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Computational structure-based protein design programs are

becoming an increasingly important tool in molecular biology.

These programs compute protein sequences that are predicted

to fold to a target structure and perform a desired function. The

success of a program’s predictions largely relies on two

components: first, the input biophysical model, and second,

the algorithm that computes the best sequence(s) and

structure(s) according to the biophysical model. Improving both

the model and the algorithm in tandem is essential to improving

the success rate of current programs, and here we review

recent developments in algorithms for protein design,

emphasizing how novel algorithms enable the use of more

accurate biophysical models. We conclude with a list of

algorithmic challenges in computational protein design that we

believe will be especially important for the design of therapeutic

proteins and protein assemblies.
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Introduction
Computational structure-based protein design is one of

the most promising tools for engineering proteins with

new functions, including the development of therapeutic

proteins and protein assemblies [1–4]. Despite important

successes, however, many of the current computational

protein design tools often have low success rates, and

designed proteins sometimes fail to achieve the function-

al properties of native proteins. New advances in protein

design methodologies are required to improve the func-

tional properties and success rate of computationally

designed proteins.

The problem of engineering a new functional protein

using computational methods is typically divided in two
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challenging stages. The first stage is selecting a target
tertiary/quaternary protein fold that will be designed for a

specific function. Often the selected fold is one that

performs a similar function and can later be redesigned

to a new one [5–8,9��]. In other cases, a protein that has a

completely different function is used as a scaffold and

repurposed for a new one [10–12]. And, increasingly,

protein engineers are incorporating empirical folding

and structural principles [13–18] to design proteins from

scratch (de novo design) [12–19]. The second stage is to

design a protein sequence, together with side chain

rotamers and residue conformations [20�], that will adopt

the overall target fold (often allowing some backbone
flexibility [13–18,20�,21,22�,23�,24–26,27��]) and perform

a desired function (e.g., binding with specificity to a target

molecule). This latter stage has been historically referred

to as protein design [28]. Many computational protein

engineering protocols implement different variations of

these two stages, and these have resulted in many suc-

cessfully engineered new proteins [5–8,9��,10–19,29–35].

Here we focus on protein design.

Protein design can be formulated as a well-defined

computational problem by reducing it to an optimization

over a family of parameterized structure-based protein

redesign problems. In this well-posed version, an opti-

mization algorithm (also known as a search algorithm)

computes and outputs the best protein amino acid

sequence(s) and structure(s) in a space defined by a

biophysical input model. This biophysical model defines

the sequence and structural search space (e.g., template

input structure, the allowed flexibility, the amino acid

sequences allowed, etc.), the optimization objective (e.g.,

single state, multi-state, ensemble-based, etc.), and the

scoring potential for protein energetics (i.e., the energy

function [36,37]). To our knowledge, all structure-based

protein design programs conform to this formulation

[13,38–42]. For example, one of the most frequently used

biophysical models for backbone flexibility in Rosetta

[13] consists of a target structure, an ensemble of allowed

backbone moves (e.g., backbone dihedral changes), a

rotamer library, the energy function, and a predefined

sequence space [13,43]. This biophysical model describes

a space which is then searched using Rosetta’s iterative
relaxation/design algorithm [13]. Iterative relaxation/

design iteratively intercalates two steps: first, a design

step, where the backbone is held constant while the

conformations and amino acid identities of the side chains

are optimized; and second, a relaxation step, where the

sequence is held constant, while the backbone and side

chains are optimized using a hybrid stochastic/gradient

descent optimization [13,44,45].
www.sciencedirect.com
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The accuracy of a computational protein design relies

largely on the biophysical model and it is thus highly

desirable to improve this model. Biophysical model

improvements, however, often come at the cost of expo-

nentially increasing the computational complexity of the

search problem. Since computational hardware cannot

grow at the same rate, the only practical solution to search

more complex biophysical models is through novel algo-

rithms. Therefore, substantial improvement in computa-

tional protein design necessitates the development of

novel algorithms (see Figure 1). For this reason, we focus

on algorithms for protein design, and review those that we

believe represent new algorithmic breakthroughs and

that have potential for the design of therapeutic proteins

and protein assemblies. We focus on developments since

2010 (foundational and earlier algorithms are discussed in
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[37,46,47�]) in four areas: optimization algorithms for

protein design, algorithms to search improved flexibility

models, multi-state design, and ensemble-based design.

