for iris localization. SIMC generated using spatial information and coarse iris
location. Segmentation achieved by level set method

Roy et al. [38] ICE 2005, CASIA v3, UBIRIS
v1

Game-theoretic decision making procedure to segment irises. Integrates region based segmentation and
gradient based boundary localization

Pundlik et al. [40] WVU Non-Ideal [62], WVU
Off-Angle [63]

Image is modeled as MRF. Energy minimization is achieved via graph cuts. Model iris as ellipse to refine
segmentation

Zuo and Schmid [41] CASIA v3, ICE, WVU, WVU-
OA

A combined scheme for pre-processing, pupil segmentation, iris segmentation, and occlusion detection is
reported

De Marisco et al. [42] CASIA v3, UBIRIS v1 Pre-process using posterization filter. Canny filtering is applied to locate pupil boundary. Image is transformed to
polar coordinates to identify boundary between iris and sclera

Proença [43] UBIRIS v2 Sclera and iris are segmented and classified. Polynomial fitting is applied
Koh et al. [44] CASIA v3 Center of pupil is estimated based on histograms. Pupillary boundary is computed using Hough transform. Apply

Hough transform again to localize limbic boundary
Du et al. [45] In-house collection Method incorporates quality filter to eliminate non-valid images. Employs coarse-to-fine segmentation scheme

and window gradient based method to remove noise
Tan and Kumar [46] UBIRIS v2 Iris features extracted using localized Zernike moments and sclera features are extracted using color features. A

robust approach is proposed for post-processing classified iris pixels
Tan and Kumar [47] UBIRIS v2, FRGC v1 [64],

CASIA v4
Multiple higher order local pixel dependencies are used to robustly classify eye region pixels into iris or non-iris
regions. Post-processing operations effectively tackle noisy pixels

Sutra et al. [48] ICE 2005, CASIA v3, ND-
IRIS-0405

Pre-processing is performed using anisotropic diffusion. Gradients are computed using Sobel filter and Viterbi
algorithm is applied to find contours

Li et al. [49] CASIA v4 Locate edge points on iris boundary. Boundary detectors for pupillary, limbic, eyelid boundaries are learned and
iris boundaries are localized. Eyelid edge points are modeled as parabolas

Fernandez et al. [50] Herta Iris [51] Based on energy minimization of one-directional graphs. Pupil localization is achieved by sliding average
pattern, model fitting, and defocusing of irrelevant regions

Tan and Kumar [52] UBIRIS v2, FRGC, CASIA v4 Iris segmentation approach based on cellular automata using grow-cut algorithm is proposed. Reduces
computational complexity while increasing recognition performance

Uhl and Wild [53] CASIA Iris, ND-IRIS-0405 Adaptive Hough transform estimates iris center. Polar transform detects first elliptic pupillary boundary.
Ellipsopolar transform is used to find second boundary

Li et al. [54] CASIA v4 Assembled pupillary contour segments are fitted as an ellipse. Limbic boundary points detected by LBD. Unseen
boundary points are extrapolated in eyelid occluded regions

Alonso-Fernandez
and Bigun [55]

CASIA v3 Pupil boundary is searched for and sclera is detected. Eyelid occlusion is computed and the iris is localized

Alonso-Fernandez
and Bigun[56]

BioSec Baseline Corpus[57] Study local and global quality measures for iris segmentation performance. Explore correlation between factors
affecting segmentation and matching

Tan and Kumar [58] UBIRIS v2, FRGC, CASIA v4 Image is segmented using random walker algorithm. Coarsely segmented iris is refined and modeled as a graph
Hu et al. [60] UBIRIS v2, FRGC l1-norm induces sparsity allowing coarse iris localization, limbic and pupillary boundary segmentation. Eyelid

fitting and post-processing are performed
Jillela and Ross [59] – Explore suitability of using iris texture for recognition in mobile devices. Study focuses on iris segmentation in

visible spectrum
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Bastys et al. [74] propose three new iris descriptors that are
based on multi-scale Taylor expansion of the iris texture. The first
descriptor is a phase based iris representation which uses bina-
rized multi-scale Taylor expansion phase information. The second
feature is based on local extrema of the multi-scale Taylor expan-
sion. Approximations of the first and second order Taylor coeffi-
cients are averaged over multiple scales. The most significant
local extrema of the Taylor expansion is used to define the most
significant iris texture variations. The third method is a combina-
tion of the first and the second approach, combining the advan-
tages of local maxima features with the phase based features.
The efficacy of the proposed descriptors is validated using the
CASIA v2, the ICE 2005 and the MBGC-3l datasets. Experiments
show that the third descriptor is found to outperform prior state-
of-the-art recognition systems.

Proença and Santos [75] propose a scheme based on partition-
ing the iris into disjoint regions to extract color and shape informa-
tion. A color constancy technique is used for regularization. Data is
normalized into a polar coordinate system of constant dimensions,
from which global MPEG 7 color descriptors are extracted.
Experiments are performed on the NICE II competition dataset.
The data encoding and matching techniques of the proposed algo-
rithm are radically different from prior state-of-the-art
approaches. The authors obtain significant improvements in per-
formance when the proposed algorithm is fused with other
approaches using weighted sum rule.

Kumar et al. [76] investigate automated recognition of distantly
acquired iris images using sparse representation of orientation fea-
tures based on Local Radon Transform (LRT). Iris representation is
modeled as a sparse coding solution based on a LRT dictionary,
which is computed using a convex optimization approach. The iris
recognition and verification performances for the distantly
acquired iris images are evaluated using baseline 1-D log-Gabor fil-
ter and monogenic log-Gabor filter based approach, respectively.
Experimental results are reported on the publicly available
UBIRIS v2 dataset, the FRGC dataset, and the CASIA-Iris v4 data-
base. The experimental results, for both verification and recogni-
tion, achieve significantly improved performance over baseline
approaches.

Li and Wu [77] propose a method to represent iris texture by
combining several image-cues in non-ideal imagery. The inner
and outer iris boundaries, eyelids, and specular highlights are
localized to generate the normalized iris image and binary mask
image. Log-Euclidean Covariance Matrices (LECM) are utilized to
model the local correlation of multiple cues: spatial coordinates,
intensities, 1st-order and 2nd-order image derivatives. Ordinal
measures are used to extract the order relationship of LECM fea-
tures at different positions. The matching algorithm is based on
Hamming distance. Equal error rates of 0.1809 and 0.0008 are
reported for experiments performed on UBIRIS v2 dataset and
CASIA v3 Iris Image dataset, respectively.

Rahulkar and Holambe [78] present a shift, scale, and rotation-
invariant technique for iris feature-representation and decision-
level fusion. Iris features are extracted on the basis of a class of
Triplet Half-Band Filter Bank (THFB). A novel flexible k-out-of-n
post-classifier is explored to achieve robustness against intraclass
iris variations. The proposed approach is observed to be capable
of handling artifacts, including segmentation error, eyelid/eye-
lashes occlusion, eyelid shadow, head-tilt, and specular reflections.
Experimental results using the UBIRIS, MMU1, CASIA-Iris v3, and
IITD v1 Iris databases show the effectiveness of the proposed
approach in comparison to prior recognition algorithms. The pro-
posed method provides low computational complexity which
makes it feasible for online applications, and experimental results
present an improvement in recognition accuracy for the proposed
scheme under non-ideal environmental conditions.

Zhang et al. [79] propose a Perturbation-enhanced Feature
Correlation Filter (PFCF) for robust iris matching. PFCF is performed
on Gabor filtered iris images to encode both local and global fea-
tures. Instead of using Hamming Distance, Gabor images are
matched using correlation filters. Extensive experiments per-
formed on the CASIA v4 and ICE 2005 databases demonstrate that
the proposed method outperforms state-of-the-art methods in
terms of robustness against deformation, rotation, occlusion, blur-
ring, and illumination changes in iris images. This novel method
produces higher intra-class and inter-class discrimination com-
pared to traditional distance measures.

da Costa and Gonzaga [80] present a method to measure the
dynamic movement of the human pupil and iris. The authors pro-
pose to capture images of one eye using NIR illumination while
illuminating the other eye using visible-light. This methodology
intends to capture information about the manner in which the
human eye reacts to light. The results demonstrate that these fea-
tures have significant discriminatory information. An average iden-
tification accuracy of 99.1% is obtained using the Euclidean
distance measure on a dataset collected for the purpose of the
study. An accuracy comparison between Daugman’s algorithm
and the proposed method suggests that the dynamic features pre-
sented in the paper provide comparable performance. The tests
demonstrate that in addition to recognizing a person, the proposed
method also authorizes the validation of certain attributes which
the traditional methods are not able to do, such as to check if the
input image being analyzed is from a living iris or not by determin-
ing if the subject to be validated responds to the illumination stim-
uli applied.

Liu and Li [81] study iris recognition based on tensor decompo-
sition of Scale Invariant Feature Transform (SIFT) descriptors. A
normalized iris image is divided into patches, each of which is rep-
resented by a SIFT descriptor. The low-dimensional features are
encoded to binary codes by comparing with the mean value of
every dimension. Iris matching is performed by counting the num-
ber of binary codes in agreement. The proposed method is vali-
dated on the UBIRIS v2 and CASIA-Iris v4 datasets.

Kumar and Chan [82] develop an approach for iris recognition
using hypercomplex and sparse representations of unwrapped iris
images. The orientation of local iris texture elements is extracted
using a binarized dictionary of oriented atoms. The iris representa-
tion as quaternionic sparse coding is solved using a convex opti-
mization strategy. The performance of this descriptor is
evaluated on the UBIRIS v2 database. The quality of images in
the UBIRIS v2 database is quite low, with an average estimated
diameter of approximately 122 pixels. However, results indicate
an improvement of 30% in rank-1 recognition over previously stud-
ied sparse representation approaches.

Zhang et al. [83] explore a color feature for iris classification in
several different color spaces. The proposed feature, the iris color
Texton, combines a pixel value in RGB, HSI, and LAB color spaces
as a color feature. The image is represented by a histogram of the
learnt iris color Texton vocabulary. The proposed method is robust
to illumination variation. Extensive experiments performed on the
UBIRIS v1, the UBIRIS v2, and the NICE II competition datasets indi-
cate that the proposed iris color Texton indicates advantages for
iris image classification based on only color information.

Wang et al. [84] propose a Robust Regularized Linear
Programming feature selection model. The algorithm learns a com-
pact ordinal feature set for iris recognition. A large margin loss
function is adopted to learn a robust model. The discriminative
information of each feature is considered to remove noise. The
model is solved using the Simplex algorithm. Experiments con-
ducted on the CASIA-Iris-v4 database show that the proposed
method outperforms other state-of-the-art feature selection
methods.
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Nguyen et al. [85] show that feature-domain super-resolution is
superior to pixel-domain super-resolution towards improving
recognition performance of biometric systems. A framework is pre-
sented to perform super-resolution in the non-linear Gabor feature
domain to improve the recognition performance of biometric sys-
tems. The authors employ non-linear 2D Gabor based features,
which boost the recognition performance by capitalizing on the
feature-domain super-resolution approach and the highly discrim-
inant nature of Gabor features. Experiments conducted on the
MBGC dataset confirm the validity of the proposed approach,
demonstrating superior performance compared to existing linear
approaches.

Zhang et al. [86] decompose iris images into lowpass compo-
nents and bandpass components using Non-Subsampled
Contourlet Transform (NSCT). Geometric features are extracted in
bandpass components based on keypoint detection to align
deformed iris patterns. Ordinal features are extracted from the
lowpass component to characterize the ordinal measures of local
iris regions. The proposed algorithm utilizes the shift-invariant,
multi-scale, and multi-directional properties of the NSCT function
efficiently. Match score level fusion is applied to the local features
and keypoint features. Extensive experiments on the CASIA-Iris v4
and ICE 2005 databases demonstrate the effective performance of
the proposed method.

Sun et al. [87] investigate texture analysis and propose a gen-
eral framework for iris image classification. A nascent texture pat-
tern representation method called Hierarchical Visual Codebook
(HVC) is proposed to encode the texture primitives of iris images.
The proposed method is an integration of the Vocabulary Tree
method and the Locality-constrained Linear Coding method. The
HVC adopts a coarse-to-fine visual coding strategy and provides
a sparse representation of iris texture. An iris image database with
four types of fake iris patterns, the CASIA-Iris-Fake database [88], is
developed for the purpose of this experiment. Extensive experi-
ments show that the proposed classification method achieves
state-of-the-art performance for iris liveness detection, race classi-
fication, and coarse-to-fine iris identification.

Sun et al. [89] describe a formulation for ordinal feature selec-
tion with successful applications to iris and palm-print recognition.
The objective function of the proposed feature selection considers
the misclassification error of intra-class and inter-class matching
samples and the weighted sparsity of ordinal feature descriptors.
The Multi-lobe Ordinal Filter (MOF) is proposed to analyze the
ordinal measures of the images. MOF has a number of positive
and negative lobes which are specially designed in terms of dis-
tance, scale, orientation, number, and location so that the filtering
result of MOF measures the ordinal relationship between image
regions covered by the positive and negative lobes. Ordinal feature
selection is formulated as a linear programming problem so that a
solution can be efficiently obtained even on a large-scale feature
pool and training database. Extensive experimental results for iris
recognition are performed on the CASIA v4 dataset. The experi-
ments demonstrate that the proposed formulation is advantageous
over existing feature selection methods.

Tan and Kumar [90] propose a non-linear approach to simulta-
neously account for local consistency of iris bits and the overall
quality of the weight map for iris recognition. The algorithm penal-
izes the fragile bits while simultaneously rewarding more consis-
tent bits. A Zernike moment based phase encoding of iris
features is deployed to achieve a stable characterization of local iris
features. Experiments performed on subsets of UBIRIS v2, FRGC,
and CASIA v4 databases ascertain the performance of the proposed
iris matching strategy.

Tan and Kumar [91] propose a strategy for accurate iris recogni-
tion from distantly acquired face or eye images under less con-
strained environments. The algorithm randomly generates and

exclusively assigns a set of coordinate-pairs to each subject in
the system. This geometric key uniquely defines the manner in
which iris features are encoded from the localized iris region pix-
els. The iris encoding scheme involves computationally efficient
operations on the locally assembled image patches using the loca-
tions defined by the geometric key. The geometric key also accom-
modates scale and rotation changes in the localized iris region. The
binary encoding of the local iris features allows efficient computa-
tion of their similarity using Hamming distance.

Nigam et al. [92] propose a novel iris recognition approach
which takes into account the structure of the iris, variations in illu-
mination and rotation, occlusion, and noise. The acquired iris
image is segmented and normalized and the primary occlusion
mask is computed to identify non-occluded pixels. The authors
propose the Relational Measure feature that considers both radial
and circumferential information. LBP descriptor is applied in a
block-wise manner to the iris and dissimilarity scores are fused
at the score level. Experimental results from the CASIA v4 and
the IITK Iris databases demonstrate the efficacy of the proposed
system.

The successful development of the above-mentioned feature
extraction methods (Table 4) has allowed non-ideal iris recognition
systems to become practically feasible. These algorithms permit
the optimal functioning of matching algorithms, which we discuss
in the next sub-section.

2.1.5. Matching and indexing methods
Advancements in the field of iris recognition have led to the

adoption of a number of feature representations for iris informa-
tion. Consequently, matching techniques have also evolved with
this diversification in iris representation. The large-scale deploy-
ment of iris recognition systems has also led to increasing interest
in efficient indexing and retrieval of biometric templates.
Generally, Gabor based features have been used for iris representa-
tion, and Hamming Distance is proposed to match these features.

Rathgeb et al. [97] present a generic approach to optimize the
time complexity of iris recognition algorithms. The analysis of
bit-error occurrences in the gallery of iris-codes is used to estimate
a global ranking of bit positions, based on which the probes are
rearranged, i.e. iris-codes are reordered. The most reliable bits
are arranged in the first part of the iris-code, which allows a more
efficient partial and incremental matching. Based on the outcome
of partial matching, candidates with high Hamming Distance
scores are rejected dynamically. Experiments on the CASIA-Iris
v3 dataset suggest that the proposed algorithm can be applied to
any iris-code recognition system and is capable of reducing bit
comparisons significantly to about 5% of iris-code bits.

