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ABSTRACT

Urban traffic networks are large, dynamic systems which hema

a challenge in control engineering despite all of the sdierand
technological progress. The sheer size, wide spread obseand
control devices, and nonlinearities make such systems lecripe-
yond the scope of existing models, let alone control algorg. To
this end, control engineers have looked for unconventiomsdns
for modeling and control, in particular the technology ofltiau

agent systems whose appeal stems from their compositeenatur

flexibility, and scalability. This paper contributes toshévolving
technology by proposing a framework for multi-agent cohtrb

linear, dynamic systems. The framework decomposes a tentra

ized model predictive control problem into a network of cleah
but small sub-problems that are iteratively solved by tiséritiuted
agents. Theoretical results ensure convergence of thebdistd
iterations to a globally optimal solution. The frameworkaig-
plied to the signaling split control of traffic networks. Expments
conducted with simulation software indicate that the ragfent
framework attains performance comparable to conventionat
trol, such as the traffic-responsive urban control strategy

Categories and Subject Descriptors

F.2.1 [Analysis of Algorithms and Problem Complexity]: Nu-
merical Algorithms and Problems; 1.2.1Adificial Intelligence ]:
Distributed Atrtificial Intelligence; J.6omputer-aided Engineer-

ing]
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1. INTRODUCTION

Much of the improvements in urban traffic control can be at-

tributed to past advances in science and technology. T tetirexi

technology is changing the way traffic systems are designed a

operated. Today, modern operating centers receive tfédficdata
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from distributed sensors and implement control policiaggponse
to the prevailing traffic conditions. Yet, there is room forther
improvements in urban traffic control to cope with the insieg
volume of traffic which incurs pollution, excessive fuel samp-
tion, and prolonged journey times.

Over the last few years, theraffic-responsiveJrban Control
(TUC) strategy has drawn attention for its robustness aod ger-
formance, specially so under saturated traffic conditidd$. [Such
results have been corroborated in field applications iesiis Mu-

nich, Glasgow, Southampton, and Chania [3, 12, 16]. The TUC

framework models traffic flow using a variation of the storela
forward model originally proposed in [13], which uses purebn-
tinuous state and control variables allowing the com poitatif con-
trol policies with efficient algorithms. In its standard fior TUC
calculates the control signals with a two-stage multi-afale regu-
lator [11]: the first stage solves an unconstrained linedeatic-
regulator (LQR) problem that minimizes a quadratic functam
queue lengths and control signals; the second stage recfmser
sibility of the control signals produced by LQR, whereby ani o
timization problem is solved to minimize the distance of the
feasible solution to the feasible space. However, suchstage
procedure does not guarantee optimality [4]. To this endpdeh
predictive control (MPC) approach was proposed to explictn-
dle the constraints, this way guaranteeing control fekisiand
improving solution quality [9].

Alongside the progress on traffic-flow modeling and conteol,
great deal of research has advanced the technology of agefit
systems, notably in the fields of artificial intelligence audtware
engineering [15, 18]. This evolving technology seeks t@adde
agents of limited knowledge and abilities in a multi-agergami-
zation to perform tasks that are beyond the expertise aofidisid-
ual members. Such agents not only encapsulate informatign,
they also exhibit semi-autonomous behavior by employingeso
form of reasoning to cooperate with others for the interéshe
whole organization, negotiate to resolve conflicts, anches@m-
pete when driven by self-interest. The problem-solvinditgbof
a multi-agent system emerges from the interactions andatole
effort of the agents, not only their intelligent behavior.

Multi-agent frameworks were originally restricted to theldi of
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such as puzzle solving, planning, and combinatorial aearent.
More recently, control engineers realized that such fraonksvcan
be extended to operate dynamic systems, specially compgex d
tributed systems such as petrochemical plants and trasasioor
networks [19, 22, 23]. The operation of such complex, spatia
distributed dynamic systems is a formidable challenge tarob
engineering, to a great extent due to the intrinsic complesheer
size, and nonlinearities. Control engineers have turneid #tten-



tion to multi-agent systems whose appeal stems from theipos-
ite nature, flexibility, and scalability [24].

