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Abstract
The knowledge of signaling pathways is central to understanding the biological
mechanisms of organisms since it has been identified that in eukaryotic
organisms, the number of signaling pathways determines the number of ways
the organism will react to external stimuli. Signaling pathways are studied using
protein interaction networks constructed from protein-protein interaction data
obtained from high-throughput experiments. However, these high-throughput
methods are known to produce very high rates of false positive and negative
interactions. To construct a useful protein interaction network from this noisy
data, computational methods are applied to validate the protein-protein
interactions. In this study, a computational technique to identify signaling
pathways from a protein interaction network constructed using validated
protein-protein interaction data was designed.
A weighted interaction graph of  was constructed.Saccharomyces Cerevisiae
The weights were obtained using a Bayesian probabilistic network to estimate
the posterior probability of interaction between two proteins given the gene
expression measurement as biological evidence. Only interactions above a
threshold were accepted for the network model.
We were able to identify some pathway segments, one of which is a segment of
the pathway that signals the start of the process of meiosis in .S. Cerevisiae
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Introduction
For biologists and scientists in the life sciences, the successful 
sequencing of the genome is only one step out of many involved 
in understanding organisms. This has produced a lot of informa-
tion that will not be useful unless refined. Biologists are interested 
in understanding the intricacies of the workings of the cells of an 
organism – the activities and reactions of such an organism to its 
environment. This information is useful in designing necessary 
interventions in order to modify the biological mechanisms of an 
organism or its reactions to external stimuli.

According to the central dogma of molecular biology, genes are 
composed of DNA which is transcribed into RNA and the RNA is 
then translated into protein. Ultimately, all organisms are composed 
mainly of proteins in different forms and quantity.

Proteomic data and protein-protein interaction data from organ-
isms form a key component in understanding an organism due to 
the major role played by proteins in cellular mechanisms. Protein- 
protein interactions are the foundation of biological mechanisms 
such as signal transduction, cell cycle control, DNA replication and 
transcription and enzyme-mediated metabolism1,2.

As a result of these interactions, understanding of organisms is 
facilitated by modeling the Protein Interaction Network (PIN) with 
a network constructed using the protein-protein interaction data. 
With a model such as this, a lot can be learned of the organism from 
its reaction to external stimuli and the effects of interventions on the 
biological mechanisms of the organism. For instance, it has been 
shown that the phenotypic effects of the deletion of a single gene 
depend on the position of that gene in the complex web of protein 
interactions3.

Apart from the importance of the protein-protein interactions map in 
studying the machinery of the proteome and the cellular behaviour 
of an organism, they are also practically important in the creation 
of interventions aimed at producing desired phenotypic outcomes 
such as new drug designs or disease prevention4,5.

Protein-protein interaction data from organisms are obtained on a 
large scale using a number of high throughput techniques such as 
Yeast Two-Hybrid (Y2H), Co-Immunoprecipitation (Co-IP), Mass 
Spectrometry etc. These high throughput techniques have however, 
been identified to have high rates of false positives and false nega-
tives. False positive interactions are protein-protein interactions 
that are reported to exist with any of the experimental techniques 
but do not exist in reality, while false negative interactions are true 
interactions that do not get reported using an experimental tech-
nique. Rates of false positives in protein interaction data have been 
reported to be as high as 50%6–8. As a result of analysis based on the 
integration of gene expression level measurement data and protein-
protein interaction data, only about 30–50% of the interactions have 
been suggested to be biologically relevant. Reference 9 reported 
47% true protein-protein interactions where a Paralogous Verifica-
tion Method (PVM) was applied. The PVM may have performed 
better owing to its incorporation of information on paralogs of other 
organism to strengthen the biological evidence.

These high rates of protein-protein interaction data inaccuracy are 
due to peculiarities of the techniques used to generate them. For 
instance, unlike other affinity-based methods that cannot detect 
transient interacting proteins, Tandem Affinity Purification (TAP-
tag) tag methods can detect transient interacting proteins which are 
however lost during the purification process10.

Furthermore, these new high throughput methods of detecting 
protein interactions have no doubt rapidly generated much more 
data than have been collected by traditional methods in small scale 
experiments. This thus makes it impractical to start verifying each 
of these interactions by the traditional methods used in small scale 
experiments11.

