
Transistor Placement for Noncomplementary
Digital VLSI Cell Synthesis

MICHAEL A. RIEPE
Magma Design Automation
and
KAREM A. SAKALLAH
University of Michign

There is an increasing need in modern VLSI designs for circuits implemented in high-performance
logic families such as Cascode Voltage Switch Logic (CVSL), Pass Transistor Logic (PTL), and
domino CMOS. Circuits designed in these noncomplementary ratioed logic families can be highly
irregular, with complex diffusion sharing and nontrivial routing. Traditional digital cell layout
synthesis tools derived from the highly stylized “functional cell” style break down when confronted
with such circuit topologies. These cells require a full-custom, two-dimensional layout style which
currently requires skilled manual design. In this work we propose a methodology for the synthesis
of such complex noncomplementary digital cell layouts. We describe a new algorithm which permits
the concurrent optimization of transistor chain placement and the ordering of the transistors within
these diffusion-sharing chains. The primary mechanism for supporting this concurrent optimiza-
tion is the placement of transistor subchains, diffusion-break-free components of the full transistor
chains. When a chain is reordered, transistors may move from one subchain (and therefore one
placement component) to another. We will demonstrate how this permits the chain ordering to be
optimized for both intra-chain and inter-chain routing. We combine our placement algorithms with
third-party routing and compaction tools, and present the results of a series of experiments which
compare our technique with a commercial cell synthesis tool. These experiments make use of a
new set of benchmark circuits which provide a rich sample of representative examples in several
noncomplementary digital logic families.

Categories and Subject Descriptors: B.6.3 [Logic Design]: Design Aids—Automatic synthesis; B.7.2
[Integrated Circuits]: Design Aids—Layout; placement and routing; J.2 [Physical Sciences and
Engineering]: Electronics; J.6 [Computer Aided Engineering]: Computer Aided Design (CAD)

General Terms: Algorithms, Design, Experimentation, Performance

Additional Key Words and Phrases: Cell Synthesis, digital circuits, noncomplementary circuits,
transistor placement, transistor chaining, Euler graphs, sequence pair optimization, benchmark
circuits

Work supported by the Defense Advanced Research Projects Agency (DARPA) under ARPA/ARO
contract DAAH04-94-G0327.
Authors’ addresses: M. A. Riepe, Magma Design Automation, Inc., 2 Results Way, Cuppertino,
CA 95014; email: riepe@magma-da.com; K. A. Sakallah, Department of Electrical Engineering and
Computer Science, University of Michigan, 1301 Beal Ave., Ann Arbor, MI 48109-2122; email:
karem@eecs.umich.edu.
Permission to make digital/hard copy of part or all of this work for personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of ACM, Inc. To copy otherwise, to republish, to post on servers, or to
redistribute to lists requires prior specific permission and/or a fee.
C© 2003 ACM 1084-4309/03/0100-0081 $5.00

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 1, January 2003, Pages 81–107.

82 • Riepe and Sakallah

1. INTRODUCTION

Library cells are the lowest level of the digital VLSI design hierarchy. Clearly,
the quality of cells in a given library has a direct impact on the quality of the
final design. The cells must be designed to be compact and fast, with minimized
power and parasitics, and with careful attention paid to requirements on the
physical architecture of the cells as viewed by the higher-level placement and
routing tools. Automated synthesis techniques have found limited application
at the cell level because existing tools are unable to match the quality of human
designed cells. For this reason cells are often designed by hand, requiring a
significant investment in manpower.

An additional difficulty lies in the fact that the lifetime of a typical cell li-
brary may be as short as 1 or 2 years. Compaction techniques may be used to
migrate a cell library to a new process technology if little more than a linear
shrink is required, but this is unlikely to extend the lifetime for more than one
or two process generations before the loss in performance necessitates a com-
plete redesign of the library. These problems are only becoming worse as device
geometries shrink into the deep submicron regime.

In order to account for deep submicron effects when designing large chips,
ever closer interaction is required between front-end logic synthesis tools and
back-end placement and routing tools, power and delay optimization tools,
and parasitic extraction tools. In order to enable this interaction, cell libraries
must become more flexible. Multiple versions of each cell with different drive
strengths are required. It may even be necessary to support versions of cells
in different logic families with different power/delay tradeoffs. In leading-edge
integrated circuit designs, static CMOS and dynamic domino CMOS tend to
be dominant, but there is a growing need for circuits implemented in high-
performance logic families such as Cascode Voltage Switch Logic (CVSL) and
Pass Transistor Logic (PTL). In addition, synchronizing elements such as
latches and flip-flops tend to be designed using custom analog sense amplifier
techniques.

In addition to the need for families of cells which are parameterized in terms
of their electrical behavior, it has been demonstrated that standard-cell place-
ment and routing tools are able to obtain significantly higher routing quality if
they have the ability to choose between multiple instances of cells with a wide
variety of pin orderings. In one experiment [Lefebvre et al. 1997], an average
reduction in the number of routing tracks of 10.8% was demonstrated over five
benchmark circuits.

It seems clear that as the number of cells in a typical cell library grows from
the hundreds into the thousands, a dramatic increase in designer productivity
will be required, necessitating a move toward more automated cell synthesis
techniques. Several authors, in fact, advocate a move completely away from
static cell libraries as we know them, toward a system which permits the auto-
mated synthesis of cells on demand [Lefebvre et al. 1997; Burns and Feldman
1998]. This would permit logic synthesis tools to request specific logic decom-
positions, doing away with the traditional technology mapping step; standard-
cell and datapath placement and routing tools to request cells with an exact pin

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 1, January 2003.

Transfer Placement for Noncomplementary Cell Synthesis • 83

Fig. 1. An example of a complex gate designed in the “functional cell” style of Uehara and Van-
Cleemput [1981].

ordering; interconnect optimization tools to request cells with specific input and
output impedance values; and power optimization tools to request cells, perhaps
from one of several different logic families, with specific power/delay tradeoffs.

Such an on-demand cell synthesis system will require effort on many fronts:

(1) Automated transistor schematic generation (constraint-driven logic family
selection, netlist creation, and transistor sizing);

(2) automated cell geometry synthesis;
(3) automated cell testing and characterization; and
(4) development of enabling logic synthesis, placement and routing, and

power/delay optimization technology.

In our work we address the second item in the above list: the fully automatic
synthesis of library cell mask geometry. The input specification consists of a
sized transistor-level schematic, a process technology description (design rules,
parasitics, etc.), and a description of the constraints imposed by the higher-
level placement and routing environment. We refer to this last item as the
cell template. A list of common cell template constraints are enumerated in
Lefebvre et al. [1997].

1.1 Motivation

The CMOS cell synthesis problem has a rich history going back approximately
20 years. Most of this research has centered on a formulation of the problem
which was referred to as the “functional cell” in a seminal paper by Uehara and
VanCleemput [1981]. In this style, an example of which is given in Figure 1,
the transistors take on a very regular row-based structure. They are arranged
in a linear fashion so as to minimize the number of gaps in the diffusion is-
lands (so called “diffusion breaks”). We will refer to layouts in this style as
one-dimensional, or 1D, layouts.

The synthesis of 1D layouts can be formulated as a straightforward graph
optimization problem: to find a minimal dual Euler-trail covering for a pair of

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 1, January 2003.

84 • Riepe and Sakallah

Fig. 2. A manually designed cell showing complex two-dimensional layout structure.

dual series-parallel multigraphs. Uehara and VanCleemput [1981] developed
an approximate solution technique for this problem, while Maziasz and Hayes
[1992] presented the first provably optimal algorithms.

