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ABSTRACT
Urban traffic networks are large, dynamic systems which remain
a challenge in control engineering despite all of the scientific and
technological progress. The sheer size, wide spread of sensors and
control devices, and nonlinearities make such systems complex, be-
yond the scope of existing models, let alone control algorithms. To
this end, control engineers have looked for unconventionalmeans
for modeling and control, in particular the technology of multi-
agent systems whose appeal stems from their composite nature,
flexibility, and scalability. This paper contributes to this evolving
technology by proposing a framework for multi-agent control of
linear, dynamic systems. The framework decomposes a central-
ized model predictive control problem into a network of coupled,
but small sub-problems that are iteratively solved by the distributed
agents. Theoretical results ensure convergence of the distributed
iterations to a globally optimal solution. The framework isap-
plied to the signaling split control of traffic networks. Experiments
conducted with simulation software indicate that the multi-agent
framework attains performance comparable to conventionalcon-
trol, such as the traffic-responsive urban control strategy.

Categories and Subject Descriptors
F.2.1 [Analysis of Algorithms and Problem Complexity]: Nu-
merical Algorithms and Problems; I.2.11 [Artificial Intelligence ]:
Distributed Artificial Intelligence; J.6 [Computer-aided Engineer-
ing]

Keywords
Urban traffic networks, split control, distributed agents,model pre-
dictive control

1. INTRODUCTION
Much of the improvements in urban traffic control can be at-

tributed to past advances in science and technology. The existing
technology is changing the way traffic systems are designed and
operated. Today, modern operating centers receive traffic-flow data
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from distributed sensors and implement control policies inresponse
to the prevailing traffic conditions. Yet, there is room for further
improvements in urban traffic control to cope with the increasing
volume of traffic which incurs pollution, excessive fuel consump-
tion, and prolonged journey times.

Over the last few years, theTraffic-responsiveUrban Control
(TUC) strategy has drawn attention for its robustness and good per-
formance, specially so under saturated traffic conditions [11]. Such
results have been corroborated in field applications in cities as Mu-
nich, Glasgow, Southampton, and Chania [3, 12, 16]. The TUC
framework models traffic flow using a variation of the store-and-
forward model originally proposed in [13], which uses purely con-
tinuous state and control variables allowing the computation of con-
trol policies with efficient algorithms. In its standard form, TUC
calculates the control signals with a two-stage multi-variable regu-
lator [11]: the first stage solves an unconstrained linear-quadratic-
regulator (LQR) problem that minimizes a quadratic function on
queue lengths and control signals; the second stage recovers fea-
sibility of the control signals produced by LQR, whereby an op-
timization problem is solved to minimize the distance of thein-
feasible solution to the feasible space. However, such two-stage
procedure does not guarantee optimality [4]. To this end, a model
predictive control (MPC) approach was proposed to explictly han-
dle the constraints, this way guaranteeing control feasibility and
improving solution quality [9].

Alongside the progress on traffic-flow modeling and control,a
great deal of research has advanced the technology of multi-agent
systems, notably in the fields of artificial intelligence andsoftware
engineering [15, 18]. This evolving technology seeks to assemble
agents of limited knowledge and abilities in a multi-agent organi-
zation to perform tasks that are beyond the expertise of its individ-
ual members. Such agents not only encapsulate information,but
they also exhibit semi-autonomous behavior by employing some
form of reasoning to cooperate with others for the interest of the
whole organization, negotiate to resolve conflicts, and even com-
pete when driven by self-interest. The problem-solving ability of
a multi-agent system emerges from the interactions and collective
effort of the agents, not only their intelligent behavior.

Multi-agent frameworks were originally restricted to the field of
computer science where typical applications are of discrete nature
such as puzzle solving, planning, and combinatorial arrangement.
More recently, control engineers realized that such frameworks can
be extended to operate dynamic systems, specially complex dis-
tributed systems such as petrochemical plants and transportation
networks [19, 22, 23]. The operation of such complex, spatially-
distributed dynamic systems is a formidable challenge to control
engineering, to a great extent due to the intrinsic complexity, sheer
size, and nonlinearities. Control engineers have turned their atten-



tion to multi-agent systems whose appeal stems from their compos-
ite nature, flexibility, and scalability [24].

However, multi-agent systems are still a long way from deliv-
ering this promise to complex dynamic systems. Much of the lit-
erature offers methodologies, general guidelines, or otherwise ad
hoc procedures lacking formal methods that ensure convergence
and stability. To this end, this paper proposes a framework for
controlling linear dynamic systems with a network of distributed
control agents. These dynamic systems arise from the intercon-
nection of linear sub-systems with local input constraints. Appli-
cations are found in signaling split control in traffic networks and
reaction control in petrochemical plants. Given dynamic equations
and algebraic constraints, our framework formulates the optimiza-
tion problem arising from model predictive control and proceeds to
decompose the MPC problem into a network of coupled, but small
sub-problems to be solved by the agent network. An agent senses
only the state variables and sets the values of the control variables
of its sub-system, communicating with agents in the vicinity to ob-
tain the values of neighborhood variables and coordinate their ac-
tions. With a well-crafted problem decomposition and coordination
protocol, the solution iterates produced by the agents can be shown
to converge to a globally optimal solution to the MPC problem.