Because of constraints on the length of this survey, we

exclude related algorithms that are important for thera-

peutic and assembly protein design that have also been

highly productive recently, such as docking algorithms

(for a review see [48]), scaffold search algorithms (e.g.,

[49,50]), and algorithms to optimize libraries for in vitro
evolution of designed proteins (e.g., [51,52]).

Provable versus heuristic algorithms
Protein design, like many other problems in the field of

computational structural biology, belongs to a hard class

of computational problems [47�]. Consider, for example, a

simple yet common biophysical model for the protein
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design problem, which we call the global minimum

energy conformation model (GMEC-model). In this mod-

el the backbone of the protein is not allowed to move, the

interaction energies between atoms are pairwise additive,

the amino acid side chains are allowed to change only

between discrete states (known as rotational isomers, or

rotamers) [37,46,47�], and the goal is to compute the

GMEC and its corresponding amino acid sequence. It

has been shown that, even under this simple GMEC-

model, the protein design problem belongs to a hard class

of computational problems known as NP-hard (reviewed

in [47�]), which implies that an efficient algorithm for all

instances of the problem is unlikely. Moreover, other

useful models (discussed in ‘Algorithms for multistate

protein design’ and ‘Algorithms to model partition func-

tions and free energy of binding in design’ sections) can

belong to even more challenging classes of computational

problems.

Because of the complexity inherent to these hard classes

of problems, many protein design programs use heuristic
optimization algorithms to compute low-energy sequences

in the search space described by the biophysical model

[46]. Heuristic algorithms use stochastic processes to

search the space described by the model and are usually

fast. Their speed makes them attractive because protein

designers can expand the biophysical model (i.e., expand

backbone flexibility, rotamer libraries, the number of pro-

tein sequences considered, or the number of states in a

multistate design), without incurring a significant perfor-

mance penalty. For these reasons, the field of heuristic

algorithms has been highly prolific both before 2010 [46]

and since 2010 (reviewed here).

However, heuristic algorithms cannot guarantee the op-

timality of the solution relative to the input biophysical

model. This can be a particular disadvantage when mod-

els are expanded: a heuristic algorithm may not be able to

accurately search the expanded model [53��]. Provable

protein design algorithms, in contrast, guarantee that if

the algorithm runs to completion, the computed

sequences are the best ones, or are provably close to

the best one, as defined by the model. Although provable

algorithms can be empirically slower than heuristic algo-

rithms, their guarantees present several advantages.

First, provable algorithms can (and often do) compute

lower energy sequences than heuristic algorithms. For

example, in a recent study [53��], Simoncini et al. com-

pared their provable optimization algorithm implemen-

ted in the Toulbar2 program [54,55] versus the heuristic

simulated annealing (SA) algorithm implemented in the

Rosetta program using a GMEC-model. They found that,

in a set of 100 test protein designs, SA often fails to

compute the optimal answer even after running hundreds

of times. In another study, Donald and co-workers com-

pared the performance of a commonly used heuristic to
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model the continuous low-energy regions around rota-

mers, against provably searching the space [56�]. The

heuristic method consisted of an initial discrete search

followed by post hoc minimization. They found that the

provable answer was far lower in energy and more similar

to native proteins than the heuristically computed

sequences.

