On the Problem of Approximating the
Eigenvalues of Undirected Graphs in
Probabilistic Logspace

Dean Doron * and Amnon Ta-Shma **

The Blavatnik School of Computer Science,
Tel-Aviv University, Israel 69978
deandoron@mail.tau.ac.il, amnon@tau.ac.il

Abstract. We introduce the problem of approzimating the eigenvalues
of a given stochastic/symmetric matrix in the context of classical space-
bounded computation. The problem can be ezactly solved in DET C NC2.
Recently, it has been shown that the approximation problem can be
solved by a quantum logspace algorithm. We show a probabilistic logspace
algorithm that solves the problem with constant accuracy. The result we
obtain falls short of achieving the polynomially-small accuracy that the
quantum algorithm achieves. Thus, at our current state of knowledge,
we can achieve polynomially-small accuracy with quantum logspace al-
gorithms, constant accuracy with probabilistic logspace algorithms, and
no non-trivial result is known for deterministic logspace algorithms.
Our work raises two challenges. First, a derandomization challenge, try-
ing to achieve a deterministic algorithm approximating eigenvalues with
some non-trivial accuracy. Second, a de-quantumization challenge try-
ing to decide whether the quantum logspace model is strictly stronger
than the classical probabilistic one or not. We therefore believe the prob-
lem of approximating the eigenvalues of an undirected graph is not only
natural and important by itself, but also important for understanding
the relative power of deterministic, probabilistic and quantum logspace
computation.

1 Introduction

One of the most basic questions in complexity theory is whether randomness
buys extra computational power or not. In the space-bounded model, Nisan
[1] constructed a pseudo-random generator (PRG) against logarithmic space-
bounded non-uniform algorithms that uses seed length O(log? n). Using that he
showed BPL is contained in the class having simultaneously polynomial time and
O(log® n) space. Saks and Zhou [2] showed BPL is contained in DSPACE(log"® n).

* Supported by the Israel science Foundation grant no. 994/14 and by the United
States — Israel Binational Science Foundation grant no. 2010120.

** Supported by the Israel science Foundation grant no. 994/14 and by the United
States — Israel Binational Science Foundation grant no. 2010120.

Reingold [3] showed undirected st-connectivity (which was shown to be in RL
by [4]) already belongs to L. These results seem to indicate that randomness
does not add additional power to the model and many conjecture that in fact
BPL = L. Yet, we currently do not know a PRG with seed length o(log2 n), nor
a general derandomization result that simultaneously uses o(log®n) space and
polynomial time.

One can look up and ask which upper bounds we know on BPL. We then
know the following:

NC' C L C RL C NL C DET € NC? C DSPACE(O(log? n)),

where DET is the class of languages that are NC! Turing—reducible to the prob-
lem intdet of computing the determinant of an integer matrix (see [5] for a
definition of DET). As it turns out, many important problems in linear alge-
bra, such as inverting a matrix, or equivalently, solving a set of linear equations
are in DET, and often complete for it (see, e.g., [5]). The fact that NL C DET
is due to [5] who showed that the directed connectivity problem, STCON is
reducible to intdet. DET C NC? follows from Csansky’s algorithm [6] for the
parallel computation of the determinant. In addition to the above we also know
that BPL C DET (e.g., using the fact that matrix powering is DET complete).

While matrix powering is complete for DET, approzimating matrix powering
of stochastic matrices is in BPL. To see that, assume A represents a stochastic
matrix. Then one can approximate A*[s,] by estimating the probability a ran-
dom walk over A starting at s reaches t after k steps. Conversely, it is possible to
convert a BPL machine to a stochastic operator A such that the probability the
machine moves from s to ¢ in k steps is A*[s, 1], see, e.g., [1]. Thus, in a sense,
approximating matrix-powering of stochastic operators is complete for BPL.

In 1999, Watrous [7] defined the model of quantum logspace computation,
and proved several facts on it. The definition was modified several times, see,
[8]. Roughly speaking, a language is in BQL if there exists an L—uniform family
of quantum circuits solving the language with only O(logn) qubits. The quan-
tum circuits are over some universal basis of gates (e.g., CNOT, HAD, T) plus
intermediate measurements (that in particular may simulate a stream of ran-
dom coins). For details we refer the reader to [8,9]. The works of Watrous, van
Melkebeek and Watson showed that BQL is also contained in NC2.