Gadde et al. [98] propose a novel method for indexing iris
images based on the assignment of a code to every entry in the
database, a small subset of which is retrieved based on the query
code. The normalized gray-scale iris image is converted to a binary
image and the Burrows Wheeler Transform is utilized due to its
property of sorted context. A horizontal n-bit pattern is chosen
and the locations of these patterns are found in the iris image.
The normalized iris image is divided into vertical segments and,
based on the maximum occurrence of the n-bit pattern among
these segments, the iris image is assigned an index value based
on the segment number. Experiments on the CASIA v3 Iris
Database indicate a 99.83% Hit Rate at a Penetration Rate of
17.23% for the proposed method.

Vandal and Savvides [99] discuss the architecture of a paral-
lelized iris template matching implementation using inexpensive
Graphics Processing Units to achieve matching rates of approxi-
mately 44 million iris image template comparisons per second.
The utilization of a CUDA architecture facilitates the parallel imple-
mentation of iris template matching with embedded rotational
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invariance. The authors observe that the computation performance
gain achieved by the GPU implementation of the shift-invariant
Hamming distance is less for larger template sizes, which is sug-
gested to occur due to shared memory constraints reducing the
number of gallery templates that can be processed by each system
thread block. Experiments demonstrate that the proposed imple-
mentation is capable of achieving accelerations outperforming
state-of-the-art uni-core CPUs by a factor of 14.

Proença [100] propose a method that follows the syntactical
pattern recognition paradigm. Each pattern (iris template) is
regarded as a set of simpler sub-patterns. A pattern is expressed
by its primitives and by the relationships between them.
Symbolic data structures are used for the pattern representation.
A probe pattern is labeled as a match if its representation is iso-
morphic with a pattern stored in the gallery. Experiments are per-
formed on the CASIA and UBIRIS datasets. The proposed approach
performs almost as well as Daugman’s approach on the high-qual-
ity images in the CASIA database; it outperforms Daugman’s

approach on the challenging UBIRIS dataset which consists of
images taken in non-ideal conditions.

Irises have unique visual patterns and features that vary across
regions. This leads to significant differences in the robustness and
the distinctiveness among feature codes derived from different iris
regions. To effectively utilize this distinct information, Dong et al.
[101] propose a personalized iris matching strategy using a class-
specific weight map learned from training images of the same iris
class. The weight map reflects the robustness of an encoding algo-
rithm on different iris regions by assigning an appropriate weight
to each feature code for iris matching. Such a weight map, which
is trained by sufficient iris templates, is convergent and robust
against noise. Comprehensive experimental results performed on
the CASIA-Iris v3 dataset, the UBath Iris dataset, and the ICE2005
database demonstrate that the proposed strategy is effective for iris
matching and greatly improves the performance of iris recognition
systems. The advantages of the personalized iris matching strategy
are observed to be more significant for poor quality images.

Table 4
Summary of iris feature extraction approaches.

Authors Database Summary

Sunder and Ross
[65]

Miles Research Database
[66]

Investigate macro-features (moles, freckles, nevi, melanoma) as soft biometric traits. SIFT descriptor is used to
represent the macro-features

Zhou and Kumar
[67]

IITD v1 [93], CASIA v3 LRT exploits the orientation information from the local features. Dominant orientation is used to generate feature
representation. Similarity is computed using matching distances

Scotti and Piuri
[68]

In-house collection RST features are extracted. Inductive classifier segments iris

Hosseini et al. [69] UBIRIS v1, UBIRIS v2,
CASIA v1 [94]

Shape features are extracted from pigment melanin in visible light

Roy et al. [70] UBIRIS v1, ICE 2005, WVU
Non-ideal

Active contour model is deployed to segment non-ideal iris. A Modified Contribution-Selection Algorithm selects
informative features without affecting recognition performance

Hollingsworth
et al. [71]

In-house collection Improve recognition by masking fragile bits. Fragile Bit Distance is established to measure coincidence of fragile bit
patterns

Zhang et al. [73] CASIA v4 DAISY descriptors are extracted from iris. Iris key points are localized on feature map. Extracted key points are
matched

Bastys et al. [74] CASIA v2 [95], ICE v1,
MBGC [96]

A fusion of multi-scale Taylor expansion phase information and its local extrema is proposed as a hybrid descriptor

Proença and
Santos [75]

NICE v2 Segment iris into coherent regions. Color and shape information is extracted. Perform fusion with prior state-of-the-
art approaches

Kumar et al. [76] UBIRIS v2, FRGC, CASIA v4 Recognition of distantly acquired irises using LRT based orientation features. Iris is modeled as sparse coding
solution based on computationally efficient LRT dictionary

Li and Wu [77] UBIRIS v2, CASIA v3 Iris boundaries and eyelids are localized. Log-Euclidean Co-variance Matrices are used to model correlation of spatial
coordinates, intensities, 1st and 2nd-order image derivatives

Rahulkar and
Holambe [78]

UBIRIS, CASIA v3, IITD Iris Features are extracted based on Triplet Half-Band Filter Bank. Post-classifier system achieves robustness against
intra-class iris variations

Zhang et al. [79] CASIA v4, ICE 2005 Propose Perturbation-enhanced Feature Correlation Filter for robust iris matching. Correlation filters are utilized for
Gabor images matching

da Costa and
Gonzaga [80]

In-house collection Capture information about manner in which eye reacts to light. Allows the validation of attributes such as to check if
input image being analyzed is from a living iris

Liu and Li [81] UBIRIS v2, CASIA v4 Normalized iris image is divided into patches, represented by SIFT descriptors. The low-dimensional features are
encoded to binary codes. Matching is performed by counting binary codes in agreement

Kumar and Chan
[82]

UBIRIS v2 Hyper-complex sparse representation is used. Orientation of iris texture is extracted using dictionary of oriented
atoms. Iris representation as quaternionic sparse coding problem is solved using convex optimization strategy

Zhang et al. [83] UBIRIS v1, UBIRIS v2, NICE
v2

Color Texton is combined with pixel value in multiple color spaces. The image is represented by histogram of the
learnt Texton vocabulary

Wang et al. [84] CASIA v4 Large margin loss function is adopted to learn robust model. Information from each feature is considered to remove
noise. The model is solved using Simplex algorithm.

Nguyen et al. [85] MBGC Feature-level super-resolution in non-linear Gabor feature domain is performed. Compared to classic pixel-level
super-resolution approaches

Zhang et al. [86] CASIA v4, ICE 2005 Extract key-point features from bandpass component of iris images. Extract ordinal features from lowpass
component and perform match-score fusion

Sun et al. [87] CASIA Iris Fake [88] Hierarchical Visual Codebook integrates Vocabulary Tree and Locality-constrained Linear Coding. Adopts coarse-to-
fine visual coding strategy

Nigam et al. [92] CASIA v4 database & IITK
Iris database.

Propose Relational Measure feature and local binary pattern descriptor applied in block-wise manner. Dissimilarity
scores are fused at the score level

Sun et al. [89] CASIA v4 Perform ordinal feature selection; objective function considers misclassification error of intra-class and inter-class
matches. Multi-lobe Ordinal Filter is proposed to analyze ordinal measures of images

Tan and Kumar
[90]

UBIRIS v2, FRGC, CASIA v4 Propose non-linear approach to capture local consistency of iris bits and overall quality of weight map for
recognition. Zernike moment based phase encoding of iris features is deployed

Tan and Kumar
[91]

UBIRIS v2, FRGC, CASIA v4 Propose strategy for accurate iris recognition from distantly acquired images. Algorithm generates geometric key -
set of coordinate-pairs assigned to each subject
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Farouk [102] presents a new method for iris recognition based
on Elastic Graph Matching (EGM) and Gabor wavelets. The circular
Hough transform is used to determine iris boundaries. The seg-
mented irises are represented as labeled graphs; nodes are labeled
with jets and edges are labeled with distance vectors. An EGM
based similarity function is defined to account for the similarities
of individual jets and the relative distortion of the graphs.
Experiments performed on the CASIA Iris v3-Interval and UBIRIS
datasets show that the EGM based method is an effective tech-
nique for iris matching.

Gyaourova and Ross [103] present a novel approach for gener-
ating fixed-length codes to index biometric databases. The index
code is constructed by computing match scores between a probe
image and a fixed set of reference images. Candidate identities
are retrieved based on the similarity between the index code of
the probe image and those of the identities in the database. In
order to present indexing results on a substantially large dataset,
the authors assemble a chimeric multimodal dataset using the
FERET face database and the WVU Fingerprint database [62].
Experiments suggest that the proposed method results in an aver-
age reduction of 84% in the search space at a hit rate of 100%. The
authors suggest that index codes for multiple modalities may be
fused to improve the accuracy of indexing.

Dey and Samanta [104] propose an efficient indexing mecha-
nism to retrieve iris biometric templates using Gabor energy fea-
tures. The Gabor energy features are calculated from the iris
texture at different scales and orientations to generate an index
key. An index space is created based on the values of index keys
of all the subjects present in the gallery. A candidate set is retrieved
from the index space based on the values of the query index key.
The authors conduct experiments on the Bath dataset, the CASIA-
Iris v3 database, the CASIA-Iris v4 dataset, the MMU2 database,
and the WVU Iris database. Experiments substantiate that the pro-
posed approach is capable of retrieving biometric data with a
higher hit rate and lower penetration rate compared to contempo-
rary approaches present in the literature.

Tsai et al. [105] propose a novel possibilistic fuzzy matching
strategy, which provides a robust matching scheme for two sets
of iris feature points. The proposed methodology provides an alter-
native feature extraction method to avoid unwrapping the iris tex-
ture pattern by extracting features from the iris image directly. A
nonlinear normalization model is adopted to provide accurate
positioning before matching. The authors also present an effective
iris segmentation method to refine the detected inner and outer
boundaries to smooth curves. The proposed matching algorithm,
which is based on the possibilistic fuzzy matching method, com-
pares a pair of feature points by considering not only their local
features but also the relative positions to all the other points.
Experiments performed on the CASIA-Iris v3 database yield a cor-
rect identification rate of 99.97%. For similar experiments per-
formed on the UBIRIS v1 database, a correct identification rate of
97.19% is achieved.

Several algorithms have been established to effectively tackle
the UBIRIS v2 dataset as part of the NICE II contest. Tan et al.
[106] propose a method for visible light iris matching by using
multiple characteristics of the iris and eye images. The method
consists of preprocessing, iris data matching, eye data matching,
and multimodal fusion of the information from the two regions.
Ordinal measures and color analysis are used for matching iris
data, and texton representation and semantic information are used
for matching eye data. The four matching scores obtained from
these descriptors are used in a robust score level fusion strategy
to generate a dissimilarity measure of the images. Extensive exper-
iments on the UBIRIS v2 database and the NICE v2 dataset demon-
strate the efficacy of the proposed method. Wang et al. [107]
present an iris recognition framework which is learned by applying

AdaBoost on a 2D Gabor based feature set. Irises are segmented
and normalized and divided into different patches according to
the normalization applied. A feature set is constructed based on
2D-Gabor for the entire iris as well as its constituent patches.
Finally, two mutually exclusive AdaBoost frameworks are learned
for accurately and inaccurately segmented irises separately.
Santos and Hoyle [108] explore a novel fusion of multiple recogni-
tion approaches. There are primarily two forms of recognition
techniques proposed by the authors. In the first approach, wavelet
based feature extraction methods are applied to the iris and com-
plemented with a zero-crossing representation. In the second
approach, LBP and SIFT features are extracted from the ocular
region outside the iris. It is shown that the fusion of these features
increases the robustness of the algorithm on degraded data.

Shin et al. [109] propose several steps for classifying noisy iris
images. First, the proposed technique discriminates the eye as
either left or right on the basis of eye-lash distribution and specu-
lar reflection. Second, the separability between the classes is
increased by using color information. Third, a 1D Gabor filter is
applied to individual color channels. The obtained Hamming dis-
tance scores are combined on the basis of the weighted sum rule
to produce a final matching score. Li et al. [110] present a weighted
co-occurrence phase histogram for representing the local charac-
teristics of texture patterns in irises. A weighting function is intro-
duced to enable the phase angle of the image gradient at a pixel to
contribute smoothly to several adjacent histogram bins. The
authors assert that this accounts for the uncertainty of the phase
angle estimation caused due to noise and illumination changes.
De Marisco et al. [111] propose a Noisy Iris Recognition
Integrated Scheme. The algorithm combines two local feature
extraction techniques, linear binary patterns and discriminable
textons, which independently characterize relevant regions of the
iris. The authors investigate possible adaptations of the individual
approaches and combine the two methods using a weighted mean
scheme at the score level. Li and Ma [112] present a robust algo-
rithm based on Random Sample Consensus for localization of
non-circular iris boundaries. The authors describe an image regis-
tration method based on the Lucas–Kanade algorithm. A sequential
forward selection method is used to select a subset of Gabor filters.
Experiments suggest that recognition performance is greatly
improved even with a very small number of filters. Szewczyk
et al. [113] propose a reverse biorthogonal wavelet transform
based recognition system. The blue color channel is removed and
the image is mono-chromaticized. Eyelid occlusions and reflections
are removed. Eye-lashes are eliminated and the resulting iris is his-
togram equalized. A 324-bit template is obtained using reverse
biorthogonal wavelets. It is compared using a similarity score to
the samples in the gallery.

In case of unconstrained data acquisition, iris images are
degraded and the match-score distributions are poorly separated.
Proença [72] propose an indexing method for degraded iris images
which operates at the iris code level, i.e., after the feature encoding
process, making it compatible with different feature encoding
strategies. Gallery iris codes are decomposed at multiple scales
and based on the most reliable components at each scale, the posi-
tion in an N-ary tree is determined. At the time of retrieval, the
probe iris code is decomposed similarly, and the distances between
multi-scale centroids are used to penalize paths in the tree. As a
result, only a subset of the branches is traversed up to the last level.
The main contributions of the proposed method are that it is com-
patible with multiple signature encoding methods, it outperforms
the state-of-the-art approaches when poor quality data is used to
test the system, and it has a reduced computational cost compared
to traditional exhaustive searches. The CASIA-Iris v4 database is
used to predict performance in scenarios that correspond to preva-
lent iris recognition systems. Experiments on the UBIRIS v2
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database report that the proposed algorithm outperforms all other
systems, which indicates promising results for unconstrained iris
acquisition and indexing.

Liu et al. [114] propose a code-level scheme for matching low
resolution and high resolution iris images. The statistical relation-
ship between the binary code of a low resolution iris image and a
binary code corresponding to the latent high resolution iris image
is established based on an adapted Markov network. The Markov
network also produces a weight mask which measures the reliabil-
ity of each bit in the enhanced iris code. Experimental results on
the Quality-Face/Iris Research Ensemble database [115] demon-
strate that code-level information fusion performs significantly
better than prior pixel-level, feature-level, and score-level
approaches for recognition of low resolution iris images.

Tomeo-Reyes and Chandran [116] investigate the impact of
fused decisions on an iris recognition system. The authors explore
multi-part fusion schemes, multi-sample fusion schemes, and an
integration of these two schemes. The effectiveness of the pro-
posed architecture is evaluated under the effects of miosis and
mydriasis. Experiments conducted on a dataset collected by the
authors show that statistically significant robustness towards such
obfuscation attacks is achievable using their proposed architecture.

Liu et al. [117] attempt to learn a distance metric to transform
heterogenous iris matching results (low-resolution and high-reso-
lution) towards homogeneous (high-resolution and high-resolu-
tion) results. The proposed learning procedure utilizes label and
local information to create the mapping. Ideal pairwise similarities
are defined on the training set. A Mahalanobis distance is learnt by
minimizing the divergence between the matching results mea-
sured by the target Mahalanobis distance and the matching results
defined ideally. Extensive experiments performed on the Multi-PIE
dataset [118] show that the proposed method outperforms prior
state-of-the-art metric learning methods.

The large-scale deployment of iris recognition systems around
the world has prompted researchers to work towards efficient
and cost effective template matching techniques. Table 5 presents
a summary of these techniques. The advent of specialized memory
systems also motivates the community to utilize these systems to
optimize template retrieval rates with the growing need for such
features in large-scale systems.

2.1.6. Covariates
Iris biometrics has witnessed a significant diversification in the

attempts to solve the problem of recognition in unconstrained
environments (Fig. 6). Apart from studying iris recognition in the
ideal scenario, biometrics community is actively pursuing prob-
lems such as the recognition of iris images which may not be
orthogonal to the plane of signal acquisition. The problem of tem-
plate spoofing has been explored for several different scenarios,
with emphasis on the effect of contact lenses. The possibility of iris
template aging has been studied. A few attempts have also been
made to study cross-spectral iris recognition and cross-sensor iris
recognition. This sub-section exhaustively summarizes the
above-mentioned iris covariates. Table 6 also provides a concise
summary of these covariates.