When a protein designer defines a biophysical model for

a specific, empirical protein design problem she usually

cannot predict the computational complexity of the mod-

el (although algorithms such as [57] can upper bound the

complexity, but these are exceptions to the rule). Since

protein design search spaces quickly grow exponentially

along multiple dimensions (i.e., sequence space, side

chain conformation space, backbone conformation space),

the input biophysical model might be too complex for any

method to optimize accurately, heuristic or provable.

Therefore, a second, and very important advantage of

provable algorithms, is that they provide a signaling

mechanism on the complexity of the input biophysical

model. The importance of this signaling mechanism was

evinced in the work by Simoncini et al. [53��], where they

found a clear tendency for the difference between the SA

solution and the GMEC computed by the provable

algorithm to increase as the size of the problem grows.

If a heuristic algorithm, such as SA, is used to optimize

a biophysical model that exceeds the capabilities of

provable algorithms, then it is impossible to know the

size of the difference, and the designer has no information

on the quality of the heuristic search. In contrast, provable

algorithms in these cases warn the designer of the need to

either first, restrict the biophysical model or second,

improve the algorithms.

Finally, when the output of provable algorithms fails to

perform experimentally as predicted, the error can be

isolated and attributed solely to the biophysical model,

and the biophysical model can then be improved. With

heuristic algorithms, it is difficult to know whether the

design process failed because of the algorithm or the

biophysical model. An interesting example of the ambi-

guity introduced by heuristic algorithms was recently

reported in a closely related field within computational

structural biology, in Nuclear Magnetic Resonance

(NMR) structure determination [58��]. With sparse data

(e.g., for membrane proteins) this problem is a form of

protein structure prediction, and has similarities to back-

bone conformation search and scoring in protein design.

Martin et al. showed that a recently published structure of

Diacylglycerol Kinase, solved by NMR was vastly differ-

ent from the crystal structure likely because the SA

optimization protocol used to interpret the NMR data

failed to find up to 18 other low-energy structures with

completely different topologies that also fit the data.

Although this discrepancy occurred in the field of

NMR structure determination, it is a warning about
www.sciencedirect.com
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the ability of SA to explore backbone conformational

space, and we suspect that similar dangers can occur

when using SA or other heuristic algorithms in computa-

tional protein design.

Thus, there are trade-offs to using provable versus heu-

ristic algorithms: heuristic algorithms can more quickly

search complex biophysical models yet cannot guarantee

accuracy, while provable algorithms guarantee accuracy

but are typically slower. Since 2010 there have been

considerable developments in algorithms for both cate-

gories and we review these in the following sections.

Progress in optimization algorithms for the
GMEC-model
The GMEC-model is one of the most used protein design

models and it is often employed as a benchmark to test

the performance of new protein design optimization

algorithms, provable or heuristic. Most of the heuristic

algorithms that are currently used for the protein design

GMEC-model, however, were developed before 2010

(and are surveyed in [37,46]). One recent, promising

approach, however, is the CLEVER algorithm for protein

design, which builds on previous cluster expansion algo-

rithms developed in Amy Keating’s laboratory [59,60].

Cluster expansion for protein design is a technique that

maps the complex three-dimensional atomic-level energy

function, which is a function of atomic coordinates, to a

simpler linear function dependent only on the sequence

[60]. Thus, cluster expansion maps the biophysical input

model to a much simpler one. Then, integer linear

programming solvers can be used to efficiently find the

optimal sequence in the new model. Since this mapping is

only an approximation, the error resulting from a cluster

expansion can potentially be large. In more recent work,

Hahn et al. analyzed the sources of error in cluster

expansion and developed a series of techniques to reduce

them [59]. Although it is likely very difficult to eliminate

all approximation errors in cluster expansion, its speed

makes it an attractive approach for protein design.

