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ABSTRACT
Image clustering has been a critical preprocessing step for
vision tasks, e.g., visual concept discovery, content-based
image retrieval. Conventional image clustering methods use
handcraft visual descriptors as basic features via K-means,
or build the graph within spectral clustering. Recently, rep-
resentation learning with deep structure shows appealing
performance in unsupervised feature pre-treatment. How-
ever, few studies have discussed how to deploy deep repre-
sentation learning to image clustering problems, especially
the unified framework which integrates both representation
learning and ensemble clustering for efficient image cluster-
ing still remains void. In addition, even though it is widely
recognized that with the increasing number of basic parti-
tions, ensemble clustering gets better performance and lower
variances, the best number of basic partitions for a given
data set is a pending problem. In light of this, we propose
the Infinite Ensemble Clustering (IEC), which incorporates
the power of deep representation and ensemble clustering in
a one-step framework to fuse infinite basic partitions. Gen-
erally speaking, a set of basic partitions is firstly generated
from the image data. Then by converting the basic parti-
tions to the 1-of-K codings, we link the marginalized auto-
encoder to the infinite ensemble clustering with i.i.d. basic
partitions, which can be approached by the closed-form so-
lutions. Finally we follow the layer-wise training procedure
and feed the concatenated deep features to K-means for final
clustering. Extensive experiments on diverse vision data sets
with different levels of visual descriptors demonstrate both
the time efficiency and superior performance of IEC com-
pared to the state-of-the-art ensemble clustering and deep
clustering methods.

CCS Concepts
•Information systems→Clustering; •Theory of com-
putation → Unsupervised learning and clustering;
•Computing methodologies → Ensemble methods;
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1. INTRODUCTION
Image clustering has been identified as one of the most

critical steps for many vision applications, e.g., storyline
reconstruction from photo streams [23, 24], automatic vi-
sual concept discovery [25], 3D construction from image
collections [15], finding iconic images [6, 36] and web-scale
fast image clustering [1, 19]. However, most existing im-
age clustering methods use either feature engineering based
features [11, 33] or discriminant deep features trained by
well-established deep Convolutional Neural Network (CNN)
model [8, 14]. As a result, they did not intentionally learn
the representation along with the clustering, or in other
words, build a joint clustering and representation learning
framework. It is especially useful for high-performance im-
age clustering systems, where the learned representation and
clustering strategy need substantial interactions for better
performance [31, 32, 28].

Recently, representation learning attracts substantial re-
search attention, which has been widely adopted as the un-
supervised feature pre-treatment [4]. The layer-wise training
and the followed deep structure are able to capture the visual
descriptors from coarse to fine [5, 20]. Notably, there are a
few deep clustering methods proposed recently, working well
with either feature vectors [37] or graph Laplacian [21, 26],
towards high-performance generic clustering tasks. There
are two typical problems with regard to the deep clustering
approaches: (1) how to seamlessly integrate the “deep” con-
cept into the conventional clustering framework, (2) how to
solve it efficiently. Few attempts have been made for the first
problem [21, 40], however, most of which sacrifice the time
efficiency. They follow the conventional training strategy for
deep models, whose complexity will be in super-liner with
respect to the number of samples. A recent deep linear cod-
ing framework attempts to handle the second problem [37],
and preliminary results demonstrate its time efficiency with
comparable performance on large-scale data sets. However,
its performance on vision data has not been thoroughly eval-
uated yet, given different visual descriptors and tasks.

In order to obtain a robust clustering result for computer
vision applications, ensemble clustering is often used due to
its high performance and robustness. Tremendous efforts
have been devoted to thrive this area in different perspec-
tives [16, 39, 45]. These studies can be roughly generalized
into two categories: the methods based on co-association



Figure 1: Framework of IEC. We apply marginalized
Denoising Auto-Encoder to generate infinite ensem-
ble members by adding drop-out noise and fuse them
into the consensus one. The figure shows the equiv-
alent relationship between IEC and mDAE.

matrix or utility function. Although ensemble clustering
outperforms the tradition clustering methods, [45] pointed
out that different generation strategies for basic partitions
have great impacts on the success of ensemble clustering,
besides the number of basic partitions determines the ro-
bustness [35]. It has been widely recognized that with the
increasing number of basic partitions, ensemble clustering
achieves better performance and lower variance [45, 35].
However, the best number of basic partitions for a given data
sets still remains an open problem. Too few basic partitions
cannot exert the capacity of ensemble clustering, while too
many basic partitions lead to unnecessary computational re-
source waste. Here comes the third problem that (3) can we
use the infinite ensemble basic partitions to maximize the
capacity of ensemble clustering with a low computational
cost?

