
XDroid: An Android Permission Control Using
Hidden Markov Chain and Online Learning

Bahman Rashidi Carol Fung
Department of Computer Science

Virginia Commonwealth University
Richmond, VA, USA

{rashidib, cfung}@vcu.edu

© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Abstract—Android devices provide opportunities for users to
install third-party applications through various online markets.
This brings security and privacy concerns to the users since third-
party applications may pose serious threats. The exponential
growth and diversity of these applications render conventional
defenses ineffective, thus, Android smartphones often remain
unprotected from novel malware. In this work, we present
XDroid, an Android app and resource risk assessment framework
using hidden Markov model. In this framework, we first map the
applications’ behaviors into an observation set, and we introduce
a novel approach to attach timestamp to some observations to
improve the accuracy of the model. We show that our HMM
can be utilized to generates risk alerts to users when suspicious
behaviors are found. Furthermore, an online learning model is
introduced to enable the integration of the input from users and
provide adaptive risk assessment to meet user’s preferences. We
evaluate our model through a set of experiments on a benchmark
malware dataset DREBIN. Our experimental results demonstrate
that the proposed model can assess malicious apps risk-levels with
high accuracy. It also provide adaptive risk assessment based on
input from users.

I. INTRODUCTION

The proliferation of mobile apps is the primary driving force
for the rapid growth of the number of the smartphone users,
which is expected to double in the next 4 years from 2.7
billion in 2015 to 6 billion in 2020 [15]. On the other hand,
the number of mobile apps has been growing exponentially
in the past few years. According to the report by Android
Google Play Store, the number of apps in the store has reached
1.8 billion in 2015, surpassing its major competitor Apple
App Store [23]. As the number of smartphone apps increases,
the privacy and security problem of users has become a
serious concern, especially when the smartphones are used for
sensitive tasks or business purposes. A malicious third-party
app can not only steal private information, such as contact
lists, text messages, and GPS locations from the user, but it
can also cause financial loss of the user by making secretive
premium-rate phone calls and text messages [21].

Malicious apps pose a severe threat to Android users.
Studies show that a significant percentage (> 70%) of smart
phone apps request additional permissions beyond their actual
need [1], [10]. For example, a puzzle game app may request
for SMS and phone call permissions. In current Android
architecture, users decide whether to give out the permissions
to apps. However, this architecture has been proven ineffective

to protect users since users tend to rush through their decisions
and grant all permissions to the apps they desire. An effec-
tive malicious app detection can protect users from privacy
breaching.

Malware detection techniques can be divided into static and
dynamic approaches, where the former focuses on installation-
time analysis of apps and the later investigates apps at
runtime [7]. One main drawback of static analysis is that
it does not detect vulnerabilities introduced at runtime [8].
The dynamic analysis identifies vulnerabilities at runtime
and allows the analysis of applications without actual code.
It also identifies vulnerabilities that might have been false
negatives in the static code analysis [4]. In this paper, we
study Android apps’ behaviors as they run on the device, and
propose a dynamic analysis method based on Hidden Markov
Models (HMM) [14]. HMM can be used to model the runtime
behaviors of an app, including malicious and normal ones.
Existing work [5] utilizing HMM for malicious apps detection
suffers from low detection accuracy. One major reason is that
their work only considers the apps’ intents for observations.
In our work, we consider other inputs such as API calls, time
and sensitive permission requests to build a comprehensive
HMM. We discovered that the introduction of the time feature
significantly improved the detection accuracy of the model.

In our approach, we first log the behaviors of apps through
an instrumentation tool, named DroidCat, developed by our
team. Then a filtering and parsing method is employed to
synthesize and organize the captured behaviors. We train and
test the HMM model using a set of known malicious apps and
normal apps. Our experimental results demonstrate that our
proposed model achieves high accuracy in terms of detecting
malicious apps. The major contributions of this paper include:
1) An instrumentation tool that facilitates app behavior logging
to generate high quality dataset for analysis. 2) A compre-
hensive time-aware Android app behavior analysis, which is
based on the apps’ intents and actions, as well as extra features
that further improves detection accuracy. 3) A trained Hidden
Markov Model is used to decide whether an app is malicious
or not based on their behaviors. 4) A dynamic model that can
be updated in real time to adapt to users’ preferences.

To the best of our knowledge, this is the first time that a
HMM online learning model is used on malicious app control
in smartphone security.

The rest of the paper is organized as follows: Section II
describes the system design; Section III describes our proposed
model, capturing apps’ logs, training and testing the model and
on-line parameter updating strategy; we present our evaluation
results and the impact of the risk computing parameters in
Section IV; related work overview is in Section V; Discussion
is in Section VI, and finally section VII concludes this paper.

II. SYSTEM DESIGN

The ultimate goal of XDroid is to monitor the behavior of
probated apps and generate alerts to users when suspicious
app behaviors are detected. Fig. 1 shows an architecture
design of XDroid. The system contains components on the
server side and the mobile device side. Each XDroid device
contains an Interaction Portal and an Activity Logger. The
interaction portal provides interface for users to interact with
the device. The activity logger is used to monitor the activities
of the probated apps. The server side components include Risk
Assessment, User Profiling, and Alert Customization. In the
rest of this section, we describe the key features of the server.

• Risk assessment

• User profiling

• Alert customization

Apps Risk-levels

Risk alerts

<AppID, ResID, Risk>

App log

User’s response <AppID, ResID, User ID>

A
p

p
 i

n
st

al
la

ti
o

n

Android App

Markets

Interaction

portal

Activity

logger

XDroid Server

Mobile Client

Fig. 1. XDroid system overview

1) Interaction Portal: The interaction portal is to facilitate
the interaction between users and devices. For example, when
a user installs ”Telegram” (a popular messaging application)
under probation mode, a set of requested resources are dis-
played along with their estimated risk-levels (Fig. 2(a)). Users
can check resources they want to monitor. If a resource is
monitored and suspicious activities related to it are detected,
the user is informed through a dialog box (Fig. 2(b)). Users
can decide whether to block the resource access or allow it
based on the estimated risk suggested by XDroid.