In contrast to progress in heuristic algorithms, several

notable advances in provable protein design optimization

have been reported over the past few years. Tommi

Jaakkola and co-workers developed the max-product

linear programming algorithm (MPLP) for computer vi-

sion and protein design applications [61]. MPLP uses a

message passing-based [47�], block-coordinate descent

algorithm to approximate tight lower bounds on the

energy of partial protein design solutions [61,62�]. Then,

using information from the bounding process, the algo-

rithm groups residues into clusters, which iteratively

results in tighter MPLP bounds until the exact, best

solution is computed [61]. Other algorithms have adopted

bounding techniques, similar to MPLP, and used them in

different branch-and-bound frameworks. The BroMAP

algorithm [63] also uses a message passing algorithm as
www.sciencedirect.com 
the bounding technique, followed by a branch-and-bound

algorithm. At each step in the branch-and-bound process,

BroMAP prunes solutions that it can prove will not lead to

the optimal solution. Donald and co-workers developed

the Dynamic A* algorithm [64�], which is based on the

traditional A* algorithm for protein design (reviewed in

[37,46]). Dynamic A* radically improves the performance

of A* through both better bounding and by introducing

dynamic residue ordering to the design process. Zeng

and co-workers [65] developed an AND/OR branch-and-

bound method that exploits the sparse nature of protein

design biophysical models. In an AND/OR tree the

protein design optimization problem can be split into

different components on-the-fly, and each subtree can be

solved independently, which can result in a significant

performance improvement. Other recent developments

use advanced computer science tools, such as dynamic

programming [57,66�] or solvers for the Boolean satisfia-

bility problem [67].

Promising improvements in the performance of protein

design optimization algorithms for the GMEC-model

were recently reported by Thomas Schiex and co-workers

[53��,54,55]. Their protein design optimization algorithm

exploits weighted constraint satisfaction (WCSP) techni-

ques, including fast soft local consistencies for bounding,

an advanced branch and bound implementation, and

sophisticated ordering techniques, to compute the

GMEC significantly faster than competing approaches

[54]. These algorithms are implemented in the Toulbar2

program [53��,54,55], with support only for discrete flexi-

bility models, and in the Osprey protein design program

[39,68] (with full support for continuous flexibility mod-

els, described in the next section [64�,69��]).

Although the algorithms described in this section were

tested on the discrete rotamer GMEC-model they often

are integral components of other algorithms that are used

to search more complex biophysical models [56�,70].

Often, the improvements in optimization power de-

scribed in this Section are necessary to allow for search

over these more complex models in a reasonable amount

of time.

Algorithms to search improved models of
protein flexibility
Protein design energy functions can be sensitive to small

changes in atom coordinates. A protein sequence that is

predicted to be energetically disfavorable under a rigid

backbone biophysical model, for example, could be very

favorable with some slight adjustments to the backbone

or side chain angles. Moreover, certain protein secondary

structure elements, such as backbone loops, can change

their conformations after introducing mutations, and pro-

tein design algorithms must model these new conforma-

tions to find the lowest energy conformation of a new

sequence. Thus, protein design algorithms can improve
Current Opinion in Structural Biology 2016, 39:16–26
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the quality of their design predictions by expanding/

improving their flexibility models.

A widely used method for improved flexibility is the

iterative relaxation/design method in Rosetta [13]. This

method intercalates sequence design steps (which hold

constant the backbone coordinates) with backbone relax-

ation steps (which hold constant the amino acid sequence

[13]). The relaxation step was recently improved by Tyka

et al. in the FastRelax [45] and BatchRelax [71] algo-

rithms, which improve the speed of these methods by

annealing the weight of the van der Waals term during the

minimization process.

Separating backbone flexibility and sequence design into

different steps may not always find the best sequences

under the flexibility model because the best sequence

might only be reached after a concerted backbone move-

ment and residue mutation. Thus, designers have

attempted to search backbone and sequence space simul-

taneously [20�,21,22�].