A major drawback of the 1D layout style is that it applies directly only to
fully complementary nonratioed series-parallel CMOS circuits. Several signif-
icant systems have extended this style to cover circuits with limited degrees
of irregularity. Among these are C5M [Burns and Feldman 1998], Excellerator
[Poirier 1989], LiB [Hsieh et al. 1991], and Picasso II [Lefebvre and Skoll 1992].
Dynamic CMOS circuits, if the p-channel pull-up transistors are ignored, can
be optimized using a simpler single-row 1D formulation—a good summary is
presented by Basaran [1997].

Despite the elegant formulation presented by the one-dimensional ab-
straction, it must break down at some point. When designing aggressive,
high-performance circuits, the designer may call upon logic families such as
domino-CMOS, pseudo-NMOS, CVSL, and PTL. These provide the designer
with different size/power/delay tradeoffs than are available with a static CMOS
implementation. However, these noncomplementary ratioed logic families of-
ten result in physical layouts which are distinctly two-dimensional (2D) in
appearance.

An example of such a circuit is shown in Figure 2. The example is a hand-
designed mux-flip flop standard cell implemented in a complementary GaAs
process [Bernhardt et al. 1995]. This example demonstrates a number of

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 1, January 2003.

Transfer Placement for Noncomplementary Cell Synthesis • 85

properties which deviate from the standard one-dimensional style:

(1) It is highly irregular. Some regularity is present in the rows, or “chains,”
of merged transistors, but these chains are of nonuniform size and are not
arranged in two simple rows.

(2) There are instances of complex diffusion sharing, such as the “Z”-shaped
structure in the upper-left corner.

(3) The transistors are given a wide variety of channel widths.
(4) The routing is nontrivial.
(5) The port structure required by the back end placement and routing tools

must be taken into account.

1.2 Prior Work

A variety of approaches have been taken to address the 2D cell synthesis prob-
lem. Tani et al. [1991] and Gupta and Hayes [1997] discussed a style in which
two-dimensional layouts are formed from multiple one-dimensional rows. The
former presented a heuristic technique based on min-cut partitioning while
the latter presented an exact formulation, called CLIP, based on integer linear
programming. To distinguish this style from non-row-based two-dimensional
styles, we refer to it as being 1-1/2 dimensional.

Xia et al. [1994] developed a method for BiCMOS cell generation. The method
groups MOS transistors into locally optimal chains which behave as fixed blocks
in the design. Bipolar transistors are treated individually and are given a fixed
area with a flexible aspect ratio. A branch and bound algorithm is used to
explore a slicing tree-based floorplanning model of the circuit to find a floorplan
of minimal area.

It is also relevant to discuss work in analog circuit placement and routing
in this context. One such system is Koan/Anagram by Cohn et al. [1994]. This
system uses simulated annealing to find a placement of analog components,
simultaneously seeking to optimize device connectivity through arbitrary ge-
ometry sharing, while satisfying design rule constraints as well as analog con-
straints such as device symmetry and matching. It then uses a custom area
router with aggressive rip-up and reroute capability to make the remaining
required connections.

Fukui et al. [1995] developed the first system for true two-dimensional digital
transistor placement and routing. It uses a simulated annealing algorithm to
find good groupings of transistors into diffusion-shared chains and performs
a greedy exploration of a slicing structure to find a two-dimensional virtual
grid floorplan. It uses a symbolic router to perform detailed routing, and a final
compaction step to permit transistors within chains to slide into locally optimal
positions.

In a more recent work by the same group, Saika et al. [1997] pre-
sented a second tool which operates by statically grouping the transistors
into maximally sized series chains and then locating a high-quality one-
dimensional solution in order to form more complex chains. Then a simu-
lated annealing algorithm is used to modify this linear ordering by placing

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 1, January 2003.

86 • Riepe and Sakallah

the diffusion-connected groups onto a two-dimensional virtual grid. Routing is
done by hand.

Two other efforts which are contemporary with our own [Riepe 1999;
Riepe and Sakallah 1999] have recently published results. Vahia, Askar, and
Ciesielski [Vahia and Ciesielski 1999; Oskar and Ciesielski 1999] described
a fast greedy constructive algorithm for the placement of transistor chains,
while Serdar and Sechen [1999] presented an efficient annealing-based solu-
tion. Both groups showed very compact layouts of several difficult circuits. How-
ever, both limited their search to the placement of statically ordered transistor
chains, and both made use of manual routing. In addition both works assumed
multiple layers of metal interconnect, allowing them to work with diffusion-
limited placements and thus effectively decoupling the placement and routing
problems.

1.3 Proposed Methodology

In this section we present the architecture for a 2D cell synthesis system which
targets complex noncomplementary digital MOS circuits. We begin with a pre-
cise definition of the problem and then outline the top-level flow in our proposed
optimization methodology.

One can view our problem definition, which is elaborated below, as a relax-
ation of the highly stylized rules which were adopted by the 1D “functional
cell” style for the optimization of dual CMOS circuits. Our goal is to attempt to
emulate the creativity used by an expert designer by permitting selected new
degrees of freedom in the layout style while keeping the problem of manageable
complexity.

The following four points summarize our assumptions when defining the
cell-level transistor placement and routing problem:

(1) The input to the system is a sized transistor netlist, the process design
rules and technology parameters, and a description of the cell layout style
(“template constraints”).

(2) Transistor source/drain geometry sharing is encouraged, but is not the pri-
mary optimization objective. Obtaining a routed cell of minimum area is
the primary objective.

(3) Individual transistors, or chains of source/drain connected transistors, may
be placed in any position or orientation to optimize the objective as long as
the design rules and template constrains are satisfied.

(4) Routing may be performed in two layers: polysilicon and first-level metal.
There is no preferred direction for routing in either layer.

As our top level optimization framework, we adopt the flow diagrammed in
Figure 3. In the first step clusters of transistors are formed, each representing a
set to be composed into a single merged structure, or transistor chain. Clusters
of size one represent degenerate chains of individual transistors. These clusters
are passed to the placement step (step 2), where they are assigned a chain
ordering and broken into diffusion-break free components called subchains, and
each resulting subchain is assigned a position and an orientation. Finally, the

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 1, January 2003.

Transfer Placement for Noncomplementary Cell Synthesis • 87

Fig. 3. A flowchart demonstrating the proposed methodology.

Fig. 4. Major stages of the proposed cell synthesis flow.

completed placement is routed (step 3) and then compacted (step 4) to remove
unutilized space. An illustration of each of the major steps of this process is
shown in Figure 4.

In this paper we present our algorithms for steps 1 and 2, which we combine
with a third-party router and compactor into a complete end-to-end tool flow in
order to conduct our experiments. Thus, our primary concern is to obtain from
the initial netlist a routable placement of minimum area.

Central to our methodology are techniques for the modeling and optimization
of transistor diffusion sharing. When electrical connections are made through
geometry sharing, area is saved both because of the overlapping geometry and
because of the elimination of wiring. In other reported 2D cell synthesis systems

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 1, January 2003.

88 • Riepe and Sakallah

[Xia et al. 1994; Fukui et al. 1995; Saika et al. 1997; Vahia and Ciesielski 1999;
Oskar and Ciesielski 1999; Serdar Sechen 1999] this optimization is performed
as a static chaining step before placement. Koan [Cohn et al. 1994], which is
targeted at analog synthesis, performs no explicit chain formation, but instead
allows arbitrary merged structures to form dynamically during placement.