Recently, it was shown in [9], building on an earlier work by [10], that it
is possible to approxzimate the singular value decomposition (SVD) of a given
linear operator in BQL. This also implies that it is possible to approximately
invert a matrix in BQL. In a sense, this is an analogue of what is known re-
garding the permanent. Computing the permanent exactly is #P complete but
approximating it is in BPP. Similarly, computing the SVD exactly is DET hard
while approximating it is in BQL. Given the above picture, it is natural to ask
whether the above is already true in the classical setting. Namely,

Question 1. (Main question) Is it possible to approximate the SVD of an arbi-
trary linear operator in BPL?

A slightly less ambitious question is whether it is possible to approximate
the SVD of a specific class of operators, e.g., Hermitian operators.

In this work we take a first step on this question. One way of doing this is
“de-quantumizing” the quantum algorithm. Ben-Or and Eldar [11] recently de-
quantumized the SVD quantum algorithm and obtained a classical probabilistic
algorithm for inverting matrices that achieves the state of the art running time,
using a completely new approach that is derived from the quantum algorithm.
We would like to do the same in the space-bounded model. Motivated by this
we try to de-quantumize the quantum algorithm and get a classical probabilistic
low-space algorithm. For simplicity, we restrict the discussion in the introduction
to Hermitian operators only. We define the following promise problem:

Definition 1. (The promise problem EV, g) The input is a stochastic, Hermi-
tian matriz A, A € [—-1,1] and o < 5.

Yes instances : There is an eigenvalue \; of A such that |A\; — | < a.
No instances : All eigenvalues of A are B—far from A.

The BQL algorithm solves the above problem for any Hermitian operator A
whose eigenvalues are 7—separated, for, say, 7 = n"° a = 7 and 3 = 2a. That
is, the quantum algorithm can handle any polynomially small accuracy. With
such accuracy one can turn the solution of the promise problem to a procedure
approximating the whole spectrum.

We develop a BPL algorithm that follows the main idea of the quantum
algorithm, and in that sense we de-quantumize the quantum algorithm, but we
achieve much worse parameters. Specifically, we prove that the promise problem
EV, 3 belongs to BPL, for constant parameters o < . Thus, on the one hand
the result is disappointing because the quantum algorithm does so much better
and can handle polynomially small gaps. On the other hand, we remark that we
do not know how to achieve even constant approximation with a deterministic
logspace algorithm. We are not aware of many natural promise problems in BPL
that are not known to be in L. This paper shows EV,, 3 is such a promise problem.

1.1 Our technique

The usual way of describing the quantum algorithm is that the algorithm applies
quantum phase estimation on the completely mixed state. The completely mixed
state is a uniform mixture of the pure states that are formed from the eigenvec-
tors of A, and on each such eigenvector, the quantum phase estimation estimates
the corresponding eigenvalue. Thus, if the procedure can be run in (quantum)
logarithmic space, we essentially sample a random eigenvector/eigenvalue pair,
and from that we can approximately get the SVD decomposition of A.
Another (less standard) way of viewing the quantum algorithm is that it
manipulates the eigenvalues of an input matrix A without knowing the decom-
position of A to eigenvectors and eigenvalues. This can be done using the simple
fact that if Aq,...,\, are the roots of the characteristic polynomial of A, and
if p is an arbitrary univariate polynomial, then p(A1),...,p()\,) are the roots of

the characteristic polynomial of the matrix p(A). The probability the algorithm
measures A is proportional to Tr (p(A4)), where p is a shift of the Fejér kernel
by A (see Section 5). Applying p on A amplifies the eigenvalues that are close
to A to a value close to 1, and damps eigenvalues far from A close to 0. Thus,
Tr (p(A)) approximately counts the number of eigenvalues close to .

We would like to follow the same approach but with a probabilistic algorithm
rather than a quantum one. We say a matrix A is simulatable if a probabilistic
logspace algorithm can approximate A*[s,¢] for any k polynomial in n and with
polynomially-small accuracy (see Definition 3 for the exact details). From the
discussion above it is clear that if A is the transition matrix of a (directed or
undirected) graph then A is simulatable (see Lemma 1). We first ask what other
matrices are simulatable? We show that even non-stochastic matrices A, even
with negative or complex entries, are simulatable as long A has infinity norm
at most 1, namely, those matrices A for which all rows ¢ € [n] have ¢; norm at
most 1; Zj |A[Z,]]| § 1.