In order to make sense of the vast data and obtain insightful infor-
mation, these data need to be subjected to analytical procedures that 
will extract signal from the noise. This task of analyzing genomic 
data takes a computational approach due to the magnitude of the 
information involved. In reducing this level of noise in the pro-
tein interaction data different computational techniques aimed at 
improving the reliability of the data are applied. To predict true 
interactions between protein pairs, many authors have suggested 
a number of methods for estimating and assigning reliabilities to 
the interactions in the experimental data. These methods include 
using a logistic regression distribution function over a number of 
parameters to assign confidence scores to the interactions17,18, the 
use of expression profile and paralogs to assign reliability scores 
to already observed interactions9 the use of maximum likelihood 
technique for the estimation of domain-domain interactions in order 
to infer protein-protein interactions7. For computational biologists, 
the challenge would be the development of methods of transform-
ing the high-throughput data obtained from these different sources 
into biological insights.

In this paper, we seek to bridge the gap between protein-protein 
interaction data and other biological data in constructing useful 
signaling pathway models that will lead to insightful knowledge 
of biological processes. We propose a probabilistic approach using 
Bayesian networks to assign weights to protein-protein interac-
tions. These weighted interactions are then used to construct the 
weighted PIN from which signaling pathways are predicted. Refer 
to Figure 1 for the schematic of the computational approach used. 
This work thus describes a computational means to clean up the 
background noise inherent in the various methods of proteomic 
data acquisition in order to better understand bio-molecular 
mechanisms.

Materials and methods
Data sources
Protein interaction data was obtained from the publicly available 
Saccharomyces Genome Database (SGD). The protein interaction 
data is an amalgamation of the interactions obtained using eight 
different high throughput experimental procedures - Yeast Two-
Hybrid, Affinity Capture Mass Spectrometry, CO-Purification, 
Affinity Capture Western, Biochemical Activity, Reconstituted 
Complex, Protein-Peptide and Far Western. This data contained 
22,650 interactions between 2554 different proteins.
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Dataset 1. Yeast Expression Data

http://dx.doi.org/10.5256/f1000research.7591.d110325 

The file contains proteins with their expression measurements used 
in this study, obtained from DNA microarrays of Yeast. Data was 
obtained from the work of Spellman et al. (1998) and available 
from http://genome-www.stanford.edu/cellcycle/data/rawdata/
CellCycle98.xls 41.

 Abbreviations

SGD - Saccharomyces Genome Database

YPD - Yeast Peptone Dextrose

ORF - Open Reading Frame

The S. cerevisiae expression measurement data was obtained from 
the Yeast Cell Cycle Analysis Project of the Stanford University. 
The data is housed at a publicly available database maintained by 
the Saccharomyces Genome Database at the Department of Genet-
ics, School of medicine. The Yeast Cell Cycle Analysis project 
aimed at identifying all the genes whose mRNA levels are regulated 
by the cell cycle12. This data is available at the Yeast Cell Cycle 
Analysis Project site. The data contained the expression profiles of 
800 proteins of the S. cerevisiae organism.

Dataset 2. Protein-protein interaction data

http://dx.doi.org/10.5256/f1000research.7591.d110326 

Contains pairwise protein interaction data used in this study, 
obtained using high throughput experimental techniques such as 
Y2H, Affinity Capture-MS, Co-purification, Biochemical Activity and 
Reconstituted Complex, available from the publicly available SGD 
database42.

Data processing
The processing of the data obtained from the Yeast protein-protein 
interaction data and the Yeast Expression measurement was carried 
out by first filtering for the proteins that have expression level 
measurement. Only the proteins in the protein-protein interaction 
dataset that were also present in the gene expression measurement 
data were used. This was done based on the hypothesis that pro-
teins occurring in the same complex and are known to physically 
interact have higher correlation than proteins that are not known 
to directly interact. This hypothesis is supported by13–16, where it 
has been observed that true protein interactions have a high mRNA 
expression for the proteins involved. The filtration of the dataset 
produced 306 protein-protein interactions that have expression 
level measurements from the 22,650 protein interactions and the 

Figure 1. Schematic of the computational method based on Bayesian probability used in this work.
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800 gene expression measurements. These 306 protein-protein 
interactions represent the intersection of the two datasets as depicted 
in Figure 2. With reference to the yeast protein interaction data and 
expression measurement data respectively, these figures correspond 
to 0.013% and 0.382% of the original dataset respectively.

