
Logic, Self-awareness and Self-
improvement: the Metacognitive Loop and
the Problem of Brittleness

MICHAEL L. ANDERSON, Institute for Advanced Computer Studies, University
of Maryland, College Park, MD 20742, USA.
E-mail: anderson@cs.umd.edu

DONALD R. PERLIS, Department of Computer Science and Institute for
Advanced Computer Studies, University of Maryland, College Park, MD 20742,
USA.
E-mail: perlis@cs.umd.edu

Abstract
This essay describes a general approach to building perturbation-tolerant autonomous systems, based on the conviction that
artificial agents should be able to notice when something is amiss, assess the anomaly, and guide a solution into place. This
basic strategy of self-guided learning is termed the metacognitive loop; it involves the system monitoring, reasoning about,
and, when necessary, altering its own decision-making components. This paper (a) argues that equipping agents with a
metacognitive loop can help to overcome the brittleness problem, (b) details the metacognitive loop and its relation to our
ongoing work on time-sensitive commonsense reasoning, (c) describes specific, implemented systems whose perturbation
tolerance was improved by adding a metacognitive loop, and (d) outlines both short-term and long-term research agendas.

Keywords: Metareasoning, time, non-monotonic reasoning, active logic, brittleness, autonomous agents.

1 Introduction and background

Brittleness is arguably the single most important problem in AI, and perhaps in (computer) systems
overall: a system designed for specific tasks fails utterly when faced with unanticipated perturbations
that take it even slightly outside its task specifications. Yet humans perform admirably under such
perturbations, easily adjusting to most minor changes as well as to many major ones.

We define a perturbation as any change, whether in the world or in the system itself, that impacts
performance. Performance is meant to be construed broadly to encompass such things as reasoning
efficiency and throughput, validity of inference, task success, average reward over time, etc.—in
short, any measurable aspect of the system’s operation. Perturbation tolerance, then, is the ability
of a system to quickly recover—that is, to re-establish desired/expected performance levels—after a
perturbation. To achieve this, a perturbation-tolerant system should not only notice when it isn’t be-
having how it ought or achieving what it should, but be able to use this knowledge to make targeted
alterations to its own modules. Such changes can be as simple as re-calibrating its sensors, or as
complex as training new (or retraining old) behaviours, changing its rules of inference, learning new
words and concepts, adopting different basic ontologies in different circumstances, and even adapt-
ing to new notational conventions and recognizing and fixing typographical errors (e.g. misspellings,
missing parentheses).1

1These latter examples present a difficulty for any KR system; for whatever KR is used, incoming data might use a

J. Logic Computat., Vol. 14 No. 04-33, c� Oxford University Press 2004; all rights reserved

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2004 2. REPORT TYPE

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Logic, Self-awareness and Self-improvement: the Metacognitive Loop
and the Problem of Brittleness

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Office of Naval Research,875 North Randolph
Street,Arlington,VA,22203-1995

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This essay describes a general approach to building perturbation-tolerant autonomous systems, based on
the conviction that artificial agents should be able to notice when something is amiss, assess the anomaly,
and guide a solution into place. This basic strategy of self-guided learning is termed the metacognitive loop;
it involves the system monitoring, reasoning about, and, when necessary, altering its own decision-making
components. This paper (a) argues that equipping agents with a metacognitive loop can help to overcome
the brittleness problem, (b) details the metacognitive loop and its relation to our ongoing work on
time-sensitive commonsense reasoning, (c) describes specific, implemented systems whose perturbation
tolerance was improved by adding a metacognitive loop, and (d) outlines both short-term and long-term
research agendas.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

20

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

2 Logic, Self-awareness and Self-improvement

While it may often be possible to anticipate the kinds of problems a system will face over its
lifetime, and build in specific mechanisms to handle these issues, we doubt this will prove, in the
long run, to be the most effective strategy. We believe, in contrast, that efforts should be aimed
at implementing mechanisms that help systems help themselves. The goal should be to increase
their agency and freedom of action in responding to problems, instead of limiting it and hoping that
circumstances do not stray from the anticipations of the system designer. We should be creating
self-aware, self-guided learners. Indeed, we believe that such metacognitive skills are the key to
achieving near-human-level (or, indeed, any useful kind of) non-brittleness. Metacognitive learners
would be advanced active learners, able to decide what, when, and how to learn. This will allow
systems the needed autonomy to function in domains where human supervision cannot be constantly
supplied.

Our general strategy in working toward this goal has been to equip artificial agents with the ability
to notice when something is amiss, assess the anomaly2, and guide a solution into place. We call
this basic strategy of self-guided learning the metacognitive loop (MCL); it involves the system
monitoring, reasoning about, and, when necessary, altering its own decision-making components.
This is, after all, what people do, and do well.3 Indeed, in our view this is largely what perturbation-
tolerant commonsense reasoning consists in, rather than in finding special clever solutions to thorny
problems. An MCL-based system knows what it is attempting to do, so that it can determine when
things are not going well, instead of blindly following its programming over the proverbial cliff—as
did one of the DARPA Grand Challenge entries which kept trying to drive through a fence it could
not see. If that system had known it was supposed to make forward progress and noticed that it
was not doing so, this would have been the first step to overcoming the problem. Or consider the
case of a satellite given the command to turn and look at some object away from Earth, but not told
to turn back to Earth when finished. Once the satellite turned, there was no way to feed it further
commands, and the satellite was lost. In contrast, a system that had general expectations for its
operation (frequent communication from Earth), based on the sort of system it was, might have been
able to use this knowledge to recover from such mistakes.

For performance in the face of unexpected perturbations can be enhanced even when one cannot
figure out exactly what is wrong, or what to do about it, so long as one is able to realize that something
is wrong, and ask for help, or use trial-and-error, or even give up and work on something else. In
our ongoing work, we have found that including an MCL component can enhance the performance
of—and speed learning in—different types of systems, including reinforcement learners, natural
language human–computer interfaces, commonsense reasoners, deadline-coupled planning systems,
robot navigation, and, more generally, repairing arbitrary direct contradictions in a knowledge base.

different system, or have typos. How then can a fixed KR system meet the challenge of usefully representing data not
‘properly’ expressed in that system? The work presented here is, in part, an attempt to remedy this. To foreshadow what
is to come: we will describe a flexible KR intended to be able to reshape its own notation and its own interpretations of the
notation, among other capabilities.

2We define an anomaly as a deviation from expected values or outcomes.
3In fact, there is some empirical evidence for the importance of metacognition in dealing with the unexpected or unfamil-

iar. In studies of human learning strategies, it has been established students preparing for—or taking—an exam will make
judgments about the relative difficulty of the material to be covered, and use this to choose study strategies, or which questions
to answer first. Not surprisingly, in these cases, accuracy of metacognitive judgments correlates with academic performance
[43, 42]. Moreover, neurophysiological findings indicate that the frontal lobe has specialized responsibility for metacognitive
behaviour [41]. For instance, patients with frontal lobe damage have trouble handling a ‘reversal shift’, which involves (a)
recognizing that a word or concept one has learned to apply to, say, big things, is now being used by others to refer to small
things, and (b) making the appropriate adjustment [30, 31].

Logic, Self-awareness and Self-improvement 3

2 Three problems in commonsense reasoning

Over a period of years, in working towards the design and implementation of (a high degree of)
artificial commonsense reasoning, we have struggled to overcome three obstacles in particular, which
we refer to by the nicknames of slippage, KR mismatch, and contradiction. Slippage is, simply, the
divergence between what is believed at a given time, and what has changed at a later time. Of course,
the basic problem of belief revision—of rationally revising one’s beliefs in light of new evidence—
is a widely studied issue [26, 27]. However, in our view the problem bites deeper than is generally
supposed, for in all cases, at a later time, time itself has changed, and this can (and often does) matter
a great deal.4 Consider person A having an appointment to meet person B for lunch at noon, and it
is now 11:00am. It is easy enough to represent this as:

EXAMPLE 2.1
������ � ���� �������� � ���

However, whereas the latter formula appears to represent a more or less stable fact, the for-
mer is true only for an instant—or perhaps for a minute or so, depending on the time-granularity
employed—and that is the point: whatever time it is now will not be the time later, and it is that very
passage that brings lunch (or any future event) closer. Without this basic fact about the temporal
character of the world, planning and acting would be meaningless. Thus we need a way to allow
������ � ��� to be updated again and again, and to have that evolution of ��� to play a central
role in reasoning, so that, for instance, when ������ � ��� holds (or is believed) the agent will
begin walking to the agreed-upon location for lunch.