In essence, the decision-making and cooperative control behav-
ior of the agents emerges from the solution of optimization prob-
lems. The work reported here builds upon preceding work on dis-
tributed control [6, 8] by exploiting the linear dynamic structure to
develop simpler models and algorithms.

In a representative traffic network, computational experiments
are conducted to assess the performance of the proposed multi-
agent MPC framework. The purpose of the experiments is twofold.
First, the experiments compare a single, centralized agentwith a
network of distributed control agents at solving the MPC problem
for a number of initial conditions. Second, they compare themulti-
agent approach with the TUC strategy using metrics providedby a
professional simulation package.

The remaining sections are structured as follows. Section 2of-
fers some basic concepts about urban traffic networks, alongwith
a description of the store-and-forward model of traffic flow and the
LQR strategy used by the TUC approach. Section 3 formulates the
MPC problem for split control as a linear dynamic system consist-
ing of a network of dynamically coupled sub-systems, one foreach
intersection. Last but not least, the section develops a perfect de-
composition of the MPC problem into a network of sub-problems
and outlines a distributed algorithm for the agent network,which
can be shown to converge to an optimal solution. Section 4 reports
results from numerical analyses designed to compare the central-
ized and distributed solution of the MPC problem and from simu-
lated experiments aimed to compare the TUC LQR strategy with
the multi-agent MPC approach. Section 4 makes some final re-
marks and suggests directions for future research.

2. URBAN TRAFFIC CONTROL
An UrbanTraffic Network (UTN) comprises a set of roads, ar-

terials and streets, known aslinks, interconnected byjunctionsthat
may be controlled [11]. The traffic inside the network is divided
into streamsof vehicles. Streams grouped in a same link define its
saturation flow, which is the mean flow crossing the stop line of an
approach when the respective stream has the right of way (r.o.w.),
a sufficiently large upstream queue, and unobstructed downstream
links. The repeated sequence of signal combinations at a junction
is namedsignal cycle. Its duration is calledcycle timeor simply
cycle. A stage, or phase, is a portion of a signal cycle in which a
set of streams has the r.o.w. For safety measures, stages areinter-
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Figure 1: Signal cycle, lost time and cycle.

posed by constantlost timesof a few seconds avoiding interference
amongst conflicting streams (Fig. 1).

The influence of traffic lights on traffic depends on four factors
[10, 20]: stage specification, cycle duration, offset amongjunc-
tions, and signaling split. Where split refers to the relative green
percentage of the cycle time assigned to each stage.

2.1 UTN Modeling
A UTN modeled in accordance with the TUC strategy [11, 12]

is represented as a directed graph with linksz ∈ Z and junctions
j ∈ J . SetsIj and Oj denote, respectively, the incoming and
outgoing links of junctionj. Cycle timesCj , lost timesLj , turning
ratestz,w, z ∈ Ij , w ∈ Oj , and saturation flowsSz , z ∈ Ij , are
considered constant and known. For the sake of simplicity,C = Cj

is assumed for all junctionsj ∈ J . Finally, the control signal of
junction j has a fixed number of stages belonging to the setFj ,
where subsetvz ⊆ Fj represents those where linkz has the r.o.w.

Letting uj,i denote the green time of phasei at junctionj, the
constraint

P

i∈Fj
uj,i + Lj = C must be enforced. Additionally,

uj,i ∈ [umin
j,i , umax

j,i ] whereumin
j,i andumax

j,i are the minimum and
maximum allowable green times, respectively.

The main differential of this strategy is the use of a variation of
the store-and-forward model, where the control cycle is required
to be greater than every cycle of the network. Therefore traffic
flow is modeled as purely continuous, allowing the use of efficient
algorithms on the control signal computation.

The dynamics of network linkz is given by equation:

∆xz(k + 1) = T [qz(k) + dz(k) − fz(k) − sz(k)], (1)

where: xz denotes the number of vehicles in linkz; qz and fz

are, respectively, the inflow and outflow of linkz during period
[kT, (k + 1)T ], wherek = 1, 2, . . . is a discrete time index and
T is the control interval;dz is the demand, vehicles entering the
network not originating from adjacent links; and, finally,sz is the
exit flow at timek.