2.1.6.1. Off-angle iris recognition. Off-angle iris recognition refers to
matching rotated iris images that are captured when iris and cam-
era are not orthogonal. For example, such images are encountered
when the face and iris acquisition sensor are significantly out of
plane with respect to each other.

Chou et al. [121] propose a solution to the non-orthogonal view
assumption (NOVA) iris recognition problem. The authors develop
a custom camera to acquire four-spectral iris images to increase
the robustness of the segmentation results. A circle rectification
process is introduced to convert a non-orthogonal iris image into

an approximately orthogonal iris image. The paper proposes an
edge-type iris descriptor which characterizes an iris pattern with
multi-scale edge-type maps, which are matched using an ensemble
of weak classifiers. The equal error rate for the proposed system for
iris images acquired at off-axis angles ranging from "30" to +30" is
0.04%. However, the high computation time required for process-
ing 4-channel images, custom set-up required for acquisition,
and the non-consideration of eye shadows presents several chal-
lenges to NOVA recognition.

Abhyankar and Schuckers [122] present a Biorthogonal Wavelet
Network (BWN) based method to perform non-ideal iris
recognition. A BWN is developed and trained for each class,
where the non-ideal factors are adjusted by repositioning the
BWN. The wavelet representation comprises of 10,080 bits, which
is comparable to Daugman’s algorithm which uses 9600 bits.
Comprehensive experiments are performed on the CASIA, Bath,
Clarkson, MAE, WVU, and VIIT datasets. Along with real data, syn-
thetic iris images are generated by using affine and geometric
transforms. Tests are carried out on experimentally collected
off-angle data and synthetically generated data. Iris images that
are off-angle by up to 42" for synthetic data and by up to 45" for
experimental data are successfully recognized. The authors assert
that the proposed method does not require knowledge of the
angular orientation and may be used to account for other non-ideal
conditions such as noise and rotation.

Santos-Villalobos et al. [123] propose a novel eye model and a
method to reconstruct the off-angle eye to its frontal view. The
focus of the paper is to allow existing biometric techniques to
employ the proposed algorithm as a pre-processor to improve per-
formance of existing recognition techniques. An anatomically
accurate eye model and ray-tracing techniques are used to com-
pute a transformation function, which reconstructs the off-angle
iris to its frontal state. The authors study the limbus effect, which
is used to aid the development of the Oak Ridge National
Laboratory (ORNL) eye model and synthetic data is used to validate
the efficacy of the proposed biological model.

Li et al. [124] propose a feature-level solution to off-angle iris
recognition. Geometric features of corneal reflections are used to
classify iris images into five classes according to the off-angle ori-
entation of the iris. A linear programming based feature learning
method is used to select the most effective ordinal features for
each iris category. The off-angle iris image is recognized using
the ordinal feature template belonging to the corresponding iris
category. Experimental results indicate that the proposed solution
significantly outperforms other methods based on off-angle iris
recognition. An equal error rate of 2.41% is achieved on a subset
of the Q-FIRE database.

2.1.6.2. Iris recognition in spoofing scenarios. Baker et al. [125] study
iris recognition performance in the presence of contact lenses.
Several systems are used to evaluate the recognition performance
on the dataset collected by the authors for this study. The VeriEye
system is reported to perform better than other recognition sys-
tems. Matches involving images of soft contact lenses with letter
indicators or ill-fitting artifacts achieve a false reject rate about
eighteen times that of matches between images with no contact
lenses. Gas-permeable contact lenses cause a 50-fold increase in
the false reject rate on the VeriEye system. The authors suggest
that this degradation is primarily due to the distortion from the
displacement of the lens for the acquired images. It is observed
that intra-session images of a subject wearing cosmetic lenses
results in true accepts, whereas inter-session images do not match
well. These results indicate the importance of developing tech-
niques to detect and mitigate the contact lens effect.

Venugopalan and Savvides [126] explore methods to generate
alternate iris texture patterns for a subject to bypass a recognition
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Table 5
Summary of iris matching and retrieval algorithms.

Authors Database Summary

Rathgeb et al. [97] CASIA v3 Reorder bits, and dynamically reject high Hamming Distance score candidates
Gadde et al. [98] CASIA v3 Normalized image is divided into vertical segments. Based on occurrence of N-bit pattern among segments, iris

is assigned index value based on segment number using Burrows-Wheeler Transform
Vandal and Savvides

[99]
Not mentioned. Parallel implementation of template matching with embedded rotational invariance on CUDA architecture is

proposed
Proença [100] CASIA, ICE, UBIRIS Iris is regarded as a pattern, which is a set of simpler sub-patterns. Match occurs if pattern representation is

isomorphic with a pattern stored in gallery
Dong et al. [101] CASIA v3, UBath Iris [119],

ICE2005
Personalized iris matching strategy using class-specific weight map is learned from training images of an iris
class. Appropriate weight is assigned to each feature code for matching

Farouk [102] CASIA v3, UBIRIS Circular Hough transform is used for segmentation. Elastic Graph Matching based similarity function is used to
perform recognition

Gyaourova and Ross
[103]

FERET [120], WVU Finger-
print [62]

Generate fixed-length codes. Index code is constructed by computing match scores between probe and a set of
reference images. Candidate identities are retrieved based on the similarity between index codes

Dey and Samanta
[104]

UBath, CASIA v3, CASIA v4,
MMU2, WVU Iris

Gabor energy features are calculated from iris texture at different scales and orientations to generate index key.
Index space is created based on values of index keys of all gallery subjects

Tsai et al. [105] CASIA v3, UBIRIS v1 Non-linear normalization model provides accurate iris positioning. Segmentation method refines detected
inner and outer boundaries to smooth curves

Tan et al. [106] UBIRIS v2 Ordinal measures, color analysis are adopted for iris matching. Textons, semantic information are used for eye
matching. Matching scores obtained are used for score-level fusion

Wang et al. [107] UBIRIS v2 Iris is segmented and normalized. Features are constructed based on 2D-Gabor transform. Two independent
AdaBoost frameworks are learned for accurately and non-accurately segmented irises

Santos and Hoyle
[108]

UBIRIS v2 Wavelet based features are extracted from iris. Local descriptors are extracted from periocular region. Logistic
regression is applied to outputs of the two approaches

Shin et al. [109] UBIRIS v2 Identify eye as ‘‘left or right’’. Separability between classes is increased.1D Gabor filter is applied to individual
color channels. Hamming distance scores are combined using weighted sum rule

Li et al. [110] UBIRIS v2 Weighted Co-occurrence Phase Histogram represents local characteristics of texture patterns. Weighting
function allows every pixel’s phase angle to affect several histogram bins

De Marisco et al.
[111]

UBIRIS v2 Combines two local feature descriptors, Linear Binary Patterns, and discriminable textons. Individual methods
are combined using weighted mean scheme at score level

Li and Ma [112] UBIRIS v2 Random Sample Consensus is used for localization of iris boundaries. Image registration method is applied. A
subset of Gabor filters is used to enhance output

Szewczyk et al. [113] UBIRIS v2 Image is preprocessed and occluding artifacts are eliminated. 324-bit template is obtained using reverse
biorthogonal wavelet. Similarity score is used for matching

Proença [72] UBIRIS v2, CASIA v4 Gallery iris codes are decomposed at multiple scales. Position in N-ary tree is determined. Distances between
multi-scale centroids is used to penalize paths in tree for matching

Liu et al. [114] Q-FIRE [115] Statistical relationship between binary code of LR iris image and binary code of latent HR iris image is
established based on a Markov network

Tomeo-Reyes and
Chandran [116]

In-house collection Explore multi-part fusion schemes, multi-sample fusion schemes, and integration of these two schemes.
Effectiveness is evaluated under miosis and mydriasis

Liu et al. [117] Multi-PIE [118] Ideal pairwise similarities are defined on training set. Mahalanobis distance is learnt by minimizing divergence
between matching results and ideal results

Iris Covariates
Aging

Off-angle

Cross-sensorCross-spectral

Spoofing

Fig. 6. Some covariates in iris biometrics.
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system based on the iris bit code. A framework is developed which,
given a subjects iris code, can modify another subjects iris texture
to resemble the former. Features are identified in the former sub-
ject’s iris texture that discriminate it from the other iris. This

discriminating information is embedded into the other person’s iris
texture. This ensures that the iris feature extraction module
authenticates the hybrid pattern. The authors assert that spoof tex-
ture patterns generated by the proposed scheme generate the

Table 6
Summary of iris covariates’ research.

Category Authors Database Summary

Off-Angle Chou et al. [121] UBIRIS v5, CASIA v3 Circle rectification converts non-orthogonal iris to approximately
orthogonal. Edge-type multi-scale maps characterize iris pattern.
Matching is performed using an ensemble of weak classifiers

Abhyankar and Schuckers [122] CASIA, Bath, Clarkson [146], MAE and VIIT,
WVU

Biorthogonal Wavelet Networks (BWN) are trained. Non-ideal
factors are adjusted by repositioning BWN. Synthetic irises are
generated. Tests are performed on real and synthetic data

Santos-Villalobos et al. [123] In-house collection Human eye model and ray-tracing techniques are used to
compute transformation function that reconstructs the off-angle
iris to its frontal, non-refracted state

Li et al. [124] Q-FIRE Predict orientation of the iris and apply orientation-specific
template for preprocessing to perform classification

Spoofing Baker et al. [125] In-house collection Study effect of soft lenses and gas-permeable lenses towards
degradation of recognition performance. Use commercial off-the-
shelf recognition systems

Venugopalan and Savvides
[126]

ICE 2005 Attempt to bypass recognition system by generating alternate iris
texture patterns. Discriminatory features are identified in the
spoofed iris and embedded into the spoofing iris’ texture

Arora et al. [127] IIITD Iris Alcohol [127] Investigate effect of alcohol consumption. The pre-consumption
and post-consumption overlap between genuine and impostor
match scores increases by approximately 20%

Yadav et al. [129] IIITD CLI [128], ND-Contact Lens [147] Investigate the role of contact lenses in obfuscation of iris texture
and analyze the effect of contact lenses on the performance of iris
recognition

Gupta et al. [130] IIITD Iris Spoofing [130] Investigate iris recognition with respect to print spoofing attacks.
Plausibility of identity obfuscation and identity impersonation is
established

Komulainen et al. [131] Notre Dame Contact Lens Detection dataset Address unseen lens patterns present in iris recognition. Introduce
Binarized Statistical Image Features to capture difference in
textural information between images

Unconstrained Pillai et al. [133] ICE2005, ND-IRIS-0405, MBGC Propose quality measure that handles segmentation errors and
alignment variations. Treats different regions separately and
combines results depending on the quality of the region

Huang et al. [134] In-house collection Algorithm is proposed for segmentation that can handle variable
resolutions, illumination, and occlusion

Template
Aging

Rankin et al. [136] In-house collection Investigate change in irides with time. Feature extraction is
performed using 1D log-Gabor filter. Obtain information by
decomposition of iris into complex-valued phase coefficients

Fenker and Bowyer [135] In-house collection Iris template aging study over a time-lapse of 2 years. Investigates
degree to which template aging effect is related to pupil dilation
and contact lenses

Fenker et al. [137] In-house collection Investigate factors which contribute towards template aging.
Report change in pupil dilation, changes to enrollment and
matching as significant factors

Mehrotra et al. [139] ND-Iris-Template-Aging-2008–2010 [148],
ND TimeLapse-Iris 2012 [149]

Study whether fall in iris recognition performance occurs due to
age or covariates such as poor acquisition, presence of occlusion,
noise, and blur

Bergmüller et al. [138] In-house collection Study aging effects developed in digital image sensors over time.
Propose method to investigate sensor aging by simulative ageing
of iris images

Cross-Spectral Zuo et al. [140] WVU Multispectral [150] Non-linear adaptive model is proposed to use visible range iris to
predict value of corresponding NIR iris. Predicted value is
compared with real NIR iris using log-Gabor filter

Gong et al. [141] In-house collection Most suitable wavelength for iris recognition is found based on
amount of available texture information and matching
performance

Cross-Sensor Connaughton et al. [23] In-house collection Use three commercial iris sensors and three iris matching systems
to investigate impact of cross-sensor matching on system
performance in comparison to single-sensor performance

Arora et al. [142] IIITD Multi-Sensor [142],
Notre Dame Cross Sensor [151]

Features are extracted and classification model for iris sensor is
applied. Used to classify probe into a camera class. Selective
enhancement algorithm is applied for respective sensor models

Xiao et al. [143] Notre Dame Cross Sensor [151] Objective function minimizes misclassification error and achieves
sparsity in coupled feature spaces. Employs regularization model
based on half-quadratic optimization

Pillai et al. [144] ND Iris Dataset [145] Propose framework to learn transformations on iris biometrics.
Framework is applied to reduce distance between intra-class
samples and increase distance between inter-class samples
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same score response as that of the original iris. However, this
approach assumes that the feature extraction mechanism of the
iris matching scheme is known. Experiments performed on the
ICE 2005 database confirm the efficacy of the proposed algorithm.

Arora et al. [127] investigate alcohol consumption as a covariate
of iris recognition. The extent of change in iris images due to defor-
mation caused by dilation or constriction of the pupil is dynamic
and varies from person to person. The experiments performed on
the IIITD Iris Under Alcohol Influence (IUAI) database indicate that
if pre-consumption and post-consumption images are matched,
the overlap between genuine and impostor match score distribu-
tions increases by approximately 20%. These results suggest that
about one in five subjects under alcohol influence may be able to
evade iris matching. Hence, iris recognition of a person under influ-
ence of alcohol can be viewed as a form of attack on the integrity of
a biometric system.

Kohli et al. [128] investigate the role of contact lenses in obfus-
cation of iris texture and analyze the effect of contact lenses on the
performance of iris recognition using the IIITD CLI database, which
consists of images captured without lens, with transparent (pre-
scription) lens, and with color cosmetic lens. The work presents
an in-depth analysis of the effect of contact lenses on iris recogni-
tion performance. The results computed using VeriEye suggest that
color cosmetic lenses significantly increase the false rejection at a
fixed false acceptance rate. The authors also compare the perfor-
mance of existing lens detection algorithms across different lens
types and iris sensors. Yadav et al. [129] expand upon the prelimi-
nary investigation into the role of the presence of contact lenses,
particularly textured cosmetic lenses, as they pose a challenge
towards iris recognition due to obfuscation of the natural iris pat-
terns. At a false match rate of 1 in 1 million, textured contact lenses
can cause the false non-match rate to exceed 90%. Two databases,
the IIITD Iris Contact Lens database and the ND-Contact Lens data-
base, are employed to analyze the variations caused due to contact
lenses. The authors also present a novel lens detection algorithm
that can be used to reduce the effect of contact lenses. The proposed
approach outperforms other lens detection algorithms on the two
databases and shows improved iris recognition performance.

Gupta et al. [130] investigate iris recognition with respect to
print spoofing attacks. A print attack in iris recognition is as an
attack where the iris image is printed on a paper and scanned, or
a photo is captured using an iris scanner. This image is used by an
impostor to attack the iris recognition system. The authors study
print attacks with contact lens variations as the spoofing mecha-
nism. Experimental results on the IIITD Iris Spoofing database show
that print attacks and contact lenses, individually and in conjunc-
tion, can significantly affect inter-personal and intra-personal dis-
tributions. It is observed that identity obfuscation is very easy
with contact lenses and print attacks. The plausibility of identity
impersonation is also established. The authors suggest that image
descriptors such as LBP and HOG, if used together for the classifica-
tion approach, are a cost effective solution to iris spoofing.

Komulainen et al. [131] study the issue of addressing unseen lens
patterns while detecting contact lenses in iris recognition. The
authors study the effect of preprocessing techniques and introduce
a novel approach for contact lens detection using Binarized
Statistical Image Features (BSIF) to capture the difference in textural
information between iris image samples. Extensive experimental
analysis on the Notre Dame Contact Lens Detection dataset [132]
shows that the BSIF description extracted from preprocessed
Cartesian iris texture images provides promising generalization
capabilities across unseen texture patterns and multiple iris sensors.