The unique aspect of our methodology is that it adopts the strengths of
both the 2D digital cell styles and the analog styles—we make use of a late
binding process in which explicit digital-style transistor chains are optimized
dynamically during placement, and we also allow arbitrary analog-style shared
structures to form through dynamic geometry merging. During placement the
chain optimization process thus has access to global placement and routing
information which is not available in a static preprocessing step.

1.4 Outline

In the remainder of this paper we elaborate the details of each step in our pro-
posed methodology. In Section 2 we review the relevant aspects of transistor
chaining theory. In Section 3 we introduce the details of our placement algo-
rithms. In Section 4 we discuss the implementation of our experimental system,
which is named TEMPO, and present some experimental results. In Section 5
we summarize the discussion and provide conclusions.

2. TRANSISTOR CHAINING THEORY

It should be clear from the layout shown in Figure 2 that most geometry sharing
in digital circuits, even the complex digital circuits with which we are concerned,
takes place within transistor chains. However, in contrast to the functional cell
style chains of Figure 1, note that the chains in noncomplementary circuits do
not normally appear in dual pairs. In this section we review the theory behind
nondual transistor chain optimization. We begin by establishing some basic
terminology.

Definition 1 (Transistor Cluster). A transistor cluster is an unordered set
of same-polarity transistors, all of which are reachable through a sequence
of source or drain terminal connections. These are also often referred to as
channel-connected components (CCCs).

Definition 2 (Transistor Chaining). A transistor chaining is a mapping
which assigns a unique linear ordering to the source and drain terminals of
the transistors in a cluster.

Definition 3 (Transistor Chain). A transistor chain is a transistor cluster
which has been assigned a chaining. This is a well-defined physical structure
for which a design-rule correct layout can be generated.

Definition 4 (Diffusion Break). A diffusion break is a position within a
transistor chain at which two neighboring transistors do not share a common
electrical terminal. Therefore these two terminals will not be able to share
geometry and must be separated by the proper design rule distance.

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 1, January 2003.

Transfer Placement for Noncomplementary Cell Synthesis • 89

Fig. 5. An example demonstrating our transistor chaining terminology.

Definition 5 (Transistor Subchain). A transistor subchain is a subset of a
transistor chain which is free of diffusion breaks. We will make use of this
definition in our dynamic chaining approach discussed in Section 3.2.

An example which illustrates the above definitions is provided in Figure 5.
Shown is the physical geometry for a single transistor chain with the
transistor gates labeled with letters and the source/drain electrical nodes
labeled with numbers. The example is one possible chaining of the tran-
sistor cluster {A, B, C, D, E, F, G, H}. This particular chaining can be de-
scribed with the following ordered list of node numbers and gate names:
(5, F, 2, B, 1, H, 7, A, 6, 0, E, 4, G, 0, C, 3, D, 0). This chaining consists of two
subchains (5, F, 2, B, 1, H, 7, A, 6) and (0, E, 4, G, 0, C, 3, D, 0), and one diffu-
sion break (which can be identified in the ordered chaining list by the presence
of two adjacent node numbers 6, 0).

The process of nondual transistor chain optimization involves two steps.
First, the transistors in the design must be partitioned into clusters. Second,
a chaining must be found for each cluster. The first problem, transistor clus-
tering, has received little attention in the literature and is usually performed
heuristically. We will discuss our approach in Section 3.1. The second problem,
chain optimization, is traditionally broken up into two components: chain width
minimization and chain height minimization.

Chain width minimization is the process of finding a chaining which mini-
mizes the number of diffusion breaks, and hence the width of the chain. Height
minimization is normally the process of locating, from among the set of mini-
mum width solutions, a chaining which requires the fewest number of routing
tracks to complete the intra-chain source-drain routing.1 However we would
like to point out that, while a minimum “height” solution is locally minimal
with respect to the intra-chain routing, it may not be globally minimal with
respect to the complete inter-chain cell routing cost. We will explore this obser-
vation more completely in Section 3.2.

Transistor chain width optimization is traditionally posed as a graph prob-
lem. An undirected graph called the diffusion graph [Uehara and Van Cleemput
1981] is constructed for each cluster by associating a vertex with each electri-
cal node. Edges represent transistors and span the corresponding source-drain
terminal vertices. A transistor chaining is represented in this graph as a trail

1In the channel routing literature, the required number of routing tracks is often reffered to as the
maximum routing density.

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 1, January 2003.

90 • Riepe and Sakallah

Fig. 6. Two different chainings with different maximum routing density.

which traverses every edge exactly once, with a diffusion break occurring be-
tween every pair of edges at which the trail is not connected. For example,
in Figure 6 we show two different chainings for the same transistor cluster.
Both graphs have one diffusion break, but note that chain a requires one fewer
horizontal routing track than chain b and hence has a smaller chain “height.”

An undirected graph which can be covered by a single continuous trail, touch-
ing every vertex at least once and every edge exactly once, is called an Eulerian
graph, and such a trail is called an Euler trail. It is well known that a graph
is Eulerian if and only if it has either zero or two odd-degree vertices. In order
to find a minimum width chaining on a diffusion graph, we use a technique in-
troduced by Basaran [1997]. An artificial vertex (the super-vertex) is added and
edges (called super-edges) are drawn connecting it to all odd degree vertices,
creating an Eulerian graph, which we will call the augmented diffusion graph.
The algorithm in Figure 7 is used to find a covering Euler trail on this graph be-
ginning at the vertex vα and ending at the vertex vβ . The Euler trail must begin
and end at the super-vertex, though any internal vertex may be used if the in-
put graph was already Eulerian. The order in which the graph edges are visited
corresponds to the ordering of the transistors in the chain, with the super-edges
corresponding to diffusion breaks.2 In Figure 6 we show Euler paths associated

2Note that there may be an exponential number of different solutions generated by algorithm
EULER, but they will all be optimal in the sense that they all have the same minimal number of
diffusion breaks

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 1, January 2003.

Transfer Placement for Noncomplementary Cell Synthesis • 91

Fig. 7. Algorithm to locate an Euler path from vα to vβ in an Eulerian graph [Papadimitriou and
Steiglitz, 1982].

with each chaining—the augmented diffusion graph super-vertex is labeled “S”
and the super-edges are shown with dashed lines.

3. CELL LEVEL TRANSISTOR PLACEMENT

In order to attack the general two-dimensional cell synthesis problem, our
methodology adopts a very general placement and routing approach. However,
the need to optimize diffusion sharing distinguishes this problem from tradi-
tional macro-block placement in a number of ways. In the remainder of this
section we discuss our approach to transistor placement. Section 3.1 presents
our algorithm for creation of the static transistor clusters from which we will
construct our transistor chains. Section 3.2 discusses the algorithms which we
use for the dynamic exploration of the different chainings of each transistor
cluster. Section 3.3 discusses a simple method by which we permit more com-
plex forms of arbitrary geometry sharing to occur in the placement. Section 3.4
shows how these techniques can be combined with a simulated annealing algo-
rithm to achieve the concurrent optimization of transistor chain ordering and
placement. Section 3.5 discusses the methods which we use to model the routing
cost function during placement.

3.1 Static Transistor Clustering

In the first step, transistor clustering, the goal is to determine the optimal
number of transistor clusters and which transistors belong in each cluster.
However, at this stage very little information is available, only the transistor
connectivity and the sizes of each transistor, so the choices can only be heuristic
in nature. On the schematic of the CGaAs mux flip-flop shown in Figure 2,
we outline the clusters chosen by the designer in the corresponding manual
layout.