However, multi-agent systems are still a long way from deliv
ering this promise to complex dynamic systems. Much of the li
erature offers methodologies, general guidelines, orratise ad
hoc procedures lacking formal methods that ensure conveege
and stability. To this end, this paper proposes a framework f
controlling linear dynamic systems with a network of distiied
control agents. These dynamic systems arise from the omerc
nection of linear sub-systems with local input constraimppli-
cations are found in signaling split control in traffic netk® and
reaction control in petrochemical plants. Given dynamigatipns
and algebraic constraints, our framework formulates thamipa-
tion problem arising from model predictive control and eds to
decompose the MPC problem into a network of coupled, butlsmal
sub-problems to be solved by the agent network. An agenesens
only the state variables and sets the values of the contrialblas
of its sub-system, communicating with agents in the vigitotob-
tain the values of neighborhood variables and coordinadi #t-
tions. With a well-crafted problem decomposition and cauation
protocol, the solution iterates produced by the agents eafhbwn
to converge to a globally optimal solution to the MPC prohlem

In essence, the decision-making and cooperative conthal\ee
ior of the agents emerges from the solution of optimizatiosbp
lems. The work reported here builds upon preceding work en di
tributed control [6, 8] by exploiting the linear dynamicistture to
develop simpler models and algorithms.

In a representative traffic network, computational experita

| Cycle Time |

Figure 1: Signal cycle, lost time and cycle.

posed by constambst timesof a few seconds avoiding interference
amongst conflicting streams (Fig. 1).

The influence of traffic lights on traffic depends on four fasto
[10, 20]: stage specification, cycle duration, offset amgnye-
tions, and signaling split. Where split refers to the reltreen
percentage of the cycle time assigned to each stage.

2.1 UTN Modeling

A UTN modeled in accordance with the TUC strategy [11, 12]
is represented as a directed graph with lieks Z and junctions
j € J. SetsI; and O; denote, respectively, the incoming and
outgoing links of junctiory. Cycle timesC}, lost timesL;, turning
ratest. ., z € I;, w € Oj;, and saturation flows., z € I, are

are conducted to assess the performance of the proposed mult considered constant and known. For the sake of simpli€ity; C;

agent MPC framework. The purpose of the experiments is tdofo
First, the experiments compare a single, centralized agghta
network of distributed control agents at solving the MPChyem
for a number of initial conditions. Second, they comparentiuti-
agent approach with the TUC strategy using metrics provinjed
professional simulation package.

The remaining sections are structured as follows. Sectiofi 2
fers some basic concepts about urban traffic networks, aldtig
a description of the store-and-forward model of traffic flavd ahe
LQR strategy used by the TUC approach. Section 3 formulages t
MPC problem for split control as a linear dynamic system &ins
ing of a network of dynamically coupled sub-systems, one&mh
intersection. Last but not least, the section develops feqtede-
composition of the MPC problem into a network of sub-protdem
and outlines a distributed algorithm for the agent netwarkich
can be shown to converge to an optimal solution. Section drtep
results from numerical analyses designed to compare theaten
ized and distributed solution of the MPC problem and fromwsim

lated experiments aimed to compare the TUC LQR strategy with [
the multi-agent MPC approach. Section 4 makes some final re-

marks and suggests directions for future research.

2. URBAN TRAFFIC CONTROL

An UrbanTraffic Network (UTN) comprises a set of roads, ar-
terials and streets, known kisks, interconnected bjunctionsthat
may be controlled [11]. The traffic inside the network is died
into streamsof vehicles. Streams grouped in a same link define its
saturation flow which is the mean flow crossing the stop line of an
approach when the respective stream has the right of way(x,o
a sufficiently large upstream queue, and unobstructed dosam
links. The repeated sequence of signal combinations atctigum
is namedsignal cycle lIts duration is calleatycle timeor simply
cycle A stage or phase is a portion of a signal cycle in which a
set of streams has the r.o.w. For safety measures, stageseare

is assumed for all junctiong € J. Finally, the control signal of
junction j has a fixed number of stages belonging to the/Set
where subset, C Fj represents those where ligkhas the r.o.w.

Letting u;,; denote the green time of phasat junctionj, the
constraintZiEFj u;,s + L; = C must be enforced. Additionally,
wji € [Wfi™, u'] whereu[™ andu}’** are the minimum and
maximum allowable green times, respectively.

The main differential of this strategy is the use of a vapiatof
the store-and-forward model, where the control cycle isireqgl
to be greater than every cycle of the network. Thereforditraf
flow is modeled as purely continuous, allowing the use of ieffic
algorithms on the control signal computation.

The dynamics of network link is given by equation:

Az (k+1) =Tlg.(k) +d=(k) — f=(k) —s=(k)], (D)

where: . denotes the number of vehicles in link ¢. and f.
are, respectively, the inflow and outflow of linkduring period
kT, (k + 1)T], wherek = 1, 2, ... is a discrete time index and
T is the control intervald, is the demand, vehicles entering the
network not originating from adjacent links; and, finally, is the
exit flow at timek.

