Face Anti-Spoofing with Multifeature Videolet
Aggregation

Talha Ahmad Siddiqui'*?, Samarth Bharadwaj?, Tejas I. Dhamecha®, Akshay Agarwal', Mayank Vatsa''*, Richa Singh', and Nalini Ratha®
' IIT-Delhi, Delhi, India, > IBM Research Labs

Abstract—Biometric systems can be attacked in several ways
and the most common being spoofing the input sensor. Therefore,
anti-spoofing is one of the most essential prerequisite against
attacks on biometric systems. For face recognition it is even more
vulnerable as the image capture is non-contact based. Several
anti-spoofing methods have been proposed in the literature for
both contact and non-contact based biometric modalities often
using video to study the temporal characteristics of a real vs.
spoofed biometric signal. This paper presents a novel multi-
feature evidence aggregation method for face spoofing detection.
The proposed method fuses evidence from features encoding
of both texture and motion (liveness) properties in the face
and also the surrounding scene regions. The feature extraction
algorithms are based on a configuration of local binary pattern
and motion estimation using histogram of oriented optical flow.
Furthermore, the multi-feature windowed videolet aggregation of
these orthogonal features coupled with support vector machine-
based classification provides robustness to different attacks. We
demonstrate the efficacy of the proposed approach by evaluating
on three standard public databases: CASIA-FASD, 3DMAD and
MSU-MFSD with equal error rate of 3.14%, 0%, and 0%,
respectively.

I. INTRODUCTION

Biometric systems have different points of vulnerability
such as sensor attacks, overriding feature extraction, tampering
feature representation, corrupting matcher, tampering stored
template, and overriding decision [18]. With such attacks,
it is possible to circumvent, gain unauthorized access, and
impersonate another individual. Among the different points
of a biometric system design, capture phase vulnerabilities
lead to the possibility of spoofing attacks. To mitigate the
spoofing attempts, anti-spoofing techniques are developed that
can be advantageous to (i) help increase the cost of obfuscating
a biometric system, (ii) allow biometrics to become truly
operator independent, and (iii) facilitate non-repudiation as the
user is unable to deny his/her physical presence.

Face spoofing is a simple yet effective method to circumvent
unattended face recognition systems. The ‘low-tech’ nature
of these techniques makes face biometric systems particularly
vulnerable to spoofing attacks. The problem of spoofing is
also compounded with mobile devices enabled with face
recognition. For instance, the Face Unlock feature, that uses
face recognition to unlock a phone, is vulnerable to spoofing
attacks [9], despite having a blinking based liveness detection.
Additionally, sophisticated high quality 3D masks of persons
have also become cheaper to obtain [7].

To prevent spoofing attacks, a face biometric system must
be fortified with special mechanisms that ensure the integrity

of the system. In this research, we present a single approach
for efficiently detecting a plethora of possible 2D & 3D face
spoofing techniques such as print, replay, wrap, and mask
attacks that have been shown to be effective at breaching face
biometric systems.

A. Literature Review

The face anti-spoofing problem is extensively studied in
literature, particularly with the introduction of Print Attack
dataset [1], Replay Attack dataset [5], CASIA-FASD spoofing
dataset [21], 3DMAD database [7], and MSU mobile face
spoofing database [20]. Each of these datasets offer different
types of spoofing attacks with varying degrees of sophistica-
tion and quality, and have been a valuable asset to the scientific
community in driving this area of research forward. Depending
on the type of features used for information extraction and
representation, face anti-spoofing techniques in literature can
be classified into image texture analysis and temporal evidence
based approaches.

Texture analysis approaches rely on the observation that
video frames (individually) exhibit some unique image prop-
erties that help distinguish when compared to spoofed frames.
Early approaches showed Local Binary Patterns (LBP) de-
scriptors of different configurations are effective for print
attack detection [1], [14]. Orthogonal to the LBP texture
descriptors based approaches, quality assessment metrics such
as specular reflection, blurring and color density are also
explored for anti-spoofing [10], [20]. Another approach to
replay spoofing utilizes detection of Moire patterns, which
are typically manifested in video recapturing, to detect replay
video attacks [17].