In this work, we simultaneously manage to tackle the three
problems mentioned above, and conduct extensive experi-
ments on image data sets with different visual descriptors
for demonstration. Our new model links the marginalized
denoising auto-encoder to ensemble clustering and leads to
a natural integration named “Infinite Ensemble Clustering”
(IEC), which is simple yet effective and efficient. To that
end, we first generate a moderate number of basic parti-
tions, as the basis for the ensemble clustering. Second, we
convert the preliminary clustering results from the basic par-
titions to 1-of-K codings, which disentangles dependent fac-
tors among data samples. Then the codings are expanded
infinitely by considering the empirical expectation over the
noisy codings through the marginalized auto-encoders with
the drop-out noises. Finally, we run K-means on the learned
representations to obtain the final clustering. The frame-
work of IEC is demonstrated in Figure 1. The whole process
is similar to marginalized Denoising Auto-Encoder (mDAE).
Several basic partitions are fed into the deep structure with
drop-out noises in order to obtain the expectation of the
co-association matrix. It is worthy to note that IEC has
roughly linear O(n) time complexity, which can be used for
large-scale data sets. Extensive results on diverse vision
data sets show that our IEC framework works fairly well
with different visual descriptors, in terms of time efficiency
and clustering performance, and moreover some key impact
factors are thoroughly studied as well. Although we focus
on image clustering in this work, IEC is general enough to
handle clustering problems of other domains.

We highlight our contributions as follows.

• We propose a framework called Infinite Ensemble Clus-
tering (IEC) which integrates the deep structure and
ensemble clustering. By this means, the complex en-
semble clustering problem can be solved with a stacked
marginalized Denoising Auto-Encoder structure in an
efficient way.

• Within the marginalized Denoising Auto-Encoder, we
fuse infinite ensemble members into a consensus one by
adding drop-out noises, which maximizes the capacity
of ensemble clustering.

• Extensive experimental results on numerous real-world
data sets with different levels of features demonstrate
IEC has obvious advantages on effectiveness and effi-
ciency compared with the state-of-the-art deep clus-
tering and ensemble clustering methods, and IEC is a
promising tool for large-scale image clustering.

2. RELATED WORK
Here we introduce the related work in terms of image clus-

tering, ensemble clustering and auto-encoder, and highlight
the difference between existing methods and ours.

2.1 Image Clustering & Ensemble Clustering
Image clustering has been a fundamental problem for many

vision applications, in particular with the popularity of photo
sharing websites such as Facebook, Instagram and Twitter.
Most of existing works focus on either specific vision prob-
lems, e.g., automatic visual concept discovery [25], 3D con-
struction from image collections [15], storyline reconstruc-
tion from photo streams [23, 24], finding iconic images [6,
36], or on web-scale memory efficient fast clustering [1, 19].
In this work, we develop a generic image clustering method
that naturally integrates the“deep”thought with the ensem-
ble clustering. It can be easily deployed to different vision
tasks as the basic clustering tool [15, 23, 24, 25], and well
balance the performance and running time.

On the other hand, the hashing or binary tricks for memory-
efficient web-scale clustering manage to accelerate linear clus-
tering methods [1, 19] and achieve comparable performance
on large-scale systems. Our method is a competitive comple-
ment to those methods in terms of accuracy, as ours usually
performs better than those with K-means by a large-margin
(See Table 2 and 3). In addition, our method can be eas-
ily deployed in a distributed system as the time consuming
basic partitions are generated independently, binarized and
hashed with further optimizations [18, 44]. However, these
discussions are beyond the scope of this paper.

Ensemble clustering, also known as consensus clustering
or cluster aggregation, aims to fuse several existing basic
partitions into an integrated one. Tremendous efforts have
been made to solve ensemble clustering. The existing work
can be roughly generalized into two categories according the
different levels of similarity. The first category employs the
utility function to measure the similarity at the partition-
level between the consensus clustering and multiple basic
partitions. This kind of methods usually finds the final
clustering result by maximizing the utility function value.
For instance, [41] proposed a Quadratic Mutual Informa-
tion based objective function for consensus clustering, and
further extended their work to use the EM algorithm with



a finite mixture of multinomial distributions for consensus
clustering [42]. Along this line, Wu et al. [45] proposed K-
means-based Consensus Clustering (KCC) and transferred
the consensus clustering into a K-means clustering problem
with different KCC utility functions. In addition, there are
some other interesting objective functions for the consensus
clustering, such as [27, 34]. The second category summarizes
the information of basic partitions into a co-association ma-
trix, which counts how many times two instances occur in
the same cluster. Therefore, the co-association matrix can
be regarded as the similarity matrix based on the instance-
level, base on which any graph partition algorithm can be
conducted for the final clustering. For example, [16] applied
the agglomerative hierarchical clustering, and [39] developed
three graph-based algorithms for consensus clustering. Re-
cently, Liu et al. [29] proposed a spectral ensemble clustering
method to transform it as a weighted K-means problem and
built the connection of these two kinds of ensemble clustering
methods. Other methods include Relabeling and Voting [2],
Locally Adaptive Cluster based methods [13], genetic algo-
rithm based methods [48], and still many more. Although
much efforts have been made to design effective and efficient
algorithms, the number of basic partitions is still an open
unsolved problem.

2.2 Auto-encoder
Auto-Encoder (AE) is a building block of deep struc-

ture that learns hidden and compressed representations (i.e.,
codings) from data [3]. The motivation of auto-encoder
is to transform inputs into outputs with the least possible
amount of deformation. Moreover, stacked Auto-Encoder
(SAE) can be developed by inserting multiple hidden lay-
ers to auto-encoder, which is one of the most popular deep
learning architectures. In reality, learning from the noisy or
corrupted data is a challenging problem. Denoising Auto-
Encoder (DAE) and stacked DAE learn effective represen-
tations by reconstructing input data from artificial corrup-
tions [43]. Marginalized Denoising Auto-Encoder (mDAE)
approximately marginalizes out the corruptions during train-
ing, taking into account infinitely many corrupted copies of
training data [9, 10]. Due to the flexibility and impressive
learning capability, auto-encoder and its variants have been
successfully applied to many scenarios, such as face recogni-
tion [22], domain adaptation [10, 12], and image classifica-
tion [47].