2) Risk Assessment: The purpose of the risk assessment is
to provide a quantitative estimation on how likely a resource
access from an app causes damage to users. For example, a
SMS access from a puzzle game app may be malicious and
XDroid can pop up a reminder for users to block it.

To assess the risk-level of resource accesses, the activities
of the apps are monitored by activity loggers and the data is
sent to the server for analysis. Our risk assessment mechanism
uses a Hidden Markov Model (HMM) to analyze the behavior
sequences (Section III) and provides users with a risk-level of
involved resource accesses.

3) User Profiling: We are aware that users may have
different tolerance level on various resources. For example,
user A is very concerned with leaking his/her location to a
third party, while user B does not care about it. To provide

Telegram
Resource Access Risk Levels

Your personal information

Camera

Your messages

Your location

Check all you want to monitor

Network communication

Storage

Phone state and identity

High

Low

Low

Low

High

Med

Med

(a)

Do you allow it?

- Phone state and identity

Telegram usage of:

Never ask me again for this

resource.

Risk Alert

Block Allow

Estimated risk level:
High

(b)

Fig. 2. User Interfaces: (a) illustrates the risk computed risk-levels for
app’s requested resources; (b) shows a popup notifying user the risk-level
of resource at runtime

customized risk estimation, we build user profiles. We assign
each new user with an initial tolerance model and update
the user profile after receiving the users’ permission control
decisions. For example, if a user agrees GPS access every time
is it requested, the tolerance level for the user on GPS access
is high.

4) Alert Customization: The purpose of XDroid user pro-
filing is to provide customized risk assessment to users.
Upon installing a new app, XDroid adjust the risk-level by
integrating the tolerance level of each user. For example, user
C has much higher tolerance to GPS than user D. When a
new app is installed and a GPS request raises, XDroid shows
a lower risk-level to user C than to user D.

III. HIDDEN MARKOV MODEL FOR RISK ASSESSMENT

In this work, we use Hidden Markov Model (HMM) for
Android malicious apps risk assessment. We transform the
app resource risk computation problem into a HMM problem
with two states, malicious and normal, and we map the app
behaviors into the HMM observations. To train the HMM
model, we capture the behaviors from both malicious and
normal apps’ and use them to generate an initial trained
HMM for risk estimation. In this section we first present our
HMM model and then explain how we use it for customized
permission risk-level estimation.

A. Hidden Markov Model

A Hidden Markov Model (HMM) is a statistical Markov
model which is widely used in science, engineering and many
other areas (speech recognition, optical character recognition,
machine translation, bioinformatics, computer vision, finance
and economics, and in social science) [14]. Markov Models
provide powerful abstraction for data expressed in time series,
but fail to provide reasoning about a series of states given some

observations related to those states. A HHM can be used to
solve the above problem. In this paper we model the Android
behavior sequence into a HMM, and compute the risk-levels
of given resource usage.

The Hidden Markov Model is a variant of a finite state ma-
chine which can be represented by a set of hidden states Q =
{q1, q2, ..., q|Q|}, a set of observations O = {o1, o2, ..., o|O|},
a set of transition probabilities A = {αij = P (qt+1

j |qti)},
and a series of output (emission) probabilities B = {bik =
P (ok|qi)}. Among the above notations, P (a|b) is the condi-
tional probability of event a given event b; t = 1, ..., T is the
time; qti is the event that the state is qi at time t. In other words,
αij is the probability that the next state is qj given that the
current state is qi; bik is the probability that the output is ok
given that the current state is qi. The initial state probabilities
are denoted by Π = {πi = P (q1

i)|∀1 ≤ i ≤ |Q|}, which
is the initial probability of all states at time 1 (initial time).
In HMM the current state is not observable. However, each
state produces an output with a certain probability (denoted
by B). An HMM can also be represented using a compact
triple (λ = (A,B,Π)) [20]. Table I shows the notations and
preliminaries.

TABLE I
NOTATIONS

Notation Description

Q {qi}, i = 1 · · · , N : Set of n hidden states .
A A = {αij = P (qtj)} Transition probabilities
O O = {ok}, k = 1, · · · ,M : Observations (symbols)
B B = {bik = P (ok|qi)}: Emission probabilities
Π Π = {πi = P (q1i)|∀1 ≤ i ≤ |Q|} Initial state probabilities.
Ot Ot ∈ O: Observation at time t.
Qt Qt ∈ Q: State at time t.

Fig. 3 illustrates the HMM for Android app behavior
modeling. The HMM consists of three states: Start, Normal (0)
and Malicious (1). The set of observations are defined using
apps’ behaviors during runtime (see Section III-D). The HMM
parameters are: initial state probabilities Π = [π1, π2], state
transition probabilities A = [α00, α01, α10, α11], Malicious
state emission probabilities BM = [b11, b12, · · · , b1N] and
Normal state emission probabilities BN = [b01, b02, · · · , b0N].

Start

0 (N) 1 (M)

π π

…

Fig. 3. An overview of the proposed HMM model

However, how to determine the unknown parameters and
how to find optimal state sequence of HMM given a sequence

of observations. We describe the two problems and their
solutions in the next sections.