Authors in previous works have used a wide variety of heuristics at this
stage. In Fukui et al. [1995], the authors used simulated annealing. In Saika
et al. [1997], only simple chains made up of maximum length series chains were
created and larger chains are formed during the 1D optimization step. It is also
fairly common, especially in one-dimensional tools, to approach clustering by
performing logic gate recognition, as in Lefebvre and Skoll [1992].

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 1, January 2003.

92 • Riepe and Sakallah

We begin with an initial set of clusters formed from the set of all maximal
channel-connected components (MCCCs).3 We then make use of a Fidducia-
Mattheyses (FM) bipartitioning algorithm [Fiduccia and Mattheyses 1982] to
recursively partition these clusters until a user-supplied upper size bound is
met. Because we are primarily interested in minimizing the net cutset, and not
in obtaining balanced partitions, a loose balance criterion is used. An optional
feature allows the user to specify an upper limit on channel width variation
among the transistors in a particular cluster.4 This feature is an alternative to
transistor folding, and is enforced when the initial MCCCs are formed.

3.2 Dynamic Transistor Chaining

As we mentioned in Section 3.1, it is very difficult to determine an optimal static
clustering of the transistors into diffusion-connected chains. This is because the
clustering step has no information about the relative positions of the chains
in the final placement. For the same reason, traditional chain optimization
algorithms cannot be expected to locate globally optimal chaining solutions if
performed as a preprocessing step prior to placement. Such an approach can find
a chaining solution with minimum width and minimum internal routing cost
(i.e., “height”) but, as mentioned previously, such chainings may not be globally
optimal when external wiring costs are taken into account. It is thus not clear
a priori to which chain a particular transistor should be assigned, and which
chain ordering should be chosen. The following technique, which we refer to
as dynamic chain optimization, allows the placement step to dynamically alter
the chainings and thus perform optimization with regard to the global area and
wiring costs.

Dynamic chain optimization is enabled by the static clustering step, which
is permitted to find relatively large transistor clusters. Using the algorithm
described below, the placement step dynamically explores the universe of all
possible minimum-width chaining solutions for each cluster. For each candi-
date chaining solution, a geometry generator is called to obtain the design-rule
correct chain geometry and perform local intra-chain routing.5 The transistor
chains are then split at the diffusion breaks, and the resulting subchains are
passed to the placement engine as the atomic placeable objects. These subchains
are free to be placed in any two-dimensional arrangement that optimizes the
area and the external routing.

It is easy to see that there will be many Euler trail covers for a given cluster’s
diffusion graph, and that all of them will have the same number of diffusion
breaks. Thus the set of all trail covers corresponds to the set of all minimum-
width chains, and the number of subchains being placed will remain constant.

3The MCCCs are trivially found in linear time as they are simply the connected components
[Cormen et al. 1990] of the diffusion graph.
4In the experiments reported in Section 4.3, we use an FM balance criterion tolerance of ±20%,
we enforce a maximum cluster size limit of 20 transistors, and we limit the maximum variation
among channel widths to a factor of 2.
5Intra-chain routing is a simple instance of one-dimensional routing without vertical constraints
and can be performed optimally in linear time with a greedy left-edge algorithm. This routing is
performed only if full contract strapping is not specified in the cell template.

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 1, January 2003.

Transfer Placement for Noncomplementary Cell Synthesis • 93

Fig. 8. A chain modification performed with Basaran’s [1997] Iterative method.

However, when a new chaining is found for a cluster, individual transistors
may move from one subchain to another, and the individual subchains may
grow or shrink in size, providing a significant degree of added flexibility during
placement.

Note again that we are not attempting to optimize the internal routing cost
(chain “height”) of the transistor chains, as is traditional in the literature. In
fact, the physical height of the chain is fixed by the transistor channel widths
in the input schematic. However, the chain geometry generator will report the
number of internal chain nets which cannot be routed on top of the chains, and
these nets are added to the global inter-chain routing cost (see Section 3.5).
Thus the subchains are optimized such that their internal local routing cost is
taken into account as well as the resulting global routing cost.

In our dynamic approach, it is the task of the placement engine to explore the
universe of all possible minimum-width chainings for each cluster. We make use
of the following iterative technique due to Basaran [1997] for generating one
valid chaining from another. As shown in Figure 8, we select a random subtrail
from the current trail cover and reset the edges of this subtrail in the diffusion
graph. We then call algorithm Euler() to generate a different subtrail with the
same two endpoints. Notice how the relative sizes of the two subchains in our
example changed as a result of this transformation. By controlling the size of the
selected subtrail, one can gain some indirect control over the degree of change
to the chain (a feature which proved useful in implementing the automatic
range limiting capability of our simulated annealing based placement engine).
It can be shown that Basaran’s method is complete, and can thus be used to
construct every possible minimum-width Euler trail which can be embedded in
the selected graph.

3.3 Support for Arbitrary Geometry Sharing

While most geometry sharing in complex cell layouts occurs in explicitly formed
transistor chains, we observed that this is not always the case. An example of

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 1, January 2003.

94 • Riepe and Sakallah

Fig. 9. An example of a second-order shared structure.

more complex sharing can be see in the “Z”-shaped structure in the upper-
left corner of the layout in Figure 2. In addition to explicitly merged chains,
we also allow geometry to merge during the placement step, thus permitting
larger merged structures to form and taking advantage of less obvious patterns
of connection. This is a trick often used by skilled human designers, and also
is the primary method for geometry merging in the Koan [Cohn et al. 1994]
analog placement tool. We call the resulting merged objects second-order shared
structures. An example in Figure 9 shows two small transistors merging with
a single larger transistor.

In order to support arbitrary geometry merging at the transistor level, we
use a fairly simple mechanism. If two objects are in the proper configuration
such that they have electrically compatible ports facing each other, the design
rule constraint δ1 can be relaxed to a smaller value, δ2, to allow those ports to
overlap. This may result in design rule violations in the final placement if the
ports do not line up precisely, but this can be repaired in a postprocessing step.

3.4 Placement Modeling and Optimization

In our implementation, we have chosen to model the placement search space
using the symbolic Sequence Pair representation developed by Murata et al.
[1995]. This choice was made because we conjecture that symbolic methods
provide a more efficient and rigorous framework with which to traverse the
search space than direct representations of the object coordinates as used in
Timberwolf [Sechen and Sangiovanni 1985] and Koan [Cohn et al. 1994]. In
particular we chose the Sequence Pair over symbolic Slicing Trees because
some valid placements are not representable in the latter.

In order to systematically explore the Sequence Pair solution space, as in
Murata et al. [1995], we use simulated annealing [Rutenbar 1989]. Our so-
lution space is defined by the set of all minimum-width chainings for each
transistor cluster, the set of all rotations and mirrorings of each placeable ob-
ject, and the set of all permutations of two sequences, 0− and 0+. This pair
of sequences represent the relative x-axis and y-axis positions of the place-
able objects, respectively. The following set of moves are used by the simulated
annealing engine:

(1) Swap a pair of objects in either 0+, or 0− or both;
(2) translate one object to a different position in either 0+, or 0− or both;

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 1, January 2003.

Transfer Placement for Noncomplementary Cell Synthesis • 95

(3) rotate and/or mirror one object into a different orientation; and
(4) reorder a selected chain as explained in Section 3.2.