Most recently, a few auto-encoder based methods have
been proposed for graph clustering. [38] augmented the loss
function of auto-encoder by incorporating a constraint of the
distance between samples and centroids. [21] built a deep
embedding network using auto-encoder, and incorporated
locality-preserving and group sparsity constraints to the loss
function of deep network for clustering-oriented representa-
tions. [40] revealed the similarity between auto-encoder and
spectral clustering, and presented a GraphEncoder method
based on sparse auto-encoder. [37] proposed a deep learning
coding approach, which jointly learns feature transforms and
discriminative codings for fast graph clustering. However,
the connection between auto-encoder and ensemble cluster-
ing has not been explored.

In this paper, we aim to build the connection between en-
semble clustering and auto-encoder, and apply marginalized
Denoising Auto-Encoder to fuse infinite basic partitions for
image clustering.
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Figure 2: Performance distribution of basic parti-
tions. Y-axis represents the number of basic parti-
tions in each bin, and X-axis is the external measure-
ment Normalized Mutual Information (NMI). Here
Random Parameter Selection strategy is used to ob-
tain 100 sub data sets, on which K-means is con-
ducted with the cluster number varying from K to
2K, where K is the true cluster number; and finally
IEC is employed to fuse these basic partitions into
the consensus one.

3. PRELIMINARIES ANDPROBLEMDEF-
INITION

In this section, we introduce the preliminary knowledge
in terms of ensemble clustering and marginalized Denoising
Auto-Encoder, and then formulate the research problem.

3.1 Ensemble Clustering
The goal of ensemble clustering is to find a single par-

tition which agrees with existing basic partitions as much
as possible. It has been widely recognized that ensemble
clustering can help generate robust partitions, find bizarre
clusters, handle noise, outliers and sample variations, and
integrate solutions from multiple distributed or incomplete
sources of data or attributes [39, 41].

Before giving the formulation of ensemble clustering, we
demonstrate the power of ensemble clustering on Caltech101
and ORL in Figure 2. As can be seen, the performance of all
the basic partitions on Caltech101 locates in a wide range
from 0.5 to 0.9 in terms of Normalized Mutual Information
(NMI) and most of basic partitions are around 0.7, few of
them exceed 0.85; surprisingly, IEC produces a high-quality
partition which exceeds the best in all basic partitions. The
similar phenomenon also occurs on ORL. This indicates that
IEC can learn from the low-quality partitions and take use
of the rich diversity of basic ones to provide a high-quality
partition. In the following, we introduce how ensemble clus-
tering fuses different basic partitions and obtains the final
one.

Given a set of r basic partitions of the data matrix X:
H = {H(1),H(2), · · · ,H(r)} with the cluster number of H(i)

to be Ki, the goal is to fuse all the basic partitions into a
consensus partition H∗. Here basic partitions might be gen-
erated by the same clustering algorithm with different pa-
rameters, or by the same clustering algorithm with different
features or even by several different clustering algorithms.
Although ensemble clustering can be roughly generalized
into two categories, based on co-association matrix or utility
function, Liu et al. [29] built a connection between the meth-
ods based on co-association matrix and utility functions and
pointed out the co-association matrix plays a determinative
role in the success of ensemble clustering. Thus, here we
focus on the methods based on co-association matrix.



0.2

0.4

0.6

0.8

10 20 30 40 50 60 70 80 90

N
M

I 
b

y
 K

C
C

 

10 20 30 40 50 60 70 80 90

(a) mm

0.35

0.4

0.45

0.5

0.55

0.6

0.65

1 2 3 4 5 6 7 8 9

N
M

I 
b

y
 K

C
C

10 20 30 40 50 60 70 80 90

(b) reviews

Figure 3: Performance of different numbers of basic
partitions via KCC on mm and reviews datasets. X-
axis is the number of basic partitions. With increas-
ing numbers of basic partitions, the performance
goes up and the variance becomes narrow.

For the ensemble clustering with co-association matrix,
the representative methods summarize r basic partitions
into a co-association matrix as follows:

S(x,y) =
1

r

r∑
i=1

δ(H(i)(x),H(i)(y)), (1)

where δ(·) denotes the Kronecker delta function, which re-
turns 1 with two identical input values and returns 0 with
different input values. We can regard S as a similarity ma-
trix between a pair of instances, which simply counts the
co-occurrence number in the same cluster in each basic par-
tition. By this means, ensemble clustering problem is rede-
fined as a classical graph partition problem, so that based
on the co-association matrix S, some clustering rules or loss
functions can be derived in order to obtain the final consen-
sus clustering.

Next, we introduce the impact of the number of basic
partitions by the following theorem.

Theorem 1. (Stableness [35]) For any ε > 0, there exists
a matrix S0, such that

lim
r→∞

P (||S− S0||
2
F > ε) = 0,

where || · ||2F denotes the Frobenius norm.