2.1.6.3. Unconstrained iris recognition. Pillai et al. [133] propose a
unified framework based on random projections and sparse repre-
sentations for selection and recognition of iris images, which

simultaneously addresses the problems associated with uncon-
strained acquisition, robust matching, and privacy enhancement.
The proposed Sparsity Concentration Index quality measure han-
dles segmentation errors and alignment variations for recognition
using iris image videos. The proposed recognition algorithm treats
different regions separately and combines the results depending
on the quality of the region. The computational complexity of
recognition is greatly reduced as matching of the different regions
can be performed in parallel. Experiments performed on the ICE
2005 dataset, the Notre Dame ND-IRIS-0405 dataset, and videos
from the MBGC database indicate that the selection algorithm
can handle common distortions in iris image acquisition like blur,
occlusions, and segmentation errors. The paper introduces a qual-
ity based matching score, which outperforms existing fusion
schemes as demonstrated on the MBGC iris video dataset.

Huang et al. [134] propose a novel algorithm towards robust iris
recognition in less intrusive environments. The proposed algo-
rithm introduces a novel iris segmentation method that can handle
variable resolutions, variable illumination, and partial occlusion,
and a new feature encoding method that robustly treats non-ideal
iris images. The study suggests that image noise reduces accuracy
in low resolution images. The authors observe that the proposed
algorithm applied on low noise high-quality images, acquired
using a Digital Single-Lens Reflex camera, achieves state-of-the-
art performance on very low resolution images.

2.1.6.4. Iris recognition in presence of template-aging. Fenker and
Bowyer [135] report a template aging study on a dataset of 43 sub-
jects collected over 2 years. The authors also explore the degree to
which template aging may be related to pupil dilation and contact
lenses. The VeriEye and IrisBEE commercial systems are used to
evaluate recognition performance. Experiments are performed on
a dataset collected by the authors. The authors report that the tem-
plate aging effect does exist. Factors such as difference in pupil
dilation between images and presence of contact lenses are consid-
ered while evaluating the results of the study.

Rankin et al. [136] perform a study of high resolution irides to
investigate the degree of change that occurs in irides with time.
The authors capture iris data in intervals of 3 months and 6 months
using a specialized bio-microscope. Iris feature extraction is per-
formed using a 1D log Gabor filter applied to each row of the nor-
malized iris pattern to obtain information by decomposition of the
iris image into complex-valued phase coefficients. The experi-
ments measure failure rates resulting from the application of local
and non-local feature extraction techniques. The minimum
reported failure rate for local descriptor comparison is 20.3%, and
13.8% for non-local descriptor comparisons.

Fenker et al. [137] study the effects associated with template
aging in iris recognition. Iris images acquired from 2008 through
2011 using an LG 4000 sensor are used for the experiment.
Experimental results from the three-year time-lapse dataset sug-
gest that the False Non-Match Rate increases by 150% at a decision
threshold representing one in two million false matches. The
authors report that there are several factors which contribute
towards template aging such as age-related changes in pupil dila-
tion and changes in enrollment and matching schemes.

Mehrotra et al. [139] try to determine whether the shift in gen-
uine scores as reported in the above results can truly be attributed
to aging. Experiments are performed on the ND-Iris-Template-
Aging and ND-TimeLapse Iris datasets using VeriEye, a commercial
iris matcher. Experiments suggest that the increase in false rejection
is due to covariates such as poor acquisition, presence of occlusion,
noise, and blur. The quality values of the falsely rejected gallery-
probe pairs indicate that the quality of iris images taken from two
independent sessions are different in comparison to the genuinely
accepted pairs. Thus, even though results from the prior studies
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are correct in reporting an increase in false rejection over time, the
authors assert that this drop in matching performance is primarily
due to the presence of covariates, and not due to the aging of the iris
texture of the subjects. Bergmüller [138] study the aging effects
developed in digital image sensors over time. The authors introduce
a pixel model to study the effect, and an aging algorithm to create
the test database. The simulation parameters are estimated from
the aging effects observed of an iris scanner over a timespan of
4 years. Experimental results show that defects related to the sensor
affect the recognition rate of an iris recognition system.

2.1.6.5. Cross-spectral iris recognition. Zuo et al. [140] introduce an
adaptive method to create NIR channel images from color iris
images. A non-linear adaptive model is proposed which uses visi-
ble range iris images to predict the value of the corresponding
NIR channel iris image. The predicted value of the NIR channel is
compared with real NIR iris images using the classical log-Gabor
filter algorithm. Due to the predictive nature of the neighborhood
based model, the predicted NIR image is observed to become
over-smoothed compared to the original NIR image. Experiments
demonstrate that a well designed predictive mapping, which is
used to map a color image into a predicted NIR image is a promis-
ing approach to improve cross spectral iris recognition.

Gong et al. [141] investigate the existence of the most suitable
wavelength band for heavily pigmented iris recognition. A multi-
spectral acquisition system is designed for imaging the iris at nar-
row spectral bands in the range of 420–940 nm. The most suitable
wavelength for the recognition of heavily pigmented iris is found
based on the amount of available texture information as well as
the matching performance. Such analysis is required to understand
the texture from the structure and melanin of the iris that is
revealed across all wavelengths from 400 nm to 940 nm. This work
explores the possibility of finding a band of the electromagnetic
spectrum, in which more texture can be extracted from heavily
pigmented irises, beyond the wavelengths higher than 850 nm.
Experimental results suggest that 700 nm is the most suitable
wavelength for heavily pigmented iris recognition.

2.1.6.6. Cross-sensor iris recognition. Connaughton et al. [23] show-
case the issue of interoperability between iris sensors in large-scale
and long-term applications of iris biometric systems. The authors
use three commercial sensors and three matching systems to
explore the impact of cross-sensor matching on system perfor-
mance in comparison to single-sensor performance. The study
investigates the impact of several external factors on sensor perfor-
mance, including environmental conditions, order of the sensors,
and pupil dilation.

Arora et al. [142] address the increasing importance of sensor
interoperability for iris recognition. The authors propose a pre-pro-
cessing framework for iris sensor classification to address iris sen-
sor interoperability. The framework involves extraction of
features and learning of a classification model for iris sensor classi-
fication. The training model is used to classify the probe image into
one of the iris camera classes. Selective enhancement algorithms
are applied for respective sensor models, and the pre-processed
image is provided to the recognition algorithm. Two commercial
off-the-shelf recognition algorithms are used to study the effect of
the image enhancement techniques applied. Experimental results
on the IIITD Multi-Sensor Iris database and the Notre Dame Cross
Sensor database present a significant improvement in cross-sensor
iris recognition accuracy using the proposed approach.

Xiao et al. [143] propose a novel optimization model of coupled
feature selection for cross-sensor iris recognition. The objective
function of the proposed model minimizes misclassification error
and achieves sparsity in coupled feature spaces. This is achieved

by employing a novel l2,1 regularization model and an efficient
algorithm based on half-quadratic optimization. Experimental
results on the Notre Dame Cross Sensor Iris Database and an in-
house Cross Sensor database show that features selected by the
proposed method perform better than those selected by conven-
tional single-space feature selection methods such as Boosting
and regularization methods.

Pillai et al. [144] propose a machine learning technique to mit-
igate the problem of cross-sensor performance degradation by
adapting the iris samples from one sensor to another. A novel opti-
mization framework for learning transformations on iris biomet-
rics is developed. The framework is applied to iris samples to
reduce the distance between samples of the same class, and
increase the distance between samples of different classes. This
is achieved by constraining samples from different sensors to
behave in a similar manner in the transformed domain. The
learned transformations are represented using kernel functions.
Extensive experiments performed on iris data acquired from mul-
tiple sensors [145] demonstrate that the proposed method
improves the cross-sensor recognition accuracy. The authors assert
that the proposed solution leads to considerable improvement in
cross-sensor matching. The algorithm is robust to alignment errors
and is capable of handling real-valued feature representations.

2.1.7. Other iris recognition techniques
Boddeti and Kumar [152] challenge the limits of the operational

range of iris acquisition systems using phase modulation masks.
The authors investigate the feasibility of using unrestored wave-
front coded images for recognition as it reduces the computational
cost associated with image restoration. A custom phase mask is
designed by formulating an optimization problem for iris segmen-
tation and matching. Experiments are performed on images taken
from the ICE database using a simulated wavefront coded imagery
to study the results of Daugman’s IrisCode algorithm as well as cor-
relation-filter based iris recognition. The authors claim to achieve a
practical trade-off between accuracy and depth-of-field: a slight
degradation of accuracy results in an increase of the depth of the
field by a factor of approximately four.

In human performance evaluation on iris images, Stark et al.
[153] report results where subjects browse a set of 100 iris images
and group them based on similarity of overall texture appearance.
Five major iris texture categories and a natural categorization of
iris images into a small number of high-level categories are identi-
fied, which reflect the ethnicity of the subject. The iris texture cat-
egorization has potential application in creating indexing
algorithms to boost search for query templates in iris databases
as well as towards determining soft biometric traits of subjects.

Nguyen et al. [154] propose a signal-level fusion approach
which incorporates the quality score into a super-resolution based
iris recognition system. A novel approach for assessing the focus
level of the iris image is introduced. The score from focus of the iris
is combined with several other quality factors using the Dempster–
Shafer theory to produce one unified quality score. Experiments
conducted on the MBGC dataset show that the proposed approach
outperforms state-of-the-art signal-level and score-level fusion
approaches for recognition of less constrained irises. The fusion
technique takes advantage of multiple frames instead of simply
selecting the best quality frame.

Hollingsworth et al. [155] report on the similarity in the left and
right irises of individuals and in the irises of identical twins. It is
established that comparisons between left and right irises are sta-
tistically indistinguishable from comparisons of unrelated peoples
irises. The authors investigate how human observers view the
overall iris texture pattern. It is reported that even though iris
recognition systems observe no similarities in genetically identical
irises based on the texture details, human observers are able to
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detect similarities in genetically identical irises. The study suggests
that the examination of pairs of iris images by humans for forensic
purposes may be feasible.

Si et al. [156] propose several approaches to improve the overall
performance of iris recognition systems. The authors propose a
novel eyelash detection algorithm based on directional filters,
which achieves a low rate of eyelash misclassification. A multi-
scale multi-direction data fusion method is introduced to reduce
the edge effect of wavelet transformation produced during iris seg-
mentation. An iris indexing method based on corner detection is
also proposed to accelerate matching. Two dimensional filtering
is applied to iris features as it captures directional information
which is proposed to contain discriminatory information.
Experiments performed on the IITD v1 Iris database and CASIA-
Iris v1 database suggest that the proposed methods are more
robust, accurate and rapid compared with the present iris recogni-
tion algorithms.

Kong [157] present an algorithm to perform decompression of
IrisCode by exploiting the graph composed of the bit pairs present
in IrisCode and prior knowledge from iris image databases. In order
to remove artifacts, two post-processing techniques in the Fourier
domain are developed to remove interference and compression
artifacts. Decompressed iris images obtained from the WVU Iris
database and the UBIRIS v1 database are used to examine the pro-
posed algorithms. Experimental results show that the decom-
pressed iris images retain texture and the quality of the images
is observed to be roughly equivalent to a JPEG quality factor of
10. Further, iris recognition methods match the original and
decompressed images. The author asserts that if an attacker
obtains the original IrisCodes and the Gabor filter parameters,
the corresponding iris images can be compromised.

Rathgeb et al. [158] present a new strategy for comparing bin-
ary biometric templates. An improved iris-biometric comparator
is proposed, which utilizes the comparison scores estimated at
the time of template alignment in the training set. The proposed
iris-biometric comparator fits comparison scores to an algorithm-
dependent Gaussian function. For authentication, the scores are fit-
ted onto the Gaussian and the normalized fitting score is fused
with the minimal Hamming distance. Experiments are carried
out for different iris biometric feature extraction methods achiev-
ing significant improvements in recognition accuracy on the
CASIA-Iris v3 database.

Galbally et al. [159] propose a novel probabilistic approach to
reconstruct iris images from binary templates. The reconstruction
is performed by employing a genetic algorithm to optimize the
similarity between a given iris template and the iris template
which is being reconstructed. The authors also analyze the similar-
ity between the reconstructed synthetic iris image and the original
iris. The BioSecure Multimodal Database is used to verify the effi-
cacy of the proposed method. Experimental results indicate that
the reconstructed images are accurate enough to successfully
deceive a commercial matching system. The authors claim that
the possibility of reconstructing reasonably accurate irises using
their proposed method poses a challenge to the security of iris bio-
metric systems.

Sgroi et al. [160] present the results of an initial study to predict
the relative age of a person from their iris images. The authors con-
clude that such classification is possible at levels of accuracy signif-
icantly greater than random chance. The texture features and
classifier ensembles used are similar to those used by previous
researchers for the prediction of gender and ethnicity from iris tex-
ture images. Experiments performed on a dataset collected for the
purpose of the study show that iris texture can be used to classify
subjects by age range at an accuracy of 64%.

McGinn et al. [161] investigate the ability of human examiners
to determine if two iris images belong to the same person. The

authors collect a dataset from 93 subjects using a LG 4000 infrared
sensor. Human examiners perform matching with an average accu-
racy of approximately 91%. The level of accuracy increases to 96%
when examiners are confident regarding their decision. It is
reported that a majority of the incorrectly categorized image pairs
belong to twins. The most frequently misclassified authentic pairs
exhibit significant differences in pupil dilation between the two
images. The results also suggest that a fusion of human inter-
preters and automated iris recognition may be able to boost the
overall recognition performance.

2.1.8. Current research directions in iris recognition
Section 2.1 exhaustively discusses the direction taken by bio-

metrics researchers in iris recognition. The results reported in liter-
ature suggest that iris recognition in Near Infrared spectrum in
controlled environments has been solved to a large extent. To
advance the state-of-the-art, the research trends suggest that iris
recognition is likely to be moving along the following directions
in the future:

1. Iris recognition at a distance: Iris recognition has been exten-
sively explored for constrained acquisition distances. Iris recog-
nition in conjunction with the periocular modality holds
potential for unconstrained recognition at a distance. The devel-
opment of iris recognition at a distance would allow application
of the modality in surveillance scenarios as well.

2. Robust cross-spectral recognition: While NIR iris recognition con-
tinues to form the basis of a majority of commercial iris recog-
nition systems, there have been significant advancements in the
research on iris recognition in visible spectrum. The develop-
ment of robust cross-spectral systems is a research direction
that holds significant practical value for real-world iris recogni-
tion systems.

3. Iris recognition on mobile platforms: The technological shift
towards mobile platforms has resulted in an increasing number
of identity-sensitive applications becoming prevalent on mobile
devices. This trend has resulted in the need for enhanced secu-
rity measures on such devices. Iris recognition on mobile plat-
forms is an area of research that requires attention from
academic as well as industrial researchers.

4. Anti-spoofing measures: As the reliability and acceptability of
real-world iris recognition increases, a parallel need for strong
anti-spoofing measures arises. The acquisition of iris biometric
deviates from expected behavior in the presence of temporary
agents such as eye-medicine and contact lenses, or due to per-
manent deviations introduced by eye diseases or cataract sur-
gery. The performance of iris recognition systems in such cases
is an important area of study, especially in the deployment of
large scale public systems such as the Aadhar system in India.

2.2. Periocular

Unconstrained environments involving noise, non-cooperative
subjects, occlusion, and other non-ideal scenarios call for exploring
other ocular modalities which show reliable performance in real-
world scenarios. In 2009, Park et al. [5] proposed periocular as a
novel biometric trait. The periocular region is defined as the part
of the face surrounding the eyes. This principal investigation, per-
formed in the visible spectrum, studied the efficacy of the trait
using global as well as local descriptors. The results of the study
have motivated the research community to actively explore the
periocular biometrics in diverse scenarios.

While periocular recognition has been established as an inde-
pendent biometric modality, it has also been used in conjunction
with face and iris biometrics. Several applications have been pro-
posed for exploiting the information present in the periocular
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region. Periocular features have also been used to determine gen-
der, age, and ethnicity of subjects. Periocular recognition has also
been deployed to supplement iris recognition, and in some cases,
as a standalone modality when iris recognition fails. The remainder
of this section is organized as illustrated in Fig. 7. Section 2.2.1 cov-
ers periocular verification and identification techniques.
Section 2.2.2 summarizes research in the area of estimating gen-
der, age, and ethnicity using periocular features. Section 2.2.3 sur-
veys human performance studies for periocular information
interpretation. Table 7 presents a summary of these periocular
recognition studies.

2.2.1. Verification and identification using periocular region
The preliminary study by Park et al. [5] was followed by an

exhaustive study of the periocular modality in [162]. The effects
of various factors, including segmentation schemes, facial expres-
sion, and the discriminative information present in eyebrows were
studied on the FRGC dataset. Comparison of periocular recognition

Periocular

Soft Biometrics Human Performance
Evaluation

Fig. 7. Areas of study in Periocular biometrics.