Our simulated annealing engine makes use of a standard adaptive cooling
schedule, automated initial temperature selection, range limiting, and statis-
tical move selection [Cohn 1992]. The cost function is a weighted combination
of the placement cost and an estimate for the routing cost:

cost = w1 · placement+w2 · routing (1)

Several alternative placement cost metrics can be selected by the user: op-
timization of the cell area or perimeter are both possible with the ability to
fix the height, width, or aspect ratio. Our routing cost metric is discussed in
Section 3.5.

3.5 Routing Model

Because of the serialized split between placement and routing, during the place-
ment step we are forced to make use of computationally efficient estimates of the
actual routing cost. The routing model which we use during placement accounts
for routing effects in two ways. The routing component of the placement cost
function in Equation (1) is included to encourage the simulated annealing al-
gorithm to find a placement, among all near-minimum area placements, which
has low routing complexity. This cost is estimated with a manhattan net length
estimate. Multiterminal signal nets are approximated as rectilinear minimum
spanning trees (RMSTs), which provide a fairly tight lower bound on the actual
routing cost and can be computed in linear time.6

In addition to the routing complexity component of the cost function, we
must also account for the extra space that this routing will require. Without
inserting extra space between the transistors prior to routing, we will most
likely present the router with an infeasible problem, especially when few lay-
ers of interconnect are available. However, to model this cost precisely would
require a complete global routing solution. As an alternative, we make use of
the following approximate technique which is a variant of the technique used
in Murata et al. [1995].

Figure 10(a) shows an intermediate placement without the addition of rout-
ing space. It is clear that some nets will be unroutable. Figure 10(b) shows the
same placement with the addition of extra routing space. Here each object is
translated from its original coordinate (xi, yi) to a new coordinate (x ′i, y ′i) based
on an estimate of the total routing resources which will be required below it
and to its left. The added boxes demonstrate the movement of each object—
the lower-left corner of box i marks (xi, yi) and the upper-right corner marks
(x ′i, y ′i), for object i appearing to its upper-right.

6Both Prim’s and Kruskal’s algorithms are O(V + E) where V is number of vertices and E is the
number of edges.

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 1, January 2003.

96 • Riepe and Sakallah

Fig. 10. A demonstration of routing space insertion.

This cell expansion is performed as follows. We first expand the cell’s bound-
ing box using the equation

xmax
′ = xmax + βT

∑
i∈N

Hi

ymax

 , ymax
′ = ymax + βT

∑
i∈N

Wi

xmax

 (2)

where (xmax, ymax) and (xmax
′, ymax

′) are the old and new coordinates of the
upper-right bounding box corner, respectively, T is the routing pitch, N is the
set of all nets, Hi and Wi are the height and width of net i’s bounding box, respec-
tively, and β is a user-defined scaling factor.7 We then assign new coordinates
to each block i based on the following equations:

x ′i = xi + (xmax
′ − xmax)

xi

xmax
, yi

′ = yi + (ymax
′ − ymax)

yi

ymax
(3)

This method approximates the total number of horizontal and vertical routing
tracks which will be required, assuming that each net requires one horizontal
and one vertical track, and distributes these evenly throughout the design. We
therefore call this the uniform expansion method.8

As a final observation, note that our method does not break apart second-
order shared structures (one is marked with an arrow) which are present in the
original unexpanded placement. This is explicitly supported in the expansion
algorithm by identifying instances of geometry sharing and assigning all shared
structures the same expansion factor as the most lower-left shared object.

7In our experiments β was determined experimentally for each circuit by observing the routability
of several trial placements over a range of different β values.
8The method presented in Murata et al. [1995] moves each block based on the set of all routes which
begin to its lower left. We have found that this places an artificial bias in the routing, concentrating
the routing resources toward the lower left and creating congestion in the upper right. In contrast,
our uniform expansion method looks at the total number of required horizontal and vertical routing
tracks and obtains the lower-left routing estimate by distributing the required resources evenly
throughout the cell.

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 1, January 2003.

Transfer Placement for Noncomplementary Cell Synthesis • 97

4. EXPERIMENTAL EVALUATION

To validate our approach, we have conducted an extensive series of experiments
using a new set of high-performance benchmark circuits. In the following we
describe our prototype implementation and benchmark circuits and report the
results of our experiments.

4.1 Implementation

A prototype tool called TEMPO (Transistor Enabled Micro Placement Opti-
mization) has been designed as a framework to explore the ideas discussed in
this paper. TEMPO is implemented in approximately 48,000 lines of C++ code
and has been tested under the Sun Solaris and Linux operating systems. To
complete our flow, we make use of the Anagram-II [Cohn et al. 1994] router
for postplacement detailed routing and the Masterport leaf cell compactor from
Cascade Design Automation Inc. We have adopted a datapath-style cell tem-
plate for the current set of experiments: Internal routing is assumed to be
two-layer and limited to poly and metal-1. Control inputs are assumed to ar-
rive vertically in metal-2 and data/power/ground inputs and outputs arrive
horizontally in metal-3. Prior to routing, we insert these terminals as overcell
routing tracks in a position which is as close as possible to the center of the as-
sociated net’s bounding box. Once the detailed routing step has placed contacts
to these overcell tracks, the metal geometry is removed, leaving behind a set of
gridded pins for connection by the chip-level router.

4.2 Benchmarks

The lack of a standard set of 2D cell synthesis benchmark circuits has made com-
parison with competing approaches difficult. In the case of the static CMOS logic
family, it is a simple matter to generate artificial benchmark circuits—Maziasz
and Hayes [1992], in fact, showed that there are exactly 3505 dual series-
parallel circuits of “practical size” (i.e., with a maximum series chain length
of 4). However, no standard set of circuit benchmarks exist for the broader
category of circuits with which we are concerned. For the following set of ex-
periments, we make use of a new set of 22 benchmark circuits which we have
assembled from the solid-state circuits literature. These circuits, described in
Table I, are representative of the class of aggressive, high-performance, and
low-power library cells for which this system is targeted. Included are circuits
designed in domino and zipper CMOS, static and dynamic CVSL, as well as
single- and double-ended PTL. As can be seen, these circuits represent a broad
cross section of design styles and applications; however, some general obser-
vations can be made. Most of the circuits are derived from datapath appli-
cations and are either arithmetic circuits, advanced latches and flip-flops, or
latches/flip-flops with embedded logic.

Data which can be used to characterize the complexity of these circuits
is graphed in Figure 11. The circuits range in size from an 18-transistor
sense-amp flip-flop to an 84-transistor dynamic eight-way multiplexor taken
from an experimental 1-GHz PowerPC condition code unit. We also show the
average net fanout for each circuit as an indication of cell routing complexity

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 1, January 2003.