Since exit rates are known, the exit flow may be replaced for th
following equality: s, (k) = t.,0q.(k). In addition, one may for-
mulate the inflow of linkz asq. (k) = Zwelj tw,> fw(k), where
tw,- IS the turning rate towards link € O; coming from link
w € I;. Assuming that inflows and outflows of linkwith r.o.w.
are equal to their saturation flow,, equation (1) is written as:

2.k +1) =2 (k) + T|d.(k) — % > ue k)

AT

wZS’lU
+(1=te0) Y tT > uik) |,
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where the control signal; ; (k) is the green time for vehicles going
through junctionj during phase, whereasziellz ujs ; (k) is the
green time for vehicles leaving link Notice thatz leaves junction
j and entersj’. Generalizing equation (2) for all network links
leads to the matrix equation:

x(k+ 1) = Ax(k) + Bu(k) + T'd(k), (3)

where:x(k) is the state vectom (k) is the control vector contain-
ing signalsu;,;, Vi € Fj, Vj € J; d(k) is the vector containing
demandsl., Vz € Z; andA = I, B, andT are the state, input,
and disturbance matrices, respectively.

2.2 Split Control

In a traffic-responsive control strategy the signalingtspliist
be optimized according to the demands of involved streams. |

standard form, the TUC strategy uses the LQR theory to find an

efficient time-invariant gain matrix, which is simpler thaptimiz-
ing a physical criterion [11] but invariably achieving a sojtimal
control law. By assumingl(k) = 0, the dynamic system (3) be-
comes:

x(k +1) = Ax(k) + Bu(k), @)

allowing the application of the LQR methodology. The cohtaav
thereof does not account for feedforward terms, which iagtde
since the main goal is to attain a satisfactory gain matthxarthan
an optimized criterion.

Intending to minimize the risk of oversaturation and spitlk,
minimization of proportional occupancy of links is attergti.e.
x./x2*%, wherez**® is the capacity of link:. A quadratic crite-
rion to this end has the form:

T =5 3" Ux®)E + k) ),

k=0

®)

where@ and R are diagonal positive weighting matrices, respec-
tively semi-definite and definite. According to the LQR thea@n
infinite time horizon is used in (5) to achieve a time-invatieon-
trol law. As matrix@ weighs the states, that is, the number of ve-
hicles in the roads, the goal of minimizing the average oanap
is obtained by making its diagonal elements equal tar7**)?,
for the corresponding link € Z. Matrix R reflects the penalty
imposed on control effort, usually defined Bs= rI, wherer is
found experimentally.

Minimizing criterion (5) leads to the control law:

u(k) = u” — Lx(k), (6)

where:u(k) is the vector with green times; ;,Vj € J,Vi € F};
u” is the matching vector containing the nominal green timed; a
L is Ricatti’'s gain matrix, depending oA, B, @, and R, though
with small susceptibility to their variation [11].

As control constraints are not considered in the aforeropat

This problem is solved in real-time for each junctipwith an ef-
ficient algorithm [10], whose convergence is guaranteedrinra-
ber of steps less than or equal to the number of sthjg<f the
junction. Though this approach gives a feasible solutichpés not
satisfy the optimality conditions for system (4). Additaily, be-
cause no predictions are made, the multivariable regutetbaves
in a purely reactive way to unknown disturbances. On therothe
hand, the structure of matrik provides the regulator a gating ef-
fect preventing oversaturation in downstream links.

Previously published works [1, 9] report that significanpiaove-
ment may arise from the replacement of the usual LQR proce-
dure with a solution that accounts for system constraintsh a5
a model predictive control strategy. Generally speakinmoalel
predictive control approach is composed by [4, 17]:

e aprediction modelescribing satisfactorily the process dy-
namics in a finite time horizon;

e a cost functionwhich gives the control signal when mini-
mized; and

e asliding horizonof prediction and control, which is trans-
lated a step forward at each sample period, requiring the
computation of new control actions from which only that of
the actual time is implemented.

Following these premises the MPC problem for split consalast
as:

T

Pimin 3 %[x(kz)TQx(k:) +ulk—1)TRu(k—1)] (8a)
k=1
s.to:Vke T :
x(k +1) = Ax(k) + Bu(k) (8b)
Cu(k) > c (8c)
Du(k) = d (&8d)

where:x (k) is the system’s state and k) the control input at time
k; Q is positive semi-definite an@® positive definite weighting
matrices;,C' andc define the inequality constraint®, andd define
the equalities; and” = {0, ..., T — 1} is the time horizon.