Since exit rates are known, the exit flow may be replaced for the
following equality: sz(k) = tz,0qz(k). In addition, one may for-
mulate the inflow of linkz asqz(k) =

P

w∈Ij
tw,zfw(k), where

tw,z is the turning rate towards linkz ∈ Oj coming from link
w ∈ Ij . Assuming that inflows and outflows of linkz with r.o.w.
are equal to their saturation flow,Sz , equation (1) is written as:

xz(k + 1) = xz(k) + T

"

dz(k) −
Sz

C

X

i∈vz

uj′,i(k)

+ (1 − tz,0)
X

w∈Ij

tw,zSw

C

X

i∈vw

uj,i(k)

#

, (2)



where the control signaluj,i(k) is the green time for vehicles going
through junctionj during phasei, whereas

P

i∈vz
uj′,i(k) is the

green time for vehicles leaving linkz. Notice thatz leaves junction
j and entersj′. Generalizing equation (2) for all network links
leads to the matrix equation:

x(k + 1) = Ax(k) + Bu(k) + Td(k), (3)

where:x(k) is the state vector;u(k) is the control vector contain-
ing signalsuj,i, ∀i ∈ Fj , ∀j ∈ J ; d(k) is the vector containing
demandsdz , ∀z ∈ Z; andA = I , B, andT are the state, input,
and disturbance matrices, respectively.

2.2 Split Control
In a traffic-responsive control strategy the signaling split must

be optimized according to the demands of involved streams. In
standard form, the TUC strategy uses the LQR theory to find an
efficient time-invariant gain matrix, which is simpler thanoptimiz-
ing a physical criterion [11] but invariably achieving a sub-optimal
control law. By assumingd(k) = 0, the dynamic system (3) be-
comes:

x(k + 1) = Ax(k) + Bu(k), (4)

allowing the application of the LQR methodology. The control law
thereof does not account for feedforward terms, which is plausible
since the main goal is to attain a satisfactory gain matrix rather than
an optimized criterion.

Intending to minimize the risk of oversaturation and spillback,
minimization of proportional occupancy of links is attempted, i.e.
xz/xmax

z , wherexmax
z is the capacity of linkz. A quadratic crite-

rion to this end has the form:

J =
1

2

∞
X

k=0

(‖x(k)‖2
Q + ‖u(k)‖2

R), (5)

whereQ andR are diagonal positive weighting matrices, respec-
tively semi-definite and definite. According to the LQR theory, an
infinite time horizon is used in (5) to achieve a time-invariant con-
trol law. As matrixQ weighs the states, that is, the number of ve-
hicles in the roads, the goal of minimizing the average occupancy
is obtained by making its diagonal elements equal to1/(xmax

z )2,
for the corresponding linkz ∈ Z. Matrix R reflects the penalty
imposed on control effort, usually defined asR = rI , wherer is
found experimentally.

Minimizing criterion (5) leads to the control law:

u(k) = u
N − Lx(k), (6)

where:u(k) is the vector with green timesuj,i,∀j ∈ J, ∀i ∈ Fj ;
uN is the matching vector containing the nominal green times; and
L is Ricatti’s gain matrix, depending onA, B, Q, andR, though
with small susceptibility to their variation [11].

As control constraints are not considered in the aforementioned
control law, they are imposed in an ad hoc manner, through the
following optimization problem for each junctionj ∈ J :

min
Uj,i

X

i∈Fj

(uj,i − Uj,i)
2 (7a)

s. to:
X

i∈Fj

Uj,i + Lj = Cj (7b)

Uj,i ∈ [umin
j,i , umax

j,i ], ∀i ∈ Fj , (7c)

whereUj,i is the closest feasible solution in Euclidean space to
uj,i.

This problem is solved in real-time for each junctionj with an ef-
ficient algorithm [10], whose convergence is guaranteed in anum-
ber of steps less than or equal to the number of stages|Fj | of the
junction. Though this approach gives a feasible solution, it does not
satisfy the optimality conditions for system (4). Additionally, be-
cause no predictions are made, the multivariable regulatorbehaves
in a purely reactive way to unknown disturbances. On the other
hand, the structure of matrixL provides the regulator a gating ef-
fect preventing oversaturation in downstream links.

Previously published works [1, 9] report that significant improve-
ment may arise from the replacement of the usual LQR proce-
dure with a solution that accounts for system constraints, such as
a model predictive control strategy. Generally speaking, amodel
predictive control approach is composed by [4, 17]:

• a prediction modeldescribing satisfactorily the process dy-
namics in a finite time horizon;

• a cost functionwhich gives the control signal when mini-
mized; and

• a sliding horizonof prediction and control, which is trans-
lated a step forward at each sample period, requiring the
computation of new control actions from which only that of
the actual time is implemented.

Following these premises the MPC problem for split control is cast
as:

P : min
T

X

k=1

1

2
[x(k)T Qx(k) + u(k − 1)T Ru(k − 1)] (8a)

s. to: ∀k ∈ T :

x(k + 1) = Ax(k) + Bu(k) (8b)

Cu(k) ≥ c (8c)

Du(k) = d (8d)

where:x(k) is the system’s state andu(k) the control input at time
k; Q is positive semi-definite andR positive definite weighting
matrices;C andc define the inequality constraints;D andd define
the equalities; andT = {0, . . . , T − 1} is the time horizon.