From the above theorem, we have the conclusion that al-
though basic partitions might be greatly different from each
other due to different generation strategies, the normalized
co-association matrix becomes stable with the increase of the
number of basic partitions r. From our previous experimen-
tal results [30] in Figure 3, it is easy to observe that with the
increasing number of basic partitions, the performance of en-
semble clustering goes up and becomes stable. However, the
best number of basic partitions for a given data set is difficult
to set. Too few basic partitions can not exert the capacity of
ensemble clustering, while too many basic partitions lead to
unnecessary computational resource waste. Therefore, fus-
ing infinite basic partition is addressed in this paper, instead
of answering the best number of basic partitions for a given
data set. According to Theorem 1, we expect to fuse infinite
basic partitions to maximize the capacity of ensemble clus-
tering. Since we cannot generate infinite basic partitions,
how to obtain a stable co-association matrix S and calcu-
late H∗ in an efficient way is highly needed, which is also
one of our motivations. In Section 4, we employ mDAE to
equivalently obtain the“infinite”basic partitions and achieve
the expectation of co-association matrix.

3.2 Marginalized Denoising Auto-encoder
Denoising Auto-Encoders (DAEs) have been successfully

used to learn new representations for a wide range of ma-
chine learning tasks [17, 7]. Usually DAE is implemented as
a single-hidden-layer neural network where the input is the
corrupted data by certain noises and the output is the clean
data. The goal of DAE is to make the output to be as close
as possible to the clean data x after learning. Usually a loss
function �(x,y) is employed to measure the reconstruction
error as follows.

1

n

n∑
i=1

1

m

m∑
j=1

�(xi, f(x̃
j
i )), (2)

where n is the number of data points, m is the times of
corrupted data, xi is the i-th clean data point and x̃j

i is the

i-th data point in j-th corruption, and f(x̃j
i )) = g ◦h(x̃j

i )) is

the output of xj
i , where g and h are the encoder and decoder,

respectively.
After getting the one-layer hidden representation z = h(x̃),

we can continue to use this strategy by using z as the input
to obtain deep representation for feature generation, which
is called Stacked Denoising Auto-encoder.

The disadvantage of DAE is to explicitly corrupt x by m

times to get multiple x̃, which enlarges the training sam-
ples and increases the computational cost. Recently, Chen
et al. [9, 10] proposed the marginalized Denoising Auto-
Encoder (mDAE) to overcome this challenge by taking use
of the expected average loss as follows,

1

n

n∑
i=1

Ep(x̃i|xi)[�(xi, f(x̃i))]. (3)

For a long time, auto-encoder and its variants are regarded
as a powerful feature generation tool. Actually it can also
be used as an optimization tool. In the following, we will
give another interpretation of auto-encoder.

3.3 Problem Definition
Deep structure and clustering techniques are powerful tools

for computer vision and data mining applications. Espe-
cially, ensemble clustering attracts a lot of attention due
to its appealing performance. However, these two powerful
tools are usually used separately. Notice that the perfor-
mance of ensemble clustering heavily depends on the basic
partitions. As mentioned before, co-association matrix S is
the key factor for the ensemble clustering and with the in-
crease of basic partitions, the co-association matrix becomes
stable. According to Theorem 1, the capability of ensemble
clustering goes to the upper bound with the number of basic
partitions r → ∞, Then we aim to seamlessly integrate deep
concept and ensemble clustering in a one-step framework:
Can we fuse infinite basic partitions for ensemble clustering
in a deep structure?

The problem is very straightforward, but it is quite diffi-
cult. The challenges of the problem lie in three folds:

• How to generate infinite basic partitions;

• How to seamlessly integrate the deep concept within
ensemble clustering framework;

• How to solve it in a highly efficient way.



4. INFINITE ENSEMBLE CLUSTERING
Here we first uncover the connection between ensemble

clustering and auto-encoder. Next, marginalized Denoising
Auto-Encoder is applied for the expectation of co-association
matrix, and finally we propose our method and give the cor-
responding analysis.

4.1 From Ensemble Clustering to Auto-encoder
It seems that there exists no explicit relationship between

ensemble clustering and auto-encoder due to their respec-
tive tasks. The aim of ensemble clustering is to find a clus-
ter structure based on basic partitions, while auto-encoder
is usually used for better feature generation. However, by
taking a close look at the objective function in Eq. 2 and
Eq. 3, we find that auto-encoder can be regarded as an op-
timization method for minimizing the loss function.

Recalling that the goal of ensemble clustering is to find
a single partition which agrees the basic ones as much as
possible, we can understand it in the opposite way that
the consensus partition has the minimum loss to present
all the basic ones. After we summarize all the basic par-
titions into the co-association matrix S, spectral clustering
or some other graph partition algorithms can be conducted
on the co-association matrix to obtain the final consensus
result. Taking spectral clustering as an example, we aim to
find a n×K low-dimensional space to represent the original
input. Each column of low-dimensional matrix is a base for
spanning the space. Then K-means can be run on that for
the final partition. Similarly, the function of auto-encoder
is also to learn a hidden representation with d dimensions
with “carrying” as much as possible information with the in-
put, where d is a user pre-defined parameter. Therefore, to
some extent spectral clustering and auto-encoder have the
similar function to learn new representations according to
minimizing certain objective function; the difference is that
in spectral clustering, the dimension of new representation
is K, while auto-encoder produces d dimensions. From this
view, auto-encoder is more flexible than spectral clustering.