3. MULTI-AGENT MPC

This section develops an MPC formulation for systems céonsis
ing of the interconnection of linear dynamic sub-systemih \a-
cal constraints, hereafter called linear dynamic netwofke split
control problem is cast as an MPC problem over a linear dyoami
network, where sub-systems correspond to intersectitats, \&ri-
ables correspond to vehicle queues, and control variabfFesent
green times. After the problem formulation, the sectiorsprds a
decomposition of the MPC problem into a network of couplad, b
small sub-problems that are solved iteratively by the agetwork.

control law, they are imposed in an ad hoc manner, through the This section reports theoretical properties of the decitipa, re-

following optimization problem for each junctighe J:

min Z (Uj,i — Uj,i)2 (7a)
Ui iCF,
S. to:
Ui+ L=y (7b)
i€F;
Uji € [uf™ u]'e"), Vi € Fj, (7¢c)

where U ; is the closest feasible solution in Euclidean space to
ijl

lating the MPC problem and sub-problem network, and outlime
distributed protocol to synchronize agent iterations. ditions are
given for the iterations of the agents to arrive at a solutmthe
centralized MPC problem.

3.1 Modeling and MPC Formulation

The dynamic representation of the traffic-flow derived frava t
store-and-forward modeling approach is convenientlyasgnted
as a system of interconnected sub-systems, one for each junc-
tion. Sub-systemn’s local state isx,, € R"™ and control signal
is u, € RP™. A directed graphG = (V, E) models the cou-
plings among the sub-systems: an &igj) € E means that the
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Figure 2: Traffic network. Figure 3: Dynamic coupling graph.

control signals from sub-systeninfluence the state of sub-system state and control signals prior to tinke
j directly. Assuming discrete-time dynamics, the state gqudor

sub-systemn is: Xm (k) = A% xm (0 +z > AL Briui(k —1)

1=14€I(m)
Xm(k’ + 1) mxm Z BmLuL (9) . . . . . :
By using this relation, collecting the control variablesviector

i€I(m) )
Um = (Um(0),...,am (T — 1)), and dropping the constant term
wherel(m) = {m} U {i : (i, m) € E} is the set oinput neigh- from the objective [5]F becomes:
bors of sub-systemm includingm, that is, the sub-systems affect- ) _ 1 T _
ing the state ofn. Given the current state of the network(0), P: min  f(a) = 3 Z Z Z u; Hmijuy
a centralized agent following the MPC strategy would solve t meMuiel(m) jel(m)
problem below at each sample instant: + Z z gl (11a)
meMiel(m)
P min Z Z [%m (£) T QX (k) + S.t0: Crnlin > €m, m € M (11b)
m=1k=1 Dty = dm, m € M (11c)

m(k = 1) Rpupm(k — 1 10 . - . : _
o )" Bom ) (102) whereH .5, Cr, andD,, are suitable matrices ag,;, ¢, and

s.tooVmeM, keT: d.., are suitable vectors. Here, the issue is how a network of dis-
X (k + 1) = Amxom (k) + Z Brmiui(k) (10b) tributed agents solve® instead of a centralized agent. In what
follows, we develop a decomposition &f into a set of coupled

retem sub-problemq P, } and outline a distributed solution protocol.
Cmum(k) > Cm (100)
Dot (k) = dpm (10d) 3.2 Multi-agent Distributed Control
) _ _ In our framework for multi-agent control, an agent decides
where:x., (k) is the state of sub-system at timek andu,» (k) is upon the values ofi,,, to control sub-systerm. For the problem
its control input; @, is positive semi-definite an&., is positive decomposition to be perfect, each agensolves a local optimiza-
definite;Cy, andc,, define the inequality constraints),, andd. tion problemP,,, encompassing all the terms gfand constraints

define the equalities; andt = {1,..., M} is the set with the that depend Offi,,,. Let:

indices of the sub-systems. B .
The test bed is the traffic network depicted in Fig. 2 with 18-on o I(m) = {i:m € I(i), i # m} be the set obutput neigh-

way roads and 6 junctions. Sub-system 3 has state- (x¢, z7) borsof sub-systemn;

with the number of vehicles in roads 6 and 7, while the control e C(m) = {(i,7) € I(m) x I(m) : i = morj = m} be

vector isus = (us, ur) with the green time for each road. The . . :
coupling graphG appears in Fig. 3. The set of input neighbors the sub-system pairs of quadratic termsin that depend

