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Abstract—Maintenance of unused features leads to unnec-
essary costs. Therefore, identifying unused features can help
product owners to prioritize maintenance efforts. We present a
tool that employs dynamic analyses and text mining techniques
to identify use case documents describing unused features to
approximate unnecessary features. We report on a preliminary
study of an industrial business information system over the course
of one year quantifying unused features and measuring the
performance of the approach. It indicates the relevance of the
problem and the capability of the presented approach to detect
unused features.

I. INTRODUCTION

Software systems contain unused features. Studies report
that in practice 28% [1] to 45% [2] of a system’s features are
unused. These features lead to code areas that are not used in
a productive environment. Maintaining unused code leads to
unnecessary costs, since unused code is often unnecessary [3].
However, product owners directing maintenance efforts often
do not know the actual usage of their system in its productive
environment. Hence, from the perspective of a product owner,
the question arises: “How can we identify the unused features
to prevent unnecessary maintenance cost?”.

To answer their question, we would like to collect usage
data on feature level. Due to technical reasons, this is not well
established in practice: code profilers record usage data on
source code level, whereas profilers on feature level require
instrumentation or annotation of source code that explicitly
maps source code to features (see, e.g., [2]), which leads to
additional maintenance efforts.

Problem: Usage data on code level reveals only which parts
of the code, instead of features, are used or unused. As such,
this information is helpful for developers who know the source
code of the system and can decide whether to keep or remove
source code based on this information. But this information
does not help product owners, who are on project management
or requirements level and, more important, who do not know
the system’s source code. This is just one reason for product
owners being unable to relate unused code to features. Since
product owners do not want to direct maintenance to unused
features, they require usage information on the level of fea-
tures, which is not given by profilers employed in industry.
Hence, to help product owners planning maintenance efforts,
we need to transfer runtime usage information to higher level
usage data and bridge the gap between code level usage data
and features.

Contribution: We propose an approach using text mining
techniques to bridge the gap between code level usage informa-
tion and features. In this approach, we approximate to features
by analyzing use case documents (see, e.g., [4]). By extracting
concepts from source code methods and matching the content

of use case documents to these concepts, we can suggest those
use case documents that describe most likely unused features.

We analyzed a real-world business information system
from the reinsurance domain where features are documented in
46 use cases. We present a preliminary study, based on usage
data collected for more than one business year, which lead to
the discovery of two use case documents that describe unused
features and two use case documents containing large parts
that were not performed by the actual users of the system.
The results show that the precision and recall of the approach
are high, and therefore, indicate the validity of our approach.

II. RELATED WORK

Feature Profiling: Besides [2], we are not aware of research
work eliciting feature level usage information on the level
of requirements. However, one approach to detect unused
features is linking code to features manually. This is a tedious
task, if even feasible in practice, since possibly thousands of
locations in the source code have to be linked to requirements
documents. Additionally, these links possibly become outdated
in a changing system and this leads to even more efforts.

Software Usage Mining: Several approaches gather infor-
mation about the usage of software: techniques for web usage
mining [5] gained much attention by researchers, however,
there are also techniques for other types of systems [2], [6],
[7]. The difference to our work is that those approaches do not
establish connections to requirements documents, such as use
cases. Furthermore, these approaches often rely on a certain
structure or instrumentation of programs, e.g. [7] is specific to
software built on top of the Eclipse Framework. Our approach,
in contrast, is generic as it inspects the source code text.

Feature Location: Feature Location refers to the task of
identifying code areas that implement a certain feature. An
extensive survey on feature location is given by Dit et al. [8].
Among the techniques proposed for this task are static and
dynamic analyses [9] as well as text mining techniques [10],
which is what we applied here. Text mining has been used
for feature location, e.g., in [11] where features are located
based on natural language documents. The main goal of feature
location techniques is to answer a query about a feature by
providing a list of matching source code areas. This differs
from our goal, as we want to decide which features are not
executed on the system.