The KR mismatch problem is this: there are indefinitely many ways to represent a given circum-
stance, and systems using one set of representational conventions may not be able to recognize ex-
pressions cast using a different set. We consider this a special instance of the more general problem
of language meaning, for an expression typically is presented in order to convey a meaning, that is,
to cause a certain belief state in the presentee, including beliefs about what the presentee should do;
and it is typically this meaning, rather than the expression itself, that needs to be used in the ongoing
reasoning process (although, of course, sometimes it is necessary to reason about the expression in
order to realize or appreciate its meaning). But this requires being able to separately represent and
reason about the meaning of an expression, and its form, that is, it requires taking a meta-linguistic
perspective, and the ability to treat words as objects. This is related to the use–mention distinction
[10], as well as to work on recognizing utterer intentions; but for us the central question is: how can
one recognize the (or a useful) meaning for an expression when the expression is not already known
(e.g. when it is not already part of the KR system in use)? This includes cases of new expressions
that need to be added to the system, as well as errors (e.g. typos) that need to be recognized as
deviations from the existing KR.5

The contradiction problem is this: how to reason effectively in the presence of contradictions?
Much work has been done related to this, especially in the guise of paraconsistent logics [49, 48].
Indeed, it is customary to define a paraconsistent logic as one in which the presence of a contradic-
tion need not entail all sentences in the language. The standard paraconsistent approaches address

4In addition, standard approaches to belief revision, based on classical logic, do not address the capacity of reasoning
with contradictions. But any real agent will have inconsistent beliefs, and so needs the ability to reason in the presence of
inconsistencies. See below. Note that our approach to this issue does not require the assumption that new information is more
reliable than, or will necessarily replace, beliefs currently in the KB.

5The mismatch problem is related to ‘fast mapping’, the ability to learn words from a single instance of use [13]. In earlier
writings we have used ‘rapid semantic shift’ to include both fast mapping and real-time disambiguation and/or correction of
meanings.

4 Logic, Self-awareness and Self-improvement

contradictions by side-stepping any inconsistencies and reasoning only with consistent portions of
the KB. Our view is a bit different: contradictions in one’s KB are inevitable [45, 46], and there is
no safe haven from which to address them. One must reason with the contradictions as best one can,
replacing and repairing beliefs, like the planks of Neurath’s boat, one by one while en route. Indeed,
our work strongly suggests that contradictions are generally useful (so long as they are discovered),
in that they point to issues and problems that need to be addressed.

We have found that all three problems lend themselves to a uniform treatment, namely the metacog-
nitive loop (in which time plays a central role). This brings us to an underlying formal basis for our
work, namely active logic.

3 Active logic: time-situated commonsense reasoning

Our formal approach to effective reasoning in the presence of slippage, KR mismatches, and
contradictions—active logic—is motivated in part by the observation that all reasoning takes place
step-wise, in time.6 This allows an agent to maintain control over, and track, its own reasoning
processes. As will be seen, active logic is a type of paraconsistent logic, albeit rather different from
standard ones. An account of the basic concepts can be found in [22]. We are also working on a
formal semantics, the first results of which are to be reported in [5].

In active logic, aspects of the environment are represented as first order formulas in the knowledge
base. Such formulas might represent perceptions of a user’s utterance, observations about the state
of the domain, or rules added by a system administrator. Inference rules provide the mechanism for
‘using’ the knowledge for reasoning.

Each ‘step’ in an active logic proof itself takes one active logic time-step; thus inference always
moves into the future at least one step and this fact can be recorded in the logic. In fact, to achieve
much of their reasoning, active logics employ a notion of ‘now’ that is constantly updated by the
‘clock rule’ shown in Example 3.1.

EXAMPLE 3.1

i: ����	�
i+1: ����	� ��

The clock rule states that from the fact that it is step 	 at the current step, the step number of
the next step is 	 � �. This step-wise tracking model of time is very different from the ‘time-
frozen’ characterization of time that temporal logic [2, 52] has. The notion of past, present and
future, that temporal logics have do not change while theorems are being derived. This sharply
contrasts with the special evolving-during-inference model of time that active logics have. When an
agent is reasoning about its own ongoing activity, or about another agent whose activity is highly
interdependent, traditional ‘time-frozen’ reasoning is at a disadvantage, and ‘time-tracking’ active
logics can bring new power and flexibility to bear. For instance, theorems can be marked with
their time (step-number) of being proven, i.e. the current value of ‘now’. This step-number is itself
something that further inferences can depend on, such as inferring that a given deadline is now too
close to meet by means of a particular plan under refinement if its enactment is estimated to take
longer than the (ever shrinking) time remaining before the deadline.

What this means more generally is that, for active logic, beliefs are held at times, and the KB is
therefore considered to be a temporally embedded and evolving set of formulas. Thus, the meaning

6Other approaches to commonsense reasoning incorporating this basic insight include [12, 32]. Labelled deductive
systems (see [23]) appear to provide a generalization of at least some aspects of active logic.

Logic, Self-awareness and Self-improvement 5

of an inference rule such as that shown in Example 3.2 (an active logic analogue to modus ponens),
is that if
 and
 � � are in KB at time (step number) 	, then � will be added to the KB at time
	� �.

EXAMPLE 3.2

i: A, A� B
i+1: A, A� B, B

Although in active logic the logical consequences of the evolving KB do not become part of the
KB until they are actually derived, inheritance rules ensure that, once derived (or otherwise added to
the KB), formulas are carried forward and persist over time. 7 By default, all beliefs from one step
that are not directly contradicting are inherited to the next step. This allows the representation of
persisting facts or states-of-affairs. However, some beliefs, like the ones related to the current time,
are not inherited to the next step; note, for instance, that in the clock rule (Example 3.1) the belief
����	� is not inherited at step 	 � �. One simple version of such an inheritance rule, which also
illustrates the use of firing conditions, is shown in Example 3.3:

EXAMPLE 3.3

i: A
i+1: A
condition: �A �� KB at step i and A �	 Now(i)

Thus, to bring all this together, let us re-consider our lunch example. As noted above in Example
2.1, person A knows the current time, knows to meet person B at noon, and knows to leave for the
restaurant at 11:45. We can represent this knowledge, and the deductive process required to get
person A to leave on time, in terms of the following active logic inference (with the new beliefs at
each step indicated in bold):

EXAMPLE 3.4

11:15 : Now(11:15), Meet(B,Lunch,12:00),
Now(11:45am)� Go(Lunch)

11:16 : Now(11:16), Meet(B,Lunch,12:00),
Now(11:45am)� Go(Lunch)

. . . : . . .
11:45 : Now(11:45), Meet(B,Lunch,12:00),

Now(11:45am)� Go(Lunch)
11:46 : Now(11:46), Meet(B,Lunch,12:00),

Now(11:45am)� Go(Lunch), Go(Lunch)

Note that all the beliefs except the time are inherited, and that the rule ������ � ��� �
���������, although it fires at 11:45, does not produce its conclusion until the next time step. 8

In addition to the formulas obtained from applying rules of inference to formulas at the previous
step, new formulas can be added at each step. Step-wise reasoning, coupled with this ability to add

7Inheritance and disinheritance are directly related to belief revision [25] and to the frame problem [36, 18]; see [44] for
further discussion.

8Of course, production active logic systems are much faster than one deduction per minute!

6 Logic, Self-awareness and Self-improvement

new formulas, ensures that the logic would not get stuck in a lengthy proof, oblivious of the other
events that occur during the reasoning.