The importance of searching backbone flexibility and

sequence space simultaneously has been validated retro-

spectively in biologically relevant computational experi-

ments. For example, Kortemme and co-workers [21]

showed that incorporating backbone flexibility greatly

improved the ability to predict mutational tolerance in

HIV-1 protease and reverse transcriptase. In addition, in

[22�] they showed that coupling backbone movements

with side-chain movements improved the ability to pre-

dict mutations in enzymes and to predict sequences for a

protein to bind a particular ligand.

Searching backbone flexibility and sequence space simul-

taneously represents an important algorithmic challenge

for protein design algorithms along two areas: (i) algorithms

are needed to improve the flexibility model by defining a

restricted, yet comprehensive, conformational search

space, and (ii) algorithms are needed to search the im-

proved, yet often more complex, flexibility models. In the

first area the main challenge lies in improved models of

backbone flexibility. The size of the conformation space

with backbone flexibility can be huge and it would be

useful to have methods to restrict the space to subsets of

good backbone conformations. This problem is particularly

hard for protein loops because the space of possible loop

conformations is usually large. To address this problem,

Kortemme and co-workers developed the KIC algorithm

[23�,24], which generates a library of backbone loops for

both protein design and protein modeling. KIC uses a

kinematic closure algorithm to analytically solve all possi-

ble solutions to a set of three ‘pivot’ residues and uses a

Ramachandran plot to compute a library of additional

torsional values for the remaining torsional angles in a loop

of arbitrary size. Notably, KIC has been compared against

loop backbones generated using molecular dynamics and
Current Opinion in Structural Biology 2016, 39:16–26 
shown to be more accurate [25]. The Baker laboratory

incorporated KIC and several other backbone flexibility

techniques into RosettaRemodel, a general framework for

backbone flexibility in Rosetta [72]. Tripathy et al. [26]

developed a method that uses NMR orientational

restraints to generate ensembles of loop backbones. Their

method, POOL, exploits sparse NMR orientational

restraints and kinematic restrictions on the backbone to

systematically search all loop conformations that satisfy the

data. In cases where some NMR data on a loop of the

wildtype structure is available, POOL can be used to

accurately generate candidate loop conformations, and

these can be used as input for the design. Floudas and

co-workers [27��] provide an algorithm to predict loop

structures by iteratively refining the bounds on the dihe-

dral angles of the loop residues. Importantly, the algorithm

is able to handle cases in which the coordinates of the

flanking secondary structure elements are not known.

Once these discrete backbones are computed, then they

can be incorporated into the biophysical model, and any

algorithm to compute the GMEC can be used to compute

the optimal conformation for the improved model. In the

case of cluster expansion approximation where the three

dimensional coordinates of atoms are mapped to a simple

linear function dependent only on sequence, however, it

is not straightforward to see that the approximation will

be robust enough for backbone flexibility. To investigate

this, Agpar et al. [73] recently evaluated the performance

of cluster expansion with a backbone flexibility model

and demonstrated that the approximation is robust

enough for the improved model.

Discrete models of flexibility, however, are limited be-

cause protein energetics can be very sensitive to small

changes. With discrete models it becomes hard to know

beforehand how much discrete sampling is necessary for

a specific design. Rather than model conformations as

discrete conformations, Donald and co-workers have de-

veloped a suite of provable algorithms [20�,56�,69��,74��]
that incorporate continuous flexibility to model the low-

energy torsional regions around discrete conformations.

They have found that modeling the continuous flexibility

around discrete, low-energy conformations results in

designed protein sequences that are much more similar

to native protein sequences [56�]. These algorithms to

model continuous flexibility [20�,56�,69��,74��] build on

the A* protein design algorithm [64�] to compute bounds

on the energies of the continuous regions around discrete

conformations, and guarantee to find the lowest energy

conformations and sequences under the continuous flex-

ibility model. The iMinDEE algorithm [56�] introduces a

new, powerful provable technique to remove continuous

rotamers in a protein design search that can be shown to

not be part of the optimal solution. The DEEPer algo-

rithm [20�] models simultaneous continuous flexibility in

both backbone and side-chain movements. The EPIC
www.sciencedirect.com
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algorithm [74��] reduces the burden of using continuous