B. Compute Unknown Parameters

One of the challenge of utilizing the HMMs to model the be-
havior of Android apps is to define parameters Q,A,O,B,Π,
and find the most likely set of state transition and output
probabilities. We use two states Q = {0, 1} to denote the
app is behaving normal (0) or malicious (1). The observa-
tion set O is the set of time-aware system calls expressed
using a keywords set (see Section III-D). To define A and
B, we use Baum-Welch algorithm (a.k.a Forward-Backward
algorithm) [19]. We call it HMMs Training. The algorithm
has two main steps, Forward and Backward procedures.

1) Initialization set: λ = (A,B,Π) with random initial
conditions. The algorithm updates the parameters of λ iter-
atively until convergence, following the next procedures.

2) The forward procedure: We define αti =
P (O1, · · · , Ot, Qt = qi|λ), which is the probability of
seeing the partial sequence O1, · · · , Ot and the ending state
Qt at time t is qi. We can compute αti recursively as follows:

α1
i = πibi(O

1) (1)

αt+1
j = bj(O

t+1)

N∑
i=1

αt
iαij (2)

where bi(Oj) is the probability that observation Oj at time j
given state i.

3) The backward procedure: We define βti to be the proba-
bility of the ending partial sequence Ot+1, · · · , OT given that
we started at state qi, at time T . We can efficiently compute
βti as:

βT
i = 1 (3)

βt
i =

N∑
j=1

βt+1
j αijbj(O

t+1) (4)

using α and β, we can compute the following variables:

γti ≡ P (Qt = qi|O, λ) =
αt
iβ

t
i∑N

j=1 α
t
jβ

t
j

(5)

ξtij ≡ P (Qt = qi, Q
t+1 = qj |O, λ) =

αt
iαijβ

t+1
j bj(O

t+1)∑N
i=1

∑N
j=1 α

t
iαijβ

t+1
j bj(Ot+1)

(6)

where γti is the probability that the state at time t is qi, and
ξtij is the probability the state at t is Qi and the state at t+ 1
is qj . Let function δ(x, y) be 1 if x = y and 0 otherwise. With
γ and ξ, we can define update rules as follows:

πi = γ1i (7)

αij =

∑T−1
t=1 ξtij∑T−1
t=1 γti

(8)

bik =

∑T
t=1 δ(O

t, ok)γ
t
i∑T

t=1 γ
t
i

(9)

C. Finding the Optimal State Sequence

One of the most common queries of a HMM is to find
the most likely series of states given an observed series of
observations. In our case, we can find the state sequence
(e.g., NMNNNNMN...) that most likely happens given the
observation sequence. This problem can be solved using
Viterbi algorithm [25]. The Viterbi algorithm is similar to the
forward procedure except that it only tracks the maximum
probability instead of the total probability.

Let δti be the maximal probability of state sequences of the
length t that end in state i and produce the t first observations
for the given model. That is,

δti = max{P (Q1, · · · , Qt−1;O1, · · · , Ot|Qt = qi)} (10)

The two difference between Viterbi algorithm and the
Forward algorithm are: (1) it uses maximization in place of
summation at the recursion and termination steps, (2) it keeps
track of the arguments that maximize δti for each t and i,
storing them in the N by T matrix ψ. This matrix is used to
retrieve the optimal state sequence at the backtracking step.

We initial the model as:
δ1i = πibi(O

1) (11)

ψ1
i = 0, i = 1, · · · , N (12)

The recursion steps are:
δtj = maxi[δ

t−1
i aij]bj(O

t) (13)

ψt
j = argmaxi[δ

t−1
i aij] (14)

Finally the most probable sequence’s probability p(T) and the
most probable last state q(T) given O are:

p(T) = maxi[δ
T
i] (15)

q(T) = argmaxi[δ
T
i] (16)

We can have the path (state sequence) through backtracking:

q(t) = ψt+1
q(t+1)

, t = T − 1, T − 2, · · · , 1 (17)

D. Observations

Our vision to specify program behavior is to view the
running app as a black-box and focus on its interaction with
the Android OS. In this case, a typical interface to monitor is
the set of system and API calls that this app invokes during its
running time. Every action that involves communication with
the apps’ resource (e.g., accessing the file system, sending
SMS/MMS over the network, accessing the location services,
calling Ads APIs or accessing the network) requires the app
to launch operating system services or API calls.

In order to instrument apps to capture the behavior logs,
we developed our own tool DroidCat. We did not choose
the existing instrumentation tools such as Robotium and uiau-
tomator because of their drawbacks. For example, Robotium
cannot handle Flash or Web components nor simulate the
clicking on soft keyboard, and it is not suitable for multi-
process applications tests. Therefore, we decided to develop
DroidCat. Fig. 4 illustrates the XDroid system with DroidCat
design integrated. The main merit of DroidCat is that it can
instrument apps through real human-interaction, so we can get
behavior logs which highly assemble real world executing of

App SchedulerAPK Files

Package names

A
n
d
ro

id
’s

A

D
B

adb calls

incoming logs

Raw

log files
Final

logs
Filtering & Parsing system

1 2

3

4

5
67

.APK

.APK.APK.APK.APK

.APK .APK.APK

App

dispatcher

(Loader)

APK 1 APK 2 … APK N

A
n
d

ro
id

 d
ev

ic
e

Risk Assessment Notification Generator
Risk level notification

App log

State sequence

DroidCat

HMM Model

Users profile

repository

Parameter Tuner
-States transitions

-Emission

User response

Interaction

Portal

C
li

en
t

S
id

e

S
er

v
er

 S
id

e

8

9

10

11

12

Activity

Logger

Fig. 4. The architecture of the XDroid system

Android apps. We plan to make the DroidCat’s source code
free to download online. In the rest of this section we briefly
explain the major instrumentation process of DroidCat, which
includes the following steps:

1) Extracting packages’ names: DroidCat extracts Android
packages’ names using Android aapt tool. This tool is part
of the SDK (and build system) and allows us to view, create,
and update Zip-compatible archives (zip, jar, apk). This
component creates a queue and add the packages’ names into
it. As you can see, this component is embedded into App
Scheduler.