Trace Link Recovery: Trace Link Recovery focuses on
uncovering relations between different software-related arti-
facts. A taxonomy of trace link recovery techniques has been
published by Cleland-Huang [12]. In terms of this taxonomy
we use a technique based on term matching. Uncovering
traces between requirements documents and source code to
ease maintenance has been investigated by Charrada [13],
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[14]. Lucia et al. [15] present an approach and a tool to
automatically uncover trace links between a wider range of
artifacts, among them use cases. Lormans [16] uses trace
link recovery to identify requirements that have not been
implemented. Compared to these works, which often use text
mining techniques [17], we share the underlying techniques
such as LSI, but establish relations between use cases and
source code with the goal to find unexecuted features.

III. APPROACH

We explain our approach to identifying unused features
expressed by use case documents, which is based on usage
data analysis and Latent Semantic Indexing (LSI) for linking
unused code to use case documents.

A. Background: Latent Semantic Indexing

LSI [18] measures the similarity between documents con-
tained in a document corpus. Similarity is expressed by a value
between -1 and 1, where a higher value means the compared
documents are more similar1. LSI identifies words belonging
to a common concept (e.g., ‘car’ and ‘automobile’), enabling
it to deal with synonyms.

LSI starts with creating a term document matrix (terms ˆ
documents) with entries for each word in each document.
The entries are calculated by a global and local weighting
function for each word. On this matrix, given the number of
desired dimensions (which can be interpreted as the number of
concepts), singular value decomposition is performed, resulting
in a smaller matrix where words are replaced by their concepts.
This matrix represents every document as a vector in the
space of concepts. The similarity of documents is calculated
by comparing their vectors using cosine similarity.

B. Finding Unused Features

The approach is divided into several steps as illustrated in
Figure 1 and uses the variables listed in Table I. It assumes
the source code using the same concepts in the same language
as the use case documents.

TABLE I. APPROACH: VARIABLE NAMES AND MEANINGS.

Variable Description

M Set of all method names
Ui The ith use case document in all use case documents
Mused, Munused The set of used/unused methods
Cused, Cunused The set of concepts in method names in Mused / Munused
sUi,used , sUi,unused The similarity of Ui to Cused / Cused

ΣUi
The score of Ui

Input:
‚ Use case documents written in natural language describing

the flow of steps users perform.
‚ Usage data collected by an ephemeral profiler2 [19]. The

resulting log files list the executed methods3.
‚ Source code of the software system4.

1The range of some other implementations of LSI is between 0 and 1.
2This profiling technique imposes less performance impact than classical

profiling techniques. This improves the applicability in productive systems.
3But no information about how often a method was called.
4The approach also works on Java-Bytecode and IL Code for C#, since we

rely only on method signatures that are extractable from these artifacts.

� Extract and Filter Methods:
Input: Source code
Procedure: Filter out generated code and test code5 and extract

method names M from the remaining methods’ signatures.
Output: M .

� Partition Methods:
Input: M , usage data log files
Procedure: Partition method names by usage (used or unused).
Output: Mused, Munused.

� Extract Concepts for Method Sets:
Input: Mused, Munused
Procedure: Extract concepts6 from method names. We rely

on the coding convention that method names are written
in camelCase or single words are split by underscores. For
example, the method getRatingAgency() is transferred
into the list of concepts [get, rating, agency].

Output: Cused, Cunused.

� Compare (LSI):
Input: Corpus of use case documents Cused and Cunused.
Procedure: Extract cleaned text7 from use case documents.

Compute the similarities of every use case document Ui to
the word sets Cused, Cunused using LSI8.

Output: For each use case document Ui: sUi,used, sUi,unused.

� Calculate Scores:
Input: For every use case document Ui: sUi,used and sUi,unused
Procedure: Calculate the score ΣUi for every use case docu-

ment Ui as: ΣUi “ sUi,unused´sUi,used. In this step, we want
to score a use case document higher, the more similar it
is to the concepts of unused methods, and lower, the more
similar it is to the concepts of used methods, since there
might be use case documents that match well to both sets
of methods.

Output: For every use case document Ui: ΣUi
.