3. MULTI-AGENT MPC
This section develops an MPC formulation for systems consist-

ing of the interconnection of linear dynamic sub-systems with lo-
cal constraints, hereafter called linear dynamic networks. The split
control problem is cast as an MPC problem over a linear dynamic
network, where sub-systems correspond to intersections, state vari-
ables correspond to vehicle queues, and control variables represent
green times. After the problem formulation, the section presents a
decomposition of the MPC problem into a network of coupled, but
small sub-problems that are solved iteratively by the agentnetwork.
This section reports theoretical properties of the decomposition, re-
lating the MPC problem and sub-problem network, and outlines a
distributed protocol to synchronize agent iterations. Conditions are
given for the iterations of the agents to arrive at a solutionto the
centralized MPC problem.

3.1 Modeling and MPC Formulation
The dynamic representation of the traffic-flow derived from the

store-and-forward modeling approach is conveniently represented
as a system ofM interconnected sub-systems, one for each junc-
tion. Sub-systemm’s local state isxm ∈ R

nm and control signal
is um ∈ R

pm . A directed graphG = (V, E) models the cou-
plings among the sub-systems: an arc(i, j) ∈ E means that the
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Figure 2: Traffic network.

control signals from sub-systemi influence the state of sub-system
j directly. Assuming discrete-time dynamics, the state equation for
sub-systemm is:

xm(k + 1) = Amxm(k) +
X

i∈I(m)

Bmiui(k) (9)

whereI(m) = {m} ∪ {i : (i, m) ∈ E} is the set ofinput neigh-
borsof sub-systemm includingm, that is, the sub-systems affect-
ing the state ofm. Given the current state of the network,x(0),
a centralized agent following the MPC strategy would solve the
problem below at each sample instant:

P : min
M

X

m=1

T
X

k=1

1

2
[xm(k)T Qmxm(k)+

um(k − 1)T Rmum(k − 1)] (10a)

s. to: ∀m ∈ M, k ∈ T :

xm(k + 1) = Amxm(k) +
X

i∈I(m)

Bmiui(k) (10b)

Cmum(k) ≥ cm (10c)

Dmum(k) = dm (10d)

where:xm(k) is the state of sub-systemm at timek andum(k) is
its control input;Qm is positive semi-definite andRm is positive
definite;Cm andcm define the inequality constraints;Dm anddm

define the equalities; andM = {1, . . . , M} is the set with the
indices of the sub-systems.

The test bed is the traffic network depicted in Fig. 2 with 13 one-
way roads and 6 junctions. Sub-system 3 has statex3 = (x6, x7)
with the number of vehicles in roads 6 and 7, while the control
vector isu3 = (u6, u7) with the green time for each road. The
coupling graphG appears in Fig. 3. The set of input neighbors
to sub-system3 is I(3) = {1, 3, 4}. Matrix B33 expresses the
discharge of queuex3 as a function of green timesu3, while B31

(B34) expresses how queuex3 builds up asx1 (x4) is emptied. The
inequality constraints impose minimum and maximum green times
on the phases. The equalities state that the total green timeplus
lost time (yellow time) must add up to cycle time. This is a rough
explanation of the store-and-forward model proposed in [11, 21].

Notice that sub-systemm’s state at timek is a function of initial
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Figure 3: Dynamic coupling graph.

state and control signals prior to timek:

xm(k) = Ak
mxm(0) +

k
X

l=1

X

i∈I(m)

Al−1
m Bmiui(k − l)

By using this relation, collecting the control variables invector
ūm = (ūm(0), . . . , ūm(T − 1)), and dropping the constant term
from the objective [5],P becomes:

P : min f(ū) =
1

2

X

m∈M

X

i∈I(m)

X

j∈I(m)

ū
T
i Hmij ūj

+
X

m∈M

X

i∈I(m)

g
T
miūi (11a)

s. to: C̄mūm ≥ c̄m, m ∈ M (11b)

D̄mūm = d̄m, m ∈ M (11c)

whereHmij , C̄m, andD̄m are suitable matrices andgmi, c̄m, and
d̄m are suitable vectors. Here, the issue is how a network of dis-
tributed agents solvesP instead of a centralized agent. In what
follows, we develop a decomposition ofP into a set of coupled
sub-problems{Pm} and outline a distributed solution protocol.

3.2 Multi-agent Distributed Control
In our framework for multi-agent control, an agentm decides

upon the values of̄um to control sub-systemm. For the problem
decomposition to be perfect, each agentm solves a local optimiza-
tion problemPm encompassing all the terms off and constraints
that depend on̄um. Let:

• Ī(m) = {i : m ∈ I(i), i 6= m} be the set ofoutput neigh-
borsof sub-systemm;

• C(m) = {(i, j) ∈ I(m) × I(m) : i = m or j = m} be
the sub-system pairs of quadratic terms inΦm that depend
on ūm;

• C(m, k) = {(i, j) ∈ I(k) × I(k) : i = m or j = m} be
the pairs of quadratic terms inΦk, k ∈ Ī(m), that depend on
ūm.