It is the time-sensitivity of active logic inference rules that provides the chief advantage over more
traditional logics. Thus, an inference rule can refer to the results of all inferences up until now—
i.e. thru step 	—as it computes the subsequent results (for step 	 � �). This allows an active logic
to reason, for example, about its own (past) reasoning; and in particular about what it has not yet
concluded. Moreover, this can be performed quickly, since it involves little more than a lookup of
the current knowledge base.

As mentioned already above, since in active logic the notion of inference is time-dependent, it
follows that at any given time only those inferences that have actually been carried out so far can
affect the present state of the agent’s knowledge. As a result, even if directly contradictory wffs, P
and �P, are in the agent’s KB at time 	, it need not be the case that those wffs have been used by
time 	 to derive any other wff, Q. Indeed, it may be that 	 is the first moment at which both P and �P
have simultaneously been in KB.

By endowing an active logic with a ‘conflict-recognition’ inference rule such as that in Example
3.5, direct contradictions can be recognized as soon as they occur, and further reasoning can be
initiated to repair the contradiction, or at least to adopt a strategy with respect to it, such as simply
avoiding the use of either of the contradictands for the time being. Unlike in truth maintenance
systems [20, 21] where a separate process resolves contradictions using justification information, in
an active logic the contradiction detection and handling occur in the same reasoning process [38].
The ������ predicate is a meta-predicate: it is about the course of reasoning itself (and yet is also
part of that same evolving history).

EXAMPLE 3.5

i: P, �P
i+1: Contra(i, P, �P)

The idea then is that, although an indirect contradiction may lurk undetected in the knowledge
base, it may be sufficient for many purposes to deal only with direct contradictions. Sooner or later,
if an indirect contradiction causes trouble, it may reveal itself in the form of a direct contradiction.
After all, a real agent has no choice but to reason only with whatever it has been able to come up
with so far, rather than with implicit but not yet performed inferences. Moreover, since consistency
(i.e. the lack of direct or indirect contradictions) is, in general, undecidable, all agents with suffi-
ciently expressive languages will be forced to make do with a hit-or-miss approach to contradiction
detection. The best that can be hoped for, then, seems to be an ability to reason effectively in the
presence of contradictions, taking action with respect to them only when they become revealed in
the course of inference (which itself might be directed toward finding contradictions, to be sure).

Thus, the trick to detecting and dealing with contradictions is to look backward at what one’s
reasoning has been, rather than forward to what it might be (as traditional automated commonsense
or nonmonotonic reasoning formalisms do [1, 24]). Thus at time-step 	�� our systems look at what
was in their KB at step 	 and earlier, e.g. to infer that there was a (direct) contradiction at step 	 [39];
or that it is now too late to meet a deadline given what has been accomplished so far (by step) and
given what remains to be done [44]; or that a particular word is not recognized [7]. Such looking
backward appears to provide a computationally feasible handle on perturbation tolerance, allowing
an automated reasoner to note and assess anomalies and alter its ongoing courses of reasoning and
action accordingly, much as a human appears to do.

Interestingly, having in place these mechanisms for managing contradictions makes dealing with
the problems of KR mismatch and slippage much easier. Thus, for instance, adding and/or chang-

Logic, Self-awareness and Self-improvement 7

ing formulas in the KB need pose no special problems, nor require any expensive (and ultimately
undecidable) consistency checks; this makes addressing the slippage problem, by having one’s KB
change over time, relatively straightforward. Likewise, once one has accepted the notion that one is
limited to dealing only with currently derived formulas in the KB—and not also with all the eventual
consequences of those beliefs—negative introspection, i.e. knowing what is not known, amounts to
a simple search in the KB for a given formula. More generally, the ability to make assertions about
the contents of the KB (such as what it does not contain), or about particular beliefs (e.g. that they
are suspect) is the first necessary step to being able to reason not just with, but about one’s own
knowledge. This is crucial to dealing with the mismatch problem, for when dealing with language
and meaning it is often necessary to recognize and represent the difference between the form and
the meaning of an expression [10], for instance to assert that two words mean the same thing, or that
one doesn’t know the meaning of a given expression.

These temporal and metacognitive aspects make active logic systems more flexible than traditional
AI systems and therefore more suitable for reasoning in noisy, dynamic and inconsistent environ-
ments, and thus it has proved a very good basis for the development of MCL.

4 From active logic to MCL

Some years ago it was a popular notion that there were two major competing AI methodologies:
the ‘neat’ and the ‘scruffy’, representing—roughly and respectively—symbol-laden software (with
a relatively clear semantics) and adaptive software (that could be tweaked until it ‘worked’). For
instance, one important ‘scruffy’ approach, on which we hope to improve, is Brooks’ behaviour-
based robotics [14, 16]. Brooks suggests that sophisticated robotic intelligence can and should be
built through the incremental addition of individual layers of situation-specific control systems. The
only direct interaction between layers is through the suppression or activation of certain pathways
(in rough analogy to the workings of neural systems). However, all layers have access to inputs from
perception (although they respond only to those elements to which they are specifically attuned) and
can control certain aspects of the robot’s behaviour, which offers a great deal of indirect, environ-
mentally mediated interaction between the layers. Although we agree that an architecture of this sort
can provide fast and fluid reactions in real-world situations, we cannot accept Brooks’ claim [17, 15]
that such an approach can ever achieve the flexibility and robustness of human intelligence (for
some arguments to this effect, see [33, 4]). For that, in addition to ‘scruffy’ systems providing fast
and fluid reactions, there must be ‘neat’ systems supporting both deliberation and re-consideration,
which we have argued calls for symbolic reasoning and (most importantly) meta-reasoning, capable
of self-monitoring and self-correction [6, 11, 19, 47]. That is to say, we think that a fast, fluid and
flexible—i.e. non-brittle—real-world system can be achieved by adding a layer of symbolic (meta-
)reasoning on top of adaptive control layers, and allowing it not just to suppress the adaptive layers,
but also to re-train them when necessary.

Of course, the basic idea of combining ‘neat’ and ‘scruffy’ approaches is not new, but while it
has long been recognized that both methodologies are important and need to be combined, efforts
along those lines to date (e.g. Ron Sun [56, 61, 55, 54], Ofer Melnik and Jordan Pollock [37],
and Gary Marcus [34]) have—in our view—overlooked the most exciting advantage to be gained
from a proper joining. Our contention is that a triadic architecture will be able to cut through
the brittleness barrier, which, as we asserted above, is perhaps the single most pervasive problem
in AI research. Our suggested triad is comprised of (1) trainer module(s), (2) trainable modules
(many of which may perform symbolic/reasoning computations), and (3) an oversight module that
executes the metacognitive loop (MCL). Note that symbolic modules may be in as much need of re-

8 Logic, Self-awareness and Self-improvement

tuning as may traditionally adaptive modules; and conversely, symbolic processing may be critical
in the effective adaptation of the latter. Thus we postulate the special (symbolic) MCL module that
oversees both of these. Consequently, in our approach there is less distinction between symbolic and
adaptive modules; (almost) everything may adapt via MCL (executed by an exceptional non-adaptive
module).9

Trainer
Modules

Modules
Trainable Knowledge

Base

Inference
Engine

Trainer
Modules Modules

Trainable

Oversight (MCL)
Module

???

Symbolic/Inferential
Traditional and

Traditional View MCL View

FIGURE 1. Traditional and triadic-MCL views of the relationship between symbolic and adaptive
processing

In traditional work, adaptive and symbolic processing were not brought together, or if so then usu-
ally only peripherally; in rare exceptions the symbolic aspects were put into the
adaptive portion, but only to show out that symbols, too, can be implemented in (say) distributed
ways, as they presumably are in the brain. But in the proposed view MCL decides when a trainer
should initiate (or stop) adaptation in another trainable (whether symbolic or not) module, and MCL
may also, if the matter is simple enough, carry out the adaptation directly. MCL may even decide
that a new trainable module is to be created, if existing ones do not seem close to being able to
address the issue at hand.