If A is simulatable and the coefficients of p(z) = >, ¢;a" are not too large
(i.e., only polynomially large in n), then we can approximate in BPL the matrix
p(A) = >, ¢;A". In particular, we can also approximate Tr (p(A)). By taking p
to be a threshold polynomial with degree logarithmic in n (that guarantees the
size of the coefficients ¢; is polynomial in n) and a threshold around A, we can
solve EV, 3(A) for constants oo < 5 (see Section 4).

There are many other possible candidate functions for a threshold polynomial
p. However, we prove in Theorem 2 that no polynomial can do significantly better
than a threshold polynomial. The reason the quantum algorithm works better is
because it is able to take p up to some polynomial degree (rather than logarithmic
degree) not worrying about the (quite large) size of the coefficients, thus leading
to much better accuracy. The quantum algorithm also has the advantage that it
works for any normal operator A, not necessarily stochastic or simulatable.

Thus, the algorithm we give for EV,, g is simple: Approximate Tr (p(A)) to
a simple logarithmic degree polynomial p. Nevertheless, we believe it features a
new component that has not been used before by probabilistic space-bounded
algorithms. An algorithm that takes a random walk on a graph and takes a
decision based on the walk length and connectivity properties of the graph (as,
e.g., [4]) works with some power of the input matrix A. More generally, such an
algorithm can work with a convex combination of powers of the input matrix
(by probabilistically choosing which power to take). The algorithm we present
utilizes arbitrary (positive or negative) combinations of matrix powers and we
believe it is a crucial feature of the solution. We are not aware of previous BPL
algorithms using such a feature.

1.2 A short discussion

We believe the problem of approximating the eigenvalues of an undirected graph
is natural and important. Also, at our current state of knowledge, it simultane-
ously separates deterministic, probabilistic and quantum complexity: In BQL we

can solve it with polynomially-small accuracy, in BPL with constant accuracy
and in L we do not know how to solve it at all. Thus it poses several challenges:

— First, there is the natural question of whether one can approximate eigenval-
ues in BPL with better accuracy. A positive answer would imply BPL approx-
imations to many important linear algebra problems that are currently only
known to be in NC?. A negative answer would imply a separation between
BQL and BPL.

— Second, it raises the natural question of derandomization. Can one design a
deterministic algorithm approximating eigenvalues to constant accuracy?

We believe the solution of this problem is not only important by itself, but
may also shed new light on the strengths and weaknesses of the space-bounded
model, and the relative strengths of the deterministic, probabilistic and quantum
models of space-bounded computation.

2 Preliminaries

A deterministic space-bounded Turing machine has three semi-infinite tapes: an
input tape (that is read-only); a work tape (that is read-write) and an output tape
(that is write-only and uni-directional). The space complexity of the machine is
the number of cells on the work tape. The running time of a space-bounded Tur-
ing machine with s(n) > logn space complexity is bounded by 2°((") time. A
probabilistic space-bounded Turing machine is similar to the deterministic ma-
chine (and in particular we require it always halts within 20((") time) except
that it can also toss random coins. One convenient way to formulate this is by
adding a fourth semi-infinite tape, the random-coins tape, that is read-only, uni-
directional and is initialized with perfectly uniform bits. We are only concerned
with bounded-error computation: We say a language is accepted by a probabilis-
tic Turing machine if for every input in the language the acceptance probability
is at least 2/3, and for every input not in the language it is at most 1/3. As
usual, the acceptance probability can be amplified as long as there is some non-
negligible gap between the acceptance probability of yes and no instances.

Definition 2. A language is in BPSPACE(s(n)) if it is accepted by a probabilistic
space bounded TM with space complexity s(n). BPL = U.BPSPACE(clogn).