In the traffic network,I(1) = {1}, Ī(1) = {2, 3, 5, 6}, C(1) =
{(1, 1)}, andC(1, 3) = {(1, 3), (1, 4), (1, 1), (3, 1), (4, 1)}. No-
tice thatūm appears in sub-systemsi ∈ I(m) ∪ Ī(m), but can



be coupled to other sub-systems—sub-system 1 is coupled to sub-
system 4 via sub-system 3, but4 6∈ I(1) ∪ Ī(1). The notion
of neighborhood will establish the interdependence among sub-
systems. Models and algorithms for imperfect problem decompo-
sition are found in [7]. According to agentm’s view of the system,
the control variables are divided in three sets:

• local variables:the variables in vector̄um;

• neighborhood variables:all the variables in vector̄ym =
(ūi : i ∈ N(m)) whereN(m) = I(m) ∪ {i : (i, j) ∈
C(m, k), k ∈ Ī(m)} − {m} is the neighborhood of agent
m. Notice thatĪ(m) ⊆ N(m).

• remote variables:the other variables which consist of vector
z̄m = (ūi : i 6∈ N(m) ∪ {m}).

According to the perfect decomposition,Pm(ȳm) is obtained
from P by i) discarding from the objectivef the terms not involv-
ing ūm and ii) dropping the constraints not associated with agent
m. More formally, agentm’s local problem is:

Pm(ȳm) : min fm =
1

2
ū

T
mHmūm + g

T
mūm (12a)

s. to: C̄mūm ≥ c̄m (12b)

D̄mūm = d̄m (12c)

whereHm is a suitable matrix andgm is a vector. For each agent
m, the perfect decomposition ensures that:

f(ū) = fm(ūm, ȳm) + f̄m(ȳm, z̄m)

for a given functionf̄m. Hereafter{Pm(ȳm)} will denote the set
of sub-problems for allm ∈ M.

3.2.1 Properties
Below, we report some properties relatingP and {Pm(ȳm)}

which are useful to design a distributed algorithm for the agent net-
work. Demonstrations and illustrations are found in [5].

PROPOSITION 1. A solution ū satisfies first-order optimality
(KKT) conditions forP if, and only if, (ūm, ȳm) satisfies KKT
conditions forPm(ȳm) for eachm ∈ M.

DEFINITION 1. (Feasible Spaces)The feasible spaces are:

• Um = {ūm : C̄mūm ≥ c̄m, D̄mūm = d̄m} is the feasible
space forPm(ȳm);

• U = U1 × · · · × UM is the feasible space forP ; and

• Ym = ×i∈N(m)Ui is the feasible space for the neighbor-
hood variables of agentm.

ASSUMPTION 1. (Compactness)The feasible space,U , is a
compact set.

ASSUMPTION 2. (Strict Feasibility)There exists̄u ∈ U such
that C̄mūm > c̄m andD̄mūm = d̄m for all m ∈ M.

Compactness is a plausible assumption since control signals are
invariably bounded. So is the strict feasibility assumption: if the
interior of U is empty, then some inequalities are indeed equalities
and should be regarded as such.

PROPOSITION 2. ProblemP given by(11a)–(11c) is convex.

COROLLARY 1. Sub-problemPm(ȳm) is convex.

PROPOSITION 3. (Optimality Conditions)[2] Becausef is a
convex function andU is a convex set,̄u⋆ is a local minimum forf
overU if and only if:

∇f(ū⋆)T (ū − ū
⋆) ≥ 0, ∀ū ∈ U (13)

A point ū⋆ satisfying condition (13) is calledstationary point.

COROLLARY 2. (Local Optimality Conditions)̄u∗ is a local
minimum forP if, and only if,(ū∗

m, ȳ∗
m) is a local minimum for

Pm(ȳ⋆
m) for all m ∈ M.

A control vector that cannot be improved unilaterally by a single
agent, a fixed point, is locally optimal for all the sub-problems and
therefore optimal forP .

3.2.2 Distributed Agent Solution
In what follows, we outline a distributed algorithm for the agent

network to arrive at a stationary solution to{Pm}. The agents fol-
low an iterative protocol wherebȳu(k) = (ū

(k)
1 , . . . , ū

(k)
M ) denotes

the solution at iterationk. Starting with a feasible control vector
ū(0), the agents exchange information locally, synchronize their
computations to preclude coupled agents from acting simultane-
ously, and iterate until convergence is attained.