In contrast, temporal evidence techniques encode spatial
and temporal evidence across videos for cues such as signs
of vitality [16], for spoofing detection. Dynamic texture fea-
tures such as LBP-TOP [22] are studied in this regard. Top
performing teams in the 2¢ ICB counter measure to 2D facial
spoofing competition [6] combined motion and texture features
to obtain interesting results. Bharadwaj et al.[2] present a com-
bination approach leveraging texture and motion descriptors
across the entire video frame. The approach also leverages
Eulerian motion magnification to further enhance the subtle
motions in the video. The approach is effective on PRINT
and REPLAY attack databases, however, an equal error rate
of 14.4% is reported on the CASIA database [3]. Tirunagari
et al.[19] combine dynamic mode decomposition with LBP
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Fig. 1. An illustration of the windowed approach. The prediction scores obtained for each videolet are aggregated over the entire length of a video.

for spoofing detection. Recently, deep learning neural network
architectures are also explored to encode liveness and texture
for spoofing detection [8], [15].

B. Research Contributions

To enable deployment of unattended face recognition sys-
tems in access control applications, it is imperative that they
are robust to spoofing attacks. This paper presents a unified
approach to face spoofing detection based on the observation
that different types of spoofing attacks have varying effects on
the video frame that can be leveraged as evidence of spoofing.
The key contributions of this paper can be summarized as
follows:

« A multifeature encoding approach is proposed consisting
of a multiscale configuration of LBP (referred as multi-
LBP), that encodes the texture of videos temporally,
and a motion estimation based encoding approach using
optical flow, termed as Histogram of Oriented Optical
Flow (HOOF) [4]. Support Vector Machines (SVM) are
used for classification of an encoded video into spoof and
non-spoof.

« In the proposed algorithmic pipeline, multifeature encod-
ing is performed simultaneously over both full frame and
detected face region. The additional information provides
evidence of spoofing at the scene level of the video
frames.

« Further, the evidence of spoofing obtained from the face
and scene analysis is aggregated in a windowed approach
for a small number of video frames, termed as videolets.
Collection of evidence in videolet fashion enables short
motion analysis which provides an effective anti-spoofing
detection across various types of spoofing attacks and
video duration.

e An evaluation on three publicly available spoofing
databases, namely, the CASIA-FASD, MSU-MFSD, and,
3DMAD databases, using the official protocols, show
state-of-the-art performance along with lower computa-
tion time.

II. PROPOSED FRAMEWORK

In this research, we propose a temporal evidence based anti-
spoofing algorithm that consists of a multifeature extraction
method, followed by a combination approach to efficiently
classify spoofed and non-spoofed videos. Further, we show
that leveraging temporal evidence simultaneously from the
face region and the scene of the video further enhances
performance. Fig. 1 illustrates the overview of the algorithmic
pipeline. Details of the proposed framework are discussed in
the subsections below.

A. Feature Extraction

The proposed multifeature extraction consists of (1) feature
extraction using multi-LBP and HOOF, (2) multifeature ex-
traction on both face regions and full frames of the video, and
(3) feature aggregation over videolets (video frames of short
durations) followed by intra and inter feature evidence fusion.

1) Multi-LBP: In literature, LBP has been used to encode
texture information in several applications including spoofing
detection. LBP can be configured to provide a coarser or
finer encoding depending on the intended application. Existing
spoofing detection algorithms have proposed feature level con-
catenation of LBP features. We hypothesize that comparatively
coarser LBP features may be sufficient for spoofing detection
and propose to encode texture information at multiple scales
via feature concatenation of three LBP configurations: LBPg?l,
LBP’S‘?Q, and LBP}‘&Q, collectively termed multi-LBP. Fig. 2
illustrates the steps involved in the proposed multi-LBP feature
extraction algorithm. As opposed to Méittd et al[13] that
computes overlapping local histograms of LBPg%, resulting
in a feature vector of size 833; multi-LBP computes global
histograms at three scales, thereby resulting in a descriptor of
size 361 (i.e. 59+59+243).