Table 7
Summary of periocular recognition.

Category Authors Database Summary

Recognition Park et al. [5] In-house collection Proposed periocular biometric trait. HOG, LBP, SIFT features are extracted.
LBP and SIFT are fused to achieve optimal recognition

Park et al. [162] FRGC v2 Effect of pose variation, occlusion, template aging is studied. Score-level
fusion of left and right periocular region using SIFT, HOG, LBP is applied

Bharadwaj et al. [163] UBIRIS v2 GIST, circular LBP features for periocular recognition in visible spectrum are
proposed. Normalized score-level fusion applied. Weighted sum-rule score
fusion applied to left and right periocular regions

Xu et al. [164] FRGC For verification, LW-T Binary Pattern is fused with Kernel Correlation
Feature Analysis. Recognition using fusion of Discrete Wavelet Transform
and LBP

Woodard et al. [165] FRGC v2, MBGC LBP captures texture and color histograms are extracted followed by score-
level fusion. Information from left and right periocular regions is fused at
score-level

Miller et al. [166] FRGC Study effect of illumination & resolution change, blurring. Highest
performance degradation observed for blurring. Study conducted across
sessions

Miller et al. [167] FRGC, FERET Demonstrate performance of LBP. Suggest that skin texture, eye folds,
periocular contours adequate for verification

Adams et al. [168] FRGC, FERET Present genetic based Type II feature extraction for LBP. Feature
optimization achieved and significant improvement in recognition accuracy
reported

Woodard et al. [169] FRGC, MBGC Score-level fusion of periocular skin texture (LBP) and color (histograms)
information. Establishes that periocular appearance is unique for each eye

Padole and Proença [170] UBIPr Studies performance variation for scale, pose, occlusion, pigmentation
variation. Non-linear score-level fusion applied to LBP, SIFT, HOG
descriptors

Juefei-Xu and Savvides [171] Compass [171] Present periocular acquisition system using PTZ camera. Walsh-Hadamard
transform encoded local binary pattern applied to extract information

Padole and Proença [172] UBIPosePr [172] Non-ideal recognition: illumination variation using homomorphic filters
and Self-Quotient images; pose change through geometric transformations

Proença and Briceño [173] FaceExpressUBI [173] Study effectiveness of Globally Coherent Elastic Graph Matching to
compensate distortions due to expressions

Juefei-Xu and Savvides [174] FRGC v2 Apply subspace representations on Discrete Transform encoded LBP.
Periocular performance is at par with face recognition. Gains tolerance to
occlusion

Sharma et al. [175] IMP [175] Neural networks train classifiers on cross-spectral images using Pyramid of
HOG. Score-level sum rule fusion applied to NIR left and right eye images

Mahalingam et al. [176] HRT Transgender Dataset [177] Study impact of hormone manipulation and its ability to disguise the face.
Periocular using texture based matchers outperforms matching against the
full face

Proença et al. [178] UBIRIS v2 Posterior probability for each pixel of periocular region found. Appearance
based information fused to geometrical constraints and shape priors to feed
a two-layered MRF

Soft Biometrics Juefei-Xu et al. [179] FG-NET Images are pre-processed. Walsh-Hadamard local binary pattern features
with Unsupervised Discriminant Projection subspace modeling are
extracted

Lyle et al. [180] FRGC Grayscale intensities, LBP are extracted to predict gender, ethnicity. Scores
fused with LBP features of periocular, face region for person recognition

Lyle et al. [181] FRGC, FERET LBP, HOG, DCT, LCH information fused for periocular and eye regions for left
and right regions
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with (partially occluded) face recognition indicated the reliability
of using periocular recognition in non-ideal scenarios where face
recognition may fail. The effects of pose variation, occlusion, cos-
metic changes, and template aging were demonstrated on a data-
set constructed for the purpose of the study. The extensive
experiments conducted advocate the inclusion of eyebrows in
the periocular region and the capture of neutral facial expressions
for accurate recognition. Score-level fusion of left and right perioc-
ular region, using local matchers, such as SIFT, as well as global
matchers, such as HOG and LBP, exhibits promising results with
a rank-1 recognition rate of 87.32%.

Bharadwaj et al. [163] propose a texture based recognition
system for the periocular region. The GIST descriptor is used as
a global matcher, while circular LBP is used for capturing local
texture information. Normalized score-level fusion is performed
for the descriptors. Weighted sum-rule score fusion is performed
for the left periocular and right periocular regions. For the exper-
iments performed on the UBIRIS v2 database, it is observed that
global features provide better discriminative information than
local features. A rank-1 identification accuracy of 73.65% is
achieved. Identification is performed at varying distances and a
distance of 6 m from the subject is shown to be more useful for
recognition.

Xu et al. [164] explore several filter based techniques and local
feature extraction methods on the FRGC dataset. A Verification
Rate of 17.0% at 0.1% false accept rate is reported using Local
Walsh-Transform Binary Pattern approach. The verification rate,
while quite low, outperforms the NIST reported baseline on the
dataset. The best feature extraction method combined with
Kernel Correlation Feature Analysis obtains a verification rate of
61.2%. The rank-1 accuracy achieved is 53.2%, using the fusion of
discrete wavelet transform and local binary patterns. The accuracy
rates reported are lower than prior work in periocular biometrics,
but the database used for reporting results in the paper is approx-
imately 24 times larger than databases used in prior works.

Woodard et al. [165] investigate the utility of various appear-
ance cues including skin texture, color, and the spectrum used
for capturing images. Several experiments are conducted using
the FRGC v2 dataset, wherein local binary patterns are used to cap-
ture texture information and color histograms are used for repre-
senting the information encoded in the red and green channels.
The experiments compare neutral expressions across sessions,
alternate expressions from the same recording session, and also,
alternate expressions across sessions. Color and texture informa-
tion is combined using score-level fusion. Finally, information from
the left and right periocular regions is combined using score-level
fusion with min–max normalization. Experiments performed on
the MBGC face-video dataset do not present good results; the
authors suggest that this is due to blurring, scale-change, and illu-
mination-change in the periocular images in the dataset. Miller
et al. [166] build on this work to study the effect of illumination,
resolution change, blurring, and information present in various
color channels. In experiments conducted under the variations
mentioned before, the highest performance drop due to blurring
is observed to be from 94.10% to 54.49% for neutral expressions
compared across sessions. The most significant variation in perfor-
mance due to resolution change is from 94.90% to 84.70% for alter-
nate expressions recorded across sessions. It is also observed that
the red color channel does not constitute significant discriminatory
information.

Miller et al. [167] demonstrate the performance of local binary
pattern descriptor for recognition of individuals using periocular
information on the FRGC dataset and the FERET dataset. The recog-
nition accuracy for the FRGC dataset is reported at 89.76%, while
the performance on the FERET dataset is 74.07%. Based on the per-
formance of the proposed algorithm, the authors suggest that the

skin texture, eye folds, and contours of the periocular region can
adequately verify a person’s identity.

Adams et al. [168] present a genetic based Type II feature
extraction system for optimizing the feature sets returned by local
binary pattern descriptors for periocular recognition. A significant
recognition accuracy improvement (10.99%) is reported on the
FERET dataset. Comparable feature optimizations are observed on
the FRGC and FERET datasets.

Woodard et al. [169] investigate the utility of appearance cues
such as periocular skin texture using local binary patterns, and
color using Color Histograms, for periocular identification. 98.30%
rank-1 recognition accuracy is achieved on the FRGC dataset,
which demonstrates that the score-level fusion of periocular tex-
ture and color can be used as a biometric modality. The experi-
ments performed on the MBGC dataset indicate that in non-ideal
scenarios, periocular based matching significantly outperforms iris
recognition. An interesting result emerging from the study com-
paring features between the right and the left periocular regions
is that the periocular appearance is unique for each eye of an
individual.

Padole and Proença [170] assess the effect in recognition perfor-
mance with respect to change in scale, pose, occlusion, and pig-
mentation. UBIPr, a challenging dataset, is introduced for
periocular recognition. A new strategy to initialize the periocular
Region of Interest is explored and is observed to outperform the
iris-centered recognition algorithms. Non-linear score-level fusion
of LBP, SIFT, and Histogram of Oriented Gradient descriptors using
neural networks is proposed. The paper effectively establishes the
challenges associated with unconstrained periocular recognition.

Juefei-Xu and Savvides [171] propose a periocular acquisition
and recognition system using a commercial off-the-shelf pan-tilt-
zoom camera to tackle the difficulty of unconstrained periocular
biometrics. The Compass dataset comprising of faces with 4 differ-
ent expressions is introduced in the paper and the descriptor used
for representing the images is the Walsh-Hadamard transform
encoded local binary pattern. The proposed approach achieves a
Verification Rate of 60.7% at 0.1% FAR, which supersedes the per-
formance of face recognition on the same dataset.

Padole and Proença [172] assess the decrease in recognition
performance due to change in illumination and the subject’s pose.
Homomorphic filters and Self-Quotient Images are used to com-
pensate for varying lighting conditions. The authors describe a
method to compensate for change in pose using landmark based
geometric transformations. The proposed technique consistently
improves performance when the subject’s pose is moderately devi-
ated, and scales well for angular deviations as large as 30".

Proença and Briceno [173] address the effectiveness of the
Globally Coherent Elastic Graph Matching algorithm to compen-
sate for distortions due to expressions in periocular recognition.
Experiments are performed on synthetic as well as real data
(FaceExpressUBI dataset) to validate the algorithm. Consistent
increments in the recognition performance are observed using
the proposed algorithm. The improvements in handling distortions
are achieved without a significant increase in the computational
burden of the recognition process.

Juefei-Xu and Savvides [174] exhaustively demonstrate that
subspace representations such as PCA, UDP, KCFA, and KDA on
Discrete Transform encoded LBP features significantly outperform
traditional subspace representations on raw pixel intensities as
well as the standard LBP descriptor. Experiments are performed
on the YaleB/YaleB+ datasets to test illumination pre-processing
techniques prevalent in the literature. Multi-scale retinex is chosen
for pre-processing the images for the experiments performed on
the FRGC v2 dataset. With less than 40% of the face being utilized,
periocular region has only a 2.5% drop in verification rate at 0.1%
FAR compared to the complete face. However, the recognition
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system gains tolerance towards expression and occlusion, and the
capability to match partial faces in crowds. The performance of the
discrete transform encoded LBP feature in the Kernel Discriminant
Analysis subspace representation is 75.1% verification rate at 0.1%
FAR.

Sharma et al. [175] propose a cross-spectral periocular verifica-
tion algorithm using neural networks. The proposed algorithm first
trains the classifiers on individual spectrum images and then opti-
mally combines them to mitigate the variations due to the differ-
ence in the spectra. The Pyramid of Histogram of Oriented
Gradients feature is observed to outperform features used in prior
works. Experiments are performed on the IIITD Multispectral
Periocular database (Fig. 8), which includes images captured in
three spectra: Near Infrared, Visible Light, and Night Vision.
Among the three individual spectra, the best performance is
achieved in the NIR spectrum with a Verification Rate of 92.50%
at 1% FAR, using the score-level sum rule fusion of periocular infor-
mation from the left and the right eye regions.

Mahalingam et al. [176] study the impact of changes in the face
due to hormone manipulation and its ability to disguise the face
and affect matching performance. A challenging dataset [177] that
includes more than 1.2 million face images of 38 subjects is col-
lected. Experiments on this dataset suggest that periocular region
using simple texture based face matchers, namely, local binary pat-
terns, histogram of gradients, and patch based local binary patterns
outperforms matching against the full face. It is also observed that
a fusion of the periocular using a texture based approach outper-
forms two Commercial Off The Shelf full face systems: PittPatt
SDK and Cognetic FaceVACs.

Proença et al. [178] propose an approach for defining the peri-
ocular region-of-interest by segmenting all components in the
periocular region: iris, sclera, eyelashes, eyebrows, hair, skin and
glasses. A group of classification models predicts the posterior
probabilities for each pixel in the periocular region for it to belong
to one of the above component classes. The appearance based
information is fused to geometrical constraints and shape priors
to feed a two-layered Markov Random Field. Experiments per-
formed on the UBIRIS v2 dataset show an equal error rate of 0.095.

2.2.2. Soft biometrics
Juefei-Xu et al. [179] have shown a feature extraction approach

on periocular region to address the age-invariant face recognition
problem. Images from the FG-NET dataset are pre-processed for

illumination and pose correction, and periocular region normaliza-
tion. Walsh-Hadamard Local Binary Pattern (WLBP) features are
extracted from the preprocessed images. The WLBP featured peri-
ocular images with Unsupervised Discriminant Projection sub-
space modeling obtain a 100.00% rank-1 identification rate and
98.00% verification rate at 0.1% FAR. This algorithm significantly
outperforms the baseline recognition rates, and proves that perioc-
ular recognition is a robust method for age-invariant biometric
recognition.

Lyle et al. [180] describe a soft biometric classification approach
using appearance based periocular feature. Information from the
periocular region images is extracted using grayscale pixel intensi-
ties and periocular texture computed using local binary patterns in
the FRGC dataset. Baseline gender and ethnicity classification accu-
racies of 93% and 91% are reported. The experiments indicate that
the periocular modality can be effectively used in gender and eth-
nicity identification. The soft biometric information obtained also
can be combined with existing periocular based recognition for
improving recognition performance. This study is extended by
the authors in Lyle et al. [181]. Experiments are performed in the
visible spectrum on the FRGC dataset, and in the near infrared
spectrum on the MBGC dataset. Local binary pattern, Histogram
of Oriented Gradient (HOG), Discrete Cosine Transform (DCT),
and Local Color Histogram (LCH) descriptors are used for perfor-
mance evaluation. In all experiments, information is fused for the
periocular and the eye region for both left and right regions. For
the FRGC dataset, gender and ethnicity classifications of 97.3%
and 94% respectively are observed. For the MBGC images, gender
and ethnicity results of 90% and 89% are observed, respectively.

2.2.3. Human performance evaluation
In the past, gaining an understanding of how humans recognize

faces enabled researchers to develop pragmatic feature extraction
techniques for face recognition. Sinha et al. [182] describe a study
of human face recognition and posit results that propose robust
schemes towards the design of automated face recognition sys-
tems. Since periocular region is essentially a subset of the face
region, it seems a worthy goal to explore how humans interpret
periocular images.

The foremost study of features which humans found useful for
making decisions in identifying individuals based on periocular
information is attributed to Hollingsworth et al. [183]. It is found
that humans can correctly classify the pairs as belonging to the

a b c
Fig. 8. Cross-spectral periocular recognition: (a) visible light, (b) Near Infrared, and (c) night vision.
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same person or different people, with an accuracy of about 92%.
The authors report that the accuracy is observed to be about 97%
when subjects are confident about their decision. It is established
that the features that humans found most helpful for recognition
of individuals were not the features used by contemporary
researchers for automated periocular recognition. Features that
subjects found helpful for recognition were eyelashes, the tear
duct, and the shape of the eye, while eyebrows, the outer corner
of the eye, and the skin texture were found to be of no assistance
in recognition. Even though the feasibility study performed by
Park et al. [5] suggests that eyebrows have significant discrimina-
tory information, the reason that eyebrows received such a low
ranking in the experiments is proposed to be that none of the
images showed a complete eyebrow. The authors suggest that iris
sensors with a larger field of view, which can capture eyebrows,
are utilized to attempt to combine iris and periocular biometric
information.

Hollingsworth et al. extend the study [183] to understand the
effect of different factors on human performance in periocular
recognition [184]. Firstly, the non-match queries are created by
pairing subjects with the same gender, same ethnicity, and similar
eye color, make-up, eye occlusion, and eyelash length. Secondly,
the experiment limits the viewing time to 3 s for each query.
Finally, it is ensured that all non-match periocular regions are
paired so that the two subjects in a pair have the same gender
and race. As compared to evaluations involving randomly selected
non-match pairs with uncontrolled viewing time, the accuracy is
observed to be 78.75%. This is a significant drop compared to the
experiment involving randomly selected non-match pairs, which
has an accuracy of 92.10%. The authors propose that explicit mod-
eling and description of eyelids, eyelashes, and tear ducts can pro-
vide higher recognition power.