ASSUMPTION 3. (Synchronous Work)If an agentm revises its
decisions at iterationk, then:

(i) agentm usesȳ(k)
m = (ū

(k)
i : i ∈ N(m)) to obtain an ap-

proximate solution toPm(ȳ
(k)
m ) which becomes̄u(k+1)

m ;

(ii) all the agents in the neighborhood of agentm keep their deci-
sions at iterationk, that is,ū(k+1)

i = ū
(k)
i for all i ∈ N(m).

ASSUMPTION 4. (Continuous Work)If ū(k) is not a station-
ary point for all problems in{Pm}, then at least one agentm

changes its decisions from̄u(k)
m to ū

(k+1)
m by approximately solving

Pm(ȳ
(k)
m ) such that̄u(k)

m is not a stationary point toPm.

Condition (ii) of Assumption 3 and Assumption 4 are ensured
if the agents iterate in a sequence〈S1, . . . , Sr〉 whereSi ⊆ M,
∪r

i=1Si = M, and all distinct pairsm, n ∈ Si are non-neighbors
for all i. 〈S1, S2, S3〉 is such a sequence for the illustrative scenario
with S1 = {2, 4, 6}, S2 = {3, 5}, andS3 = {1}. Time-varying
sequences and synchronization protocols are alternatives.

Another key issue is how an agentm solvesPm approximately,
as stated in condition (i) of Assumption 3, so thatū(k) converges
to a stationary point for{Pm}. To this end, we developed an algo-
rithm based on the feasible direction method, which is fullydevel-
oped in [5] and outlined below. Related frameworks and algorithms
for other settings appeared in [6, 8].

At the current iteratēu(k), agentm computes alocally descent
directiond̄

(k)
m = û

(k)
m −ū

(k)
m by solving a linear programming (LP)

problem that minimizes∇fm(ū
(k)
m , ȳ

(k)
m )T (û

(k)
m − ū

(k)
m ) subject

to the original constraints imposed on the decisions of agent m. It
then produces the next iterateū

(k+1)
m = ū

(k)
m +α

(k)
m d̄

(k)
m by finding

a stepα
(k)
m that satisfies theArmijo rule. Given (ū

(k)
m , ȳ

(k)
m ) ∈

Um ×Ym, d̄(k)
m 6= 0 is alocally feasible directionat(ū(k)

m , ȳ
(k)
m ) if

ū
(k)
m +αmd̄

(k)
m ∈ Um for all αm > 0 that are sufficiently small. A

locally feasible direction̄d(k)
m at a nonstationary point(ū(k)

m , ȳ
(k)
m )

is a locally descent directionif ∇fm(ū
(k)
m , ȳ

(k)
m )T d̄

(k)
m < 0.

Assumption 3, Assumption 4, and agent iterations as delineated
above—which use a locally descent direction obtained by solving



an LP problem and satisfy the Armijo rule—ensure thatū(k) ar-
rives at a stationary point of{Pm} and, thereby, a solution toP .
Effectively, the agent network implements a distributed feasible di-
rection method for quadratic programming.

The constraint structure in split control admits simplifications
in the iterative processes of the agents. For each junctionj and
phasei, suppose the maximum green timeumax

j,i is Cj − Lj −
P

i∈Fj
umin

j,i . Then the MPC problemP , given by (11a) through

(11c), can be recast using control variables∆ūm(k) with green
times in excess to the minimum, namely∆uj,i = uj,i−umin

j,i . This
variable change simplifies the inequality constraints (11b) which
become simple bounds of the form∆ūm(k) ≥ 0. As a result, the
linear program for computing a locally descent direction issolved
analytically: the LP constraint structure consists of block-diagonal
equalities (one for each time period) and simple variable bounds;
the solution is obtained by examining the coefficients of thegradi-
ent∇fm(ū

(k)
m , ȳ

(k)
m ).

The agents are not limited to using the feasible direction method
sketched above. They can apply any quadratic-programming al-
gorithm that meets the Armijo rule or otherwise solves the sub-
problem up to optimality. The active set and gradient projection
methods [2] are candidates to replace the feasible direction algo-
rithm.

4. EXPERIMENTAL STUDIES
This section presents results from the application of the TUC

LQR strategy and the multi-agent MPC framework for the signal-
ing split control of the UTN depicted in Fig. 2. While TUC uses
equation (4) to model the system and objective (5) to computea
feedback gain matrix, it is more appropriate for the MPC frame-
work to express the control problem in terms of objective (10a)
subject to constraints (10b) through (10d), as control signals must
lie within bounds and hold constant cycle periods.

4.1 Network Set-up
Additional parameters must be specified to fully model the UTN

depicted in Fig. 2, such as saturation flows, turning rates, traffic
demands, and exit rates. The simulation environment was further
simplified: the exit rates of the network are null; lost timesin be-
tween phases are four seconds; all offsets are zero; and all network
links have equal length so that their occupancy contributeswith the
same weight in the objective function.