flexibility in protein design by precomputing energy

functions between pairs of residues as compact, quick-

to-evaluate polynomials. The HOT and PartCR algo-

rithms further accelerate the speed of continuous flexi-

bility algorithms by merging/or partitioning discrete

conformations, improving the speed of continuous flexi-

bility algorithms 100-fold [69��]. The LUTE algorithm

[75], conceptually similar to cluster expansion, performs a

black-box reduction of protein design with continuous

flexibility, to (two calls to) a discrete optimization algo-

rithm for protein design (such as those described in

‘Progress in optimization algorithms for the GMEC-mod-

el’ section). LUTE also provides a similar reduction for

design with non-pairwise energy functions, such as Pois-

son–Boltzmann solvation. By reducing these more com-

plex optimizations to pairwise discrete optimization,

LUTE can exploit many of their advantages while obtain-

ing the speed of a discrete algorithm.

Algorithms for multistate protein design
The design of protein therapeutics and protein assem-

blies often requires optimizing over multiple states, which

is known as multistate design (MSD). For example, the

MSD goal might be to optimize binding affinity (which

can be modeled by optimizing the difference in energy

between the bound state of a complex and the unbound

states of the monomers), to optimize for affinity to multi-

ple targets, or to optimize for binding to one target while

preventing binding to other targets. MSD has many

practical applications. For example, Meiler and co-work-

ers [76] recently showed that MSD resulted in better

agreement with observed evolutionary sequence profiles

of antibodies when compared with single state design. In

another example [5,6], Anderson, Donald and co-workers

used MSD to predict active site mutations in a drug target

that confer resistance to a drug while maintaining the

natural function of the enzyme.

In practice, MSD can be harder than traditional protein

design optimization problems because multiple states

must be simultaneously optimized, instead of just one,

but since 2010 there have been several developments of

new heuristic algorithms for MSD (earlier MSD algo-

rithms are discussed in [77]). Building on cluster expan-

sion, the Keating laboratory developed the CLASSY

algorithm for MSD [29,78]. CLASSY uses a protocol

called a ‘CLASSY specificity sweep’ which consists of

multiple steps. In the first step, CLASSY designs a

sequence for affinity to a target. On the second and

subsequent rounds, new constraints are added to increase

the difference in binding energy of the sequence to the

target versus the off-targets. An optimization process is

run anew to optimize for binding to the target. The

procedure continues until a highly specific sequence is

found. Fromer et al. [79,80] developed an algorithm for

multispecificity using probabilistic graphical models
www.sciencedirect.com 
[47�]. Their method combines the energy function of

the multiple targets to a single energy function and

models the graphical model for each target structure as

a separate graphical model. Constraints between the

different graphical models ensure that the sequences of

all target structures are the same, and the loopy belief

propagation optimization algorithm is then used to com-

pute the optimal sequence. Allen and Mayo [81] adapted

the FASTER algorithm, a heuristic optimization algo-

rithm developed for protein design, to the multistate case.

Their method, MSD-FASTER, iteratively computes

sequences for each of the target states and then applies

them together, until convergence. Chica and co-workers

[82] developed an approach to separate backbone

ensembles generated computationally into native versus

non-native clusters using multiple linear regression

against a training set with known experimental data.

They then apply the FASTER algorithm to optimize

the sequence with the largest Boltzmann-weighted av-

erage energy difference between native and non-native

ensembles. Leaver-Fay et al. [77] developed a genetic

algorithm for multistate design within a multistate pro-

gram that allows the user to define custom multistate

optimization objectives. Finally, Meiler and co-workers

developed the RECON algorithm [76], which allows the

multiple states to separately explore the sequence

space, while slowly converging, under the assumption

that this should simplify the energy landscape of the

sequence space.