98 • Riepe and Sakallah

Table I. Benchmark Circuit Descriptions

Namea Description

1 aoi-lff True Single Phase Clocked Logic (TSPCL) and-or-invert logic flip-flop
2 blair-ff High-speed differential double-edge-triggered CMOS flip-flop
3 dcsl3-42comp Differential Current Switch Logic 4-2 compressor (DCSL-3 style load)
4 dcvsl-xor4 Dynamic Cascode Voltage Switch Logic 4-way XOR gate
5 dec-csa-mux High-speed carry-save adder with muxed latching inputs
6 diff-fa Differential full adder
7 dpl-fa Double-Pass Transistor Logic full adder
8 dptl-42comp Dynamic Pass Transistor Logic 4-2 compressor sum logic
9 emodl-cla Enhanced Multiple Output Domino Logic carry-lookahead adder stage

10 ghz-ccu-merge 4-Way dynamic merge circuit for 1-GHz PowerPC condition code unit
11 ghz-ccu-prop 4-Way dynamic propagate circuit for 1-GHz PowerPC condition code unit
12 ghz-mux8-la 8-Input latching mux with hold and scan for 1-GHz PowerPC
13 mux2-sdff Semi-Dynamic dual-rail logic flip-flop with embedded 2-input mux
14 muxff Dynamic Complementary GaAs mux flip-flop
15 ptl-42comp Pass Transistor Logic 4-2 compressor
16 ptl-rba Pass Transistor Logic redundant binary adder
17 qnp-fa Quasi NP-domino pipelined full adder
18 sa-ff Differential edge-triggered sense-amplifier flip-flop
19 sa-mux-ff Differential edge-triggered sense-amp flip-flop with embedded 4:1 mux
20 t17-fa Seventeen-transistor low-power full-adder
21 xor-ff Sense-amplifier flip-flop with dynamic differential embedded XOR gate
22 zip-fa2 Dual-bit adder in CMOS zipper logic

aSources: # 1—Rogenmoser and Huang [1996]; # 2—Blair [1997]; 3—Somasekhar and Roy [1996]; # 4—Heller
et al. [1984]; # 5—Kowaleski et al. [1996]; # 6—Shimazu et al. [1989]; # 7—Suzuki et al. [1993]; # 8—Hanawa
et al. [1996]; # 9—Wang et al. [1997]; # 10—Burns and Nowka [1998]; # 11—Burns and Nowka [1998]; # 12—
Silberman et al. [1998]; # 13—Klass [1998]; # 14—Stetson [1997]; # 15—Yano et al. [1996]; # 16—Makino et al.
[1996]; # 17—Lu and Samueli [1993]; # 18—Montanero et al. [1996]; # 19—Stephany et al. [1998]; # 20—Shams
and Boyoumi [1998]; # 21—Matsui et al. [1994]; # 22—Friedman and Liu [1984].

(fanout data is shown for all nets, and with the power and ground nets
excluded).

In most cases, the benchmark circuits were specified in the literature without
transistor sizing information. Due to this fact, and our desire to implement
the circuits in a common technology, we have tuned the transistors in each
circuit ourselves. We made use of a simple heuristic nonlinear gradient descent
algorithm, described in Riepe [1999], using electrical models from a commercial
0.5-µm CMOS process.

In addition to problems in transistor-level layout synthesis, we expect
these benchmarks to prove useful on other problems in high-performance cell-
level integrated circuit design automation. Other possible applications include
transistor-level circuit synthesis, transistor tuning, cell testing and character-
ization, and performance-driven technology mapping. The characteristics of
these circuits are described more completely in Riepe [1999], and the sized
netlists can be obtained by contacting the authors.

4.3 Results

We report the results of a series of experiments which compare TEMPO to
the LAS synthesis tool [Chow et al. 1999] from Cadence Design Systems Inc.
TEMPO was run on a 300-MHz Intel Pentium-II-based workstation while LAS
was run on a 170-MHz Sun Ultrasparc system; both had 128 megabytes of RAM.

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 1, January 2003.

Transfer Placement for Noncomplementary Cell Synthesis • 99

Fig. 11. Benchmark circuit characteristics.

We assume a standard 0.5-mm CMOS process and make use of the MOSIS
scalable submicron design rules (rev. 7.2) with a lambda value of 0.3 µm. LAS
was run in full optimization mode to explore all possible transistor foldings
and cell aspect ratios. It is a 1-1/2-dimensional row-based system which as-
sumes a standard-cell style template—to minimize the overhead of the metal-1
power rails, we required these to have minimum width. TEMPO cells were op-
timized for minimum area under our datapath style cell template. LAS, which
uses deterministic algorithms, was run once per circuit. TEMPO, because of
its stochastic nature, produces results with a statistical spread in quality. The
results we present for each circuit represent the best solution from a series of
100 trials. We discuss runtime, and the statistical distribution of our results,
later in this section.

The improvement in benchmark cell area obtained with TEMPO is displayed
in Figure 12. The quality of the results is encouraging: with two notable ex-
ceptions, the TEMPO layouts are consistently smaller than the LAS layouts.
In 15 of the 22 circuits, this improvement exceeded 10%, and in 8 of the 22,

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 1, January 2003.

100 • Riepe and Sakallah

Fig. 12. The cell area improvement seen when comparing TEMPO to LAS.

the improvement exceeded 20%. Three representative layouts are shown in
Figure 13. The upper cell is the dcvsl-xor4 benchmark which provides a vi-
sually appealing example of a 2D transistor arrangement with fairly sparse
routing. This is in contrast to the row-based transistor arrangement and chan-
nel routing used by LAS. An area improvement of 39.69% was obtained for this
circuit. Our second example, the mux2-sdff circuit, provides another demon-
stration of dense placement and routing with an area reduction of 18.93%. Our
third example, the ptl-rba circuit, is one of the two cases for which LAS pro-
duced a superior layout. In this case, LAS was able to obtain an extremely
efficient linear transistor arrangement with little wasted space, while TEMPO
could not achieve a competitive placement. In this case, the LAS area is 61.45%
smaller than TEMPO’s.

It is interesting to observe the effectiveness of TEMPO’s dynamic geome-
try sharing optimization. In Figure 14 we show three different placements ob-
tained for the muxff benchmark circuit. In Figure 14(a) we show an optimized
placement obtained with diffusion sharing disabled—it is obviously extremely
noncompact. In Figure 14(b) we show the pattern of sharing which is obtained
with our arbitrary geometry sharing mechanism enabled. No explicit transistor
chaining is performed in this mode; nevertheless TEMPO is able to discover sev-
eral small chains of merged transistors as well as several complex second-order
shared structures. However, the layout is irregular and chain lengths are short,
rarely exceeding three or four transistors. This example clearly demonstrates
that digital cells benefit tremendously from an approach based on explicit tran-
sistor chain optimization, as seen in the final example in Figure 14(c).

Because TEMPO makes use of a stochastic optimization algorithm, it is likely
that it will achieve a different result every time that it is run. We were interested
in observing the statistical spread in the final layout area obtained in this
way. Figure 15 shows a histogram of the area spread observed for the sa-ff
benchmark. Figure 16 shows the number of standard deviations below the mean
at which the minimum area layout was located. This number was consistently

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 1, January 2003.

Transfer Placement for Noncomplementary Cell Synthesis • 101

Fig. 13. Three representative cell layouts. Results of TEMPO are displayed on the left while results
of LAS are displayed on the right (pairs are shown approximately to scale).

between 1 and 2. Assuming a Gaussian distribution, 95% of the solutions will
fall within 2 standard deviations of the mean, indicating that at least 20 trials
will be necessary to achieve good results.

In Figure 17, we show some data indicating the per-run execution time
of TEMPO. Clearly, TEMPO ’s simulated-annealing-based 2D placement algo-
rithm, and the Anagram-II router’s aggressive rip-up and reroute strategy, come

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 1, January 2003.

102 • Riepe and Sakallah

Fig. 14. The muxff benchmark (a) without chaining or merging, (b) with chaining disabled, and
(c) with both chaining and merging enabled.

Fig. 15. Layout area distribution observed over 100 experimental trials for one representative
benchmark circuit.

at a substantial cost. This cost must also be multiplied by the number of tri-
als conducted in the effort to obtain the best layout (100 in our experiments).
Improving the convergence behavior and the predictability of the placement
results to eliminate this high cost will be a significant topic of future effort.

5. CONCLUSIONS AND FUTURE WORK

In this work, we have discussed the problem of cell synthesis for high-
performance, nondual, digital VLSI cells. Our proposed solution is based on an
unconstrained two-dimensional transistor placement and routing framework,

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 1, January 2003.