As mentioned already above, active logic has the necessary features—most importantly time
sensitivity and contradiction-tolerance—to implement MCL in real-world systems. The overall idea
is as follows: errors (contradictions, typos, mismatches between world and word, missed deadlines,
etc.) and other kinds of perturbations occur. How does one detect and reason about such pertur-
bations? As we have defined the terms, a perturbation will cause an anomaly, that is, a deviation
from the expected performance of the system. Thus, we have found in our work to date, e.g. see
[50, 46, 58, 7] that a very wide range of anomalies are readily expressed in terms of contradictions.
This is quite clear in some cases, e.g. when two normally trusted sources report conflicting data.
But it also seems to work well in others, such as Expected(A) and Observed(�A), as long as the
expectation has led A to be asserted into the KB, so that the observation of �A contradicts it. 10 Thus
MCL crucially involves the generation of expectations for performance, as well as for the outcomes

9The possibility of letting the MCL module itself be trained for improvement is intriguing; however it is beyond the scope
of this paper.

10This is akin to McCarthy’s use of abnormalities [35]. However, while that approach can lead to thorny problems requiring
prioritized circumscription in more traditional settings, for us the real-time character of active logic allows the system the
freedom to eventually decide to ignore such complex cases if they are not resolved easily. Thus a key notion for us is that
such rather shallow inferences are sufficient for MCL to greatly improve overall performance.

Logic, Self-awareness and Self-improvement 9

of specific actions, and the continual monitoring of the KB for contradictory pairs.
For a simple illustration, consider our lunch example from the perspective of person B, already

waiting at the restaurant. Person B expects to meet person A at 12:00; but let us suppose that person
A is late. We might get a series of inferences like the following:11

EXAMPLE 4.1

11:59 : Now(11:59), �See(A), Expect(See(A), 12:00),
(Expect(x,t)
 Now(t))� Assert(x)

12:00 : Now(12:00), �See(A), Expect(See(A), 12:00),
(Expect(x,t)
 Now(t))� Assert(x)

12:01 : Now(12:01), �See(A), Expect(See(A), 12:00),
(Expect(x,t)
 Now(t))� Assert(x), Assert(See(A))

12:02 : Now(12:02), �See(A), Expect(See(A), 12:00),
(Expect(x,t)
 Now(t))� Assert(x), See(A)

12:03 : Now(12:03), Expect(See(A), 12:00),
(Expect(x,t)
 Now(t))� Assert(x),
Contra(12:02, See(A),�See(A))

When person A doesn’t show up on time, this generates an anomaly, in the form of a contradiction.
Once such an anomaly is detected, it is compared to a stored (but dynamically changing, as learning
proceeds) list of anomaly-types. A match then provides access to a second list (again changeable)
of options for dealing with (repairing) that type. A choice is made among these (e.g. based on time
and other factors). If no match is found, a fall-back option is used (ask for help, trial-and-error, put
on hold, give up, ignore). In the current case, person B might note that the anomaly is a missed
appointment, and pick the first option there, namely Phone(A).

After an option is chosen, MCL attempts to guide it into place (‘make it so’). In some cases this
is easy and MCL can carry out the entire repair, e.g. inserting a new belief into the KB, if that is the
repair. Other cases may not be so easy, e.g. it may be necessary to call an external process (as in
the above case of making a phone call), or even to retrain a module, such as memory retrieval, or a
neural net that controls locomotion, or ask for advice about a possible new category and await the
response (for further examples anomalies, and discussion of response options, see Sections 5 and 6,
below).

MCL must be kept simple and fast; it is not aimed at clever tricks or deep reasoning. This is
important, so that the system (and MCL in particular) does not get bogged down in its own efforts.
As pointed out earlier, if it takes too long on something, it must notice that and make a decision as
to whether to give up on it, or try another tack. Active logic was designed with this general kind of
time-sensitive capability in mind, and has been successfully applied to similar situations before (e.g.
deadline-coupled planning, mentioned above).

Moreover—and crucially—active logic provides a mechanism to note and forestall ‘bogging-
down’. That is, suppose MCL happens to encounter more and more anomalies (perhaps generated
as recursive calls to its guiding step (iii), if that guidance is getting nowhere). Then the passage of
sufficient time with no noted progress on a given goal will itself trigger an anomaly that will force
a resolution of work on that goal, either to abandon it, postpone it, or seek help. The ‘sufficient’
amount of time can even be reset by the logic, given data on the relative importance of progress

11In this example, ���See(A) would be put into the KB from the perception system. While one does not necessarily
want the default operation of the perceptual system to be to continually assert everything it does not see, it can be useful to
specifically assert that one doesn’t see something one is actively looking for.

10 Logic, Self-awareness and Self-improvement

toward goals. This is one important advantage that time-tracking meta-reasoning has over other ap-
proaches to meta-reasoning, such as [53], that assume that meta-reasoning will take little time, and
thus have no built-in mechanism for handling situations when that assumption is violated.

Several studies of ours illustrate the benefits of meta-reasoning and metacognitive monitoring in
improving overall system performance, and decreasing brittleness, both in the case where the system
consists entirely of symbolic reasoners and in the case where a symbolic meta-reasoner monitors and
corrects a neural net or a reinforcement learner. 12 In the next section, we will outline the results from
a few of those projects, after which we will discuss where future work might be directed.

5 Implemented MCL systems

MCL can enhance performance for two related reasons. First, it can monitor and influence on-
line performance even without making any basic changes or improvements to action-producing or
decision-making components. An example of this would be noticing that progress on a task has
stopped (i.e. that the system is ‘stuck’) and directing specific efforts to getting ‘un-stuck’, or simply
moving on to a different task. Second, and more powerfully, MCL can direct the system to actively
learn something that it (apparently) doesn’t know, or has got wrong. Since there is evidently a
great deal that can be learned, depending on the system and the scenario, MCL in this guise is
best understood as a principled method of organizing and controlling learning—deciding whether to
learn, what to learn, with what methods, and (importantly) when to stop. An example of this latter
ability would be noticing that a problem in processing a given user command appears to be caused
by ignorance of a certain word, and taking steps to learn the unknown word.

Both of these abilities are crucial to improving the perturbation tolerance of a given system, and
they generally work in concert. Thus, for instance, we have shown that an MCL-enhanced re-
inforcement learner can—by choosing when to ignore anomalies, when to make minor on-line ad-
justments, and when to order re-learning of its action policy—always perform at least as well as,
and in many cases significantly out-perform, a standard reinforcement learner when operating in a
changing world.

5.1 MCL-enhanced reinforcement learning

In a simple demonstration of this idea, we built a standard reinforcement learner (we tested Q-
learning [59, 60], SARSA [57] and prioritized sweeping [40]), and placed it in an 8x8 world with
two rewards—reward 1 (r1) in square (1,1) and reward 2 (r2) in square (8,8). The learner was allowed
to take 10,000 actions in this initial world, which was enough in all cases to establish a very good
albeit non-optimal policy. In turn 10,001, the values of the rewards were abruptly changed. See [9]
for a complete account of the experimental design and results.

We found that the perturbation tolerance (i.e. the post-perturbation performance) of standard re-
inforcement learners was negatively correlated to the degree of the perturbation—the bigger the
change, the worse they did. However, even a simple (and somewhat stupid) MCL-enhancement, that
did no more than generate and monitor expectations for performance (average reward per turn, aver-
age time between rewards, and amount of reward in each state) and re-learn its entire policy whenever
its expectations were violated three times, outperformed standard reinforcement learning in the case
of high-degree perturbations. And, as already mentioned, a somewhat smarter MCL-enhancement,
that chose between the available methods of doing nothing, making an on-line adjustment, and re-

12See, for instance, [50, 51, 6, 19, 11, 46, 28, 9]; most of these have used active logic to provide the reasoning and meta-
reasoning component of the overall system.