The problem of computing the MSD belongs to a hard

class of computational problems (we conjecture that its

class is harder than computing the GMEC). In practice

MSD is computationally challenging because the number

of sequences is exponential in the number of mutable

residue positions, and the optimization objective consid-

ers multiple states for each sequence. To our knowledge,

the Comets algorithm developed in the Donald laboratory

[83��] is the only provable algorithm for multistate design

with an all-atom energy functions that does not exhaus-

tively enumerate the sequence space. Comets uses a

search tree based on the A* algorithm over sequences,

where each internal node encodes a partially defined

sequence, and each leaf encodes a fully defined sequence.

Comets computes a multistate lower bound on the best

energy of every internal node, and at each step the

internal node with the best bound is expanded. This

process continues until the optimal MSD sequences are

computed.

Algorithms to model partition functions and
free energy of binding in design
Proteins exist in solution as thermodynamic ensembles,

and the binding affinity of two proteins depends on the

free energy of these ensembles [9��,47�,84]. In particular,

when two proteins bind each other, such as when a

therapeutic protein binds its target, the binding affinity
Current Opinion in Structural Biology 2016, 39:16–26
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is often affected by an associated loss in conformational

entropy. Thus, protein design protocols must account for

the entropy change [9��], and failure to do so can result in

weakly binding proteins. This was validated recently in a

computational study by Fleishman et al. [85], which com-

pared the conformational flexibility of the side chains in the

binding interface of computationally designed proteins,

compared with that of native proteins. Their computational

study showed that native binding proteins had restrictions

on the side-chain plasticity of proteins, ensuring they un-

dergo a small entropic loss upon binding. Roberts et al. [9��]
also performed a comparison between the computational

predictions of a GMEC-model versus the predictions of

an ensemble-based model, in an experimentally validated

design of peptide inhibitors for cystic fibrosis. They found

that of the top 30 sequences designed by a single-structure

(GMEC) model versus an ensemble model, the predictions

by the two models shared only 4 sequences in common. The

top experimentally validated sequences were top-ranked

by the ensemble-based model but were not top-ranked

sequences in the single-structure model [9��].

Computing protein ensembles, and the associated parti-

tion function for a protein, belongs to a difficult class of

computer science problems, #P-hard. However, several

approximation algorithms have been developed to com-

pute rotamer-based partition functions that can be used to

estimate conformational entropy upon binding. Fleish-

man et al. [85] developed a method similar to self consis-

tent mean field to compute a penalty for rotamers that

change conformation upon binding. Kamisetty et al. [86�]
used probabilistic graphical models to formulate the

partition function computation as an inference problem.

Then, they used the GOBLIN algorithm, which is based

on loopy belief propagation, to compute the free energy

of binding in protein–protein interactions [86�]. Their

method was also used to show that explicitly accounting

for conformational entropy can significantly improve pre-

dictions of binding affinities. Gevorg Grigoryan devel-

oped the molecular-dynamics based Valocidy algorithm

[87��], which uses ensembles to compute free energy.

Grigoryan showed how to use Valocidy to calculate free-

energy estimates in protein design by incorporating it into

cluster expansion.

Despite the hardness of computing partition functions,

some algorithms can approximate the free energy of bind-

ing with guarantees on the input for continuous rotameric

or residue conformation [20�] models. The K* algorithm

[9��] computes approximations to the binding constant of

two proteins by computing the ratio of the partition func-

tions between bound and unbound states [47�]. To approx-

imate the partition function of each state, K* enumerates

conformations in order of energy, using the A* algorithm

and stops once a provable, e-approximation to each parti-

tion function has been computed. Jou et al. developed

the BWM* algorithm, based on dynamic programming
Current Opinion in Structural Biology 2016, 39:16–26 
techniques, to rapidly enumerate conformational ensem-

bles for use in partition function computation [57]. Viricel

et al. adapted weighted constraint satisfaction techniques

to compute e-approximations to the partition function and

K* score more quickly than previous methods [70]. Silver

et al. [88��] developed a method to compute configurational

entropy using A*-enumerated ensembles, similar to the

K* algorithm [84], followed by a novel entropy expansion.