2) Histogram of Oriented Optical Flows: Micro-
movements in the consecutive frames of a face video
are unique characteristic of liveness and challenging to
imitate in spoofing. Therefore, encoding such variations in
consecutive frames can provide effective features for spoof
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Fig. 2. Illustrating the proposed texture based spoofing detection approach.

detection. Optical flow is a dense motion estimation technique
that computes the motion of each pixel.

ov ov ov
Gzarctang—z7 m=,/G2 + G? 2)

where (G,) and (Gy) represent flow (gradient) in horizontal
and vertical directions, respectively. The orientation based
optical flow vector is computed by solving the optimization
problem 1 using conjugate gradient method [12]. Raw optical
flow per pixel may be too spatially constrained and encode
redundant background or unwanted motion. Therefore, as
illustrated in Fig. 3, the flow vectors are computed and
pooled over local block regions weighted by the corresponding
magnitude. Specifically, optical flow is computed between the
frames at a fixed interval (k). From Eq. 2, the histogram of
optical flow orientation angle (6) weighted by the magnitude
(m) is computed over local blocks and concatenated to form a
single vector. Histogram of the magnitude weighted orientation
bins are utilized, and the vector thus obtained is termed as
HOQOF [4]. The final feature vector (hoofy(V')) for a video V'
with n frames Fy ., and a sampling interval of k is obtained
by concatenating the HOOF vector for all the sampled frames

(Eq. 3).

hy , = HOOF (F,, F,)
hoofx (V) = [hY,1+k h‘2/+k,2+2k i hx—k,n] 3)

In this research, £ = 2 sampling interval is chosen empirically
which results in a feature vector of size 81 per frame pair.
Low interval ensures that small differences in motion between
consecutive frames are also encoded. The feature vector is
classified using SVM with RBF kernel.

B. Frame Level Feature Encoding

Thus far, this research presents a multifeature extraction
method, namely, multi-LBP and HOOF descriptors, collec-
tively termed multifeature. HOOF based motion analysis en-
codes motion of a face and is proficient as a /iveness approach.
On the other hand, multi-LBP encodes the temporal evidence
in texture which manifests differently for a real video than
a spoofed video. In addition to computing the multifeature
vectors for the face region in the frame, the proposed approach
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Fig. 3. An illustration of the proposed liveness based feature extrac-
tion approach. HOOF descriptors obtained between pairs of frames
at a fixed interval are concatenated to create a single feature vector.
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Fig. 4. An illustration on the information encoded by HOOF from
a videolet of real and replay attack videos of MSU-MFSD database.
The accumulation of absolute difference between the optical flow
maps of consecutive frames shows a larger amount of activity
potentially captured by the descriptor from the real video compared
to an attack video. Inset, the corresponding mean frame also shows
texture artifacts such as reflections and low contrast.

also computes the multifeature vectors for the entire frame
region, to encode the scene evidence that is available.

The process of video spoofing injects minute artifacts into a
spoofed video that are manifested throughout the video frame.
Fig. 4 is drawn to illustrate such artifacts being manifested in
the encoded features. The heat maps show accumulated abso-
lute difference between optical flow maps of a single videolet
from a video in the MSU-MFSD dataset (inset corresponding
mean frame for the same videolet). By removing the bounding
box for face region, the multifeature vectors are able to encode
a sufficient amount of such artifacts to favourably affect
the spoof vs non-spoof decision boundaries. These artifacts
include Moire patterns [17], fading effects, blurring, video
encoding artifacts and aliasing effects (from varying sampling
rate). Additionally, artifacts in some datasets can include the
spoofing medium, such as paper, tablet screen bezel, etc,



that are also encoded in the full frame. The observation
also explains the performance of anti-spoofing techniques in
literature that leverage image properties via quality assessment
metrics of frames.