Transfer Placement for Noncomplementary Cell Synthesis • 103

Fig. 16. Number of standard deviations below the mean at which the minimum area solution for
each benchmark circuit was found.

with an emphasis on methods for the modeling and optimization of geometry
sharing among the transistors. Our specific contributions include the following:

(1) A static transistor clustering technique, consisting of an FM-style bipar-
titioning algorithm with a loose balance criterion and an optional upper
bound on transistor channel width variation.

(2) A simulated annealing placement optimization engine with a new degree
of freedom: dynamic transistor chain optimization. This late-binding tech-
nique allows chain optimization to proceed with detailed knowledge of the
global placement and routing cost function.

(3) A unique placement model in which the atomic placeable objects consist of
transistor subchains. As new chainings are found for each cluster during
placement, transistors may move from one subchain in the cluster to an-
other, and the relative sizes of the subchains may change, but the number
of subchains (and thus placeable objects) remains constant.

(4) Support for the sharing of geometry between arbitrary neighboring objects
in the placement.

(5) A routing component in the placement cost function which includes tran-
sistor subchain “spill” routing, as well as global inter-chain routing cost
estimates, permitting global routing costs to be optimized.

(6) A new variant of an algorithm for the insertion of routing space in the
placement cost function.

(7) A new set of 22 benchmark circuits representing leafcells in a wide variety
of noncomplementary digital logic families.

We have developed a prototype implementation of a transistor-level place-
ment tool based on these ideas, and assembled a complete end-to-end synthesis
flow which makes use of third-party tools for detailed routing and postrouting
compaction. An initial set of experiments, conducted on a new set of bench-
mark circuits, demonstrated encouraging results. However, the wide statistical

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 1, January 2003.

104 • Riepe and Sakallah

Fig. 17. TEMPO and LAS run time statistics for all 22 benchmark circuits. Times shown are for a
single run of each tool. To account for statistical spread, TEMPO was run 100 times on each circuit
and the best result reported.

spread in the quality of results produced by our stochastic placement opti-
mization approach resulted in a high computational cost which will need to be
remedied in the future.

Our experience has demonstrated a number of promising areas for improve-
ment and further work. Currently we make no effort to maintain symmetry be-
tween transistor chains, since we are not targeting series-parallel CMOS logic
families. However, series-parallel subcircuits are often embedded within larger
circuits, so it would be beneficial to include some form of dual-chain optimiza-
tion capability as well. In addition, in order to simplify poly gate routing, it will
often be advantageous to maintain partial symmetry between chains, dual or
not, which share many common gate inputs. Some logic families, most notably

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 1, January 2003.

Transfer Placement for Noncomplementary Cell Synthesis • 105

CVSL, contain sensitive analog circuitry which requires symmetric placement
and routing capability, and techniques for this could be borrowed from the ana-
log placement and routing literature. We also see the need for parasitic-aware
performance-driven optimization techniques, transistor folding support, opti-
mized well and well contact insertion, and more accurate techniques for routing
cost estimation and congestion management.

ACKNOWLEDGMENTS

The authors would like to thank Professor Rob Rutenbar and Dr. Phiroze
Parakh for many interesting discussions, and the anonymous reviewers for
their helpful suggestions.

REFERENCES

ASKAR, S. AND CIESIELSKI, M. 1999. Analytical approach to custom datapath design. In Proceedings
of the 1999 International Conference on Computer-Aided Design. 98–101.

BASARAN, B. 1997. Optimal diffusion sharing in digital and analog CMOS layout. Ph.D. dis-
sertation, Carnegie Mellon University, Pittsburgh, PA; also, CMU Report No. CMUCAD-97-21,
Carnegie Mellon University, Pittsburgh, PA.

BERNHARDT, B. ET AL. 1995. Complementary GaAs (CGaAsTM): A high performance BiCMOS al-
ternative. In Proceedings of the 1995 GaAs IC Symposium. 18–21.

BLAIR, G. 1997. Comments on “New single-clock CMOS latches and flip-flops with improved
speed and power savings.” IEEE J. Solid State Circ. 32, 10 (Oct.), 1611.

BURNS, J. AND FELDMAN, J. 1988. C5M—a control logic layout synthesis system for high-
performance microprocessors. IEEE Trans. CAD 17, 1 (Jan.), 14–23.

BURNS, J. AND NOWKA, K. 1998. Parallel condition-code generation for high-frequency powerPC
microprocessors. In Proceedings of the 1998 Symposiums on VLSI Circuits. 115.

CHOW, S., CHANG, H., LAM, J., AND LIAO, Y. 1992. The layout synthesizer: An automatic block
generation system. In Proceedings of the 1992 CICC. 11.1.1–11.1.4.

COHN, J. 1992. Automatic device placement for analog cells in KOAN. Ph.D. dissertation,
Carnegie Mellon University, Pittsburgh, PA; also, CMU Report No. CMUCAD-92-07, Carnegie
Mellon University, Pittsburgh, PA.

COHN, J., GARROD, D., RUTENBAR, R., AND CARLEY, L. R. 1994. Analog Device-Level Layout Automa-
tion. Kluwer Academic Publishers, Boston, MA.

CORMEN, T., LEISERSON, C., AND RIVEST, R. 1990. Introduction to Algorithms. McGraw-Hill Book
Company, New York, NY. 88.

FIDUCCIA, C. AND MATTHEYSES, R. 1982. A linear-time heuristic for improving network partitions.
In Proceedings of the 19th Design Automation Conference. 241–247.

FRIEDMAN, V. AND LIU, S. 1984. Dynamic logic CMOS circuits. IEEE J. Solid State Circ. 19, 2
(Apr.), 265.

FUKUI, M., SHINOMIYA, N., AND AKINO, T. 1995. A new layout synthesis for leaf cell design. In
Proceedings of the 1995 ASP Design Automation Conference. 259–263.

GUPTA, A. AND HAYES, J. P. 1997. CLIP: An optimizing layout generator for two-dimensional CMOS
cells. In Proceedings of the 34th Design Automation Conference. 452–455.

HANAWA, M., KANEKO, K., KAWASHIMO, T., AND MARUYAMA, H. 1996. A 4.3ns 0.3mm CMOS 54x54b
multiplier using precharged pass-transistor logic. In Proceedings of the 1996 International Solid-
State Circuits Conference. 265.

HELLER, L., GRIFFIN, W., DAVIS J., AND THOMAS, N. 1984. Cascode voltage switch logic: A differential
CMOS logic family. In Proceedings of the 1984 International Solid-State Circuits Conference. 17.

HSIEH, Y., HUANG, C., LIN, Y., AND HSU, Y. 1991. LiB: A CMOS cell compiler. IEEE Trans. Comput.-
Aided Des. 10, 8 (Aug.), 994–1005.

KLASS, F. 1998. “Semi-dynamic and dynamic flip-flops with embedded logic. In Proceedings of
the 1998 Symposium VLSI Ciruits. 109.

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 1, January 2003.

106 • Riepe and Sakallah

KOWALESKI, J., WOLRICH, G., FISCHER, T., DUPCAK, R., KROESEN, P., PHAM, T., AND OLESIN, A. 1996. A
dual-execution pipelined floating-point CMOS processor. In Proceedings of the 1996 International
Solid-State Circuits Conference. 359.

LEFEBVRE, M. AND SKOLL, D. 1992. PicassoII: A CMOS leaf cell synthesis system. In Proceedings
of the 1992 MCNC International Workshop on Layout Synthesis, vol. 2. 207–219.