Often we are interested in computing a value (e.g., an entry in a matrix
with integer values or the whole matrix) and are only able to approximate it
with a probabilistic machine. More precisely, assume there exists some value
u = u(z) € R that is determined by the input z € {0,1}". We say a probabilistic
TM M (z,y) (e,)-approximates u(z) if:

Vaeqoay PriiM(z,y) —u(@)| = el <6

For a positive integer n, we denote [n] = {1,...,n}. For a matrix A € C,,xn,

the operator norm corresponding to the ¢, norm is [|All, = max,,—1 [|Av||-

The special case of p = 2, the spectral norm, is also the largest singular value of
the operator A. Also, ||A|s is

[Alloe = max 37 |4,
J

We can view a directed or undirected graph G = (V, E) over n vertices, as a
linear operator that describes the transition probabilities of a random walk on
G. Specifically, let A be the adjacency matrix of the graph. Let D be a diagonal
matrix D with D(%,4) = dout(vi) for every i € [n]. We always work with graphs
that have no sinks, so doys (v;) # 0 for every i € [n]. Then the transition matriz of
G is the linear operator A = D~ A. Notice that A is stochastic and corresponds
to a random walk on G. It is well known that if A is a stochastic matrix then
all its eigenvalues have absolute value at most 1. Also, if G is an undirected
(possibly irregular) graph then its transition matrix A is diagonalizable with
real eigenvalues in the range [—1,1]. !

3 Simulatable matrices

A random walk on a graph G (or its transition matrix A) can be simulated
by a probabilistic logspace machine. As a consequence, a probabilistic logspace
machine can approximate powers of A well. Here we try to extend this notion
to arbitrary linear operators A, not necessarily stochastic. We say a matrix A is
simulatable if any power of it can be approximated by a probabilistic algorithm
running in small space. Formally:

Definition 3. We say that a family of matrices A is simulatable if there exists
a probabilistic algorithm that on input A € A of dimension n with || A|| < poly(n),
k €N, s,t € [n], runs in space O(log Z—g) and (g,0)-approzvimates A¥[s, t].

As expected,

Lemma 1. The family of transition matrices of (directed or undirected) graphs
is simulatable.

Proof. Let G = (V, E) be a graph with n vertices and let A be its transition
matrix. Let £ € N, s,¢ € [n] and 8, > 0. Consider the algorithm that on input
k,s,t, takes T independent random walks of length k over G starting at vertex
s. The algorithm outputs the ratio of walks that reach vertex t. Let Y; be the

! To see that notice that the adjacency matrix Ais symmetric (because the graph is
undirected) but the transition matrix A = D~'A is not symmetric when the graph
is irregular. Yet, consider the matrix L = D™Y24AD~'/2. L is symmetric and thus
has an eigenvector basis with real eigenvalues. A = D™'Y2LDY? g conjugate to
L and thus is diagonalizable and has the same eigenvalues. As A is stochastic its
eigenvalues are in the range [—1,1].

random value that is 1 if the i-th trial reached ¢ and 0 otherwise. Then, for every
i, E[Y;] = A¥[s,t]. Also, Y1,..., Yy are independent. By Chernoff,

T
1
Pl Y — A¥fs,]| > e] < 27277
=1

Taking T = poly(e~1,logd~1), the error probability (i.e., getting an estimate
that is € far from the correct value) is at most §. Altogether, the algorithm runs in
space O(log(Tnk|E|)) = O(log(nke~') +loglog §~1), assuming |E| = poly(n, k).

Intuitively, any stochastic matrix corresponds to a walk on some directed
graph. A technical issue is that the entries of the matrix might have high precision
beyond our small space capabilities. We prove:

Lemma 2. The family of stochastic matrices is simulatable.

In fact, this can be further generalized to any real matrix A (with possibly
negative entries) with infinity norm at most 1.

Lemma 3. The family of real matrices with infinity norm at most 1 is simulat-
able.

The proofs of both lemmas are omitted.

4 Approximating eigenvalues with constant accuracy

In this section we prove:

Theorem 1. There exists a probabilistic algorithm that on input a stochastic
matriz B with real eigenvalues in [0,1], constants 8 > « > 0 and X € [0,1] such
that:

— There are d eigenvalues \; satisfying |A — \i| < a,
— All other eigenvalues \; satisfy |A — X\;| > B,

outputs d with probability at least 2/3. Furthermore the algorithm runs in prob-
abilistic space O(logn).

We remark that Theorem 1 covers the case of transition matrices of undi-
rected graphs. As mentioned earlier, a transition matrix A of an undirected
graph has an eigenvector basis with real eigenvalues in the range [—1, 1]. Tak-
ing B = %A + %Ian we get a stochastic matrix with eigenvalues in the range
[0,1], and whose eigenvectors are in a natural one-to-one correspondence with
A’s eigenvalues.