Algorithm 1 Spoofing Detection in a video
input: A video V={F}, F>,... Fn}, corresponding video consisting of
cropped face regions V={Fi, Fa,...Fn} trained SVM models: M",
M", M and M!. (M and M corresponds to models for frames and
faces, respectively.), videolet size w, interval k, and decision threshold 7.

procedure:

> Compute LBP features
Xt = 1bp(V)
Xt =1bp(V)

> Compute HOOF features
X" = hoofi, (V) (as in Eq. 3)
X" = hoof(V) (as in Eq. 3)
_ (2N
n=(5--1)
s=1
iterate: : = 1 to 1 do

> number of videolets

> Obtain videolet features
vi={Fls <j < (s+w)}
vo'= {F}|s <j < (s +w)}
vh={Fhls<j < (s+w)}
o= {FlMs <j < (s+w)}
s=s+ (%)

> Score Computation
'Pl: ,/\/ll(lll), fPh: ./\/lh(l/h)
pPl= Ml(l)l), ph= Mh(l)h)
end iterate.

Sl= 2300 (P, Sh= 0370 (P])

I_ 1N 1N oh_ 1 N7
S_; j:l(Pj)’S _EZj:1(P}]L)

Q! = wtS! + w S
QM = whSh + whsh

> Weighted Intra-Feature Fusion
> Weighted Intra-Feature Fusion

R = waQ" + wp Q" > Weighted Inter-Feature Fusion
Output: report if (R > T) “spoof™ else “non-spoof”

C. Videolet Score Aggregation and Evidence Fusion

As discussed earlier, a unified spoofing approach must be
robust to various types of face spoofing attacks such as print,
replay, wrap, and 3D mask. Therefore, we propose to combine
both feature extraction algorithms across full frame and face
region for improved performance. Fusion is performed by
combining the video level aggregation of the predicted scores
obtained from SVM classification of both multi-LBP (Ibp) and
HOQOF (hoof) features separately.

In several existing temporal evidence based approaches,
feature extraction is performed on the entire length of the
available video. The extracted features are then concatenated to
create a single descriptor of fixed length. However, with videos
of varying length, only the minimum number of frames can
be considered to maintain fixed length of the feature vector.
As illustrated in Fig. 1, we propose a windowed approach
to effectively utilize all the information present in a video
(V), without constraining the size of the input video. In this
approach, both HOOF and multi-LBP features are computed
on a video divided into overlapping windows of size w, similar
to [11], with a step size of half the window size. The frames
corresponding to a single window are termed as videolet.

Each video is divided into n = (25 —1) videolets followed
by extraction of multi-LBP and HOOF features from each
of these videolets for both full frame (1, ") and face region
(v, v™) separately. These scores are separately averaged across
all videolets (S;, Sy, S, Sp) and further combined at two level,
i) Intra-Feature Fusion and ii) Inter-Feature Fusion.

o Intra-Feature Fusion: A weighted combination of full
frame scores and face region scores is computed for
HOOF (Q") and Multi-LBP (Q!) separately.

« Inter-Feature Fusion: The evidence scores obtained sep-
arately for HOOF and LBP features for a given video are
further combined with weighted combination to obtain
the prediction score (R).

A threshold T is applied on prediction score R for clas-
sification of video as either spoofed or real. The proposed
videolet aggregation approach combines evidence from multi-
LBP texture analysis with HOOF motion analysis over short
w sized intervals, is summarized in Algorithm 1.