� Sort Use Case Documents:
Input: ΣUi

for every use case document Ui

Procedure: Sort the use case documents by their score in
descending order.

Output: Ranking of use case documents. Higher ranked use
cases are more likely to describe unused features.

Parameter Estimation: The parameters used for configuring
LSI highly impact the results. Therefore, we suggest to es-
timate parameters based on a sample use case document that
contains unused features and is identified manually by a system
expert. We iterate through possible parameters and choose the
parameters with which the proposed approach ranks this use
case document highest. The rationale behind this approach is
that identifying just one use case document that expresses an
unused feature can be done with less effort than identifying
all – which then is facilitated by our approach.

5Test methods are never executed in the productive environment. Generated
code does not contain words relevant for our approach and has not been
manually maintained.

6Single words contained in method names.
7We omit information like authors or version history. Additionally, we

remove stop words and stem the text.
8To compare word sets to documents, we generate one document for each

concept set by writing the contained words to a text document.

447447447



� Extract,
Filter

� Partition
� Extract
Concepts

� Compare
(LSI)

� Calculate
Scores

� Sort Use
Case Docs.

Source
Code

Usage
Data

Use Case
Documents

Ranking

Methods
M

Method Sets
Mused, Munused

Concept Sets
Cused, Cunused

Similarities
sUi,used, sUi,unused

Scores
SUi

Text

Fig. 1. Schematic illustration of the approach. Light boxes are input or output artifacts, while dark boxes are steps in the approach. Arrows indicate data flow.

IV. PRELIMINARY STUDY

The goal of this preliminary study is to show the relevance
of the research problem and to validate the applicability of
the approach in a real world case study. Consequently, we
formulate the following two research questions:

RQ1: How many use case documents that express unused
features are in the system? This question targets the existence
and number of unused features to show that the problem of
unused features exists in practice.

RQ2: Is the approach capable of detecting use case documents
describing unused features? This question focuses on the
validity and performance of our approach in terms of precision
and recall, and the applicability in real world examples.

A. Study Object and Subject

We perform the study on a business information system at
Munich Re, which is one of the world’s leading reinsurance
companies with more than 47,000 employees in reinsurance
and primary insurance worldwide. For their insurance busi-
ness, they develop a variety of custom software systems. The
business information system analyzed in this study implements
damage prediction functionality and supports ca. 150 expert
users in over ten countries. Table II illustrates the study object’s
main characteristics.

TABLE II. STUDY OBJECT: CHARACTERISTICS.

Language C#
Age (years) 10
Size (kLOC) 313
Size (#methods) 31,991
Use case documents 46

The system’s usage was monitored for 414 days in its
productive environment. We filtered out methods and types that
only have a testing purpose and did not take external libraries
into account. This leads to 11,034 unused methods and 20,957
used methods.

For validating our results, we interviewed the leading
architect of the system (system expert in the remainder of
the paper). Since he has been developing the system for 10
years, he has good knowledge about the system itself but also
about the domain. Therefore, we argue that he is capable of
estimating whether a feature contained in an use case document
is unused based on method usage data.

B. Study Execution

First, we collect usage data, the software system’s source
code, and its use case documents. From the use case docu-
ments, we automatically extract the text.

Second, we present unused methods to the system expert
and identify one use case expressing an unused feature manu-
ally for parameter estimation9 (see Section III).

Third, we generate the ranking following our approach as
described in Section III.

Fourth, we present the generated ranking to the system
expert. He classifies the use case documents as used (features
contained in the use case document are used completely or
only a small part is not used), partly unused (large portions
of the contained features are not used), and unused (the use
case was never performed) according to usage data and his
knowledge about the system.

C. Results

Our approach produced the ranking shown in Table III.
This ranking was produced by using use case document UC2
for the calibration of LSI and we use it for answering our
research questions.

TABLE III. RANKING, SIMILARITY SCORE, AND EXPERT

CLASSIFICATION OF USE CASE DOCUMENTS.