Logic, Self-awareness and Self-improvement 11

learning its policy, in light of its assessment of the anomalies, performed best overall, (see figure
2, ‘sophisticated-MCL’), despite some under-performance of this version of MCL in response to
mid-range perturbations.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 1 2 3 4 5 6 7 8

non-MCL
sensitive-MCL

sophisticated-MCL

FIGURE 2. Post-perturbation performance of standard Q-learning, sensitive-MCL and sophisticated-
MCL, as a function of degree of perturbation

In a manner not too different from that illustrated in Example 4.1, sophisticated-MCL generates
and records expectations, based on ongoing experience, for the average reward it will get per turn,
average time between rewards, and the amount of reward expected in each system state. When
its experience deviates from these expectations, it uses the anomalies to determine whether, how,
and to what degree the world has changed. Thus, for instance, in the case of an anomaly such as
an increased time to reward, its initial assumption is that a local problem in the action policy was
causing the system to ‘cycle’ between states (i.e. that it was stuck), and its response is to temporarily
increase the exploration factor so as to break out of the cycle. However, it continues to monitor the
situation, and if this does not solve the problem, or if this anomaly occurs along with significant
violations of its expectations for the values of rewards, then the system decides that the world had
changed significantly, and, rather than continue to make small on-line adjustments, it orders its action
policy to be re-learned.

5.2 MCL-enhanced navigation

Another agent that we have been developing uses a neural net for navigation; however it also has
a monitoring component that notices when navigational failures (such as collisions) take place, and
records these and their circumstances. It is then able to use this information to assess the failures
and make targeted changes to the neural net, including starting with a different set of weights, or
re-training on a specific set of inputs. The agent exhibits better behaviour while training, and also
learns more quickly to navigate effectively [28].

Although both the above systems are relatively simple, they do illustrate the ways in which self-
monitoring and control can help systems maintain performance in the face of changes, and, more
particularly, they demonstrate cooperation between the ability to initiate new actions, and the ability

12 Logic, Self-awareness and Self-improvement

to initiate new learning. Still, one has to expect that as the scenarios, and the systems themselves,
become more complex, more sophisticated and expressive reasoning mechanisms will be required
to usefully assess and appropriately respond to anomalies. Thus we turn in our final example to the
very representation-rich and difficult domain of natural-language human-computer interaction.

5.3 MCL-enhanced human-computer dialogue

One of the most important application areas for active logic has been natural language human–
computer interaction (HCI). Natural language is complex and ambiguous, and communication for
this reason always contains an element of uncertainty. To manage this uncertainty, human dialogue
partners continually monitor the conversation, their own comprehension, and the apparent compre-
hension of their interlocutor. Both partners elicit and provide feedback as the conversation continues,
and make conversational adjustments as necessary. The feedback might be as simple as ‘Got it?’,
eliciting a simple ‘yes’, or as complex as ‘Wait. I don’t think I understand the concept of hidden
variables’, which could result in a long digression. We contend that the ability to engage in such
meta-language, and to use the results of meta-dialogic interactions to help understand otherwise
problematic utterances, is the source of much of the flexibility displayed by human conversation
[47]. Although there are other ways of managing uncertainty (and other types of uncertainty to be
managed), we have demonstrated improved performance can be achieved by enhancing existing HCI
systems with the ability to engage in meta-reasoning and meta-dialogue.

One earlier achievement was the design and implementation of a model of action-directive ex-
changes (task oriented requests) based on the active logic model of inference. Our model works
via a step-wise transformation of the literal request made by a user (e.g. ‘Send the Boston train to
New York’) into a specific request for an action that can be performed by the system or domain.
In the case of ‘the Boston train’, the system we have implemented is able to interpret this as ‘the
train in Boston’, and then further disambiguate this into a specific train currently at Boston station,
which it will send to New York. Information about each step in the transformation is maintained,
to accommodate any repairs that might be required in the case of negative feedback (if for instance,
the system picks the wrong train, and the user says ‘No’ in response to the action). This implemen-
tation represents an advance not just in its ability to reason initially about the user’s intention (e.g.
by ‘the Boston train’ the user means . . .) but in its ability to respond in a context-sensitive way to
post-action user feedback, and use that feedback to aid in the interpretation of the user’s original and
future intentions. For instance, in one specific case tested, the user says ‘Send the Boston train to
New York’ and then, after the system chooses and moves a train, says ‘No, send the Boston train to
New York’. Such an exchange might occur if there is more than one train at Boston station, and the
system chose a train other than the one the user meant. Whereas the original TRAINS-96 dialogue
system [3] would respond to this apparently contradictory sequence of commands by sending the
very same train, our enhanced HCI system notes the contradiction, and, by assessing the problem,
identifies a possible mistake in its choice of referent for ‘the Boston train’. Thus, the enhanced sys-
tem will choose a different train the second time around, or if there are no other trains in Boston, it
will ask the user to specify the train by name. The details of the implementation, as well as a specific
account of the reasoning required for each of these steps, can be found in [58].

A more recent advance we have made along these lines, in a system we call ALFRED 13, was to
enhance the ability of our HCI system to more accurately assess the nature of dialogue problems,
and to engage in meta-dialogue with the user to help resolve the problem. For instance, if the user
says ‘Send the Metro to Boston’, the original system would have responded with the unhelpful fact

13Active Logic For Reason Enhanced Dialog.

Logic, Self-awareness and Self-improvement 13

that it was unable to process this request. Our system, in contrast, notices that it doesn’t know the
word “Metro”, and will instead request specific help from the user, saying: ‘I don’t know the word
‘Metro’. What does “Metro” mean?’ Once the user tells the system that ‘Metro’ is another word
for ‘Metroliner’, it is able to correctly implement the user’s request [8, 7, 29]. It can use these
same methods to learn new commands, so long as the new command can be explained in terms of
(including being compounded from) commands it already knows.

Two key features that support these behaviours are a rule for detecting contradictions (which is a
standard feature of active logic), and the ability to set and monitor expectations. If the agent notices
that an expectation has not been achieved, this causes the agent to assess the problem and consider
the different options it has to fix it. This includes the detection of time-related anomalies, which are
especially important to HCI. For instance, if the user does not respond to a system query with in the
expected time limit, then the system recognizes that there is a problem. In this case, the different
options that it has to deal with the problem are (a) to repeat the query, (b) to find out from the user
whether everything is OK, and (c) to stop expecting a response from the user. The current system
initially tries repeating the query. However, continuous repetition of the query without a response
from the user indicates a continuing problem (for recall that part of MCL is to monitor the progress
of solutions), and causes a re-evaluation of the possible response options. In this case the system
would ask the user whether everything is OK. If there is still no response from the user, the system
will drop its expectation about getting a response from the user in the near future.

Equally important to the above abilities, however, is an enhancement to ALFRED’s representa-
tional scheme allowing it to differentially represent the various aspects of words and language, e.g.
extension (reference), intension (concept), orthographic form (spelling), and the like. This gives
ALFRED the flexibility and expressive power to come to meta-level conclusions, such as that two
different words (different orthographic forms) have the same referent, or vice-versa, or that it doesn’t
know anything about a given word but its orthographic form, and so must learn more about it.

6 Future work

Each of the systems described above relies for its robust behaviour on the relatively simple expedient
of generating, and monitoring for violations of, expectations for overall performance, and for the
outcome of each action taken. As we have already shown, immediate performance improvements
can be expected by virtue of this step alone, if only by allowing systems to notice when something is
going very wrong and stop (or do something else). Indeed, it has been suggested to us that the MCL
approach—and, more generally, the design of systems able to generate and monitor expectations
for their own performance—will allow more problems to be caught at the design stage, as careful
thought must be given to what, exactly, the system should expect in each system state. However,
clearly the most powerful and promising aspect of the research lies in the further steps of allowing
the system to assess the anomalies and guide into place a targeted response, one that can include
self-directed active learning.

This suggests three major research questions, roughly corresponding to the three stages, note-
assess-guide, of the MCL paradigm.

1. What kinds of expectations, at what levels of the system architecture, are most important to track,
and how should these be represented so as to make anomalies readily noted? More generally:
how much, and what kind of self-knowledge, represented in what form, is required to support
the abilities envisioned? In our work on reinforcement learning, for instance, we found that
average reward per turn was not a particularly useful metric, but that time between rewards was
an extremely important indicator of on-line performance.