LEFEBVRE, M., MARPLE, D., AND SECHEN, C. 1997. The future of custom cell generation in physical
synthesis. In Proceedings of the 1997 Design Automation Conference. 446–451.

LU, F. AND SAMUELI, H. 1993. A 200-MHz CMOS pipelined multiplier-accumulator using a quasi-
domino dynamic full-adder cell design. IEEE J. Solid State Circ. 28, 2 (Feb.), 125.

MAKINO, H., SUZUKI, H., MORINAKA, H., NAKASE, Y., MASHIKO, K., AND SUMI, T. 1996. A 286 MHz
64-b floating point multiplier with enhanced CG operation. IEEE J. Solid State Circ. 31, 4 (April),
510.

MATSUI, M., HARA, H., UETANI, Y., KIM, L.-S., NAGAMATSU, T., WATANABI, Y., CHIBA, A., MATSUDA, K.,
AND SAKURAI, T. 1994. A 200 MHz 13 mm2 2-D DCT macrocell using sense-amplifying pipeline
flip-flop scheme. IEEE J. Solid State Circ. 29, 12 (Dec.), 1484.

MAZIASZ, R. L. AND HAYES, J. P. 1992. Layout Minimization of CMOS Cells. Kluwer Academic
Publishers, Boston, MA.

MONTANERO, J., WITEK, R., ANNE, K., BLACK, A., COOPER, E., DOBBERPUHL, D., DONAHUE, P., ENO, J.,
FARELL, A., HOEPPNER, G., KRUCKEMYER, D., LEE, T., LIN, P., MADDEN, L., MURRAY, D., PEARCE, M.,
SANTHANAM, S., SNYDER, K., STEPHANY, R., AND THIERAUF, S. 1996. A 160 MHz 32b 0.5 W CMOS
RISC microprocessor. In Proceedings of the 1996 International Solid-State Circuits Conference.
215.

MURATA, H., FUJIYOSHI, K., NAKATAKE, S., AND KAJITANI, Y. 1995. Rectangle packing based module
placement. In Proceedings of the 1995 International Conference on Computer-Aided Design. 472–
479.

PAPADIMITRIOU, C. AND STEIGLITZ, K. 1982. Combinatorial optimization algorithms and complexity.
Prentice-Hall, Englewood Cliffs, NJ. 413.

POIRIER, C. 1989. Excellerator: Custom CMOS leaf cell layout generator. IEEE Trans. Comput.-
Aided Des. 8 (July), 744–755.

RIEPE, M. AND SAKALLAH, K. 1999. Transistor-level micro-placement and routing for two-
dimensional digital VLSI cell synthesis. In Proceedings of the 1999 International Symposium
on Physical Design. 74–81.

RIEPE, M. 1999. Transistor-level micro-placement and routing for two-dimensional digital VLSI
cell synthesis. Ph.D dissertation, The University of Michigan, Ann Arbor, MI.

ROGENMOSER, R. AND HUANG, Q. 1996. An 800-MHz 1-µm CMOS pipelined 8-b adder using true
single-phase clocked logic-flip-flops. IEEE J. Solid State Circ. 31, 3 (Mar.), 405.

RUTENBAR, R. 1989. Simulated annealing algorithms: An overview. IEEE Circ. Dev. 5, 1 (Jan.)
19–26.

SAIKA, S., FUKUI, M., SHINOMIYA, N., AND AKINO, T. 1997. A two-dimensional transistor placement
algorithm for cell synthesis and its application to standard cells. IEICE Trans. Fund., E80–A, 10
(Oct.), 1883–1891.

SECHEN, C. AND SANGIOVANNI-VINCENTELLI, A. 1985. The TimberWolf placement and routing pack-
age. IEEE J. Solid State Circ. SC-20, 2 (Apr.), 510–522.

SERDAR, T. AND SECHEN, C. 1999. AKORD: Transistor level and mixed transistor/gate level place-
ment tool for digital datapaths. In Proceedings of the 1999 International Conference on Computer-
Aided Design. 91–97.

SHAMS, A. AND BAYOUMI, M. 1998. A new full adder cell for low-power applications. In Proceedings
of the 1998 Great Lakes Symposium on VLSI. 47.

SHIMAZU, Y., KENGAKU, T., FUJIYAMA, T., TERAOKA, E., OHNO, T., TOKUDA, T., TOMISAWA, O., AND TSUJIMICHI,
S. 1989. A 50MHz 24b floating-point DSP. In Proceedings of the 1996 International Solid-State
Circuits Conference. 45.

SILBERMAN, J., AOKI, N., BOERSTLER, D., BURNS, J., DHONG, S., ESSBAUM, A., GHOSAL, U., HEIDEL, D.,
HOFSTEE, P., LEE, K., MELTZER, D., NGO, H., NOWKA, K., POSLUSZNY, S., TAKAHASHI, O., VO, I., AND

ZORIC, B. 1998. A 1.0GHz single-issue 64b PowerPC integer processor. In Proceedings of the
1998 International Solid-State Circuits Conference. p. 231.

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 1, January 2003.

Transfer Placement for Noncomplementary Cell Synthesis • 107

SOMASEKHAR, D. AND ROY, K. 1996. Differential current switch logic: A low power DCVS logic
family. IEEE J. Solid State Circ. 31, 7 (July), 987.

STEPHANY, R., ANNE, K., BELL, J., CHENEY, G., ENO, J., HOEPPNER, G., JOE, G., KAYE, R., LEAR, J., LITCH,
T., MEYER, J., MONTANARO, J., PATTON, K., PHAM, T., REIS, R., SILLA, M., SLATON, J., SNYDER, K., AND

WITEK, R. 1998. A 200 MHz 32b 0.5 W CMOS RISC microprocessor. In Proceedings of the 1998
International Solid-State Circuits Conference. 239.

STETSON, S. 1997. University of Michigan, Ann Arbor, MI. Private communication.
SUZUKI, M., OHKUBO, N., YAMANAKA, T., SHIMIZU, A., AND SASAKI, K. 1993. A 1.5ns 32b CMOS ALU

in double pass-transistor logic. In Proceedings of the 1993 International Solid-State Circuits
Conference. 91.

TANI, K. ET AL. 1991. Two-dimensional layout synthesis for large-scale CMOS circuits. In Pro-
ceedings of the 1991 International Conference on Computer-Aided Design. 490–493.

UEHARA, T. AND VANCLEEMPUT, W. M. 1981. Optimal layout of CMOS functional arrays. IEEE
Trans. Comput. C-30, 5 (May), 305–312.

VAHIA, D. AND CIESIELSKI, M. 1999. Transistor level placement for full custom datapath cell design.
In Proceedings of the 1999 International Symposium on Physical Design. 158–163.

WANG, Z., JULLIEN, G., MILLER, W., WANG, J., AND BIZZAN, S. 1997. Fast Adders Using Enhanced
Multiple-Out-put Domino Logic. IEEE J. Solid State Circ. 32, 2 (Feb.), 209.

XIA, H., LEFEBVRE, M., AND VINKE, D. 1994. Optimization-based placement algorithm for BiCMOS
leaf cell generation. IEEE J. Solid State Circ. 29, 10 (Oct.), 1227–1237.

YANO, K., SASAKI, Y., RIKINO, K., AND SEKI, K. 1996. Top-down pass-transistor logic design. IEEE
J. Solid State Circ. 31, 6 (June), 797.

Received December 2000; accepted March 2002

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 1, January 2003.