The method represents the entropy as a series of mutually

exclusive terms, each corresponding to the marginal entro-

py of a particular degree of freedom or to coupling between

degrees of freedom. This expansion offers a clear interpre-

tation of the contribution of particular degrees of freedom

to the total entropy of the molecule [88��].

Conclusions and important algorithmic
challenges in protein design
The accuracy of structure-based computational protein

design depends on the quality of the input biophysical

model. Improving this model in turn requires new algo-

rithms capable of searching the more complex search

spaces created by the improved model. The perspicacious

reader will note, however, that an arbitrary improvement to

the biophysical model, no matter how beneficial in princi-

ple, may not admit a corresponding algorithmic improve-

ment to re-expand the equicomplexity curve (Figure 1).

The most significant improvements to algorithms for pro-

tein design are likely to come from algorithms that exploit

the structure of new features in the biophysical model. Yet

not all features will be equally exploitable by the algo-

rithms. For example, modeling the solvent molecules in a

protein’s environment explicitly would most likely

improve the accuracy of protein design, yet it is challenging

to develop efficient design algorithms that can search these

solvent models. Thus, there is an impedance matching

between algorithms and models, and therefore both algo-

rithms and models must be improved in tandem.

Since 2010 there have been important improvements to

many important algorithmic challenges in protein design.

There are many areas where protein design algorithms can

be further improved, both within and outside those listed

here. First, as shown by [53��] and argued in this review,

significant progress in the speed of provable optimization

algorithms is not only possible, but it is essential to ensure

the quality of the designed sequences with respect to

the input biophysical model. Developing algorithms that

improve over the best state-of-the-art algorithms will

enable enhanced modeling and, in consequence, better

designs. In addition, as shown in multiple studies [9��,
20�,21,25,47�,56�] improving flexibility models in protein

design can result in sequences that are lower energy, are

more similar to those of native proteins, or perform better

experimentally [9��]. Developing new algorithms that

expand the equicomplexity curve (Figure 1) for expanded

flexibility models, especially continuous flexibility, is like-

ly to result in better protein designs.
www.sciencedirect.com
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The successful engineering of proteins for new function

depends on a two stage strategy: selecting a tertiary or

quaternary protein fold that can be designed for a specific

function, followed by protein design of the fold. Recently,

as the functional goals of protein design have become

increasingly ambitious, the first stage (selecting the fold)

has become more relevant because most protein folds are

likely not designable for a specific function. Designers

often utilize scaffold search algorithms or increasingly more

commonly, de novo strategies to find folds, followed se-

quentially by protein design to compute a sequence for

these folds. This sequential strategy, known as a greedy
strategy in computer science, suffers from an important

limitation from decoupling the two stages: because the

stages are sequential, the fold selection process may not be

able to foresee whether a protein sequence will be able to

adopt the fold and perform a function (e.g., binding). Thus,

filtering criteria at the fold selection stage will remove

solutions that could be successfully designed to a function-

ing protein. The engineering of proteins would greatly

benefit from a tighter coupling between fold search and

protein design. Several recent strategies address in part this

limitation [15,89] from a structural perspective: they predict

whether the fold is designable based on observed protein

structures. Others, such as inverse rotamers [90], address

this from a functional (i.e., binding or catalysis) perspective.

However, a tighter integration between fold selection and

protein design is needed to improve the functional capa-

bilities of computational protein engineering, and such

integration will likely require new algorithms. These and

other advances, coupled with state-of-the-art techniques

for in vitro, in vivo and preclinical validation [91], could

transform computational protein design into an essential

tool for the development of novel therapeutics.
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