Up to this day, fixed-time signaling is still the most usual type
of split control worldwide. Since fixed-time control is not adap-
tive, driverslearn andpredict network dynamics which induce a
matching behavior between drivers and the traffic system. There-
fore, from a practical perspective, traffic engineers favora control
policy that penalizes deviation from the nominal fixed-timesplit,
rather than a control strategy formulated in terms of absolute con-
trol values.

Table 1 presents the nominal splits of the sample UTN and the
other aforementioned parameters—nominal splits were obtained
with Webster’s procedure. Some turn rate parameters are irrele-
vant and not presented, namely the ones that do not take part in the
inflow of another controlled link—e.g., in link 11,12:0.5 means
that 50% of that link exit flow enters link 12, while the remaining
vehicles take a route outside the scope of the controlled network
and are not accounted for. In the simulated analysis, all junctions
have a constant cycle of 120 s and have two phases, with the ex-
ception of junction 1 which has three phases. The mean inflowsin
the input links are:q1 = 800 veh/h;q2 = 1300 veh/h;q3 = 900
veh/h;q8 = 900 veh/h; andq9 = 700 veh/h.

Table 1: Network specification.
Link
(z)

Sat. Flow (Sz)
(veh/h)

Nom. Split
(uN

z ) (s)
Turn Rate (tz,w)

(to link: f%)

1 3600 29
4:0.2;6:0.05;

11:0.05;13:0.7

2 3600 49
4:0.25;6:0.3;

11:0.3;13:0.15

3 3600 32
4:0.65;6:0.05;

11:0.05;13:0.15
4 3600 72 —
5 3600 40 —
6 1800 57 5:0.5
7 3600 55 5:0.8
8 3600 63 7:0.4;10:0.6
9 3600 49 7:0.6;10:0.4
10 3600 60 12:0.8
11 1800 52 12:0.5
12 3600 55 —
13 3600 57 —

4.2 Numerical Analysis
To validate the proposed multi-agent control framework, a set

of MPC problems were solved covering a range of initial condi-
tions. A centralized agent solved the global MPC problemP , while
a multi-agent system solved the corresponding sub-problemnet-
work {Pm} for each of the initial conditions, allowing their perfor-
mance to be compared. Both approaches used a standard quadratic-
programming (QP) algorithm [14, active set method] and the fea-
sible direction method outlined above. For the distributedfeasible
direction method, experiments showed that the acceptance degree
σ = 0.3 and the step-contraction parameterβ = 0.3 for the Armijo
rule induce the best convergence rate in the given scenarios. Notice
that the distributed QP approach implicitly satisfies the Armijo rule.
A set of ten randomly obtained queues defined the initial conditions
in the experiments, whose results appear in Table 2.

As the tolerance of the optimization package used for the cen-
tralized QP computation could not be modified, results illustrate the
computational effort to reach the actual optimal cost. In other in-
stances we assume that the solution has converged once it is within
a 0.1% error margin from the optimal objective, previously com-
puted by the centralized QP algorithm.

The experimental results show a trade-off between the complex-
ity of the algorithm and the number of iterations required for con-
vergence. On the other hand, the distinction between the distributed
and centralized approach is small, specially so with respect to the
feasible direction method. Most importantly, the numerical results
confirm the multi-agent control theory outlined above, satisfying
optimality conditions for diverse initial conditions.

4.3 Simulated Analysis
The simulated results are from AIMSUN© replications of the

sample UTN. AIMSUN© has a powerful micro-simulator for traf-
fic applications which provides accurate modeling of complex net-
works. Furthermore, it offers a useful API module with the ability
to interface, through Python and C++ routines, with almost any ex-
ternal module that needs access to internal data during simulation
run time.

The solution of the optimization problems required by the LQR
strategy and the multi-agent MPC used several tools: the PSFL li-
censed Python 2.5 programming language; the OSI-Approved Open
Source numerical package for Python, NumPy; the GNU licensed



Table 2: Computational results for a set of ten initial conditions with 0.1% error tolerance.
Quadratic Programming Feasible Direction

CPU Time (ms) Iterations CPU Time (s) Iterations
Mean Max Mean Max Mean Max Mean Max

Agent 1 21.9 46.9 3.3 7 2.16 8.12 76 290
Agent 2 15.6 46.9 2.1 4 1.98 8.20 72 290
Agent 3 10.9 46.9 2.8 8 1.85 7.59 69 280
Agent 4 14.1 31.2 3.0 6 1.85 7.50 76 294
Agent 5 1.6 15.6 2.4 5 1.83 7.70 69 280
Agent 6 6.3 46.9 1.2 2 1.81 7.67 67 280

Multi-agent 75.0 156.2 14.8 25 11.58 47.16 425 1710
Centralized 26.6 46.9 3.9 7 13.59 48.09 370.9 1299

Table 3: Average results for ten AIMSUN© replications.
Travel Time (s/km) Density (veh/km)