2) App dispatcher: DroidCat automatically load Android
apk files into an Android device, installs and runs them
using the Android ADB logcat tool and add it to the App
Scheduler. This component has a timer that lets apps to run for
a specific time period. It does the same process for all apps.

3) Recording apps’ logs: DroidCat records all apps’ logs
into a text file (raw log files) separately without applying any
of logcat priority filtering tags (e.g., V, D, I etc.). We use
apps’ PID as an identifier to capture their logs.

4) Filtering: In this step DroidCat filters the logs and
removes unrelevant logs such as the logs related to loading,
installing, running and killing process of apps.

5) Parsing: After filtering the log files, DroidCat eliminates
unnecessary information and extract important keywords. Each
keyword refers to a sensitive resource access request, an API
call, or Android action constants. We can also call them
observations. In our model, we focus not only on the generated
Intents by apps but also on API libraries that generate un-
wanted Ads or cause permission escalation. In total we defined
150 keywords under various categories. Table II lists some
selected sample keywords from 6 categories. When analyzing
the parsed logs, we noticed that for some resources such as
”WiFi”, malicious and normal apps have different patterns in
the timing of requests during app running. For example, the
malicious apps tend to request the WiFi network during the
first quarter of their running time period. Because of this, we
include the timing of requests or library calls as an additional
feature. Among of the 150 keywords, we added the timing
feature to 55 of of them. Therefore, we defined 205 time-
dependent and time-independent observations in total.

TABLE II
KEYWORD SAMPLES

Resource Corresponding Keywords
Ads libraries ’AdMob’, ’Ads’, ’Wooboo’, ’AdsMOGO’, ...
Network ’browser’, ’http’, ’wifi’, ...
Messaging ’MMS’, ’SMS’, ’MmsService’, ’getSmsCount’, ...
Location services ’GPS’, ’ACCESS-COARSE-LOCATION’, ’location’, ...
File system ’mount’, ’unmount’, ’Storage’, ’Modify’ ...
Calling/Contacts ’CallLOG’, ’CARRIER’, ’INCALL’, ’TELECOM’, ...

E. Model Training and Testing

After defining observations and parsing logs into sequences
of time-dependent and time-independent observations, we train
the HMM model using the Baum-Welch algorithm. In order to
do it we need to define the initial state transition probabilities
A and emissions probabilities B. We compute the initial
emissions probabilities of each observation based on its fre-
quency of occurrence in all malicious and normal apps’ logs.
We also initialize all the states’ transitions probabilities with
fixed value 0.5. After initialization, we apply the Baum-Welch
algorithm to find the parameters A and B given sequences of
observations.

To validate the accuracy of the HMM-based risk compu-
tation, we use an app’s behavior log as input to the Viterbi
algorithm to get the most possible state sequence of the
app. Fig. 5 visualizes the test process based on the Viterbi
algorithm. The Viterbi algorithm uses backtracking method
(Eq. 17) to compute the optimal state sequence path given
observations, such as (MNN· · ·NMM).

0 (N)

1 (M)

Start

0 (N)

1 (M)

0 (N)

1 (M)

Time

State M

State N

Observation 1 Observation 2 Observation M

0 (N)

1 (M)

…

…

…

Observation M-1

Sample Output: M N M M…

π

π

Fig. 5. An illustration of the Viterbi algorithm

F. Malicious Apps Classification

One purpose of the HMM is to classify apps into benign or
malicious based on their behavior log. We consider the optimal
state sequence to be the mostly likely behavior sequence of
an app. Note that a malicious app may behave malicious and
normal interchangeably. Our decision model uses a simple
threshold θ, which represents the percentage of Ms in the state
sequence, to divide malicious apps and benign apps. If the
percentage of Ms in an app’s state sequence is higher than the
threshold θ, then we classify the app to be malicious.

G. Permission Risk Assessment

Another purpose of HMM is to compute the risk of the
resource access from the apps. In this subsection we explain
the process of the permission risk assessment and explain how
we can perform user profiling and customized alerts.

1) Resource risk assessment: To assess the risk of each
requested resource from an app, we keep tracking the ob-
servation logs and users’ decisions on permission requests
(allow or block). An online HMM learning technique is used
to update the HMM parameter sets for each app. Note that
the initial HMM parameters for each app are learned from
the base training dataset and the HMM will be refined further
through integrating inputs from users.

Let S be the optimal state sequence path given observations.
We estimate the risk-level of a permission as follows:

R =

∑|S|
i=1 δ(Si,M)

|S|
(18)

where
∑|S|
i=1 δ(Si,M) is the number of malicious state in the

sequence, and |S| is the length of the sequence.
2) User profiling: We record all users’ profiles into the

repository on the serve. Each user profile includes a cus-
tomized HMM parameter tuner, users’ past responses to apps’
permission requests, apps’ behavior logs reported by the user’s
device, and the risk-levels for all apps and their corresponding
resources.

3) Activity logger: The XDroid client contains an Activity
logger to capture the apps’ logs and report them to the
XDroid server. One way to implement this is to modify the
ContextImpl.java class of the context component of the
Android. This class is called whenever an application seeks
to use some resources that are not hardware related. On the
server side DroidCat is used to filter and parse the logs (Fig. 4),
which will be the input source for the HMM model.