Therefore, we have another interpretation of auto-encoder,
which not only can generate robust features, but also can be
regarded as an optimization method for minimizing the loss
function. By this means, we can feed the co-association ma-
trix into auto-encoder to get the new representation, which
has the similar function with spectral clustering, and run K-
means on that to obtain the consensus clustering. For the
efficiency issue, it is not a good choice to use auto-encoder
on the ensemble clustering task due to the large space com-
plexity of co-association matrix O(n2). We will address this
issue in the next subsection.

4.2 The Expectation of Co-AssociationMatrix
According to Theorem 1, with the number of basic par-

titions going to infinity, the co-association matrix becomes
stable. Before answering how to generate infinite ensem-
ble members, we first solve how to increase the number of
basic partitions given the limited ones. The naive way is
to apply some generation strategy on the original data to
produce more ensemble members. The disadvantages lie in
two folds: (1) time consuming, (2) sometimes we only have
the basic partitions, and the original data are not accessi-
ble. Therefore, without the original data, producing more
basic partitions with the limited one is like a clone problem.
However, simply duplicating the ensemble members does not

Algorithm 1 The algorithm of Infinite Ensemble Clustering

Input: H(1), · · · ,H(r),: r basic partitions;
l: number of layers for mDAE;
p: noise level;
K: number of clusters.

Output: optimal H∗;
1: Build the binary matrix B;
2: Apply l layers stacked mDAE with p noise level to get

the mapping matrix W by Eq. 4;
3: Run K-means on BWT to get H∗.

work. Here we make several copies of basic partitions and
corrupt them with erasing some labels in basic partitions to
get new ones. By this means, we have extra incomplete ba-
sic partitions and Theorem 1 also holds for incomplete basic
partitions.

By this strategy, we just amply the size of ensemble mem-
bers, which is still far from the infinity. To solve this chal-
lenge we use the expectation of co-association matrix in-
stead. Actually, S0 is just the expectation of S, which means
if we obtain the expectation of co-association matrix as an
input for auto-encoder, our goal can be achieved. Since the
expectation of co-association matrix cannot be obtained in
advance, we intend to calculate it during the optimization.

Inspired by the marginalized Denoising Auto-Encoder [10],
which involves the expectation of certain noises during the
training, we corrupt the basic partitions and marginalize
it for the expectation. By adding drop-out noise to basic
partitions, some elements are set to be zero, which means
some instances are not involved during the basic partition
generation. By this means, we can use marginalized Denois-
ing Auto-Encoder to finish the infinite ensemble clustering
task. If we take a look at Eq. 3, the function f can be lin-
ear or non-linear. In this paper, for efficiency issue we use
the linear version for mDAE [10] since it has a close-form
formulation.

4.3 The Proposed Method
So far, we solve the infinite ensemble clustering problem

with marginalized Denoising Auto-Encoder. Before con-
ducting experiments, we notice that the input of mDAE
should be the instances with independent and identically
distribution; however, the co-association matrix can be re-
garded as a graph, which disobeys this assumption. To solve
this problem, we introduce a binary matrix B.

Let B = {b(x)} be a binary data set derived from the set
of r basic partitions H as follows:

b(x) = 〈b(x)1, · · · , b(x)r〉, b(x)i = 〈b(x)i1, · · · , b(x)iKi
〉,

b(x)ij =

{
1, if H(i)(x) = j

0, otherwise
.

We can see that the binary matrix B is a n × d matrix,
where d equals

∑r

i=1 Ki. It concatenates all the basic parti-
tions with 1-of-Ki coding, where Ki is the cluster number in
the basic partition H(i). With the binary matrix B, we have
BBT = S. It indicates that the binary matrix B has the
same information with the co-association matrix S. Since B
obeys the independent and identically distribution, we can
put the binary matrix as input for marginalized Denoising
Auto-Encoder.



Table 1: Experimental Data Sets
Data set Type Feature #Instance #Feature #Class #MinClass #MaxClass CV Density
letter character low-level 20000 16 26 734 813 0.0301 0.9738
MNIST digit low-level 70000 784 10 6313 7877 0.0570 0.1914
COIL100 object middle-level 7200 1024 100 72 72 0.0000 1.0000
Amazon object middle-level 958 800 10 82 100 0.0592 0.1215
Caltech object middle-level 1123 800 10 85 151 0.2087 0.1638
Dslr object middle-level 157 800 10 8 24 0.3857 0.1369
Webcam object middle-level 295 800 10 21 43 0.1879 0.1289
ORL face middle-level 400 1024 40 10 10 0.0000 1.0000
USPS digit middle-level 9298 256 10 708 1553 0.2903 1.0000
Caltech101 object high-level 1415 4096 5 67 870 1.1801 1.0000
ImageNet object high-level 7341 4096 5 910 2126 0.3072 1.0000
Sun09 object high-level 3238 4096 5 20 1264 0.8970 1.0000
VOC2007 object high-level 3376 4096 5 330 1499 0.7121 1.0000

(a) Digit (b) Face (c) Car

Figure 4: Sample Images. (a) MNIST is a 0-9 digits data sets in grey level, (b) ORL contains faces of 40
people with different poses and (c) Sun09 is an object data set with different types of cars.