Proof. (Of Theorem 1) The input to the algorithm is n, B, \, a, 8. We assume a
univariate polynomial p(x) = Zf\io c;z" with the following properties:

— p has a sharp peak around A, ie., p(z) > 1 —n for z € [A — a, A + o] and
p(z) <nforz €[0,1]\ (A — B, A+), where n = n(n) = n=2

— p can be computed in L. Formally, M = deg(p) and |¢;| are at most poly(n)
and for every i, ¢; can be computed (exactly) by a deterministic Turing
machine that uses O(logn) space.

In the next subsection we show how to obtain such a polynomial p with M =
32(8 — a)~2logn and |¢;| < 20,

Choose ¢ = % and § = % Set ¢/ =¢-272M and § = - 2™, The output of
the algorithm is the integer closest to

M
R= Zci -TP(B,n,i,e,d)
1=0

where TP is the probabilistic algorithm guaranteed by Lemma 2 that (¢/,d")—
approximates Tr (B?).
It is easy to check that:

Claim. Pr[|R — Tr (p(B))| > ¢] < 4.

As Tr (p(B)) = Yoi_;p(Ni), Pr[|[R — 37 p(Mi)| > €] < 8. However, p(A;)
is large when \; is a—close to A and small when it is f—far from A, and we are
promised that all eigenvalues \; are either a—close or f—far from A. Thus,

I'Tr (p(B)) —d| < n.

Altogether, except for probability 6, |R — d| < e+ nn < %, and the nearest
integer closest to R is d. The correctness follows. It is also straightforward to
check that the space complexity is O(log(ne~1671)) = O(logn).

The constant accuracy we achieve is far from being satisfying. The matrix
B has n eigenvalues in the range [0, 1], so the average distance between two
neighboring eigenvalues is 1/n. Thus, the assumption that there is an interval
of length g — a with no eigenvalue is often not true. The desired accuracy we
would like to get is o(1/n). Having such accuracy would enable outputting an
approximation of the whole spectrum of B, using methods similar to those in [9],
thus getting a true classical analogue to the quantum algorithm in [9]. However,
we do not know how to achieve subconstant accuracy. The question whether
better accuracy is possible in BPL is the main problem raised by this work.

4.1 Using the symmetric threshold functions

There are several natural candidates for the function p above. In this subsection
we use the threshold function to obtain such a function p. For A = ﬁ for some
integers k and M, define:

pa(z) = i (J\Z/[> (1 —)M

i=k

px approximates well the threshold function Thy(z) : [0,1] — {0,1} that
is one for > A and zero otherwise. Specifically, using the Chernoff bound, we
obtain:

Lemma 4. Let x € [0,1]. px(x) approzimates Thy(z) over [0,1] with accuracy
A €

(£(e))M® where & = 2% and §(e) = uéﬁ

As a polynomial in z, py(z) = M ¢;a? with ¢; = (—1)’ Z;:/\M (]y) (1\2/1_—]]) (1)
i s 2

and therefore [c;] < 375,y (Af) (Ai{jj) < M(I\/AI//IQ) = 20(M) Furthermore, ¢;

can be computed (exactly) by a deterministic Turing machine that uses O(M)
space by simply running through the loop over j, each time updating the current
result by (—1)7 (];/I) (]‘Z/[_*]J)

To obtain our polynomial p, define p as the difference between the threshold
polynomial around A + A and the threshold polynomial around A\ — A,

p(x) = pr-a(r) — pryalz)
where M = 32(8 —) 2logn and A = (o + 3)/2. It is easy to check that

Lemma 5. p(z) > 1—n"2 for every x that is a—close to X (i.e., |[v — | < a)
and p(x) < n~2 for every x that is B—far from X (i.e., |x — \| > B).

4.2 The limitation of the technique

In this section, we prove the accuracy of the above technique cannot be enhanced
merely by choosing a different polynomial p. Approximating threshold functions
by a polynomial is well-studied and well understood (see, for example, [12-14]
and references therein). However, we need to adapt this work to our needs be-
cause we have an additional requirement that the magnitude of the polynomial’s
coefficients is small.