14 Logic, Self-awareness and Self-improvement

2. What methods might be used to accurately assess anomalies, as part of the effort to decide
upon an appropriate response? In partial answer to this question, we have been developing a
general typology of contradictions [46], but there are also likely to be important situation- and
architecture-specific indicators that need to be identified. Thus, for instance, in the reinforcement
learning work, it was discovered that valence changes in the rewards was a good indicator of the
need to re-learn the action policy.

3. What strategies are most effective for guiding responses into place? Here again, there are likely
to be some generic and/or fall-back strategies useful in very many situations (e.g. get more
information, ask for help, move on to a different task), and also some situation- and architecture-
specific responses, including various kinds of learning. With respect to reinforcement learning,
we are investigating the efficacy of such methods as self-shaping (having the system define a
shaping function in light of its partial knowledge of its new environment) and directed explo-
ration. More generally, we are exploring such methods to improve learning as mistake-driven
boosting and dynamic alteration of bias.

6.1 A near-term project for MCL

These research questions are, of course, very broad, and could be pursued in any number of ways. To
make the discussion more concrete, and also as a way of explaining our particular research agenda,
let us imagine an autonomous search-and-rescue vehicle, that could enter an unknown structure,
traverse it, find all the people inside, and, where necessary, return to specific individuals with items
such as food, water, and the like—a kind of autonomous, urban, St. Bernard (AUSB). Even putting
aside some of the difficult physical challenges presented by such a domain (climbing over rubble, or
up and down stairs and steep inclines), there is plenty of opportunity for environmental and system
perturbation: passageways can become blocked, people can move, apparent survivors can perish,
and apparent casualties can turn out to be alive, lighting and visibility conditions can change (over
time, and in different parts of the structure), and the AUSB itself can become damaged (e.g. by
falling debris, fire or water) and need to adjust accordingly.

Naturally, of primary concern for such a system would be implementing robust and flexible nav-
igation and mapping abilities, and there are many standard approaches to this problem. How would
the MCL approach be different from, or improve upon any of these? Well, one generally recog-
nized drawback of the standard approaches to, for instance, obstacle detection and avoidance is that
they are generally tuned to detect and react to specific kinds of obstacles—i.e. things that look a
specific way to their sensors. Our approach, in contrast, is to enhance the standard methods with
MCL, consistently comparing expectations for performance, based on how things look to the sys-
tem, with actual performance. Divergence of the two—as would occur, for instance, in the case
where no progress is being made even though the sonar indicates no obstacles, or when a previously
developed map indicates a passageway where there is now an obstacle—would trigger appropriate
recovery procedures. The immediate benefit would be a building-navigating robot that would flex-
ibly respond to changes in its environment, and never get permanently stuck—at least to the extent
that it would notice if it were stuck, or going in unintended circles, and initiate a recovery-response
process.

Another necessary feature for such a system would be person-detection capabilities. Here again,
the advantage that MCL would provide to such a system is not a new and better technique for
detecting people, but rather a method for best taking advantage of current capabilities. For consider
that it is unlikely that all person-detecting techniques are equally useful in all situations, and also
unlikely that one can know with certainty, in advance, which ones will work better when. So, for

Logic, Self-awareness and Self-improvement 15

instance, in an extremely dusty environment, heat signatures may reveal people even though the
vision system is confounded; likewise, in a fire, heat signatures may be less useful than vision, and
both less useful than voice-detection. A system which notices the fact that it is getting detections on
some systems and not others, combined with the fact that some systems don’t seem to be operating
according to expected norms in general, can decide to rely more on some systems than others. The
immediate advantage would be an AUSB that flexibly adapts to the situation, dynamically choosing
the detection techniques that appear to be most effective in its current circumstances, in light of its
assessment of anomalies in sensor performance.

Finally, what if the AUSB were equipped with self-guided re-training mechanisms for its learn-
ing components, including the pattern-recognition elements of the vision system, and the obstacle-
detection and avoidance elements of the navigational system? If the AUSB has to consistently oper-
ate under conditions that are not conducive to adequate performance, or if the conditions fluctuate,
its systems may have to be re-trained for these new conditions. The system would notice poor per-
formance (and, not incidentally, notice under what conditions it performed poorly, and under what
conditions it performed well, which could be important for quick adaptation later on, by quickly
switching to a previously learned policy if previously experienced conditions recur) and recalibrate
or retrain until performance achieved acceptable levels. How? In addition to the techniques we have
implemented already for reinforcement learning and neural-net re-training, we intend to explore the
usefulness of boosting and dynamic alteration of bias—and there are, no doubt, many other possi-
bilities to explore. Here the main advantage would be that online autonomous real-time decisions
could be made about which kind of learning to guide into place, even when human inputs are not
always readily available, as in the case of Mars rovers, undersea exploration, and battlefield recon-
naissance. Thus not only will behavioural improvements occur but behaviour-improving strategies
can be developed autonomously.

6.2 Long-term vision

The example of the AUSB shows how MCL can enhance relatively standard systems, making them
more robust and flexible. But it could also be argued that something like MCL, and the metacognitive
awareness it implements, is required for more sophisticated cognitive adjustments. Thus, imagine
that the robot MarSciE14 is roving the surface of Mars. She is designed to move slowly about the
Martian surface, taking and testing samples as she goes. The most exciting possible discovery, of
course, would be to find signs of life, and for this she has modules for detecting amino acids and other
likely organic compounds. However, her more mundane, primary task is to analyse and classify the
types of rocks she comes across, to help scientists better understand Mars’ geologic history, and the
forces that continue to shape the surface of the planet. She worked very well at NASA’s desert test
site, classifying rock samples of the sort expected to be found on Mars with over 90% accuracy. But
since getting to Mars she has had little to report. The samples she is finding don’t seem to fit into the
categories with which she has been equipped, and nearly everything is being classified as ‘unknown’.
It is obvious that there is some kind of problem—obvious, that is, to us, but not to MarSciE, who
is operating exactly as designed. With no human scientist on site to assess the problem and perhaps
re-train MarSciE, the Mars geologic mission is likely to fail.

Solving MarSciE’s problem is somewhat complicated, and will surely require the help of scientists
back on Earth. That is to be expected; after all, even a human scientist, faced with the unexpected,
may well ask for advice. But consider how much could be accomplished by MarSciE on her own, if
only she were equipped with MCL. First, just noticing there is a potential problem with her mineral

14MARs SCIentific Explorer, pronounced ‘Marcie’.

16 Logic, Self-awareness and Self-improvement

classification modules is a big step, for this could trigger an automatic system check: she takes
rocks of known classification, and analyzes them. The results come back 100% correct. Whatever
the problem is, it isn’t with the operation or accuracy of those routines. This opens the possibility
that the problem lies in a mis-match between MarSciE’s classification scheme and Mars’ rocks.
Assessing her options at this point, MarSciE knows she can ask for advice, but she can also try to
see if there are any obvious patterns in the data she has so far collected. Since Earth is at this point
22 light-minutes away, making communication slow and difficult, she decides to see what she can
learn on her own. Analysing the information from the ‘unknown’ samples she has collected, she
finds they fall into four natural categories. Now she is ready for advice. She sends all this data back
to Earth and waits.

It turns out that MarSciE’s time was well spent. The rocks in one of MarSciE’s categories do not
correspond to anything known by the scientists. They appear to be a kind of granite-like igneous rock
of surprising composition, which they name Gr-M1a. If the classification holds up it could be an
important find. The three remaining categories she identified corresponded to known types of rock,
which were not expected to be in the part of Mars MarSciE is exploring (thus suggesting a rather
different geologic history for the area). However, of these three categories, two actually correspond
to the same kind of schist. Thus, in light of these findings, the advice she receives is three-fold: first,
collapse two of the categories of rock she identified into one. Second, she is to retrain on her samples
until she classifies them according to these three new categories (which provisionally appear to be
genuine). Third, once she gathers many more examples of Gr-M1a, she is to carefully analyse that
category to see if it can either be sub-divided, or merged with any of her other currently known
types. As it turns out, the new rock type survives scrutiny, and in honour of MarSciE’s role in the
discovery, the new rock is named Marcyite. MarSciE duly learns this new name, and classifies her
samples accordingly.