The algorithm is summarized in Algorithm. 1. The first
line is to build the binary matrix B. Then we add the con-
stant 1 at the last column of B and corrupt it with p level
drop-out noise. Let q = [1 − p, · · · , 1 − p, 1] ∈ R

d+1 and
Σ = BTB. The corresponding mapping for W between
input and hidden representations is in closed form as:

W = E[P]E[Q]−1
, (4)

where E[P]ij = Σijqj and E[Q]ij = Σijqiτ (i, j,qj). Here
τ (i, j,qj) returns 1 with i = j, and returns qj with i �= j.

After getting the mapping matrix, BWT is used as the new
representation. By this means, we can recursively apply
marginalized Denoising Auto-Encoder to obtain deep hidden
representations. Finally, K-means is called to run on the
hidden representations for the consensus partition. Since
only r elements are non-zeros in each row of B, it is very
efficient to calculate Σ. Moreover, E[P] and E[Q] are both
(d + 1) × (d + 1) matrixes. Finally, K-means is conducted
on all the hidden representations. Therefore, our total time
complexity is O(ld3+IKnld), where l is the number of layers
of mDAE, I is the iteration number in K-means, K is the
cluster number, and d =

∑r

i=1 Ki 	 n. This indicates our
algorithm is linear to n, which can be applied for large-scale
clustering. Since K-means is the core technique in IEC, the
convergence is guaranteed.

5. EXPERIMENTAL RESULTS
In this section, we first introduce the experimental set-

tings, then showcase the effectiveness and efficiency of IEC
compared with the state-of-the-art deep clustering and en-
semble clustering methods. Finally, some impact factors of
IEC are thoroughly explored.

5.1 Experimental Settings
Data Sets. 13 real-world image data sets with true clus-

ter labels are used for experiments. Table 1 shows their

important characteristics, where #MinClass, #MaxClass,
CV and Density denote the instance number of the smallest
and biggest clusters, Coefficient of Variation statistic that
characterizes the degree of class imbalance, and the ratio of
non-zeros elements, respectively. In order to demonstrate
the effectiveness of our IEC, we select the data sets with dif-
ferent levels of features, such as pixel, Surf and deep learning
features. The first two are characters and digits data sets1,
the middle ones are the objects and digits data sets2 3 and
the last four data sets are with the deep learning features4.
In addition, these data sets contain different types of im-
ages, such as digits, characters, objects. Figure 4 shows
some samples of these data sets.

Comparative algorithms. To validate the effectiveness
of the IEC, we compare it with several state-of-the-art meth-
ods in terms of deep clustering methods and ensemble clus-
tering methods.

• K-means is the baseline method.

• MAEC [10] applies mDAE to get new representations
and runs K-means on it to get the partition. Here
MAEC1 uses the orginal features as the input, MAEC2
uses the Laplace graph as the input.

• GEncoder [40] is short for GraphEncoder, which feeds
the Laplace graph into the sparse auto-encoder to get
new representations.

• DLC [37] jointly learns the feature transform function
and discriminative codings in a deep mDAE structure.

• GCC [39] is a general concept of three benchmark
ensemble clustering algorithms based on graph: CSPA,
HGPA and MCLA, and returns the best result.

1
http://archive.ics.uci.edu/ml.

2
https://www.eecs.berkeley.edu/˜jhoffman/domainadapt.

3
http://www.cad.zju.edu.cn/home/dengcai.

4
http://www.cs.dartmouth.edu/˜chenfang.



Table 2: Clustering Performance of Different Algorithms Measured by Accuracy

Data Sets
Baseline Deep Clustering Method Ensemble Clustering Method
K-means MAEC1 MAEC2 GEncoder DLC GCC HCC KCC SEC IEC (Ours)

letter 0.2485 0.1163 N/A N/A 0.3087 0.2598 0.2447 0.2461 0.2137 0.2633
MNIST 0.4493 0.3757 N/A N/A 0.5498 0.5047 0.4458 0.6026 0.5687 0.6086

COIL100 0.5056 0.0124 0.5206 0.0103 0.5348 0.5382 0.5332 0.5032 0.5210 0.5464

Amazon 0.3309 0.4395 0.2443 0.2004 0.3653 0.3486 0.3069 0.3434 0.3424 0.3904
Caltech 0.2457 0.2787 0.2102 0.2333 0.2840 0.2289 0.2386 0.2618 0.2680 0.2983

Dslr 0.3631 0.4140 0.3185 0.2485 0.4267 0.4268 0.3949 0.4395 0.4395 0.5159

Webcam 0.3932 0.5085 0.3220 0.3430 0.5119 0.4305 0.3932 0.4203 0.4169 0.4983
ORL 0.5475 0.0450 0.3675 0.2050 0.5775 0.6300 0.6025 0.5450 0.5850 0.6300

USPS 0.6222 0.6290 0.4066 0.1676 0.6457 0.6211 0.6137 0.6857 0.6157 0.7670

Caltech101 0.6898 0.4311 0.5060 0.7753 0.7583 0.5152 0.7336 0.7611 0.9025 0.9866

ImageNet 0.6675 0.6601 0.3483 0.2892 0.6804 0.5765 0.7054 0.5986 0.6571 0.7075

Sun09 0.4360 0.4750 0.3696 0.3854 0.4829 0.4424 0.4235 0.4473 0.4732 0.4899

VOC2007 0.4565 0.4138 0.3874 0.4443 0.5130 0.5195 0.5044 0.5364 0.5124 0.5178

Table 3: Clustering Performance of Different Algorithms Measured by NMI

Data Sets
Baseline Deep Clustering Method Ensemble Clustering Method
K-means MAEC MAEC2 GEncoder DLC GCC HCC KCC SEC IEC (Ours)

letter 0.3446 0.1946 N/A N/A 0.3977 0.3444 0.3435 0.3469 0.3090 0.3453
MNIST 0.4542 0.3086 N/A N/A 0.5195 0.4857 0.5396 0.4651 0.5157 0.5420