We start by formalizing the properties of p that were useful to us. We say
that P = {pk,n}Ae[o}aneN is a family of polynomials if for every A € [0,1] and
n € N, py , is a univariate polynomial with coefficients in R.

Definition 4. (Small family) Let P be a family of polynomials and fiz A € [0, 1].

For every n € N, write py ,,(x) = Z?i%(m’") canixt. We say the family is s(n)-

small if,

— deg(pan) < 290,

— For every 0 < i < deg(pxa.n); |cami| <250, and

— There exists a deterministic Turing machine running in space s(n) that out-
puts Cxn,0y- -+, Can,deg(pan) -

Definition 5. (Distinguisher family) Let P be a family of polynomials and fix
n € N. Given a < 8 in (0,1) and n < 1/2, we say the family is («,5,n)—
distinguisher for A € [0,1] if,

— For every x € [0, 1] that is a—close to A, pxn(x) € [1 —n,1], and

— For every x € [0,1] that is B—far from A, pxn(z) € [0,7].

Theorem 2. Let a, 3,\,n be such that a < B, B = o(1), n = o(n™!) and
A+ B < L. Then there is no (a, B,m)-distinguisher family for X that is O(logn)-
small.

Proof. Assume there exists such a family {p)\»”}/\e[o,l]meN with s(n) = ¢’ logn.
We first show that without loss of generality p has logarithmic degree. Let ry ,, ()
be the residual error of truncating py ,,(x) after clogn terms, for ¢ that will soon
be determined. Also, w.l.0.g., assume z € [0,1) is bounded away from 1. Then:

deg(px,n) clo
) an 1
. ;T .
TA,n(J?) < E |C>\,n,i| b < nt . T < mnc clog(l/z).
i=clogn+1

¢/ +2—log(1—x)
log(1/x)
We now show that O(logn)—degree polynomials cannot decay around A fast

enough. Assume to the contrary that there exists such a distinguisher family, so
Ipan(z)] < n~! for x € [\ + 3, 1]. The following lemma states that if a function
has a small value on an interval, than it cannot be too large outside it. Namely,

So, by taking ¢ = [| we obtain ry ,(z) < n=2.

Lemma 6. [15, Theorem 2.9.11] Let T,,(z) be the Chebyshev polynomial (of the
first kind) of degree n. Then, if the polynomial P, (z) = Y I, c;a’ satisfies the
inequality | P, (x)] < L on the segment [a, b] then at any point outside the segment

we have))
T —a—
T, —|.

For properties of the Chebyshev polynomials see [16, Chapter 1.1]. We men-

tion a few properties that we use. An explicit representation of T, (x) is given by
T () = (VD) (et VaTT)"
n(z) = 3

increasing for = > 1. Also,

T +0) < (1+6+VTT02—1) < (1+4V5)" <enVd <285 ()

for 0 < § < 1. Then:

|Po(z)] < L-

|Tn(—=2)| = |Tn(x)| and T, is monotonically

|p)\,n(>\)| S n71 : Tc-logn %{3__’}1)‘
= Torogn (1 + %)‘ By |To(2)| = |Tn(—2)|

<nt [Tetogn(l+48)| By the monotonicity of T,,(z) for z > 1 and A+ 8 <

By Equation (1) [pan(A)] < n—1232eVBlogn < =1432¢VB Ag 8 = (1) for n large
enough we have |py ()| < n~'/2, contradicting the fact that |py ,(\)| > 1-n"1.

We note that for values very close to 1, polynomials of higher degrees are
useful, and indeed better approximations are possible. In paurzticulaur7 one can
separate a 1 eigenvalue from 1 — % by using the polynomial =™ .

1
2

5 A comparison with the quantum phase estimation

The quantum algorithm of [10, 9] relies on the quantum phase estimation algo-
rithm. We do not explain this algorithm here, and we refer the interested reader
to [17, Chapter 7] or [18, Chapter 5]. The quantum phase estimation algorithm
has access to a Hermitian operator B with eigenvalues A1, ..., A,. Given an ac-
curacy parameter T' the quantum phase estimation algorithm returns answer %

with probability

1 sin? 7rT (A — é E
- 9 _
Z T2 sin? (m(A\, — ﬁ Z fr | 2m | M

T

where fr is the Fejér kernel — a function that plays a central role in Fourier
analysis (see [19, Chapter 2]). So, in fact, although not stated that way, the
quantum algorithm uses the same approach of computing Tr (p(B)) with p(x)
being the (shifted, scaled) Fejér kernel.