Hollingsworth et al. [185] perform an exhaustive human study
on evaluating the region surrounding eyes for both periocular bio-
metrics and iris biometrics. The study includes the irises and the
periocular region of the subjects captured in the NIR spectrum
using a LG2200 camera and in the visible spectrum using a
Nikon D80 camera. The average score on the NIR periocular test
is observed to be 78.8%, and the average score on the visible spec-
trum periocular test is observed to be 88.4% The machine perfor-
mance for the periocular tests, averaged across three algorithms,
which use SIFT, LBP, and HOG descriptors is 83.6%. In the human
experiments, it is learnt that there was little evidence of correla-
tion for pairs of subjects across different modalities. This result
suggests that a difficult subject to match in one modality may be
easier to match in other modalities. This suggests that fusing infor-
mation from the two modalities is likely to lead to better recogni-
tion rates. The results of the study suggest that using visible
spectrum periocular images instead of NIR images is a suitable
direction for development of periocular recognition algorithms.

2.2.4. Current research directions in periocular biometrics
Since it’s inception in 2009, periocular biometrics has enjoyed

significant attention from the biometrics community. The field
has rapidly evolved from preliminary studies to competing with
face recognition in the presence of occlusion. The trends discussed
in Section 2.2 suggest that periocular recognition is likely to be
moving along the following directions in the future:

1. Cross-spectral periocular recognition: Periocular recognition is
used in conjunction with face recognition in the presence of
occlusion. The periocular region is also critical in ocular recog-
nition when the iris fails in unconstrained scenarios. Since iris
recognition and face recognition are traditionally performed
in the NIR and visible spectra, respectively, one of the important

directions of research is to perform periocular recognition
across spectra to potentially allow these modalities to work
together.

2. Anti-spoofing measures: One of the factors on which acceptabil-
ity of a biometric trait depends for real-world applications is its
resilience to spoofing attacks. It is required that the biometric
community focus on establishing measures to minimize spoof-
ing of the trait.

3. Unconstrained recognition at-a-distance: Among all ocular bio-
metric modalities, the periocular trait requires the least con-
strained acquisition process. It has the potential to allow
ocular recognition at large stand-off distances, with applica-
tions in surveillance. It is likely that the research community
will move towards exploring ocular recognition at a distance
in more detail as compared to present studies.

2.3. Retina biometrics

The vasculature of the retina is rich in discriminatory informa-
tion (Fig. 9). Retina based biometric recognition is believed to be
the most secure biometric modality as it is extremely difficult to
spoof the retinal vasculature. However, the modalities associated
with the acquisition of retinal images require high user coopera-
tion. Arakala et al. [186] explore the representation of retina vessel
patterns as spatial relational graphs. The features are compared
using error-correcting graph matching. The authors observe that
apart from nodes, three other graph sub-structures are suitable
for separating genuine comparisons from impostor comparisons.
Two retina graph statistics are identified, the edge-to-node ratio
and the variance of the degree distribution, which have low corre-
lation with the node match score. Intra-class variation is accounted
for by treating the two graphs (corresponding to two samples from
the same subject) as noisy versions of the same graph. Two retina
graphs are compared by error-correcting graph editing techniques
using deletion, addition, and substitution of nodes and edges. The
maximum common subgraph is generated from the set of nodes.
Experiments on the VARIA [187] database show that using nodes
as feature points, edges, and paths of length two units result in
match scores which completely separate genuine from impostor
comparisons.

Jeffers et al. [188] present theoretical genuine and impostor
score distributions for retina templates by estimating normal ker-
nel density. The estimates are based on 147 images, which are a
part of the VARIA database. A common extraction and matching
algorithm based on graph representation of retina images is used.
The authors test seven normalized scoring functions on feature
point based retina templates. Equal error rates in the range 0.3–
1.3% are obtained using the scoring functions. False non-match
rates of less than 10% and entropy estimates between 65 bits and
200 bits are also reported.

Lajevardi et al. [189] present a retina verification framework
based on the Biometric Graph Matching (BGM) algorithm. The
information from the retinal vasculature is extracted using filters
in the frequency domain and other morphological operators. The
retinal images are represented as formal spatial graphs derived
from the vasculature. The BGM algorithm uses graph topology
to define three distance measures between a pair of graphs. A
SVM classifier is used to distinguish between genuine and impos-
tor comparisons. The classifier is found to be able to perform sep-
aration on a training set of images from the VARIA database,
which is the state-of-the-art for retina verification. Kernel density
estimation is used to model the distribution of distances resulting
from comparisons in the training set. This model is used to select
an appropriate operating threshold for testing the system.
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Table 8 summarizes the research in the area of retina biometric
recognition. The modality requires further research, especially in
the acquisition stage, to improve user convenience and accuracy.

2.4. Emerging ocular biometrics

Komogortsev et al. [190] present an approach which estimates
the unique Oculomotor Plant (OP) or eye globe muscle parame-
ters from an eye movement trace. The muscle parameters model
the human eye, including neuronal control signal, series elastic-
ity, length tension, force velocity, and active tension. The authors
propose a method to identify persons based on the Oculomotor
Plant Mathematical Model (OPMM), which models a human eye
as a system that consists of an eye globe driven by a set of
extra-ocular muscles. Experimental results from an experiment
consisting of 41 human subjects demonstrate the efficacy of the
system. The authors assert that the Oculomotor Plant
Mathematical Model (OPMM) includes both behavioral and phys-
iological human attributes, is difficult to counterfeit, and is non-
intrusive.

Eye movements are resistant to spoofing due to complex neuro-
logical interactions and the extra-ocular muscle properties
involved in their generation. Holland and Komogortsev [191] pre-
sent an objective evaluation of various eye movement based bio-
metric features. The biometric candidates cover a number of
basic eye movements and their scan-path characteristics. An infor-
mation fusion method for combining these metrics is presented.
Experiments performed on a dataset consisting of 32 subjects iden-
tifies individuals with an equal error rate of 27%. The results indi-
cate that scan-path based biometric identification is a potential
behavioral biometric technique.

Holland and Komogortsev [192] present an objective evaluation
of the effects of eye tracking specification and stimulus presenta-
tion on the biometric viability of complex eye movement patterns.
Six spatial accuracy and temporal resolution tiers, and five stimu-
lus types are evaluated to identify acceptable conditions under
which to collect eye movement data. The authors conduct three
experiments to investigate the effects of environment and stimulus
on the biometric viability of complex eye movement patterns. The
first experiment examines the effects of varied stimulus type, the
second experiment examines the effects of varied spatial accuracy

and temporal resolution, and the third experiment provides data
recorded on low-cost eye tracking equipment for cross-validation.
The results suggest that eye tracking equipment is capable of
achieving a spatial resolution of 0.5" and a temporal resolution of
250 Hz for biometric purposes, whereas stimulus has little effect
on the biometric viability of eye movements.

Dong and Woodard [193] investigate the use of shape based
eyebrow features for biometric recognition and gender classifica-
tion. The eyebrows are manually segmented and shape based fea-
tures are extracted. The features are compared using several
different classifiers. The proposed algorithms are tested on the
MBGC and FRGC databases. Identification rates of 90% and 75%
are achieved on the MBGC database and FRGC database, respec-
tively. Gender classification rates of 96% and 97% for each of the
databases confirm the potential of the proposed biometric
modality.

Crihalmeanu and Ross [194] design segmentation, enhance-
ment, and matching routines for processing the conjunctival vas-
culature of multispectral eye images. A Redlake (DuncanTech)
MS3100 multispectral camera is used to collect data from 49 par-
ticipants. A double-density complex discrete wavelet transform is
used to denoise the images. Specular reflections are in-painted
using a partial differential equation to calculate the intensity of
the pixel and the sclera is segmented. The segmented sclera is reg-
istered and matched using cross-correlation between the overlap
of the two sclera regions being matched.

Zhou et al. [195] propose using the sclera present in the human
eye as a biometric modality. The authors develop a novel technique
for sclera segmentation, which works on color as well as grayscale
images. Since the veins on the sclera surface are not rigid struc-
tures, the authors perform registration prior to feature extraction.
A Gabor wavelet based sclera pattern enhancement method is
designed as a pre-processor to feature extraction. A line-descriptor
based feature extraction and matching method is proposed which
is invariant to deformations in the pattern and thickness of the vas-
culatures. Experiments performed on the UBIRIS v1 dataset report
an equal error rate of 3.83% for recognition. The authors also collect
the IUPUI Multi-wavelength Database, which consists of images
acquired from 44 subjects in 8 wavelength bands. The genuine
accept rate for the proposed methodology is 81.51% at a false
accept rate of 0.1%.

Fig. 9. VARIA database: retina sample (left); histogram equalized retina sample (right).

Table 8
Summary of retina recognition.

Authors Database Summary

Arakala et al. [186] VARIA
[187]

Represent retina vessels as spatial relational graphs. Features are compared using error-correcting graph matching. Maximum
common subgraph is generated from the set of nodes

Jeffers et al. [188] Theoretical genuine and impostor score distributions for retina templates are estimated. Test seven normalized scoring functions
on feature point based retina templates

Lajevardi et al. [189] Retinal vasculature information is extracted using frequency domain filters. Images are represented as spatial graphs. Biometric
Graph Matching algorithm defines distance measures
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Oh and Toh [196] propose a cancelable sclera template match-
ing scheme. The iris and the sclera are localized and an angular grid
frame, whose origin is the iris centroid, is used to generate a region
indicator matrix. Local binary pattern features are used to repre-
sent the texture information present in the grid. The authors assert
that the templates are illumination and shift invariant. Recognition
is performed by comparing normalized Hamming distances.
Experiments performed on the UBIRIS v1 database demonstrate
the efficacy of the proposed algorithm.

Rigas et al. [197] explore the dynamics of human eye move-
ments as a biometric modality. Each sample is segmented into
a number of parts, corresponding to fixations that occurred while
the subject observed the stimuli. The sample is represented as a
set of ten signals, corresponding to each fixation that took place.
Each signal is passed through a low-pass filter to eliminate high-
frequency effects. The signal is treated as a vector of velocity and
acceleration parameters in 8D space: ½velleftx

;vellefty
; accelleftx

;

accellefty
;velrightx

;velrighty
; accelrightx

; accelrighty
$. The multivariate

Wald-Wolfowitz test is used to compare the distributions of sac-
cadic velocity and acceleration features. Experiments performed
on the Eye Movement Dataset [198] datasets show an accuracy
of 91.5% for the proposed algorithm.

Crihalmeanu and Ross [199] present a novel algorithm for sclera
segmentation based on a normalized sclera index measure. The
authors collect a multispectral database of iris and sclera images.
The sclera-eyelid and sclera-iris boundaries are individually seg-
mented. Experiments performed on the collected dataset report
that the SURF descriptor achieves an equal error rate of less than
0.8%. The authors assert that the descriptor is robust towards small
variations in the viewing angle, affine deformations, and color
shades. Score-level fusion of minutiae detected in the vasculature
with direct correlation matching shows that sum-rule performs
well for a number of correlation techniques. The authors suggest
that multispectral images be used towards combining iris biomet-
rics with sclera recognition for enhanced performance.

Rigas et al. [200] describe a study of human eye movements as a
biometric modality. The authors observe the eye-movements of
subjects while they observe face images. The subject’s eye trajecto-
ries are modeled as 2D distributions of points on the image plane.
The specific use of human faces as visual targets for subjects while
they are being monitored allows for idiosyncratic eye-movements
to be captured. A graph theoretic framework is implemented to
process the captured eye movement patterns. The reported recog-
nition performance, an equal error rate of approximately 30%, out-
performs prior state-of-the-art techniques. The recognition
performance indicates the feasibility of the proposed approach
along with other methods to build a hybrid physiological behavioral
recognition system.

Darwish and Pasquier [201] investigate the feasibility of using
the dynamic features of the eyes for biometric identification. Eye
movements are recorded and classified into segments that consist
of saccades and fixations. The change in the size of the pupil is also
considered during these movements. The authors propose to com-
bine the proposed dynamic features, which consist of the eye
movement features and iris constriction and dilation parameters,
with iris biometrics. Experiments demonstrate a Half Total Error
Rate (HTER) of 7.7% for iris and 30% for eye movements. The fusion
of iris and eye movement data leads to an overall improvement of
5.3% in the HTER.

Lin et al. [202] propose a parallel sclera vein recognition method
to improve the matching efficiency of the modality. A rotation-in-
variant and scale-invariant feature extraction method is designed
to efficiently eliminate unlikely matches. A weighted polar line
sclera descriptor structure is developed to optimize GPU memory
requirements. Finally, a coarse-to-fine two-stage matching method

is proposed. The Weighted Polar Line descriptor is developed as it
is more suitable for parallel computing, which dramatically
reduces data transfer and computation times. Experiments demon-
strate that the proposed method dramatically improves the match-
ing efficiency without compromising the recognition accuracy.

Rigas and Komogortsev [203] propose the extraction of biomet-
ric features from spatial patterns formed by eye movements during
inspection of dynamic visual stimuli. The proposed framework
transforms each eye movement signal into a time-constrained
decomposition using a probabilistic representation of spatial and
temporal features related to eye fixations. The experiments per-
formed indicate that the Fixation Density Map performs well when
eye movement data is captured at lower than optimum sampling
frequencies. The authors posit that this is an important property
of the proposed algorithm for future ocular biometric systems
where existing iris recognition devices could be employed to com-
bine eye movement traits with iris information for increased secu-
rity and accuracy. The results on a dataset of 200 individuals
collected by the authors indicate an equal error rate of 10.8% and
a rank-1 accuracy of 51%.

Cantani et al. [204] present a novel Gaze ANalysis Technique
(GANT) that uses a graph based representation of fixation points
obtained through an eye tracker during human computer interac-
tion. The authors examine dynamic aspects of eye behaviors to
assess the relevance of eye movement patterns as a soft biometric
trait. The proposed technique is applied to a dataset composed of
112 volunteer observers acquired through a Tobii 1750 remote
eye tracker. For verification experiments on the data collected by
the authors, an equal error rate of 0.224 is obtained.

Sun et al. [205] present a unified statistical framework for mod-
eling saccadic eye movements and visual saliency based on super-
Gaussian Component (SGC) analysis. The proposed algorithm
sequentially obtains SGC using projection pursuit, and generates
eye movements by selecting the location with maximum SGC
response. Several key issues in saliency modeling research such
as the effects of scale and blur are explored by the authors. The
effectiveness of proposed algorithm is established based on exten-
sive qualitative and quantitative experimental results performed
on the York University Eye Tracking Dataset [206].

The ocular biometric recognition techniques discussed above are
promising areas of research for extracting discriminatory biometric
information. It is observed that eye-movement classification, in
particular, has seen significant progression over the past 5 years.
Table 9 summarizes the emerging ocular recognition techniques.

3. Fusing ocular information

The advent of periocular recognition and other emerging ocular
modalities calls for the development of techniques which improve
the overall recognition performance of biometric systems. The
deployment of public large-scale recognition systems which enroll
millions of individuals need reliable recognition in non-ideal sce-
narios. Under such scenarios, fusion of multiple modalities appears
to be the most relevant and promising path forward in addressing
the need for faster and more reliable recognition systems. Fusion in
ocular biometrics can be performed in two ways: (1) Intra-ocular
fusion - when information pertaining to two ocular modalities is
fused, and (2) Fusion of ocular traits with other modalities
(Fig. 10). This section summarizes multimodal biometric fusion lit-
erature with respect to ocular modalities.

3.1. Intra-ocular fusion

Fusion of ocular modalities may be performed in several differ-
ent ways (Fig. 11). In the past, iris information has been combined
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with information from the pupil, the periocular region, and the
sclera. This is a more intuitive approach because multiple ocular
features can be combined in one image capture attempt.
Table 10 summarizes the intra-ocular approaches to biometric
fusion in the literature.

Vatsa et al. [208] propose a quality based fusion scheme for
improving recognition accuracy using color iris images. The pair-
wise match score correlation for the red, green, and blue channels
is used to combine information at the image level using a
Redundant Discrete Wavelet Transform. The resultant image is
used in a score-level fusion scheme with the remaining channel
to improve recognition accuracy. Experimental results on the
WVU Multispectral Iris database [150] demonstrate the efficacy
of the technique when compared with other score-level and
image-level fusion methods. The authors suggest that the proposed
method can potentially benefit the use of color iris images in con-
junction with their near infrared counterparts.

Kumar and Passi [209] perform a comparative study of iris
recognition performance using log-Gabor filter, Haar wavelet,
Discrete Cosine Transform, and Fast Fourier Transform based
descriptors. Extensive experiments are performed on the CASIA
v1, CASIA v3, and IITD Iris databases. The score level combination
of log-Gabor filter and Haar wavelet using weighted-sum rule out-
performs other descriptors and their combinations. The Haar
wavelet based approach requires minimum computation time
and its combination with log-Gabor filters is found to be computa-
tionally efficient as well. The authors also evaluate the comparative
performance of various descriptors with singular training images.
The performance from the proposed system is extensively evalu-
ated using one training image on the CASIA and IITD databases.