COIL100 0.7719 0.0769 0.7794 0.0924 0.7764 0.7725 0.7815 0.7761 0.7786 0.7866

Amazon 0.3057 0.3588 0.1982 0.0911 0.3001 0.2882 0.3062 0.2947 0.2595 0.3198
Caltech 0.2043 0.1862 0.1352 0.1132 0.2104 0.1774 0.2094 0.2031 0.1979 0.2105

Dslr 0.3766 0.4599 0.2900 0.1846 0.4614 0.4113 0.4776 0.4393 0.4756 0.5147

Webcam 0.4242 0.5269 0.2316 0.3661 0.5280 0.4344 0.4565 0.4502 0.4441 0.5201
ORL 0.7651 0.2302 0.6268 0.4431 0.7771 0.7987 0.7970 0.7767 0.7858 0.8050

USPS 0.6049 0.4722 0.4408 0.0141 0.5843 0.6219 0.5187 0.6363 0.5895 0.6409

Caltech101 0.7188 0.4980 0.5200 0.6922 0.7669 0.6536 0.7747 0.7881 0.8747 0.9504

ImageNet 0.4287 0.4827 0.1556 0.0064 0.4117 0.3902 0.4375 0.4366 0.4366 0.4358
Sun09 0.2014 0.2787 0.0576 0.0481 0.2315 0.2026 0.2091 0.1803 0.1927 0.2197
VOC2007 0.2697 0.2653 0.1118 0.1920 0.2651 0.2588 0.2564 0.2607 0.2511 0.2719

• HCC [16] is an agglomerative hierarchical clustering
algorithm based on the co-association matrix.

• KCC [45] is a K-means-based consensus clustering
which transfers the ensemble clustering into a K-means
optimization problem.

• SEC [29] employs spectral clustering on co-association
matrix and solves it by weighted K-means.

In the ensemble clustering framework, we employ Random
Parameter Selection (RPS) strategy to generate basic par-
titions. Generally speaking, k-means is conducted on all
features with different numbers of clusters, varying from K

to 2K. To show the best performance of the comparative
algorithms, 100 basic partitions via RPS are produced for
boosting the comparative methods. Note that we set 5 layers
in deep clustering methods and for all clustering methods,
we set K to be the true cluster number for fair comparison.

Validation metric. Since the label information is avail-
able to these data sets, here we use two external metrics ac-
curacy and Normalized Mutual Information (NMI) to mea-
sure the performance. Note that accuracy and NMI are both
positive measurements, which means the larger, the better.
The computation details can be found in [46].

Environment. All the experiments were run on a Win-
dows standard platform of 64-bit edition,which has two Intel
Core i7 3.4GHz CPUs and 32GB RAM.

5.2 Clustering Performance
Table 2 and 3 show the clustering performance of different

algorithms in terms of accuracy and NMI. The best results
are highlighted in bold font. “N/A” denotes there is no re-
sult due to out of memory. As can be seen from the tables,
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Figure 5: Running time with different layers and
instances.

three observations are very clear. (1) In the deep clustering
method, MAEC1 performs the best and the worst on Ama-
zon and COIL100, respectively; on the contrary, MAEC2
gets reasonable result on COIL100 but low quality on Ama-
zon. Although we try our best to tune the number of neurons
in the hidden layers, GEncoder suffers from the worst per-
formance in all the comparative methods, even worse than
K-means. The high computational cost prohibits MAEC2
and GEncoder from handling large-scale data sets. Since
clustering belongs to the unsupervised learning, only re-



Table 4: Execution time of different ensemble clus-
tering methods by second
Data sets GCC HCC KCC SEC IEC (5 layers)
letter 383.89 1717.88 11.39 8.35 55.46
MNIST 112.44 19937.69 11.98 3.79 51.55
COIL100 21.27 170.02 4.99 3.09 14.93
Amazon 3.93 1.61 0.17 0.08 1.21
Caltech 3.55 2.12 0.23 0.11 1.43
Dslr 2.27 0.09 0.04 0.06 0.70
Webcam 2.09 0.14 0.04 0.05 0.90
ORL 6.81 0.04 0.21 0.21 14.11
USPS 7.66 160.41 1.73 0.53 5.48
Caltech101 1.21 1.68 0.15 0.09 0.53
ImageNet 3.83 52.47 1.40 0.32 1.76
Sun09 2.36 10.01 0.33 0.13 0.82
VOC2007 2.05 10.97 0.32 0.16 0.82

lying on deep structure makes little effect to improve the
performance. Instead DLC jointly learns the feature trans-
form function and discriminative codings in a deep structure,
which has the satisfactory results. (2) In most cases, ensem-
ble clustering is superior to the baseline method, even better
than deep clustering methods. The improvement is obvious
when applying ensemble clustering methods on the data sets
with high-level features, since high-level features have more
structural information. However, ensemble methods do not
work well on SUN09. One of the reasons might be the un-
balanced class structure, which prevents the basic clustering
algorithm K-means from uncovering the true structure and
further harms the performance of ensemble methods. (3)
Our method IEC gets the best results on most of 13 data
sets. It is worthy to note that the improvements are over
nearly 8%, 8% or 22% on Dslr, USPS and Caltech101, re-
spectively, which are rare in clustering field. Usually the per-
formance of ensemble clustering goes up with the increase
the number of basic partitions. In order to show the best
performance of the comparative ensemble clustering meth-
ods, we use 100 basic partitions. Here we can see that there
still exists large space to improve via infinite ensemble mem-
bers.