to sub-systen8 is I(3) = {1, 3,4}. Matrix Bsz expresses the on tm;

discharge of queugs as a function of green timass, while Bs; o C(m,k) = {(i,5) € I(k) x I(k) : i = morj = m} be
(Bsa) expresses how quews builds up asc; (x4) is emptied. The the pairs of quadratic terms iy, k& € I(m), that depend on
inequality constraints impose minimum and maximum greeesi A

on the phases. The equalities state that the total greenpliuse

lost time (yellow time) must add up to cycle time. This is agbu In the traffic network,Z(1) = {1}, I(1) = {2,3,5,6}, C(1) =
explanation of the store-and-forward model proposed in 211 {(1,1)}, andC(1,3) = {(1,3),(1,4),(1,1),(3,1), (4,1)}. No-
Notice that sub-systemn’s state at timek is a function of initial tice thata,, appears in sub-systenisc I(m) U I(m), but can



be coupled to other sub-systems—sub-system 1 is coupladto s
system 4 via sub-system 3, bt ¢ I(1) U I(1). The notion
of neighborhood will establish the interdependence amary s
systems. Models and algorithms for imperfect problem dgumm
sition are found in [7]. According to agent’s view of the system,
the control variables are divided in three sets:

e local variables:the variables in vectoi,, ;

e neighborhood variablesall the variables in vectog., =
(w; : 4 € N(m)) whereN(m) = I(m)U {7 : (i,7) €
C(m,k),k € I(m)} — {m} is the neighborhood of agent
m. Notice thatl (m) C N(m).

e remote variablesthe other variables which consist of vector
Zm = (Q; : 1 € N(m)U{m}).

According to the perfect decompositio®,, (y..) is obtained
from P by i) discarding from the objectivg the terms not involv-
ing u,, and ii) dropping the constraints not associated with agent
m. More formally, agenin’s local problem is:

Po(§m): min  fn = %aﬁHmam +ela,  (12a)
s.10: Cpllm > Cm (12b)
Dyt = dpy, (12c)

where H,,, is a suitable matrix ang,, is a vector. For each agent
m, the perfect decomposition ensures that:

(@) = fn(m, Fm) + fon(Fm, Zm)

for a given functionf,,,. Hereafter{ P, (¥..)} will denote the set
of sub-problems for alin € M.

3.2.1 Properties

Below, we report some properties relatidyand { P, (ym)}
which are useful to design a distributed algorithm for theragnet-
work. Demonstrations and illustrations are found in [5].

PROPOSITION 1. A solutionu satisfies first-order optimality
(KKT) conditions forP if, and only if, (i, ym) satisfies KKT
conditions forP,, (y) for eachm € M.

DEFINITION 1. (Feasible Space3he feasible spaces are:

o Uy = {tim : Cnlim > €m, Dy = di,} is the feasible
space forP, (ym);

e U ="U; x --- x Uy is the feasible space fd?; and

e Y., = Xien(m)Ui is the feasible space for the neighbor-
hood variables of agenta.

AsSsSUMPTION 1. (CompactnessThe feasible spacd/, is a
compact set.

ASSUMPTION 2. (Strict Feasibility)There existsa € U such
that C, i, > €y @nd Dy, = dy, for all m € M.

Compactness is a plausible assumption since control sigmal
invariably bounded. So is the strict feasibility assummtid the
interior of U is empty, then some inequalities are indeed equalities
and should be regarded as such.

PROPOSITION 2. ProblemP given by(11a}{(11c)is convex.

COROLLARY 1. Sub-problemP,, (y..) is convex.

PrROPOSITION 3. (Optimality Conditions)2] Becausef is a
convex function and is a convex sefi* is a local minimum forf
overU if and only if:

V@) (u

A point u* satisfying condition (13) is callestationary point

—u*)>0,VaeU (13)

COROLLARY 2. (Local Optimality Conditionsya™ is a local
minimum forP if, and only if, (a},,y;.) is a local minimum for
P.(y;,) forall m € M.

A control vector that cannot be improved unilaterally byragge
agent, a fixed point, is locally optimal for all the sub-preils and
therefore optimal foP.

3.2.2 Distributed Agent Solution

In what follows, we outline a distributed algorithm for thgemt
network to arrive at a stationary solution{®,, }. The agents fol-

low an iterative protocol whereby™ = (a{®, ..., a{¥) denotes
the solution at iteratiork. Starting with a feasible control vector
a(®, the agents exchange information locally, synchronizér the
computations to preclude coupled agents from acting sanak

ously, and iterate until convergence is attained.