III. DATASET AND PROTOCOL

A spoofing detection technique must be robust to different
types of attacks. Therefore, the experiments are performed on
three publicly available databases, namely (1) CASIA-FASD
dataset [21], (2) MSU mobile face spoofing database [20], and
(3) 3D-MAD [7]. An overview of the structure of the databases
and pre-defined (official) protocols are provided below.

e The CASIA-FASD dataset (CASIA) [21] consists of 600
videos corresponding to 50 subjects, separated as 240
videos in training and 360 videos in testing. In addition to
print and replay attacks using photos and replayed videos
from tablets, wrapped photos are used to simulate the
cylindrical nature of the face. Further, print attack photos
are manually cut around the eyes to deter eye-blinking
based techniques. The challenging nature of the dataset
is furthered by variations in resolution, quality, and video
length (ranging from 1 to 19 seconds). The equal error
rates (EER) are reported as per the pre-defined protocol
of the dataset [21].

« MSU Mobile Face Spoofing Database (MSU) [20] con-
sists of 280 videos corresponding to 35 subjects, captured
with two devices, a built-in webcam and an Android
phone camera. The database consists of spoofing by print
attack using a HD color printer and replay attack using
video captured with a high resolution SLR camera and
an iPhone 5S back-facing camera. The wide variation in
the possible resolution of the videos poses a practical
challenge of the database. In this research, we use the
standard (predefined) experimental protocol of the paper.

o 3D Mask Attack Database (3ADMAD) [7] is a spoofing
database recorded for 17 subjects using Microsoft Kinect
sensors. It consists of three sessions, each containing
5 videos of 17 subjects (in all 255 videos). Two of
these sessions consist of real videos of the subject and
one session contains spoofing attack performed using 3D
masks of the subject applied to some other user. For the



TABLE 1
EER(%) FOR DIFFERENT TECHNIQUES ON MULTIPLE DATABASES.

Datasets
Approach CASIA MSU 3DMAD
pp HOOF LBP HOOF LBP HOOF LBP
Face [ Frame | Face | Frame Face [ Frame | Face | Frame Face | Frame | Face | Frame
Individual Features 16.80 [ 9.81 19.26 [ 7.78 30.41 [ 2.50 20.00 [ 2.50 2.35 [ 2.35 0.00 [ 0.00
Face and Frame Fusion 7.96 6.67 2.50 0.00 0.00 0.00
Feature Fusion 3.14 0.00 0.00*
Feng et al.[8] 5.83 - 0.00
Wen et al.[20] 12.9** 8.58 -
Patel et al.[17] 0.00F - -
Menotti et al.[15] - - 0.00
* Averaged over 17 cross validation folds. ** Results reported on high resolution subset of the dataset. + reported 0% HTER.
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Fig. 5. ROC plots of the proposed approach on the test sets of CASIA, MSU, and 3DMAD datasets (averaged over 17 folds) at various stages of the pipeline.

The curves with 0% EER overlap with axes.

purpose of our research we have used only the colour 2D
component of the database.

The EER results on 3DMAD database are presented in
a leave-one-out-cross-validation (LOOCYV) fashion. The
experiment is performed on 17 folds, one for each subject.
For each fold, all videos of the respective subject from
all three sessions in the test set are utilized and the mean
EER across all 17 folds is reported.

To obtain face region, frames are cropped using publicly
available eye coordinates and the features are extracted from
histogram normalized image sequences. For computing texture
based features, all the frames are converted to gray scale. To
be consistent with existing literature, the results of spoofing
detection are reported in terms of the respective protocols
and EER (%) on the test set!. The parameters of SVM are
determined using a grid search where the objective is to
minimize equal error rate on the training set. In this research,
w is set to 24 frames or 1 second of video, determined
experimentally to be optimal.

IV. EXPERIMENTAL ANALYSIS

Using the protocols described in the previous section, three
experiments are performed. Table I and Fig. 5 illustrate the
results for HOOF, multi-LBP, and the proposed spoofing
detection approach.

'HTER is another metric used in spoofing literature but not common for
these three datasets.