Woodard et al. [210] investigate the utility of the periocular bio-
metric in combination with the iris as a means to improve the
overall recognition performance. The discriminatory information
present in the iris is captured using Daugman’s IrisCode algorithm.
Local binary patterns are used to extract features from the perioc-
ular modality. Two match scores pertaining to the iris and the
periocular region, respectively, are generated. Min–max normal-
ization is applied to the scores, and weighted sum rule is used

Table 9
Summary of emerging ocular biometrics research.

Authors Database Summary

Komogortsev et al.
[190]

In-house collection Present the Oculomotor Plan Mathematical Model for biometric identification

Holland and
Komogortsev
[191]

In-house collection Evaluation of eye movement based biometric features. Cover numerous basic eye movements and their scan-
path characteristics. Information fusion is applied to combine metrics

Holland and
Komogortsev
[192]

EMBD v2 [207] Evaluate effects of eye tracking specification and stimulus presentation on biometric viability of complex eye
movements

Dong and Woodard
[193]

FRGC, MBGC Shape based eyebrow features are extracted. SVM, LDA, MD classifiers are used for recognition

Crihalmeanu and
Ross [194]

In-house collection Double-density complex discrete wavelet transform de-noises images. Segmented sclera is registered and
matched using the cross-correlation of overlap of the sclera being matched

Zhou et al. [195] UBIRIS v1, In-house
collection

Sclera is segmented and vasculature is registered. Line descriptor based feature extraction and matching is
applied

Oh and Toh [196] UBIRIS v1 Sclera is localized and region indicator matrix is generated centered on iris. LBP is applied on grid. Recognition by
comparing Hamming Distances

Rigas et al. [197] Eye Movement Dataset
[198]

Eye-movement saccadic velocity and acceleration features are captured. Wald-Wolfowitx test is applied to
measure correlation between samples

Crihalmeanu and
Ross [199]

In-house collection Segment sclera-eyelid boundary and sclera-iris boundary. SURF descriptor is applied. Score-level fusion of
minutiae and direct correlation is explored

Rigas et al. [200] In-house collection Observe eye-movements of subjects. Subjects’ eye trajectories are modeled as 2D distributions on image plane.
Graph theoretic framework is implemented to process patterns captured

Darwish and
Pasquier [201]

In-house collection Eye movements are recorded. Classified into segments of saccades and fixations. Fusion of iris biometrics and
proposed technique is performed

Lin et al. [202] UBIRIS v1 Weighted polar line descriptor is developed to optimize GPU requirements. Coarse-to-fine two-stage matching is
applied

Rigas and
Komogortsev
[203]

In-house collection Extract spatial features from eye movements. Transform eye movements into time-constrained decomposition
using probabilistic representation of spatial and temporal features

Cantani et al. [204] In-house collection. [Emerging] Use graph based representation of fixation points using eye tracker. Examine dynamic aspects of eye
behaviors to assess eye movement patterns as soft biometric trait

Sun et al. [205] York University Eye
Tracking Dataset [206]

[Emerging] Model saccadic eye movements and visual saliency based on SGC. Obtain SGC using projection
pursuit and generate eye movements by selecting location with maximum SGC response

Ocular Fusion with
Other ModalitiesIntra-Ocular Fusion Fusing Ocular 

Information

Fig. 10. Fusion in ocular biometrics.

Iris-Iris

Iris-ScleraIris-Periocular

Intra-Ocular 
Fusion

Iris-Pupil

Fig. 11. Generally, intra-ocular fusion is performed in four combinations of ocular
modalities.
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for score-level fusion. Experiments are performed on images
extracted from Near Infrared face videos of the Multi Biometric
Grand Challenge dataset. The experiments indicate that periocular
based matching outperforms iris based matching by a large margin
thereby indicating immense potential for its use in non-ideal
imagery.

Rathgeb et al. [211] present a feature level fusion technique for
fuzzy commitment schemes. The proposed fusion technique aims
at fusing biometric templates of two binary feature descriptors into
a single template of the same size. The fusion scheme is designed
to balance average reliability across the entire biometric template
on the basis of a small training set. The scheme is intended to effec-
tively exploit error correction capabilities of the templates.
Experiments performed on the CASIA v3 dataset demonstrate that
the proposed fusion scheme significantly outperforms conven-
tional multi-biometric fuzzy commitment schemes.

Tan and Kumar [212] propose a combination of iris and perioc-
ular fusion using Leung-Malik filters as the feature extractors for
periocular recognition. Experiments performed on the CASIA v4
database achieve an improvement of 8.1% in recognition accuracy
over prior state-of-the-art approaches. Min–max normalization is
applied to the iris and periocular match scores. The match scores
are combined using weighted sum method. The combination of
simultaneously segmented iris and periocular images achieves
average rank-1 recognition accuracy of 84.5%, i.e., an improvement
of 52% over iris recognition.

Gottemukkula et al. [213] explore the feasibility of ocular bio-
metric recognition in the visible spectrum by utilizing the iris
along with the conjunctival vasculature. The authors design a
weighted sum rule fusion scheme to combine the information from
the two modalities. A dataset of 50 subjects is collected using a
Nikon D3S FX camera. The proposed fusion scheme improves the
equal error rate by 4.5% compared to an independent iris recogni-
tion system. The authors observe that unlike periocular biometrics,
the proposed bimodal configuration explicitly uses the iris but only
requires a small portion of the ocular region.

Yano et al. [214] propose a multimodal authentication method,
which incorporates the use of the Pupil Light Reflex (PLR) and the
iris pattern. The authors collect a database of videos from 59

subjects for the purpose of the study. The captured videos are pre-
processed to reduce noise and adjust the contrast. The dynamic
features of the PLR and the static features of the iris pattern are
fused at the score level. Experimental results present an equal error
rate of 2.44%.

Ross et al. [215] propose an information fusion framework to
combine three distinct feature extraction and matching schemes
to handle variability in the input data. The Gradient Orientation
Histogram scheme is used to model global information. A variant
of the Scale Invariant Feature Transform extracts local edge
anomalies. A Probabilistic Deformation Model handles non-linear
deformations. Sum rule is used to combine the match scores gen-
erated from the three feature extraction schemes. Experiments
are performed on the Face and Ocular Challenge Series database
[216] and a subset of the Face Recognition Grand Challenge data-
base. It is observed that the equal error rate of iris recognition as
compared to the proposed fusion approach is reduced from 34%
to 19%.

Komogortsev et al. [217] explore a novel biometric approach
that uses three disparate ocular traits acquired using a single cam-
era sensor. The traits are the Oculomotor Plant Characteristics, the
Complex Eye Movement (CEM) patterns, and the physical structure
of the iris. A PlayStation Eye web camera is used to collect eye-
movement and iris data for 87 subjects. The combination of OPC,
CEM, and iris traits provides an error reduction of 19% when com-
pared to the iris modality alone. The authors assert that the pro-
posed combination of ocular traits has the potential to enhance
the accuracy and counterfeit-resistance of biometric systems.

Mehrotra et al. [218] explore the application of Relevance
Vector Machines (RVM) to perform score-level fusion from differ-
ent classifiers. Experimental results on the CASIA v4 database show
that the RVM achieves better accuracy compared to single iris
recognition. The proposed fusion algorithm improves the recogni-
tion accuracy by 4% compared to single iris recognition. The time
required for performing RVM fusion is observed to be significantly
less than fusion using SVM, with comparable recognition
performance.

Komogortsev and Holland [219] utilize patterns present in ocu-
lomotor behavior to recognize individuals. The features extracted

Table 10
Summary of intra-ocular fusion approaches.

Authors Database Summary

Vatsa et al. [208] WVU Multispectral
database[150]

Correlation of color channels is used to fuse information at image level. Fused image is used in score-level fusion
framework with remaining channel

Kumar and Passi
[209]

CASIA v1, CASIA v3,
IITD Iris

Score level weighted sum rule fusion of Log-Gabor filter and Haar wavelet is performed. Recognition performance for
singular training image systems is explored

Woodard et al. [210] MBGC Daugman’s IrisCode is applied to iris. LBPs are extracted from periocular region. Min–max normalization is applied to
match scores. Weighted sum rule is used for fusion

Rathgeb et al. [211] CASIA v3 Fuse two binary feature descriptors into a single template of the same size. Scheme is intended to effectively exploit
error correction capacities of templates

Tan and Kumar [212] CASIA v4 Periocular information is extracted using Leung-Malik filters (LMF). Min–max normalization is applied, followed by
weighted sum method score fusion

Gottemukkula et al.
[213]

In-house collection Information is extracted from iris and conjunctival vasculature in visible spectrum. Weighted sum rule fusion
scheme is applied to match scores

Yano et al. [214] In-house collection Pre-process videos to reduce noise and adjust contrast. Pupil Light Reflex and iris pattern features are used to
generate independent match scores. Information is fused at score level

Ross et al. [215] FOCS [216], FRGC GOH scheme extracts global information and SIFT extracts local edge anomalies. PDM handles non-linear
deformations. Sum rule is used to combine generated match scores

Komogortsev et al.
[217]

In-house collection Extract Oculomotor Plant Characteristics (OPC), Complex Eye Movement (CEM) patterns, and physical structure of
iris. OPC, CEM, and iris are combined for fusion

Mehrotra et al. [218] CASIA v4 Relevance Vector Machines (RVM) perform score-level fusion for multiple irises. RVM is observed to be
computationally more efficient compared to SVM

Komogortsev and
Holland [219]

In-house collection Multiple features are extracted from oculomotor behavior. Score-level fusion is performed using likelihood ratios

Jillela and Ross [220] Proprietary database Iris matching is performed using VeriEye. Ocular regions are matched using LBP, NGC, and JDSR. Score-level fusion is
performed

Proença [221] UBIRIS v2, FRGC Propose an ensemble of a strong expert which analyzes iris texture, and a weak expert which parameterizes the
shape and geometrical features of the surrounding areas of the eye
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from the observed oculomotor behavior include saccadic dysme-
tria, compound saccades, dynamic overshoot, and express sac-
cades. The authors perform score-level information fusion for
these features, which is evaluated using likelihood ratios, support
vector machines, and random decision forests. The EyeLink 1000
Eye Tracking System is used to acquire data from 32 subjects.
Experimental results on the database achieve equal error rates of
25% and rank-1 identification rates of 47% using score-level fusion
by applying likelihood ratio. The authors suggest that these results
indicate that it is possible to identify subjects through the analysis
of complex oculomotor behavior.

Jillela and Ross [220] propose matching ocular traits that are
common between face and iris images for recognition. Iris match-
ing is performed using a commercial software. Ocular regions are
matched using local binary patterns, Normalized Gradient
Correlation, and Joint Dictionary based Sparse Representation
descriptors. Score-level fusion is performed for the match scores
obtained from these ocular feature descriptors. Experimental
results conducted on images obtained from 704 subjects suggest
that the ocular region can provide better performance than iris
under non-ideal conditions.

Proença [221] proposes a periocular recognition ensemble
made of an expert which analyzes the iris texture and another
expert which parameterizes the eyelid shapes and defines a sur-
rounding region of interest. The strong expert (iris) analyzes the
iris texture based on multi-lobe differential filters and uses the sig-
nal phase and magnitude to supplement the amount of informa-
tion descriptor. The weak expert (ocular) analyses the shape of
eyelids, the geometrical features of the eyelashes, and of the skin
furrows near the cornea. The experts work on disjoint regions of
the ocular area, thus producing practically independent responses.
An empirical evaluation of the proposed methodology suggests an
improvement of over 12% for the d-prime index on the UBIRIS v2
dataset and approximately 8% on the FRGC dataset.

3.2. Fusion of ocular traits with other biometric modalities

Different biometric modalities provide complementary infor-
mation. The combination of such uncorrelated information
descriptors is likely to help improve recognition performance.
Here we summarize such algorithms (Fig. 12), which combine
information from more than one source including iris and finger-
print, face and iris, face and periocular, and face and ocular traits.
Table 11 presents a synopsis of these techniques.

Conti et al. [222] propose a template-level fusion algorithm
integrating fingerprint and iris features. The proposed system is
composed of two stages: preprocessing and matching. Iris and fin-
gerprint images are preprocessed to extract the region of interest.

The fingerprint-singularity-regions based approach is employed as
it requires low execution time. Iris image preprocessing is per-
formed by segmenting the iris region and discarding the eyelids
and eyelashes. The extracted regions of interest are used as input
for the matching stage. The regions are normalized and processed
through a frequency based approach to generate a homogeneous
template. The Hamming distance between two templates is used
to obtain the degree of similarity. The authors consider results at
a false accept rate of 0% using the entire Fingerprint Verification
Competition 2002 [223] database and a subset of the BATH Iris
database [119]. False rejection rates of 5.71% and 7.28% are
reported for two different subsets of the dataset.

Zhang et al. [224] propose a hierarchical fusion scheme for low
quality images under uncontrolled situations. The authors employ
Canonical Correlation Analysis to construct a statistical mapping
from face to iris at the pixel level. The probe face image is used
to obtain a subset of gallery candidates through this mapping.
Score-level fusion of iris and face is performed on the gallery can-
didate subset for person identification. The dataset constructed by
Dong et al. [225] is used to validate the proposed algorithm. The
system achieves 100% accuracy for rank-58 recognition.

Johnson et al. [226] analyze several fusion strategies for com-
bining face and iris biometrics. The FaceIT SDK is used to generate
face match scores. Iris match scores are obtained using a modified
version of Masek software. The authors utilize fixed sum rule, like-
lihood ratio, and quality based likelihood ratio for score-level
fusion. Experiments performed on the Q-FIRE dataset demonstrate
that the quality based likelihood ratio strategy performs optimally
and achieves a genuine accept rate of 93.3% at a false accept rate of
0.1%.

Murakami and Takahashi [227] propose an identification tech-
nique which combines Bayes rule based score level fusion and dis-
tance based indexing. The algorithm selects the template of the

Iris-Fingerprint Periocular-Face

Face-Ocular

Ocular Fusion
with other
modalities

Iris-Fingerprint

Fig. 12. Fusion of ocular traits with other modalities.

Table 11
Fusion of ocular traits with other biometric modalities.

Authors Database Summary

Conti et al. [222] FVC 2002 [223], Bath Iris [119] Iris and fingerprint images are preprocessed to extract ROI. ROIs are processed through frequency based
approach to generate homogeneous template. Hamming Distance is used for matching

Zhang et al. [224] Dong et al. [225] Canonical Correlation Analysis constructs statistical mapping from face to iris. Probe face image selects
gallery candidates via constructed mapping. Score level fusion of iris and face is performed

Johnson et al. [226] Q-FIRE FaceIT SDK is used to generate face match scores. Iris match scores are obtained using modified version of
Masek algorithm. Quality based likelihood ratio is used to perform optimal score-level fusion

Murakami and
Takahashi [227]

Biosecure DS2 [228], CASIA v5
Fingerprint [229]

Bayes rule based score level fusion is used. Gallery template with highest posterior probability of being
identical to probe template is identified

Nagar et al. [230] FVC2002, CASIA v1, XM2VTS
[231], WVU MultiModal

Fusion scheme combines homogeneous features to generate fused representation. Feasibility of framework
is demonstrated using fuzzy vault and fuzzy commitment crypto-systems

Jillela and Ross
[232]

IIITD Plastic Surgery [233] VeriLook and PittPatt are used to obtain match scores for face. LBP and SIFT are applied to ocular region to
obtain match scores. Weighted score-level fusion is applied

Bhatt et al. [234] IIITD Plastic Surgery Database Generates non-disjoint face granules, treating periocular as a specific component. Extended Uniform C-LBP
and SIFT are used. Responses are combined using multi-objective genetic approach
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enrollee whose posterior probability of being identical to the probe
template is the highest. Experimental evaluations using the
Biosecure DS2 [228] dataset and the CASIA v5 Fingerprint [229]
database demonstrate that the proposed algorithm significantly
reduces identification error rates compared to unimodal
biometrics.