4) Customized alert generator: This component is respon-
sible for generating customized alerts and send them to each
user. Alerts are displayed though popups (Fig. 2(b)). Note
that the risk-level of the same permission request will be
tuned based on each user’s past tolerance level to that type
of requests. For example, a GPS call may be acceptable for
one user but a big concern for the other.

H. Parameter updating through online learning

In order to integrate users’ responses (preferences) to the
generated risk alerts, we use an online learning technique. This
way we can customize the risk computation for each user. The
online learning techniques for HMM parameters can optimize
the log-likelihood function. These techniques are derived from
another method which uses batch input for computation.
However the key difference of online learning is that the
HMM parameter updating are based on the currently presented
subsequence (observations from apps) of observations without
iterations [14], [13]. Fig. 6 illustrates the learning scenario
where data blocks (apps observations) are used to update the
model in an incremental fashion. The HMM model is updated
periodically after a certain amount of apps’ logs are collected.
Let D1, D2, · · · , Dn be the blocks of training data available to
the model at time t1, t2, · · · , tn. The update process starts with
an initial risk value m0 which constitutes the prior knowledge
of the domain through training process with existing datasets.
During the incremental training, m0 is updated to m1 with

input D1, and so on. In our model, a data block contains a
sequence of observations related to a resource with which the
risk-level is computed. Therefore, the updating process tunes
the corresponding emissions probabilities based on the users
responses to risk alerts.

Time

…

Fig. 6. Training ans updating process using an on-line technique

The on-line learning technique proposed by Mizuno et
al. [17] is based on the Baum-Welch algorithm. It applies
a decayed accumulation of the state densities and a direct
update of the model’s parameters after each subsequence of
observations. Starting with an initial model λ0, the conditional
state densities are iteratively computed after processing each
subsequence (r) of observations of length T by:

T−1∑
t=1

ξtr+1(i, j) = (1−ηr)
T−1∑
t=1

ξtr(i, j)+ηr

T−1∑
t=1

ξtr+1(i, j) (19)

T∑
t=1

γtr+1(j)δ(Ot, ok) = (1− ηr)
T∑
t=1

γtr(j)δ(O
t, ok)

+ ηr

T∑
t=1

γtr+1(j)δ(Ot, ok) (20)

where the model parameters are directly updated using
equations (8,9). The learning rate (forgetting factor) ηk is

expressed in polynomial form ηr = (
1

t
). The ηk parameter be

initialized manually or automatically (time dependent). Time-
dependent means that the impact on the learning rate will
discount through time. Using this parameter we can control
the impact of the former models on the updating process.

IV. EVALUATION

In this section we present our experiments to evaluate the
proposed model. We first explain the experimental setup and
then results on the performance of the HMM based risk
assessment model. First, we validate the accuracy of the model
in terms of recognizing malicious apps from normal apps;
second, we carried out a few experiments to evaluate the
computed risk-levels and the parameters impact.

A. Experiment Setup

In this subsection we describe the experiments environment,
hardware, software and the dataset that we used to train the
model and test it in terms of accuracy.

a) Hardware: To collect the app behaviors we used 5 LG
Nexus 4 devices equipped with Android OS version 4.3. We
chose Android 4.3 version because all apps in our datasets are
compatible with this version. We also configured the devices
and turned on all sensitive resources (services) such as WiFi,
Bluetooth and GPS. We run our DroidCat on a 64-bit Windows
machine with 3.30GHz Intel Xenon, 16G RAM.

b) Software: Our experiment environment is MATLAB
2015 running on a same machine. We implemented the Baum-
Welch algorithm with default tolerance 1e-4 and the Viterbi
algorithm to train and test the model. The Baum-Welch
algorithm specifies the tolerance used for testing convergence
of the iterative estimation process and controls how many steps
the algorithm executes before the function returns an answer.

c) Datasets: To have an effective HMM risk assessment
model, we need to train the model with sufficient behavior
logs from both Android malicious apps and normal apps. We
obtained our malicious apps set from the Computer Security
Group of University of Gttingen, which was collected under
the Drebin project [3]. The dataset contains 5560 malicious
apps from 179 different malware families. We selected 700
apps from this dataset so that we have multiple apps from all
the malware families. In addition to the 700 malicious apps, we
collected 700 benign apps from various categories of Android
apps. We randomly selected 500 malicious and 500 benign
apps from both datasets (malicious and benign) and use them
as training sets for the model, and the remaining 200 apps
from each dataset are used as test set to test the performance
of the model.

In terms of behavior logging, we set the timer in the
DroidCat’s App Scheduler to 2−5 minutes per app and it took
around 79 hours to capture all logs through human interactions
with the 1400 apps.

B. Model Accuracy and Reliability

In the first experiment, we study the accuracy of the model.
After training the HMM, we measure the true positive rate
(TP) and false positive rate (FP) regarding the computed risk-
levels’ accuracy. TP refers to probability that malicious apps
risk-levels are computed correctly by the model, whereas FP is
the probability that a benign app risk-level is falsely computed.
Note that true negative rate (TN) and false negative rates (FN)
can be derived from TP and FP. We start with the risk threshold
from 0 and increase it by 0.05 each round till it reaches 1.
Fig. 7(a) shows that TP and FP drop when the risk threshold
increases. The FP and FP drop rate increase drastically when
the threshold passes 0.5 and 0.6, respectively. From Fig. 7(b)
we can see that the TP and TN cross at around 90% accuracy
when the threshold is around 0.7.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Decision Threshold

Tr
ai

ni
ng

T
P

an
d

FP

(a)

TP
FP

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Decision Threshold

Tr
ai

ni
ng

T
P

an
d

T
N

(b)