Performance of the Proposed Approach: The proposed
fusion approach (using HOOF and multi-LBP with face
and scene aggregated over videolets) provides 0% EER
with uncontrolled illumination and background on both
MSU and 3DMAD datasets. The approach also provides
high performance with 3.14% EER on CASIA dataset. A
weighted sum rule fusion of these classifiers has resulted
in a robust and accurate anti-spoofing measure. The
observation is consistent with the ROC plots shown in
Fig. 5(a), (b), (c).

Face Region vs. Full Frame: It is observed that on MSU
and CASIA datasets, utilizing the full frames yield better
performance than only the face regions. As discussed
earlier, this affect can be explained due to scene character-
istics, which are more pronounced in full frames than face
regions. On 3DMAD dataset, both, full frames and face
regions, yield same performance. 3DMAD involves the
mask attack videos only; it does not involve replay attack.
Such mask attack can be considered as advanced print
attack. Thus, there are no spoofing medium (such as iPad
screen) specific characteristics to be encoded. Therefore,
we observe that in the 3DMAD scene characteristics are
very similar for real and attack videos.

On MSU dataset, HOOF obtains tremendous improve-
ment in EER (from 30.41 to 2.50%) when utilizing full
frames as compared to only face regions. For CASIA,
the improvement is relatively smaller (from 16.80 to
9.81%). MSU dataset contains a higher fraction of replay



attack videos compared to CASIA. Thus, it is observed
that HOOF is better suited for replay attack than print
attack; probably, due to an explicit encoding of temporal
information.

o With LBP features, the full frame yields better perfor-
mance than the face regions in CASIA (7.78% com-
pared to 19.26% EER), and MSU (2.50% compared to
20.00% EER) datasets, whereas in 3DMAD a perfect
classification is obtained with both face regions and full
frames. This observation provides evidence that the LBP
features are efficiently encoding the scene characteristics
to differentiate between spoof and real videos.

« Effectiveness of Fusion: The proposed approach benefits

from the score level fusion by combining evidence from
various types of feature encoding. In order to quantita-
tively analyze the effect of the fusion, Spearman Rank
correlation is computed between scores at both stages of
fusion.
The scores utilized in Intra Feature Fusion yield following
correlation values for both the features: HOOF (CA-
SIA: 0.25, MSU: 0.26, 3DMAD: 0.70) and Multi-LBP
(CASIA: 0.41, MSU: 0.46, 3DMAD: 0.66). Similarly,
at the Inter Feature Fusion stage, the correlation of
0.51, 0.62, and 0.66 is observed for CASIA, MSU, and
3DMAD datasets, respectively. Overall, a low correlation
is observed for CASIA and MSU datasets, providing the
quantitative indication of effectiveness of fusion.

o This research presents a unified approach to face spoofing
detection that can provide robust results on multiple
datasets comprising of various types of 2D and 3D
spoofing methods. As shown in Table I, this research is
the first instance of a single approach showcasing best
results on all three datasets.

o Computational Efficiency: The OpenCV implementa-
tion runs on a machine with Intel Quad Core CPU
Q8300 at 2.5GHz and 4GB RAM. For a video with
375 frames (i.e., 15 seconds in length), 14 videolets
are created, each of 24 frames. The proposed approach
involves HOOF extraction for full frames (15.8s), and for
face region (0.54s). Similarly, for multi-LBP extraction of
full frames (20.0s), and for face region (0.65s) requires
a total of 38.6s to process a single videolet serially. The
computational time varies slightly on different databases
(difference under 0.1s). We believe that a parallel imple-
mentation can further reduce the processing time.

V. CONCLUSION

It is imperative that face recognition systems be equipped
with a pre-processing stage that evaluates an input video
for possible spoofing. This research presents a face spoofing
detection that leverages temporal evidence aggregation over
face region and scene of a video. The proposed approach
achieves state-of-the-art accuracies on different publicly avail-
able databases. Development of new anti-spoofing approaches
is a continuous process, to stay ahead of malicious intent
towards robust universal anti-spoofing techniques. We are

currently exploring the effectiveness of the proposed approach
in cross dataset experiments, presented in recent literature [20].
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