It seems fairly clear that autonomous robots with MarSciE’s capabilities would be extremely use-
ful; it is also clear that they are beyond the current state of the art. However, we would like to suggest
that they are not so far beyond the state of the art that it would be impossible to discuss concrete
plans for building such a system. For much of what MarSciE needs to be able to do can be done us-
ing current technology, or perhaps current technology slightly improved: e.g. she needs to be able to
learn categories, and use them in sorting objects according to sensory input, and she needs to be able
to take and use advice. Both of these capabilities exist in current systems. What we are suggesting is
the primary difference between current systems and a system like MarSciE is the way these compo-
nents are organized in, and controlled by the system itself. First there is the simple fact that MarSciE
is monitoring her own performance, and comparing it with expectations. This, of course, is simple,
and not especially novel. Second is the fact that the system can consider the possibility not just that
a given system is malfunctioning, but that its representational scheme is somehow inappropriate to
the current circumstances. This latter ability is the key metacognitive enhancement in MarSciE that
drives the mental flexibility that she displays; MarSciE knows or somehow represents the fact that
she is using concepts and categories, that these concepts may or may not be the most appropriate
for a given task, and, most importantly, that they may be changed as a way of possibly improving
performance. As mentioned above, we have taken some steps in this direction with ALFRED, but
much more work needs to be done on the question of what kinds of representations, coupled with
what kinds of reasoning and self-monitoring, are required to support MarSciE’s abilities.

More ambitious still is a system we call GePurS15. GePurS is used in many domains, so his
knowledge base gets very large and complex, with a great deal of knowledge that is at any given
moment irrelevant to his current domain. Moreover, many domains require different ontologies and

15GEneral-PURpose Scout, pronounced ‘Jeepers’.

Logic, Self-awareness and Self-improvement 17

KR schemes, and in some cases the mis-matches are quite significant. All this slows him down,
sometimes so much so that he becomes ineffective—and without MCL he cannot notice his own
slowdown, let alone fix it. A programmer has to reorganize the KB, with a working memory (STM)
and a long-term store (LTM), as well as retrieval mechanisms; and make sure that the information is
compliant with the KR scheme appropriate to the intended domain—and then reprogram it later on
when another domain change affects which stored beliefs are relevant, and which ontology is most
appropriate.

Here again, we think that the ideal situation is one in which the system itself can notice the domain
shifts, or the performance problems that accompany them, and make the necessary adjustments
to its systems to cope with each new environment. This will require an even greater degree of
self-awareness and self-control than MarSciE had, for whereas she needed to know she was using
concepts that can be changed, since GePurS may need to periodically change the way he organizes
and utilizes his own KB (including memory, as well as how he treats his own sensor data), he will
need to represent these facts about himself, and have mechanisms whereby they can be dynamically
altered. This goes far beyond changing one’s individual concepts, for it can entail not just the
shifting of particular items to and from different memory stores, but even the dynamic adoption and
adaptation of different ontologies and KR schemes as the domain and necessity dictate.

This would represent a fundamental shift in how KR is currently developed and implemented in
intelligent systems: instead of requiring a developer (or, more often, a large team of developers) to
get the KR right from the beginning, and then imposing the inflexible scheme on the system, we
imagine a process much more similar to teaching a child a language, or training a new employee in
the operation of a complex system. Although in these cases the expert trainer may have a detailed
and largely stable ontology and KR scheme, the trainee has at best an approximation of this ideal.
However, through experience, self-monitoring, recognizing and fixing mistakes, and advice from the
trainer, the trainee will come successively closer to an identical, or at least an equally workable, KR
scheme.

There are two attributes of such a trainee that are worth trying to reproduce in autonomous sys-
tems. The first, and most obvious, is the ability for learning and self-improvement. This requires all
the elements of MCL: self-monitoring, the recognition of mistakes and other problems, and the abil-
ity to make changes to address these problems. However, equally important, and resting on the very
same foundations, is the fact that during the training problems don’t (entirely) derail the trainee—
he or she can recognize that there is a problem, and take special steps for dealing with it, which,
although it may slow down the process a great deal, and eventually result in handing over control
to a supervisor, nevertheless does not cause a complete breakdown. Furthermore, most trainees are
smart enough to realize that the concepts and procedures they are learning at work don’t necessarily
apply at home (or, if they don’t realize this at first, they may come to this conclusion in light of the
various problems that universally using a given scheme can cause). Thus they learn to use one set
of concepts and KR scheme at work, and another at home; and they know that both can be adapted
as the situation dictates. That is, they are not only able to treat a given KR scheme as flexible, but
to flexibly switch between KR schemes, all the while noticing, and addressing, problems as they
arise. This kind of flexibility in medias res is perhaps the most important immediate benefit of the
inclusion of MCL in a system.

7 Conclusions

We are the first to admit that building MarSciE will be much more difficult than building the AUSB,
and that GePurS is an order of magnitude more complex than MarSciE; and yet we want to insist

18 Logic, Self-awareness and Self-improvement

that they all lie on the same developmental path, which necessarily involves the implementation
of self-monitoring, self-representation, and autonomous self-improvement. However, to follow this
path will require some important shifts in how we approach the design and implementation of au-
tonomous, intelligent systems, and how we divide responsibility for the operation and maintenance
of the system between the developer and the system itself. This, in turn, suggests that the most press-
ing areas for future research in intelligent systems are those revolving around the questions outlined
above: by what methods, and with what amount of detail, should systems represent themselves, and
what should they expect for their own operation; how can the system assess its own failures; what
methods are available for fixing those failures, and when should each be used; and, finally, what are
the architectures that can support these abilities, and what are the advantages of each.

Acknowledgements

This work is supported in part by grants from AFOSR and ONR. We would like to thank Tim Oates
for many fruitful discussions of these ideas, and Ken Hennacy, Darsana Josyula and Waiyian Chong
for their roles in implementing the systems described herein.

References
[1] Logical formalizations and commonsense reasoning, 2004. Special issue of AIJ, edited by Ernest Davis and Leora

Morgenstern.
[2] J. F. Allen and G. Ferguson. Actions and events in interval temporal logic. Journal of Logic and Computation, 4,

531–580, 1994.

[3] J. F. Allen, B. W. Miller, E. K. Ringger, and T. Sikorski. A robust system for natural spoken dialogue. In Proceedings
of the 1996 Annual Meeting of the Association for Computational Linguistics (ACL-96), pp. 62–70, 1996.

[4] M. L. Anderson. Embodied cognition: a field guide. Artificial Intelligence, 149, 91–130, 2003.
[5] M. L. Anderson, W. Gomaa, J. Grant, and D. Perlis. On the reasoning of real-word agents: toward a semantics for active

logic, in preparation.

[6] M. L. Anderson, D. Josyula, Y. Okamoto, and D. Perlis. Time-situated agency: active logic and intention formation. In
Workshop on Cognitive Agents, ���� German Conference on Artificial Intelligence, 2002.

[7] M. L. Anderson, D. Josyula, and D.Perlis. Talking to computers. In Proceedings of the Workshop on Mixed Initiative
Intelligent Systems, IJCAI-03, 2003.

[8] M. L. Anderson, D. Josyula, D. Perlis, and K. Purang. Active logic for more effective human-computer interaction
and other commonsense applications. In Proceedings of the Workshop Empirically Successful First-Order Reasoning,
International Joint Conference on Automated Reasoning, 2004.

[9] M. L. Anderson, Tim Oates, Waiyian Chong, and D. Perlis. Enhancing reinforcement learning with metacognitive
monitoring and control for improved perturbation tolerance, submitted.

[10] M. L. Anderson, Y. Okamoto, D. Josyula, and D. Perlis. The use-mention distinction and its importance to HCI. In
Proceedings of the Sixth Workshop on the Semantics and Pragmatics of Dialog, 2002.

[11] M. Bhatia, P.Chi, W. Chong, D. P. Josyula, M. Anderson, Y. Okamoto, D. Perlis, and K. Purang. Handling uncertainty
with active logic. In Proceedings of the AAAI Fall Symposium on Uncertainty in Computation, 2001.