TP
TN

Fig. 7. Accuracy of the model on the training sets
We applied the trained HMM model to the test set with 200

malicious apps and 200 benign apps, and show the results in
Fig. 8. As we can see, the accuracy is slightly lower than the
ones on the training set. From this experiment, we can see that

our model achieves high accuracy to compute the malicious
apps’ risk-levels. When the risk threshold θ is 0.7, the risk
assessment system achieves 88% accuracy on TP and TN on
the training set and 80% TP and TN on the test set. In the
merged results presented in Fig. 9, we can see that the false
positive rate is higher in the test set than the training set.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Decision Threshold

Te
st

T
P

-F
P

(a)

TP
FP

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Decision Threshold

Te
st

T
P

-T
N

(b)

TP
TN

Fig. 8. Accuracy of the model on the test sets

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Decision Threshold

Te
st

an
d

Tr
ai

ni
ng

T
P

-F
P

(a)

Test TP
Test FP

Training TP
Training FP

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Decision Threshold

Te
st

an
d

Tr
ai

ni
ng

T
P

-T
N

(b)

Test TP
Test TN

Training TP
Training TN

Fig. 9. Accuracy of the model on both test and training sets

Considering that 0.7 is an ideal risk threshold, we carried
out another experiment to study the influence of training
dataset size on the TP and TN. In this experiment, we use cross
validation by splitting the training data into different sizes. We
train the HMM model with one set and test the result using the
other. The size of the training set start from 100 and increases
by 100 each round. Fig. 10 shows that the TP and TN increase
with the size of the training dataset. We also see that when the
training datasets reaches 800 the accuracy of risk computation
does not get better by increasing the training dataset, which
means the training dataset of 800 (400 malicious apps and 400
benign apps) is sufficient.

Table III presents the performance of the model on the
test dataset in terms of Recall, Precision, F-Measure and
Accuracy for all ten training dataset sizes. We can see that
all performance indicators increase with the training dataset
size until it reaches 800.

200 400 600 800 1K
0

0.2

0.4

0.6

0.8

1

Training set size

Tr
ai

ni
ng

T
P

-T
N

(a)

TP
TN

200 400 600 800 1K
0

0.2

0.4

0.6

0.8

1

Training set size

Te
st

T
P

-T
N

(b)

TP
TN

Fig. 10. Accuracy of the model on both test and training sets with different
set sizes

TABLE III
PERFORMANCE MEASUREMENT - RECALL (RC), PRECISION (PR),

F-MEASURE (F), ACCURACY (AC)

Size TP TN FP FN Rc Pr F Ac
100 0.70 0.65 0.35 0.30 0.70 0.67 0.68 0.68
200 0.75 0.67 0.33 0.25 0.75 0.69 0.72 0.71
300 0.77 0.69 0.31 0.23 0.77 0.71 0.74 0.73
400 0.80 0.70 0.30 0.20 0.80 0.73 0.76 0.75
500 0.82 0.71 0.29 0.18 0.82 0.74 0.78 0.77
600 0.86 0.74 0.26 0.14 0.86 0.77 0.81 0.80
700 0.87 0.75 0.25 0.13 0.87 0.78 0.82 0.81
800 0.88 0.76 0.24 0.12 0.88 0.79 0.83 0.82
900 0.88 0.76 0.24 0.12 0.88 0.79 0.83 0.82

1000 0.88 0.76 0.24 0.12 0.88 0.79 0.83 0.82

C. Risk Evaluation

In this subsection we study the risk-levels for apps and
their resources through experiments. We also discuss the risk
computation and the impact of users’ preferences on the
computed risk-levels. We use cross validation to evaluate the
impact of the parameter ηk (forgetting factor) on the estimated
risk-levels for apps’ resources access. The ηk rate for the first
three experiments is set using the time-variant polynomial
form.

In the first experiment we compute the average risk-levels
for all malicious and normal apps in our datasets. Fig. 11(a)
shows the results of the risk computation for two app groups,
malicious and normal apps. We can see in the figure that
the computed risk-levels for normal apps start from near 0
to 0.8, and risk-levels for malicious apps start from 0.4 to
1. The quantity of the computed risk-levels are presented in
the Table IV. We can see that 450 (90%) of the malicious
apps have risk-levels higher than 0.7, whereas only 30 (6%)
normal apps risks are above this level. The results of this
experiment show that risk-level is an effective criteria to
separate malicious apps from normal apps.

TABLE IV
RISK-LEVEL DISTRIBUTION

Type 0− 0.1 0.1− 0.3 0.3− 0.5 0.5− 0.7 0.7− 0.1
Normal 25 4 97 344 30

Malicious 0 0 2 48 450

In the second experiment, we study the impact of the user
responses on the average risk-level of an app. We define a
scenario where we target at the risk-level of the network
resource of a malicious app. Without any user input, the
risk-level of the resource is 0.9. We plot the change curves
of the estimated risk-levels of the same resource before and
after users chose to “allow” or “block” the resource access.
At the beginning there is no log input for the resource so
that risk-level is 0. Then we start to feed log files of the
malicious app and the risk-level of the app increases drastically
to 0.9. At time 0.3 we inject two types of responses to the
system and observe its impact to the risk value of the app.
Fig. 11(b) illustrates the impact of the user’s response to the
estimated risk-levels. We can see that if the user’s response is
“Allow”, the model turns to be less conservative and the risk-
level of the resource decreases. On the other hand, if user’s
response is “Block”, the risk-level increases (the user is more
conservative). When no user response is in place, the risk-

level of the app remains at around the same level. From this
experiment we can see that the risk assessment model can
adapt to the user’s responses and provide customized risk-
levels.