Nagar et al. [230] propose a feature-level fusion framework to
simultaneously protect multiple templates of a user as a single
secure sketch. The feasibility of the framework is demonstrated
using the fuzzy vault and fuzzy commitment crypto-systems. The
proposed fusion scheme combines a set of homogeneous biometric
features to generate a fused multi-biometric feature representa-
tion. For point-set based features, the authors suggest that a union
of the representation may be utilized. A synthetic multimodal
database is assembled using the FVC2002 database for fingerprints,
the CASIA v1 database for irises, and the XM2VTS [231] database
for faces. A genuine accept rate of 99% is achieved for this dataset.
The algorithm does not perform as well on the WVU MultiModal
dataset, a 75% genuine accept rate is reported. The experiments
demonstrate that the proposed multibiometric crypto-system has
higher security as well as recognition performance compared to
uni-biometric systems.

Jillela and Ross [232] propose the fusion of information from the
face and ocular regions to enhance recognition performance.
Commercial face matching systems, VeriLook and PittPatt along
with LBP and SIFT descriptors are applied to the ocular region for
matching. Experiments are performed on a plastic surgery data-
base consisting of 1800 images [233]. A rank-1 identification accu-
racy of 87.4% is obtained. Weighted score-level fusion is used to
achieve these state-of-the-art recognition rates. Bhatt et al. [234]
propose a multi-objective evolutionary granular algorithm to
match individuals before and after plastic surgery. The algorithm
generates non-disjoint face granules at multiple levels, which also
treat periocular region as a specific component of the face image.
The proposed algorithm yields higher identification accuracy as
compared to prior algorithms and a commercial face recognition
system. The Extended Uniform Circular local binary pattern and
the Scale Invariant Feature Transform are used for extracting dis-
criminating information from the face granules. The responses
are combined in an evolutionary manner using a multi-objective
genetic approach for improved performance.

4. Datasets and softwares

4.1. Datasets

Public datasets are an important component of active research
in ocular biometrics. They provide an advantage in algorithm
development, provide a platform for performance evaluation, and
introduce new challenges to the research community. The avail-
ability of datasets associated with competitions such as the
National Institute of Standards and Technology challenges and
Noisy Iris Challenge Evaluation [36,235] motivates researchers to
focus on exploring the algorithmic aspects of biometric recognition
systems. Moreover, the performance of a new algorithm on an
established dataset allows the algorithms to be benchmarked and
be compared with prior state-of-the-art approaches. Table 12 lists
commonly used ocular datasets and some of the major ocular data-
sets are described below.

% CASIA Iris Datasets: The CASIA v1 dataset [94], is the first in a
series of datasets collected at the Chinese Academy of
Sciences for the purpose of iris recognition. Iris images are cap-
tured using a homemade iris camera with eight 850 nm near
infrared illuminators circularly arranged around the sensor to

uniformly illuminate the iris. The dataset includes 756 iris
images from 108 eyes, having a resolution of 320 ! 280 pixels.
The CASIA v2 dataset [95] was released in 2004. The dataset
includes data acquired using a OKI Irispass-h sensor as well as
a device developed by the authors, the CASIA-IrisCamV2. Each
of the systems is used to collect 1200 images from 60 classes.
The CASIA v3 dataset [61] was released to promote research
in iris localization, nonlinear normalization, occlusion segmen-
tation, liveness detection, and large-scale identification. It
includes three subsets, each subset intended for research into
specific modalities of iris recognition. All iris images in the
CASIA v3 are 8 bit grayscale images, collected under near infra-
red illumination. A total of 22,034 iris images from more than
700 subjects and 1500 eyes are present in the CASIA v3. The
CASIA v4 [34] dataset is an extension of the CASIA-IrisV3 and
contains six subsets. The three subsets which comprise the
CASIA v3 are extended in the CASIA v4. Additionally, three
new subsets are introduced. The CASIA-Iris v4 contains a total
of 54,601 iris images from more than 1800 genuine subjects
as well as synthetic data. All iris images are 8 bit grayscale
images, collected under near infrared illumination or are artifi-
cially synthesized.
% Notre Dame and NIST Datasets: Phillips et al. [28] describe the

characteristics of the ND-IRIS-0405 dataset. The dataset con-
tains 64,980 iris images obtained from 356 subjects using a

Table 12
List of ocular biometrics’ datasets.

Ocular
modalities

Dataset Authors/organization

Iris BMDB Ortega-Garcia et al. [237]
CASIA Iris v1 CAS-IA [94]
CASIA Iris v2 CAS-IA [95]
CASIA Iris v3 CAS-IA [61]
CASIA Iris v4 CAS-IA [34]
IITD Iris IIT Delhi [93]
Herta Iris Herta Security [51]
ICE 2005 NIST [39]
IIITD CLI IIIT Delhi [129]
IIITD Iris Spoofing IIIT Delhi [130]
IIITD Multi Sensor IIIT Delhi [142]
Miles Research Database Miles Research [66]
Multi-PIE Gross et al. [118]
ND Time Lapse Iris Baker et al. [149]
ND-IRIS-0405 Phillips et al. [28]
ND Cross Sensor University of Notre Dame

[151]
NICE v1 NICE [36]
NICE v2 NICE [235]
Q-FIRE Johnson et al. [115]
UBath Iris University of Bath [119]
UBIRIS v1 Proença and Alexandre [18]
WVU Non-Ideal West Virginia University [62]
WVU Off Angle West Virginia University

[238]

Periocular Compass Juefei-Xu and Savvides [171]
IIITD Multispectral
Periocular

IIIT Delhi [175]

IIITD Plastic Surgery IIIT Delhi [233]
UBIPr Padole and Proença [170]

Iris,
Periocular

FERET DARPA [120]

FRGC v1 NIST [64]
FRGC v2 NIST [236]
MBGC Phillips et al. [96]
UBIRIS v2 Proença et al. [19]

Eye
movement

EMBD v2 Komogortsev and Holland
[207]

Ocular FOCS NIST [216]
Retina VARIA VARFA [187]
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LG 2200 infrared sensor. The images in the dataset simulate
several real-world conditions including blur, occlusion, non-
frontal irises, and artifacts induced due to contact lenses.
Notre Dame CVRL group thereafter proposes several iris data-
bases. For example, Fenker and Bowyer [148] prepared the
ND-Iris-Template-Aging dataset. The dataset contains 22,156
images from 644 irises, acquired using an LG 4000 iris sensor
over a period of 2 years.
% UBIRIS and NICE Datasets: Proença and Alexandre collected the

UBIRIS v1 dataset [18] using a Nikon E5700 sensor. It is the first
large-scale visible light iris database. The database contains
1877 images collected from 241 persons. The UBIRIS v2 dataset
[19] contains visible-spectrum images from 261 subjects, hav-
ing a resolution of 300 ! 400 pixels. The primary purpose of
the UBIRIS v2 database is to provide a tool to supplement visible
wavelength iris recognition under non-ideal imaging condi-
tions. Apart from iris recognition, the dataset has been used
by a number of researchers to validate their proposed
approaches to periocular recognition.
% The VARIA Retina Database: The VARIA database [187] is a set

of retinal images used for authentication purposes. The data-
base includes 233 images acquired from 139 different individu-
als. The images have been acquired with a TopCon non-
mydriatic NW-100 camera and are centered on the optic disk.
The resolution of the images is 768 ! 584 pixels.
% Face Datasets used for Ocular Recognition: The data for the

Face Recognition Grand Challenge v1 (FRGC) [64] consists of
50,000 recordings. It consists of high resolution facial images
with an average inter-eye distance of 250 pixels. The FRGC is
intended to facilitate the development of new algorithms that
take advantage of the additional information inherent in high
resolution images. It is suitable for benchmarking periocular
recognition algorithms. The Face Recognition Grand Challenge
2.0 [236] contains visible spectrum frontal images of 568 sub-
jects, having a resolution of 1704 ! 2272 pixels. The high reso-
lution images of the FRGC v2 dataset have been successfully
used for validating several periocular recognition algorithms.
Phillips et al. [96] describes the Multiple Biometrics Grand
Challenge (MBGC). The dataset is acquired using several differ-
ent sensors: the LG 2200 near infrared camera, the Sarnoff Iris
on the Move system, and a high definition video camera having
a resolution of 1440 ! 1080. The face videos, having a resolu-
tion of 2048 ! 2048 pixels, are suitable for validating periocular
recognition algorithms. The goal of MBGC is to facilitate
research in face and iris recognition for data acquired in non-
ideal conditions.
The Face Recognition Technology (FERET) database [120] is
sponsored by the Department of Defense’s Counterdrug
Technology Development Program. However, it was originally
collected to develop automatic face recognition capabilities.
The database consists of 14051 face images in a number of ori-
entations. The database is of significant interest for researchers
working on constrained as well as unconstrained periocular
recognition as well.
% Multimodal databases that include ocular modalities:

Ortega-Garcia et al. [237] describe the multi-scenario
Biosecure Multimodal DataBase (BMDB), collected within the
framework of the European BioSecure Network of Excellence.
Several biometric modalities are captured in multiple environ-
ments. Iris information is acquired from 667 subjects using an
LG Iris Access EOU 3000. The novel and varied acquisition con-
ditions of the BMDB allow for a variety of biometric techniques
to be validated on the dataset. Johnson et al. [115] describe the
Q-FIRE dataset, which is a set of face and iris videos consisting
of subjects at a distance of 5–25 feet. Iris videos are captured
in the near infrared spectrum with a Dalsa 4M30 camera. The

iris data consists of variations in blur, orientation angle, and
occlusion.

4.2. Open-source and commercial softwares

Fast-paced progress in the research on ocular biometrics has
led to the development of software suites to facilitate experi-
ments. Among ocular biometric traits, iris recognition has enjoyed
majority of the attention of biometric researchers. As a result, a
number of available open-source and commercial softwares focus
on recognizing individuals from iris patterns. A few of the major
ocular biometric softwares/open-source are described below.

1. Libor Masek’s MATLAB Source Code for a Biometric Identification
System Based on Iris Patterns [239] is an open-source implementa-
tion of Daugman’s algorithm. The system performs segmentation,
normalization, and feature encoding of eye images. The software
suite also includes a program to measure the Hamming Distance
between the biometric templates to perform matching.

2. The Video-based Automatic System for Iris Recognition (VASIR)
[240] is an open-source iris recognition system designed at
NIST for recognizing irises in videos. The system is capable of
processing videos of human subjects walking through the sys-
tem in unconstrained environments apart from robustly han-
dling constrained stationary-image iris recognition. VASIR
supports the following matching scenarios – non-ideal video
sequences to non-ideal video sequences, non-ideal video
sequences to ideal stationary images, and ideal stationary
images to ideal stationary images. VASIR is capable of automat-
ically detecting and extracting the eye region and assessing the
quality of the iris image, apart from performing a comprehen-
sive image comparison analysis. The performance and practical
feasibility of VASIR has been empirically established on the Iris
Challenge Evaluation (ICE) dataset and the Multiple Biometric
Grand Challenge (MBGC) dataset [241].

3. VeriEye [242] is a commercial Software Development Kit for iris
identification. The technology includes multiple proprietary
solutions that allow robust iris enrolment under various condi-
tions. The system is capable of verification as well as identifica-
tion. The recognition time and recognition accuracy of the
system has been tested at the NIST Iris Exchange (IREX).
VeriEye performs robust recognition and can process non-frontal
unconstrained images. The system can efficiently detect irises in
the presence of visual noise, lighting reflections, or obstructed
eye images. VeriEye matches up to 40,000 irises per second on
a standard desktop computer, and enrolls an iris image in 0.6 s.

4. The Eye Movement Classification Software [243,244] developed at
the Human Computer Interaction Laboratory at the Texas State
University performs offline classification of eye movement tra-
jectories. The software suite performs extraction of fixations
and saccades from the observed positions of the eye trace. The
software contains implementation of several eye movement
classification algorithms: Velocity Threshold Identification,
Hidden Markov Model Identification, Dispersion Threshold
Identification, Minimum Spanning Tree Identification, and
Kalman Filter Identification. The software also computes stan-
dardized behavior scores that allow selection of threshold and
input parameters for any eye movement classification method.

5. Path forward

Ocular biometrics has been well explored and there are several
systems that yield state-of-the-art results with cooperative users.
However, for unconstrained environment and non-cooperative
users, operations such as recognition at a distance, in the presence
of contact lens, under the influence of drugs, and spoofing are
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challenging scenarios where significant effort is required.
Moreover, currently available ocular recognition systems, except
periocular, require cooperation from users for acquisition. To
achieve good recognition accuracies in unconstrained environ-
ments, research efforts can be extended in multiple areas. For
future research, we believe that there are five major directions:

1. Improved sensing technology: Improving the accuracy of a
biometric system is always conditioned by the acquisition tech-
nology and the algorithms utilized. With improvements in sens-
ing technology, the captured data can be significantly improved
thereby improving the recognition accuracies. Further, acquisi-
tion devices are also vital to increase the coverage area of any
biometric modality. For instance, if the devices cannot capture
samples at a distance, then the usage of that modality is always
constrained in controlled environments. Therefore, one impor-
tant research direction for ocular biometrics would be to design
improved devices for non-intrusive and ‘‘at-a-distance’’ capture.
Along with this, mobile and inexpensive devices for ocular bio-
metrics can also increase the usage of these modalities. With
new devices, improved preprocessing, feature extraction and
matching algorithms will also be required.

2. Exploration of advanced machine learning algorithms for
better representation and classification algorithms: Among
different ocular modalities, iris is the most studied and
deployed. One of the primary reasons for not deploying other
biometrics is comparatively lower state-of-the-art of periocular
and other ocular biometrics in unconstrained environments.
Recently, several advancements have been proposed in the
machine learning community to improve both representation
and classification, for instance dictionary learning, deep learn-
ing, and distance metric learning. Researchers can explore these
advanced machine learning algorithms to improve the perfor-
mance of ocular modalities.

3. Heterogeneous recognition: With the availability of novel
devices, interoperability is an ever increasing challenge. For
instance, iris region can be captured in both NIR and visible
spectra. Similarly, periocular recognition has also been explored
in both the spectra. The scanners working in the same spectrum
also have variations in resolutions, illumination source (such as
different number and arrangement of NIR light emitting
diodes), and field of view, thus bringing the challenge of inter-
operability in same spectrum devices as well. Another interest-
ing example comes from Aadhaar project where iris biometrics
is being used for verification. One device has been used for
enrollment whereas for authentication, several inexpensive
devices will be used by different registrars all over the country.
To maintain high levels of authentication accuracy, the algo-
rithms should be interoperable. Therefore, it is important that
interoperability challenges such as cross spectrum and cross
resolution are addressed in ocular biometrics.

4. Ocular recognition at a distance: Iris and periocular recogni-
tion have been studied extensively for scenarios involving con-
strained acquisition. The two modalities have achieved accurate
recognition performance at short acquisition distances.
Advances in acquisition sensors as well as the deployment of
real-world biometric systems have led to the exploration and
nascent development of unconstrained recognition systems.
Iris and the periocular region, along with information fusion
from the two modalities, holds significant potential for recogni-
tion of individuals at large stand-off distances.

5. Multimodal ocular biometrics: In literature, researchers have
generally focused on single ocular modality only. However, it
has been well established that multimodal biometrics approach
yields better recognition results than unimodal approach.
Therefore, efficiently fusing some ocular or non-ocular

biometric modality with ocular ones can yield improved recog-
nition results. Context switching or selection algorithms [9,245]
can also be utilized to recognize individuals in certain condi-
tions where it is difficult to process all the modalities together.
For instance, face and iris biometrics can be combined to
improve the accuracy. However, in unconstrained environ-
ments where it is difficult to capture iris, context switching
can be performed to recognize the query image only using face
images. This helps in increasing the number of probes that can
be identified and also improves the overall accuracy.

6. Benchmarking standards and open-source software: The
field of ocular biometrics enjoys the availability of a number
of public datasets. However, apart from a few open competi-
tions such as the Multiple Biometric Grand Challenge and
the Noisy Iris Challenge Evaluations, there is a dearth of
well-set protocols to benchmark the performance of ocular
recognition algorithms. In the field of face recognition, the
Point and Shoot Face Recognition Challenge and the Labeled
Faces in the Wild Challenge provide common datasets as well
as protocols to streamline the comparison between competing
algorithms. Such standards allow a clear understanding of the
relative merits of various recognition techniques. We assert
that the ocular biometric recognition community requires such
protocols to be established to allow the comparison of recog-
nition techniques to benchmark the relative strengths and
weaknesses of these algorithms. The need for benchmarking
protocols is accompanied by the requirement for an initiative
towards a culture of open-source software. Reproducibility of
state-of-the-art results is necessary to constructively build
upon the fast paced research conducted in the field of ocular
biometrics.
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