Rank Name Score Expert Classification

1. UC1 0.18 unused
2. UC2* 0.18 unused *Used for calibration
3. UC3 0.16 used
4. UC4 0.16 partly unused
5. UC5 0.12 partly unused

6.-46. . . . ď 0.10 used

RQ1: We found two use case documents expressing unused
features which were ranked highest by our approach (UC1 and
UC2), and two use case documents, which expressed partly
unused features (UC4 and UC5). However, UC3 was used
according to the system expert. The use case documents ranked
below the fifth rank sometimes contained small unused por-
tions, but therein, the features contained in use case documents
are described in a too coarse grained fashion (at the level of
use case steps or whole flows) to make statements about usage.

RQ2: The top two use case documents in our ranking express
unused features. Especially, UC1 was ranked higher than UC2,
which was used for calibration and known to contain only
unused features. Hence, we found one use case document
expressing a completely unused feature. Furthermore, with
detecting UC4 and UC5 and ranking them also high, the ap-
proach is capable of detecting use case documents expressing
unused features. However, we ranked UC3, which describes
used features, high, leading to a drop in precision.

9For LSI, we used 17 factors for singular value decomposition. The local
weighting functions returns 1 if a term occurs in the document and 0 else.
The global weighting function is inverse term document frequency.
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Since our approach produces a ranking of use case doc-
uments rather than classifying use case documents by their
feature usage, we calculate precision and recall depending on
the number of use case documents (or the number of top
ranks) we consider. Precision and recall dependent on the ranks
are shown in Table IV. For our calculations of precision and
recall, we classify use case documents describing features with
large unused parts also as relevant (true), because they contain
large regions that never have been performed and should be
considered by the product owner when planning maintenance.
Considering use case documents expressing partly unused fea-
tures as relevant, our approach achieves an average precision
(AP)10 of 0.89, and taking only use case documents into
account describing completely unused features, AP is 1, since
our approach ranks both relevant use case documents highest.

TABLE IV. RESULTS: PRECISION AND RECALL OF THE APPROACH

FOR GIVEN RANKS (USE CASES THAT EXPRESS PARTLY UNUSED FEATURES

CONSIDERED RELEVANT).

Ranks Precision Recall

1 1.00 0.25
2 1.00 0.50
3 0.67 0.50
4 0.75 0.75
5 0.80 1.00
6 0.67 1.00

D. Discussion

RQ1: Unused features exist. Since these features may lead to
unnecessary maintenance, we consider the problem addressed
by our approach as relevant. When presenting the results
to the system expert, he was not aware of the existence of
unused feature, which was proven by usage data. Therefore,
the reasons for the identified features being unused are unclear
and demand further investigation.

However, we gained anecdotal insights into the reasons for
the existence of unused features in other systems (reported by
the system expert):

‚ Requirements were demanded and formulated, but never
used, because workarounds that were easier to use than
the actual system also fulfilled the task.

‚ Features were not completely implemented at the time of
the inspection and were therefore not possible to perform.

RQ2: With good precision considering the highest use case
documents in the produced ranking, and also good recall, the
presented approach helps finding unused features. The system
expert found the information helpful, since based on this he
can direct maintenance actions aligned more along the users’
needs.

10We calculate the average precision AP according to [20] by

AP “ 1

R

nÿ
i“i

ri

˜ ři
j“1 rj

i

¸
“ 1

R

nÿ
i“1

pP piq ¨ riq , where

ri “
#
1 if document at rank i is relevant

0 else
, and

P piq is the precision at rank i, R is the total number of relevant documents,
and n “ 46, since we considered 46 use case documents. AP measures how
many irrelevant documents are amongst the relevant documents in a ranking.

General: With the presented approach, we narrowed down
the search space for use case documents expressing unused
features from 46 (all) use case documents to 6 use case
documents. According to the system expert, the remaining use
case documents contained only features that had to be used
by the actual users to do their daily business. Therefore, our
approach reduces the effort that has to be spent to find unused
features by giving hints to product owners.