For efficiency, to make fair comparisons here we only re-
port the execution time of ensemble clustering methods. Al-
though additional time is needed for generating basic parti-
tions, k-means and parallel computation make it quite effi-
cient. Table 4 shows the average time of ten runs via these
methods. GCC runs three methods on small data sets but
runs two methods on large data sets, and HCC runs fast on
data sets containing few instances but struggles as the num-
ber of instances increases due to its O(n3) time complexity.
KCC, SEC and IEC are all K-means-based methods, which
are much faster than other ensemble methods. Since our
method only applies mDAE on basic partitions which has
the closed-form solution and then runs K-means on the new
representations, therefore IEC is suitable for large-scale im-
age clustering. Moreover, Figure 5 shows the running time
on MNIST and letter with different number of layers and
instances. We can see that the running time is linear to the
layer number and instant number, which verifies the high
efficiency of IEC. Therefore, if we only use one layer in IEC,
the execution time is similar to KCC and SEC.

5.3 Inside IEC: Factor Exploration
Next we thoroughly explore the impact factors of IEC

in terms of the number of layers, the generation strategy
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Figure 6: Performance of IEC with different layers.
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Figure 7: Impact of basic partition generation
strategies.

of basic partitions, the number of basic partitions, and the
noise level, respectively.

Number of layers. Since stacked marginalized Denois-
ing Auto-Encoder is used to fuse infinite ensemble members,
here we explore the impact of the number of layers. As can
be seen in Figure 6, the performance of IEC goes slightly
up with the increase of layers. Except that the second layer
has large improvements over the first layer on Caltech101,
IEC demonstrates the stable results on different layers, be-
cause only one-layer marginalized Denoising Auto-Encoder
calculates the expectation of co-association matrix. Usually
the deep representation is successful in many applications
on computer vision, here the default value of the number of
layers is set to be 5.

Generation strategy of basic partitions. So far we
rely solely on Random Parameter Selection (RPS) to gen-
erate basic partitions, with the number of clusters varying
in [K, 2K]. In the following, we demonstrate whether the
generation strategy will impact the performance of IEC.

Here Random Feature Selection (RFS) is proposed as a
comparison, which still uses k-means as the basic cluster-
ing algorithm with random selecting 50% original features
to obtain 100 basic partitions. Figure 7 demonstrates the
performance of KCC and IEC via RPS and RFS on 5 data
sets. As we can see that, IEC exceeds KCC in most cases of
RPS and RFS. When we take a close look, the performance
of IEC via RPS and RFS is almost the same, while KCC
produces large gaps between RPS and RFS on Caltech101
and Sun09 (See the ellipses). This indicates that although
the generation of basic partitions is of high importance to
the success of ensemble clustering, we can take use of infinite
ensemble clustering to alleviate the impact.

Number of basic partitions. The key problem of this
paper is to use limited basic partitions to achieve the goal
of fusing infinite ensemble members. Here we discuss the
impact of the number of basic partitions to ensemble clus-
tering. Figure 8 shows the performance of 4 ensemble clus-
tering methods on USPS. Generally speaking, the perfor-
mance of HCC, KCC and GCC goes up with the increase
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of the number of basic partitions and becomes stable when
enough basic partitions are given, which is consistent with
Theorem 1. It is worthy to note that IEC enjoys the high
performance even with 5 ensemble members. It is worthy
to note that for large-scale data sets, generating basic par-
tition suffers from high time complexity even with ensemble
process. Thus, it is appealing that IEC uses limited basic
partitions and achieves the high performance, which is suit-
able for tons of image clustering.

Noise level. The core idea of this paper is to obtain the
expectation of co-association matrix via adding the drop-out
noise. Figure 9 shows the results of IEC with different noise
level on four data sets. As can be seen that, the performance
of IEC is quite stable even to 0.5 noise level. Note that if
we set the noise level to zero, IEC will equivalently degrade
into KCC.

6. CONCLUSION
In this paper, we proposed a novel ensemble clustering al-

gorithm Infinite Ensemble Clustering (IEC) for image clus-
tering. Generally speaking, we built a connection between
ensemble clustering and auto-encoder, and applied marginal-
ized Denoising Auto-Encoder to fuse infinite incomplete ba-
sic partitions. Extensive experiments on 13 data sets with
different levels of features demonstrated our method IEC
had promising performance over the state-of-the-art deep
clustering and ensemble clusterings methods; besides, we
thoroughly explored the impact factors of IEC in terms of
the number of layers, the generation strategy of basic parti-
tions, the number of basic partitions, and the noise level to
show the robustness of our method.
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