[12] W. Bibel. Let’s plan it deductively. Artificial Intelligence, 103, :183–208, 1998.
[13] P. Bloom and L. Markson. Capacities underlying word learning. Trends in Cognitive Scienes, 2, 67–73, 1998.

[14] R. A. Brooks. A robust layered control system for a mobile robot. IEEE Journal of Robotics and Automation, RA-2:14–
23, 1986.

[15] R. A. Brooks. Intelligence without reason. In Proceedings of 12th International Joint Conference on Artificial Intelli-
gence, pp. 569–95, 1991.

[16] R. A. Brooks. From earwigs to humans. practice and future of autonomous agents, Robotics and Autonomous Systems,
20, 291–304, 1997.

[17] R. Brooks. Intelligence without representation. Artificial Intelligence, 47, 139–60, 1991.
[18] F. Brown, (ed.). The Frame Problem in Artificial Intelligence. Morgan Kaufmann, 1987.

Logic, Self-awareness and Self-improvement 19

[19] W. Chong, M. O’Donovan-Anderson, Y. Okamoto, and D. Perlis. Seven days in the life of a robotic agent. In Proceedings
of the GSFC/JPL Workshop on Radical Agent Concepts, 2002.

[20] J. Doyle. A truth maintenance system. Artificial Intelligence, 12, 231–272, 1979.
[21] J. Doyle. A Model for Deliberation, Action, and Introspection. PhD thesis, Massachusetts Institute of Technology, 1980.
[22] J. Elgot-Drapkin and D. Perlis. Reasoning situated in time I: Basic concepts. Journal of Experimental and Theoretical

Artificial Intelligence, 2, 75–98, 1990.
[23] D. M. Gabbay and J. Woods. Agenda Relevance: A Study in Formal Pragmatics. North-Holland, 2003.
[24] M. Ginsberg, (ed.). Readings in Nonmonotonic Reasoning. Morgan Kaufmann, 1987.
[25] P. Gärdenfors. Knowledge in Flux: Modeling the Dynamics of Epistemic States. MIT Press, Cambridge, MA, 1988.
[26] P. Gärdenfors. Belief Revision. Cambridge University Press, Cambridge, 1992.
[27] P.eter Gärdenfors and Hans Rott. Belief revision. In Handbook of Logic in Artificial Intelligence and Logic Program-

ming, volume IV, D. M. Gabbay, C. J. Hogger, and J. A. Robinson, eds, pp. 35–132. Oxford University Press, 1995.
[28] K. Hennacy, N. Swamy, and D. Perlis. RGL study in a hybrid real-time system. In Proceedings of the IASTED NCI,

2003.
[29] D. Josyula, M. L. Anderson, and D. Perlis. Towards domain-independent, task-oriented, conversational adequacy. In

Proceedings of IJCAI-2003 Intelligent Systems Demonstrations, pp. 1637–8, 2003.
[30] H. H. Kendler and T. S. Kendler. Vertical and horizontal processes in problem solving. Psychological Review, 69, 1–16,

1962.
[31] H. H. Kendler and T. S. Kendler. Reversal-shift behavior: Some basic issues. Psychological Bulletin, 72, 229–32, 1969.
[32] H. Khalil. Logical Foundations of Default Reasoning. PhD thesis, University of Leipsig, Leipzig, Germany, 2002.
[33] D. Kirsh. Today the earwig, tomorrow man? Artificial Intelligence, 47, 161–184, 1991.
[34] G. F. Marcus. The Algebraic Mind: Integrating Connectionism and Cognitive Science. MIT Press, 2001.
[35] J. McCarthy. Applications of circumscription to formalizing common-sense knowledge. Artificial Intelligence, 28,

89–116, 1986.
[36] J. McCarthy and P. Hayes. Some philosophical problems from the standpoint of artificial intelligence. In Machine

Intelligence, volume 4, B. Meltzer and D. Michie, eds, pp. 463–502. Edinburgh University Press, 1969.
[37] O. Melnik and J.B. Pollack. Theory and scope of exact representation extraction from feed-forward networks. Cognitive

Systems Research, 3, 2002.
[38] M. Miller. A View of One’s Past and Other Aspects of Reasoned Change in Belief. PhD thesis, Department of Computer

Science, University of Maryland, College Park, Maryland, 1993.
[39] M. Miller and D. Perlis. Presentations and this and that: logic in action. In Proceedings of the 15th Annual Conference

of the Cognitive Science Society, Boulder, Colorado, 1993.
[40] A. W. Moore and C. G. Atkeson. Prioritized sweeping: Reinforcement learning with less data and less time. Machine

Learning, 13, 103–130, 1993.
[41] T. O. Nelson. Consciousness and metacognition. American Psychologist, 51, 102–16, 1996.
[42] T. O. Nelson and J. Dunlosky. Norms of paired-associate recall during multitrial learning of Swahili–English translation

equivalents. Memory, 2, 325–35, 1994.
[43] T. O. Nelson, J. Dunlosky, A. Graf, and L. Narens. Utilization of metacognitive judgments in the allocation of study

during multitrial learning. Psychological Science, 4, 207–13, 1994.
[44] M. Nirkhe, S. Kraus, M. Miller, and D. Perlis. How to (plan to) meet a deadline between now and then. Journal of Logic

and Computation, 7, 109–156, 1997.
[45] D. Perlis. On the consistency of commonsense reasoning. Computational Intelligence, 2, 180–190, 1986.
[46] D. Perlis. Sources of, and exploiting, inconsistency: Preliminary report. Journal of Applied Non-classical Logics, 7,

1997.
[47] D. Perlis, K. Purang, and C. Andersen. Conversational adequacy: mistakes are the essence. International Journal of

Human–Computer Studies, 48, 553–575, 1998.
[48] G. Priest. Paraconsistent logic. In Handbook of Philosophical Logic, 2ed, D. Gabbay and F. Guenther, eds, pp. 287–393.

Kluwer Academic Publishers, 2002.
[49] G. Priest, R. Routley, and J. Norman. Paraconsistent Logic: Essays on the Inconsistent. Philosophia Verlag, Mnchen,

1989.
[50] K. Purang. Systems that Detect and Repair their Own Mistakes. PhD thesis, Department of Computer Science, University

of Maryland, College Park, Maryland, 2001.
[51] K. Purang, D. Purushothaman, D. Traum, C. Andersen, D. Traum, and D. Perlis. Practical reasoning and plan execution

with active logic. In Proceedings of the IJCAI’99 Workshop on Practical Reasoning and Rationality, 1999.

20 Logic, Self-awareness and Self-improvement

[52] N. Rescher and A. Urquhart. Temporal Logic. Springer-Verlag, New York, 1971.
[53] S. Russell and E. Wefald. Principles of metareasoning. Artificial Intelligence, 49, 361–395, 1991.
[54] R. Sun, T. Peterson, and C. Sessions. The extraction of planning knowledge from reinforcement learning neural net-

works. In Proceedings of WIRN 2001, 2001.
[55] R. Sun. Integrating Rules and Connectionism for Robust Commonsense Reasoning. John Wiley and Sons, Inc., New

York, 1994.
[56] R. Sun. Supplementing neural reinforcement learning with symbolic methods. In Hybrid Neural Systems, S. Wermeter

and R. Sun, eds, pp. 333–47. Springer-Verlag, Berlin, 2000.
[57] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT Press, 1995.
[58] D. R. Traum, C. F. Andersen, W. Chong, D. Josyula, Y. Okamoto, K. Purang, M. O’Donovan-Anderson, and D. Perlis.

Representations of dialogue state for domain and task independent meta-dialogue. Electronic Transactions on Artificial
Intelligence, 3, 125–152, 1999.

[59] C. J. C. H. Watkins. Learning from Delayed Rewards. PhD thesis, Cambridge University, Cambridge, England, 1989.
[60] C. J. C. H. Watkins and P. Dayan. Q-learning. Machine Learning, 8, 279–292, 1992.
[61] S. Wermeter and R. Sun. Hybrid Neural Systems. Springer-Verlag, Heidelberg, 2000.

Received 5 July 2004