ASSUMPTION 3. (Synchronous WorHlf an agentm revises its
decisions at iteratiork, then:

(i) agentm usesy'y) = (ﬁl(.k) : ¢ € N(m)) to obtain an ap-
proximate solution tP,,, (%)) which becomes s ™
(i) allthe agents in the neighborhood of agentkeep their deci-

sions at iteratiork, that is,a* " = a* forall i € N(m).

ASSUMPTION 4. (Continuous Work)f a®) is not a station-
ary point for all problems in{ P,,}, then at least one agent
changes its decisions frond® toalF Y by approximately solving

P, (yﬁff)) such thatii{’ is not a stationary point t@,.

Condition (ii) of Assumption 3 and Assumption 4 are ensured
if the agents iterate in a sequeng®, ..., S.) whereS; C M,
Ui—1S; = M, and all distinct pairsn,n € S; are non-neighbors
foralls. (S1, Sz, Ss) is such a sequence for the illustrative scenario
with 51 = {2,4,6}, S2 = {3,5}, andSs = {1}. Time-varying
sequences and synchronization protocols are alternatives

Another key issue is how an agentsolvesP,, approximately,
as stated in condition (i) of Assumption 3, so ti@af’ converges
to a stationary point fof P, }. To this end, we developed an algo-
rithm based on the feasible direction method, which is fdkyel-
oped in [5] and outlined below. Related frameworks and aligars
for other settings appeared in [6, 8].

At the current iterat&(*), agentm computes docally descent
directiond'® = a'*¥) —a'¥’ by solving a linear programming (LP)
problem that minimizes7 £, (), )T (ol — al®) subject
to the original constraints imposed on the decisions of agent
then produces the next iteraad’ ™ = ol + P a® by finding

a stepaffi) that satisfies thé\rmijo rule. Given (ﬁﬁ,’f),yfff)) €

Up X Y, d¥) #£ 0is alocally feasible directiomt(ﬁgfi), yﬁff)) if

a% + an,d® e U, forall a,, > 0thatare sufficiently small. A

locally feasible directionl’s’ at a nonstationary poirfti's’, )

is alocally descent directioif me(ﬁ$)7y§f))T&£§) <0.
Assumption 3, Assumption 4, and agent iterations as datdea

above—which use a locally descent direction obtained byirsgl



an LP problem and satisfy the Armijo rule—ensure thét ar-
rives at a stationary point ofP,, } and, thereby, a solution tB.
Effectively, the agent network implements a distributeasfble di-
rection method for quadratic programming.

The constraint structure in split control admits simplifioas
in the iterative processes of the agents. For each jungtiand
phasei, suppose the maximum green tim&” is C; — L; —
ZieFj uﬁ". Then the MPC problen®, given by (11a) through
(11c), can be recast using control variabl®s,,, (k) with green
times in excess to the minimum, namely:; ; = u;,; —u}%". This
variable change simplifies the inequality constraints {2dhich
become simple bounds of the forfaa,, (k) > 0. As a result, the
linear program for computing a locally descent directiosab/ed
analytically: the LP constraint structure consists of kldéagonal
equalities (one for each time period) and simple variablenbs;
the solution is obtained by examining the coefficients ofgteli-
entv fm (al, 7).

The agents are not limited to using the feasible directiothou
sketched above. They can apply any quadratic-programmnling a
gorithm that meets the Armijo rule or otherwise solves thie-su
problem up to optimality. The active set and gradient prhijpac
methods [2] are candidates to replace the feasible directigo-
rithm.

4. EXPERIMENTAL STUDIES

This section presents results from the application of theCTU
LQR strategy and the multi-agent MPC framework for the digna
ing split control of the UTN depicted in Fig. 2. While TUC uses
equation (4) to model the system and objective (5) to compute
feedback gain matrix, it is more appropriate for the MPC feam
work to express the control problem in terms of objectiveaj10
subject to constraints (10b) through (10d), as controlagymust
lie within bounds and hold constant cycle periods.

4.1 Network Set-up

Additional parameters must be specified to fully model the\UT
depicted in Fig. 2, such as saturation flows, turning ratredfi¢
demands, and exit rates. The simulation environment wakeur
simplified: the exit rates of the network are null; lost tiniede-
tween phases are four seconds; all offsets are zero; anetaibrk
links have equal length so that their occupancy contribwitsthe
same weight in the objective function.