One big advantage of the quantum algorithm is that it can simulate the Fejér
kernel with polynomially-small accuracy up to any polynomial degree, whereas
the classical technique we employ only works for T' = O(logn). Another, perhaps
inherent, difference is that the quantum algorithm works over arbitrary Hermi-
tian operators, whereas our classical algorithm requires stochastic operators, or
at least operators with infinity norm at most 1.

Hence, several natural questions arise. E.g.,

Question 2.

— Can we approximate (even with constant accuracy) the eigenvalues of bounded
norm Hermitian operators in BPL? Currently we can handle only operators
with infinity norm at most 1.

— Can we approximate the eigenvalues of a stochastic operator with sub-
constant accuracy in BPL?

Question 8.

— Given an Hermitian matrix A of dimension n with eigenvalues that are well-
separated and in [0, 1], and an integer T = poly(n), can the entries of e'74
be approximated in O(logn) space, by a probabilistic algorithm, with high
probability? More generally,

— Is the family of unitary matrices simulatable?

Solving Question 3 would show that fr(A — AI) can be approximated for every
A € [0,1] and T that is poly(n) and would essentially show that the results that
the quantum algorithm achieves can also be obtained in BPL.

References

1. Nisan, N.: Pseudorandom generators for space-bounded computation. Combina-
torica 12 (1992) 449-461

@

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

. Saks, M.E., Zhou, S.: BPySPACE(S) C DSPACE(S3/2). J. Comput. Syst. Sci.

58 (1999) 376-403

Reingold, O.: Undirected connectivity in log-space. J. ACM 55 (2008)

Aleliunas, R., Karp, R.M., Lipton, R., Lovasz, L., Rackoff, C.: Random walks, uni-
versal traversal sequences, and the complexity of maze problems. In: Foundations
of Computer Science, 1979., 20th Annual Symposium on. (1979) 218-223

Cook, S.A.: A taxonomy of problems with fast parallel algorithms. Information
and Control 64 (1985) International Conference on Foundations of Computation
Theory.

. Csansky, L.: Fast parallel matrix inversion algorithms. STAM Journal of Computing

5 (1976) 618-623

Watrous, J.: Space-bounded quantum complexity. Journal of Computer and Sys-
tem Sciences 59 (1999) 281 — 326

van Melkebeek, D., Watson, T.: Time-space efficient simulations of quantum
computations. Electronic Colloquium on Computational Complexity (ECCC) 17
(2010) 147

Ta-Shma, A.: Inverting well conditioned matrices in quantum logspace. In: Pro-
ceedings of the 45th annual ACM symposium on Symposium on theory of com-
puting. STOC ’13, New York, NY, USA, ACM (2013) 881-890

Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear systems of
equations. Phys. Rev. Lett. 103 (2009) 150502

Ben-Or, M., Eldar, L.: Optimal algorithms for linear algebra by quantum inspira-
tion. CoRR abs/1312.3717 (2013)

Saff, E.B., Totik, V.: Polynomial approximation of piecewise analytic functions.
Journal of the London Mathematical Society s2-39 (1989) 487-498

Eremenko, A., Yuditskii, P.: Uniform approximation of sgn(x) by polynomials and
entire functions. Journal d’Analyse Mathématique 101 (2007) 313-324
Diakonikolas, I., Gopalan, P., Jaiswal, R., Servedio, R.A., Viola, E.: Bounded
independence fools halfspaces. STAM Journal on Computing 39 (2010) 3441-3462
Timan, A.: Theory of Approximation of Functions of a Real Variable. Dover books
on advanced mathematics. Pergamon Press (1963)

Rivlin, T.: The Chebyshev polynomials. Pure and applied mathematics. Wiley
(1974)

Kaye, P., Laflamme, R., Mosca, M.: An Introduction to Quantum Computing.
Oxford University Press (2007)

Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cam-
bridge Series on Information and the Natural Sciences. Cambridge University Press
(2000)

Hoffman, K.: Banach Spaces of Analytic Functions. Dover Books on Mathematics
Series. Dover Publications, Incorporated (2007)