The study object already was cleaned from known unused
code and use case documents containing unused features in a
refactoring phase before we monitored its usage for the study.
Hence, our results only point out to use cases that have been
overseen by experts in this previous phase. Thus, we expect
more unused features in other systems that were not cleaned.

E. Threats to validity

The results presented might be flawed due to technical
errors in the usage data collection. Due to the nature of
our profiler that records method calls by registering to the
just in time compile event, but also to the inline event of
methods, it might record methods as used that were not used11.
This could produce less unused methods, which leads to less
unused features. However, this profiler was used for several
years in the environment under consideration (see [3], [21],
[22]) without significant or visible errors. Therefore, we are
confident that the errors introduced are small, if existent.

In this study, we applied the usage data of one year. Even
though different time spans might produce other results, we
considered this appropriate. This assumption was confirmed
by the system expert.

Furthermore, we might not have collected all relevant use
case documents for the system, since these were scattered
through the company’s storage system. This would lead to
possibly more unused features than we presented. However,
this leads only to an underestimation of unused features.
Additionally, we might also not have found all use case
documents describing unused features, since the system expert
might not be aware of all unused features. We did not find any
methods that belonged to a feature that was not used except for
the features expressed by the use case documents we identified.

As we conducted the preliminary study only on one sys-
tem, generalizability of our results is threatened. Especially,
choosing different parameters for the tracing algorithm might
be necessary for replicating the study on other systems. To
mitigate this threat, we presented our approach to parameter
estimation and also estimated parameters using UC1. The
configuration resulting from using UC1 rather than UC2 was
the same as using UC2, and therefore we consider this threat
as minor.

V. FUTURE WORK

Based on the insights we gained in our preliminary study,
we are motivated to take further steps in the area of the
presented research work. We divide our future work in short
term tasks, next steps, and long term items, the future research
questions.

11Such as inlined methods that were not executed.
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Next steps: The validation we conducted in this study indi-
cates the abilities of our approach. However, many questions
regarding the correctness and limitations are still open. In
future work, we plan to perform broader evaluations focusing
on the applicability and benefit of our approach.

So far, our approach is uncovering links between source
code and use case documents. However, other software en-
gineering artifacts contain valuable information too and can
help supporting development and maintenance of software. In
future work, we plan to extend our approach to include design
artifacts such as user stories or business rules and process
artifacts such as change requests or bug tracking issues.

Being aware of unused feature implementation can help to
direct maintenance tasks efficiently. In future work, we plan to
enrich our methods to create a closer feedback loop to uncover
unused features early and thereby reduce maintenance costs
effectively from the beginning of the maintenance phase.

Future research questions: One question arising from our
study is why there are features which have been specified
once but are actually never used in the implemented software
systems. This information can be valuable feedback for soft-
ware engineering research to correct requirements elicitation
methods and techniques to specify, design and implement just
those functionalities which are actually needed.

Furthermore, once unused implementations have been de-
tected it is still unclear how to proceed: the spectrum of
options reaches from simply removing unused functionality
up to adapting user training so users can optimize their work
by using abandoned features. We need structured approaches
to cope with unused functionality in software systems.

VI. SUMMARY AND CONCLUSIONS

Unused features often are unnecessary. Therefore, mainte-
nance of unused features possibly leads to unnecessary costs.
Unfortunately, information about the usage of a software
system is collected by profilers on code level. This leads to
the problem that product owners, that do not know the source
code of their systems, are not able to establish a mapping
between usage information and features. Therefore, we provide
an approach to the question “How can we identify the unused
features to prevent this unnecessary maintenance cost?”.

We proposed an approach that bridges the gap between
unused code and features using LSI for linking methods to
use case documents as an approximation to features and to
calculate a ranking that sorts use case documents by their
likeliness of containing features that are not used by ac-
tual users of a software system. In a preliminary study we
showed that our approach yields promising results: with the
ranking produced by our approach, we found two use case
documents containing completely unused features and two use
case documents describing features with large unused parts.
Furthermore, we presented results that indicated our approach
performs well in terms of precision and recall.
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