Up to this day, fixed-time signaling is still the most usugey
of split control worldwide. Since fixed-time control is nodagp-
tive, driverslearn and predict network dynamics which induce a
matching behavior between drivers and the traffic systeneréh
fore, from a practical perspective, traffic engineers favaontrol
policy that penalizes deviation from the nominal fixed-tispdit,
rather than a control strategy formulated in terms of atisaton-
trol values.

Table 1 presents the nominal splits of the sample UTN and the
other aforementioned parameters—nominal splits wereirgddia
with Webster’'s procedure. Some turn rate parameters ae-rr
vant and not presented, hamely the ones that do not takenpthst i
inflow of another controlled link—e.g., in link 11,2.0.5 means
that 50% of that link exit flow enters link 12, while the remiaig
vehicles take a route outside the scope of the controlledarkt
and are not accounted for. In the simulated analysis, atitjons

have a constant cycle of 120 s and have two phases, with the ex-

ception of junction 1 which has three phases. The mean inflows
the input links areg: = 800 veh/h; g2 = 1300 veh/h;gs = 900
veh/h;gs = 900 veh/h; andgy = 700 veh/h.

Table 1: Network specification.

Link Sat. Flow (S;) Nom. Split  Turn Rate (t,w)
(2) (veh/h) @) (s) (to link: f%)
4:0.2;6:0.05;
L 3600 29 11:0.05;130.7
4.0.25;6:0.3;
2 3600 49 11:0.3;130.15
4.0.65;6:0.05;
3 3600 32 11:0.05;13.0.15
4 3600 72 —
5 3600 40 —
6 1800 57 5:.0.5
7 3600 55 5.0.8
8 3600 63 7:0.4;10.0.6
9 3600 49 7:0.6;10.0.4
10 3600 60 12.0.8
11 1800 52 120.5
12 3600 55 —
13 3600 57 —

4.2 Numerical Analysis

To validate the proposed multi-agent control frameworkets s
of MPC problems were solved covering a range of initial cendi
tions. A centralized agent solved the global MPC probemvhile
a multi-agent system solved the corresponding sub-prololetn
work { P,,, } for each of the initial conditions, allowing their perfor-
mance to be compared. Both approaches used a standardtguiadra
programming (QP) algorithm [14, active set method] and e f
sible direction method outlined above. For the distribftsbible
direction method, experiments showed that the acceptaegeel
o = 0.3 and the step-contraction parametges 0.3 for the Armijo
rule induce the best convergence rate in the given scenataige
that the distributed QP approach implicitly satisfies thm#o rule.

A set of ten randomly obtained queues defined the initial itimm
in the experiments, whose results appear in Table 2.

As the tolerance of the optimization package used for the cen
tralized QP computation could not be modified, resultsiitate the
computational effort to reach the actual optimal cost. Imeotin-
stances we assume that the solution has converged oncatiiis w
a 0.1% error margin from the optimal objective, previoustyne
puted by the centralized QP algorithm.

The experimental results show a trade-off between the aampl
ity of the algorithm and the number of iterations requireddon-
vergence. On the other hand, the distinction between theétdited
and centralized approach is small, specially so with resjoethe
feasible direction method. Most importantly, the numdrieaults
confirm the multi-agent control theory outlined above, Sging
optimality conditions for diverse initial conditions.

4.3 Simulated Analysis

The simulated results are from AIMSUNreplications of the
sample UTN. AIMSUN has a powerful micro-simulator for traf-
fic applications which provides accurate modeling of com plet-
works. Furthermore, it offers a useful APl module with thdigbh
to interface, through Python and C++ routines, with almogtex-
ternal module that needs access to internal data duringatiom
run time.

The solution of the optimization problems required by theRLQ
strategy and the multi-agent MPC used several tools: the. HSF
censed Python 2.5 programming language; the OSI-Appropeth O
Source numerical package for Python, NumPy; the GNU licgtnse



Table 2: Computational results for a set of ten initial condtions with 0.1% error tolerance.

Quadratic Programming

Feasible Direction

CPU Time (ms) Iterations CPU Time (s) Iterations
Mean Max Mean Max Mean Max Mean Max
Agent 1 21.9 46.9 3.3 7 216 8.12 76 290
Agent 2 15.6 46.9 21 4 198 8.20 72 290
Agent 3 10.9 46.9 2.8 8 185 7.59 69 280
Agent 4 14.1 31.2 3.0 6 185 7.50 76 294
Agent 5 1.6 15.6 24 5 1.83 7.70 69 280
Agent 6 6.3 46.9 1.2 2 181 7.67 67 280
Multi-agent 75.0 156.2 148 25 1158 47.16 425 1710
Centralized 26.6 46.9 3.9 7 13.59 48.09 370.9 1299

Table 3: Average results for ten AIMSUN® replications.