Normal Malicious
0

0.2

0.4

0.6

0.8

1

Application Type

M
al

ic
io

us
R

is
k-

L
ev

el

(a)

Normal
Malicious

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Time

R
is

k-
le

ve
l

(b)

Block
Allow

No Response

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Time

R
is

k-
le

ve
l

(c)

Block
Allow

No Response

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Time

R
is

k-
le

ve
l

(d)

—–
B:0.6
A:0.6
B:0.7
A:0.7
B:0.8
A:0.8

B:0.9
A:0.9

Fig. 11. Applications’ computed risk-levels

In the third experiment, we still use the same scenario as
the last experiment, but this time we focus on the estimated
risk-levels for the network resource only. Fig. 11(c) shows the
computed risk-level for both “Allow” and “Block” responses.
We can see that this result also shows the influence from the
user response. However, the risk-level drops faster in the case
that “Allow” is chosen by the user. The impact from user
response is higher since it is focused on one resource only.

The last experiment is to study the impact of the learning
rate parameter ηk (forgetting factor) on the computed risk-
levels by the system. In this experiment we ran the experiment
multiple times with different settings for ηk. We let ηk change
from 0.6 to 0.9 and observe its impact on the risk values.
Fig. 11(d) shows that the higher ηk is, the higher impact user’s
responses bring to the risk-levels. This is because higher ηk
means more emphases on the recent input, which is the user’s
responses.

V. RELATED WORK

There have been many studies towards the principles and
practices to manage resource usage and Android security [16],
[18], [6], [11], [12], [22], [9] and privacy protection [2].
Stochastic models have been a powerful method to model
security issues or defend against attacks. These models solu-
tions have been widely discussed in literature. As a stochastic
process model Markov chains have been extensively used to
model security attacks. In the last two years, a few works [5],
[24] have been proposed that use the concept of Hidden
Markov Models to address the mobile security issues such
as users’ privacy preserving, malicious apps detection, and
targeted malware.

Chen et al. [5] proposed a hidden Markov model to de-
tect Android malicious apps at runtime. This work is the
closest work to our proposed model. Their work is based
on application intents passing through the Android binder
only. The proposed HMM model’s emissions (observations)
and training process are not described. However, relying on
the apps’ intents as observations is not sufficient to decide
whether the app is malicious or not. For example, they do not
take into account the malicious API calls (Ads libraries), time,
sensitive permission requests etc. This can be the reason why
their detection accuracy is 67%. In contrast, we take all these
features into account and achieve much better accuracy.

Suarez-Tangil et al. [24] proposed a stochastic model to
address targeted malware. The context where a malicious
behavior takes place plays a key role in the proposed work. In
order to capture how the users interact with an app or a set of
apps, they rely on a discrete-time first-order Markov process.

The major difference between our proposed model and the
existing ones is that they do not use a comprehensive app
behavior analysis in their model training. The definition and
discovery of proper observations, such as apps’ intents, API
calls, and time-stamp, make the model a unique solution in
terms of Android malware detection. Therefore, we design a
model that involves the features described above to enhance
the accuracy. In addition, our proposed model updates the
model’s parameters dynamically based on users’ preferences
througha self-train strategy. To the best of our knowledge, this
the first model to help users through risk alerts generated by
a well-trained HMM model and gets updated in a real-time
manner.

VI. DISCUSSION

While the major challenges for proposed model have been
discussed, many other ones still remain. In this section, we
discuss some potential issues in the system and our future
plan to build and complete such a system.

Users’ Privacy: The proposed model is a crowdsourcing-
based solution which involves collecting apps’ logs from
users’ devices. The system also collects users’ responses
regarding whether to allow or block the resource access. Data
collection may raise privacy concerns. To protect the privacy
of users, we design a privacy-aware data collection mechanism
that uses hashing and salting method to protect the true
identity of the users.

User Participation: Similar to any other participatory ser-
vices, our system should have an incentive model to motivate
users to participate. Benefit users getting from the risk alerts
might not be enough to justify the inconvenient of reporting
their decisions to a central server all the time. Incentivizing
users however is out of scope of this paper.

False Responses: One of the main important threats to
the system is the injection of false responses to mislead the
risk assessment system. We have investigated this potential
threat and developed a multi-agent game theory model to
study the gain and loss of malicious user and the defense
system. We derived a system configuration to discourage

rational attackers to launch such attacks. Furthermore, we also
consider enhancing the system in which risk-levels are adapted
according to each user’s different security and privacy needs.

VII. CONCLUSION

In this paper, we propose XDroid, an Android app resource
access risk estimation framework using hidden Markov model.
We first define and select features to represent behaviors of
Android apps and collect them through our own developed
human-oriented instrumentation tool DroidCat. A filtering and
parsing method is then employed to synthesis and organize
the captured behaviors. We train the model with a proper
malicious app dataset using the Baum-Welch algorithm and
test it with different test datasets using the Viterbi algorithm.
Through our model, we can compute the risk-level of those
apps that behave malicious with high level of accuracy. The
model informs users the risk-level of their apps in real-
time. Our model is able to update the model’s parameters
dynamically using an on-line algorithm and users’ preferences.
Our experimental results demonstrate that our proposed model
achieve a satisfying accuracy in terms of true positive and
false positive rate. Our evaluation results also show that our
model can effectively provide customized risk estimations
depending on users’ preferences. As our future work, we plan
to apply more external features to further improve the detection
accuracy. We also plan to include the users’ expertise level into
the risk-level computation process for better accuracy.

REFERENCES

[1] What is the price of free. http://www.cam.ac.uk/research/news/what-is-
the-price-of-free.

[2] Y. Agarwal and M. Hall. Protectmyprivacy: Detecting and mitigating
privacy leaks on ios devices using crowdsourcing. In Proceeding of the
11th Annual International Conference on Mobile Systems, Applications,
and Services, MobiSys ’13, pages 97–110, New York, NY, USA, 2013.
ACM.