Avg. Std. Dev. Avg. Std. Dev.
LQR 182.759 3.928 17.853 0.355

MA-MPC 180.288 3.619 17.564 0.314

CVXOPT optimization package; and the solver MOSEK©.
The simulated scenario had a duration of one hour with the in-

flow patterns given above. Although inflows have constant mean,
vehicles do not necessarily enter the network at a constant rate be-
cause the simulator uses an exponential feed algorithm. Allframe-
works share the same weighting matrices, with state matrixQ = I
and control matrixR = rI , r = 0.003, as is usual in the TUC
policy. As mentioned earlier, the store-and-forward modelrequires
the control interval to be greater than any cycle in the network.
Following this premise, a control cycle of 200 s was defined for
the sample UTN. Furthermore, the multi-agent MPC achieved best
results when both the prediction and control horizon were set to a
single control step. Table 3 reports the average results covering a
set of 10 random initial conditions.

4.4 Discussion
The experimental results show that the proposed multi-agent MPC

framework can perform slightly better than the TUC strategyin sig-
naling split of urban traffic networks. Nevertheless, some aspects
need further investigation.

The first aspect is the length of the prediction horizon. The fact
that wider prediction degrades system performance indicates that
the TUC store-and-forward model may not be adequate for predic-
tion, suggesting that a more precise model could improve overall
system performance.

Another issue is the effect produced by the weighting matrices,
particularly the effect on control signals. The weight chosen in the
simulation penalizes control deviation from nominal signals very
lightly, allowing drastic changes without incurring substantial cost
increase in the objective function. This increases the responsive-
ness of the control system but, on the other hand, affects thesyn-
chronization among consecutive junctions.

Although offset and stage specification were not object of study
in this paper, they influence the performance metrics and should
be accounted for in simulated analyses. This justifies the design of
the sample UTN with only one-way links, which ease the specifi-
cation of stages. Although such measure increases the reliability of
the experimental model, circumventing the distortion caused by the
lack of synchronization control and offset dimensioning isanother

issue to be investigated.
Some considerations regarding the practical implementation of

the proposed strategy are pertinent. First, the method requires full
knowledge of system state, either through the installationof induc-
tive loop detectors or other means such as image detection devices.
Although the exchange of messages is necessary at every control
cycle, it does not constrain the application of multi-agentMPC
due to the large control interval. The same communication infra-
structure used in the centralized control scheme can be usedfor
distributed control with a centralized message relay. Finally, sev-
eral practical issues should be analyzed in field applications, such
as the influence of noise, delays, and poor synchronization.

The slightly better multi-agent MPC performance is furtheren-
dorsed by other advantages of this approach. First, the multi-agent
MPC circumvents the lack of reconfigurability of the TUC strat-
egy [11], as the addition of nodes to the network affects onlythe
sub-systems in the vicinity. Another advantage is the use ofmore
precise traffic-flow models, such as the non-linear representation
proposed in [1].

5. SUMMARY AND FUTURE WORK
This work has contributed to the state-of-the-art by proposing a

framework for multi-agent control of dynamic systems. The class
of systems comprises linear dynamic networks that are assembled
by interconnecting dynamically-coupled sub-systems. This repre-
sentative class encompasses dynamic networks that use the store-
and-forward model to represent traffic flow dynamics, conveniently
capturing the local couplings between neighboring junctions.

The signaling split control for the store-and-forward model en-
tails solving a constrained, infinite time, linear quadratic regula-
tor problem. The TUC approach obtains a feedback control law
with the unconstrained LQR technique by disregarding the con-
straints on control signals, whose feasibility is recovered by solv-
ing a quadratic program. Model predictive control handles con-
straints in a systematic way by using a finite time, rolling horizon
and solving optimization problems on-line. This paper proposed
a decomposition of the MPC problem in a set of locally coupled
sub-problems that are iteratively solved by a network of distributed
agents. Under certain mild conditions and synchronous work, the
iterations of the multi-agent control system can be shown tobe
drawn towards a fixed point that induces a globally optimal solution
to the MPC problem. Numerical experiments illustrate the conver-
gent behavior of the multi-agent system and compare its speed with
that of an ideal, centralized agent that solves the problem single-
handed. Simulated studies corroborate the hypothesis thata control
algorithm that handles constraints explicitly can outperform strate-
gies that treat constraints in an ad hoc manner.



The work reported heretofore is in its nascent, opening up a num-
ber of opportunities for research and studies with multi-disciplinary
contributions across the fields of multi-agent technology,control
engineering, and transportation systems. Some directionsfor re-
search are:

• numerical and simulated studies with very large networks
aimed to confirm the potential of the multi-agent MPC frame-
work;

• the formulation and application of new traffic models, repre-
senting more accurately the flow of vehicles;

• studies demonstrating the flexibility and scalability of multi-
agent systems, such as the reconfiguration of a traffic junc-
tion which would demand only local adjustments, involving
the junction and its immediate neighboring intersections;and

• the formal extension of the framework to handle constraints
on state variables, such as limits on queue lengths.
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