Travel Time (s/km)  Density (veh/km)
Avg. Std. Dev. Avg.  Std. Dev.
LQR 182.759 3.928 17.853 0.355
MA-MPC 180.288 3.619 17.564 0.314

CVXOPT optimization package; and the solver MOSEK

The simulated scenario had a duration of one hour with the in-
flow patterns given above. Although inflows have constantmmea
vehicles do not necessarily enter the network at a constsabre-
cause the simulator uses an exponential feed algorithnfraiiie-
works share the same weighting matrices, with state métrix I
and control matrixR = rI, r = 0.003, as is usual in the TUC
policy. As mentioned earlier, the store-and-forward madglires
the control interval to be greater than any cycle in the ngtwo
Following this premise, a control cycle of 200 s was defined fo
the sample UTN. Furthermore, the multi-agent MPC achiewsd b
results when both the prediction and control horizon wetécsa
single control step. Table 3 reports the average resultsroay a
set of 10 random initial conditions.

4.4 Discussion

The experimental results show that the proposed multitdgBC
framework can perform slightly better than the TUC stratiegsig-
naling split of urban traffic networks. Nevertheless, sorsgeats
need further investigation.

The first aspect is the length of the prediction horizon. Tdw f
that wider prediction degrades system performance inescttat
the TUC store-and-forward model may not be adequate foiigred
tion, suggesting that a more precise model could improveative
system performance.

Another issue is the effect produced by the weighting mestic
particularly the effect on control signals. The weight aro# the
simulation penalizes control deviation from nominal signeery
lightly, allowing drastic changes without incurring sudostial cost
increase in the objective function. This increases theamsipe-
ness of the control system but, on the other hand, affectsythe
chronization among consecutive junctions.

Although offset and stage specification were not objectudyst
in this paper, they influence the performance metrics andldho
be accounted for in simulated analyses. This justifies tegdeof
the sample UTN with only one-way links, which ease the specifi
cation of stages. Although such measure increases thbiligjiaf
the experimental model, circumventing the distortion ealsy the
lack of synchronization control and offset dimensioningisther

issue to be investigated.

Some considerations regarding the practical implememtadf
the proposed strategy are pertinent. First, the methodreeqfull
knowledge of system state, either through the installagfanduc-
tive loop detectors or other means such as image detectiocede
Although the exchange of messages is necessary at evemplcont
cycle, it does not constrain the application of multi-agbtRC
due to the large control interval. The same communicatidm@in
structure used in the centralized control scheme can be fased
distributed control with a centralized message relay. IBinsev-
eral practical issues should be analyzed in field applinatisuch
as the influence of noise, delays, and poor synchronization.

The slightly better multi-agent MPC performance is furtbar
dorsed by other advantages of this approach. First, the-agdnt
MPC circumvents the lack of reconfigurability of the TUC stra
egy [11], as the addition of nodes to the network affects diméy
sub-systems in the vicinity. Another advantage is the usaae
precise traffic-flow models, such as the non-linear reptasen
proposed in [1].

5. SUMMARY AND FUTURE WORK

This work has contributed to the state-of-the-art by proppa
framework for multi-agent control of dynamic systems. Thass
of systems comprises linear dynamic networks that are ddedm
by interconnecting dynamically-coupled sub-systems.s Tépre-
sentative class encompasses dynamic networks that ustothe s
and-forward model to represent traffic flow dynamics, coresty
capturing the local couplings between neighboring jumio

The signaling split control for the store-and-forward miogle-
tails solving a constrained, infinite time, linear quadratgula-
tor problem. The TUC approach obtains a feedback control law
with the unconstrained LQR technique by disregarding the co
straints on control signals, whose feasibility is recoddng solv-
ing a quadratic program. Model predictive control handles-c
straints in a systematic way by using a finite time, rollingihon
and solving optimization problems on-line. This paper psad
a decomposition of the MPC problem in a set of locally coupled
sub-problems that are iteratively solved by a network dfitisted
agents. Under certain mild conditions and synchronous wbiek
iterations of the multi-agent control system can be showbeo
drawn towards a fixed point that induces a globally optimaltsmn
to the MPC problem. Numerical experiments illustrate theveo-
gent behavior of the multi-agent system and compare itsspék
that of an ideal, centralized agent that solves the problagles
handed. Simulated studies corroborate the hypothesia twttrol
algorithm that handles constraints explicitly can outpenrf strate-
gies that treat constraints in an ad hoc manner.
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