[3] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, and K. Rieck. Drebin:
Effective and explainable detection of android malware in your pocket.
In NDSS. The Internet Society, 2014.

[4] T. Ball. The concept of dynamic analysis. SIGSOFT Softw. Eng. Notes,
24(6):216–234, Oct. 1999.

[5] Y. Chen, M. Ghorbanzadeh, K. Ma, C. Clancy, and R. McGwier. A
hidden markov model detection of malicious android applications at
runtime. In Wireless and Optical Communication Conference (WOCC),
2014 23rd, pages 1–6, May 2014.

[6] J. Crussell, R. Stevens, and H. Chen. MAdFraud: Investigating ad fraud
in android applications. In 12th CMSAS, MobiSys ’14, pages 123–134,
New York, NY, USA, 2014. ACM.

[7] P. Faruki, A. Bharmal, V. Laxmi, V. Ganmoor, M. S. Gaur, M. Conti, and
M. Rajarajan. Android security: A survey of issues, malware penetration,
and defenses. IEEE Communications Surveys Tutorials, 17(2):998–1022,
Secondquarter 2015.

[8] A. Gosain and G. Sharma. A survey of dynamic program analysis
techniques and tools. In S. C. Satapathy, B. N. Biswal, S. K. Udgata, and
J. Mandal, editors, Proc. of the 3rd International Conference on Fron-
tiers of Intelligent Computing: Theory and Applications (FICTA’14),
Odisha, India, volume 327, pages 113–122. Springer International
Publishing, November 2015.

[9] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang. Riskranker: Scalable
and accurate zero-day android malware detection. In Proc. of the 10th
International Conference on Mobile Systems, Applications, and Services
(MobiSys ’12), Low Wood Bay, Lake District, UK, pages 281–294. ACM,
June 2012.

[10] S. Gunasekera. Android Apps Security. Apress, Berkely, CA, USA, 1st
edition, 2012.

[11] Q. Ismail, T. Ahmed, A. Kapadia, and M. K. Reiter. Crowdsourced
exploration of security configurations. In Proceedings of the 33rd Annual
ACM Conference on Human Factors in Computing Systems, CHI ’15,
pages 467–476, New York, NY, USA, 2015. ACM.

[12] Y. Jing, G.-J. Ahn, Z. Zhao, and H. Hu. Riskmon: Continuous and
automated risk assessment of mobile applications. In Proc. of the
4th ACM Conference on Data and Application Security and Privacy
(CODASPY ’14), San Antonio, Texas, USA, pages 99–110. ACM, March
2014.

[13] W. Khreich, E. Granger, A. Miri, and R. Sabourin. A comparison
of techniques for on-line incremental learning of hmm parameters in
anomaly detection. In Computational Intelligence for Security and
Defense Applications, 2009. CISDA 2009. IEEE Symposium on, pages
1–8, July 2009.

[14] W. Khreich, E. Granger, A. Miri, and R. Sabourin. A survey of
techniques for incremental learning of {HMM} parameters. Information
Sciences, 197:105 – 130, 2012.

[15] I. Lunden. 6.1b smartphone users globally by 2020, overtaking
basic fixed phone subscriptions. http://techcrunch.com/2015/06/02/6-
1b-smartphone-users-globally-by-2020-overtaking-basic-fixed-phone-
subscriptions.

[16] R. Mittal, A. Kansal, and R. Chandra. Empowering developers to
estimate app energy consumption. In 18th CMCN, Mobicom ’12, pages
317–328, New York, NY, USA, 2012. ACM.

[17] J. Mizuno, T. Watanabe, K. Ueki, K. Amano, E. Takimoto, and
A. Maruoka. Discovery Science: Third International Conference, DS
2000 Kyoto, Japan, December 4–6, 2000 Proceedings, chapter On-
line Estimation of Hidden Markov Model Parameters, pages 155–169.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2000.

[18] O. R. E. Pereira and J. J. P. C. Rodrigues. Survey and analysis of
current mobile learning applications and technologies. ACM Comput.
Surv., 46(2):27:1–27:35, Dec. 2013.

[19] L. Rabiner. First hand: The hidden markov model. IEEE Global History
Network, pages 4–15, October 2013.

[20] L. R. Rabiner and B. H. Juang. An introduction to hidden markov
models. IEEE ASSP Magazine, pages 4–15, January 1986.

[21] W. Rothman. Smart phone malware: The six worst offend-
ers. http://www.nbcnews.com/tech/mobile/smart-phone-malware-six-
worst-offenders-f125248.

[22] G. Russello, A. B. Jimenez, H. Naderi, and W. van der Mark. Firedroid:
Hardening security in almost-stock android. In Proc. of the 29th Annual
Computer Security Applications Conference (ACSAC ’13), New Orleans,
Louisiana, USA, pages 319–328. ACM, December 2013.

[23] Statista. Number of available applications in the google
play store from december 2009 to november 2015.
http://www.statista.com/statistics/266210/number-of-available-
applications-in-the-google-play-store/.

[24] G. Suarez-Tangil, M. Conti, J. E. Tapiador, and P. Peris-Lopez. Com-
puter Security - ESORICS 2014: 19th European Symposium on Re-
search in Computer Security, Wroclaw, Poland, September 7-11, 2014.
Proceedings, Part I, chapter Detecting Targeted Smartphone Malware
with Behavior-Triggering Stochastic Models, pages 183–201. Springer
International Publishing, Cham, 2014.

[25] A. J. Viterbi. A personal history of the viterbi algorithm. IEEE Signal
Processing Magazine, 23(4):120–142, July 2006.