Interaction data validation
In this work, the probability estimation of protein interactions was 
done using a Bayesian probabilistic model. According to Bayes’ 
theorem, the posterior probability density is proportional to the 
prior probability density and the likelihood function.

Our interest is in drawing inference about the parameter f from a 
probability model p(ɣ|f) to give rise to observed data ɣ. Allocat-
ing a prior probability π(f) to the parameters assuming they are 
uncertain, we can obtain a posterior probability according to Bayes’ 
theorem where p(ɣ) which is the marginal density for ɣ is obtained 
by integrating over the prior. Refer to Equation 1.

                                ɣ
ɣɣ ( )p( | )

( | )
p( )

π φ φ
∏ φ =                    Equation 1

Equation (1) can be rewritten as Equation (2) since π(f|ɣ) is a func-
tion of f for observed ɣ which shows the direct proportionality 
between the posterior probability and the product of the likelihood 
and the prior probability19.

                                ( | ) p( | )∏ φ π φ φ∝ ( )ɣ ɣ                    Equation 2

Likelihood function
In order to make use of the Bayesian model, there must be an 
approximation or full specification of the prior probability distri-
bution and the likelihood function. The first step in the determina-
tion of the likelihood function which is based on the probability of 
observing the data is to fix a probability distribution f(q) where q is 
the parameter defining the probability distribution.

In outcome space, for a given dataset (Y1, Y2, Y3, … ,Yn), the 
probability of observing the dataset given q is written as

f (Y1,Y2,Y3, ,Yn)θ … Equation 3

In parameter space, the likelihood function in terms of the prob-
ability of observing the dataset given q is

               Y1, Y2, Y3, ,YnL ( ) f (Y1,Y2,Y3, ,Yn)θθ =… …
        

Equation 4

For a Bernoulli distribution, the probability distribution is 

                               
y (1- y)f (Y) (1- )θ = θ θ                           Equation 5

Therefore for a sample of N observations (Y
1
, Y

2
, Y

3
, …,Y

n
), the 

joint distribution is as Equation 6, and can be rewritten as 
Equation 7

( )i N
i 1 i if (Y) f Y y=

θ == ∏ = Equation 6

                      
i iy (1- y )i N

i 1f (Y) (1- )=
=θ = ∏ θ θ                      Equation 7

The likelihood function determines what value of q makes the 
dataset (Y1, Y2, Y3, …,Yn) most probable.

Estimating the maximum likelihood of the parameter q, we maxi-
mize the function with respect to q and then set it to zero to obtain 
the Maximum Likelihood Estimation of the parameter q20.

                                ( )max ( )YLθ = θ
                              Equation 8

Weighted graph construction
We formalize the problem of constructing a weighted graph that is 
instrumental in building a PIN. Let (V, E, w) be the protein-protein 
interaction network where V = p

0
, p

1
,...p

n
 is the set of all proteins 

Figure 2. Venn diagram of the mRNA expression profile measurement dataset and the protein-protein interaction dataset with the 
intersection showing the protein-protein interaction data with expression measurement.
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and E = {e = (p
i
, p

j
) | pi

, p
j
 ∊ V} is the set of interactions among 

these proteins in the set V, and w is the weight of each edge that 
belongs to E. w being the weight of the interaction between two 
proteins (p

i
, p

j
) is a measure of the reliability of interaction between 

the two proteins (p
i
, p

j
) obtained using the Bayesian probabilistic 

approach described above.

The vertices of the interaction graph are contained in the set of the 
unique proteins obtained after the computation of the reliability of 
interaction between the protein pairs i.e. |V| = 306, and the edges of 
the graph are the set of interactions between these proteins in V.

The protein-protein interaction graph is constructed with an undi-
rected sparse graph due to the sparse nature of biological networks.

Graph implementation
The implementation of the algorithm for this computational tech-
nique was done in Java programming language using the Java 
Universal Network Graphics (JUNG) framework for graphs. The 
JUNG framework is an open-source collection of libraries provid-
ing common language for modeling, analyzing and visualizing 
any data that can be represented as a graph or network. The JUNG 
framework is extensible in order to tailor it to specific needs and 
also includes implementation of a host of algorithms for network 
analysis, graph theory and data mining.

The graph implementation in JUNG supports the representation of 
the different types of graphs such as directed and undirected graph, 
multimodal graphs, graphs with parallel edges and hypergraphs.

For this work, we used the JUNG 2.0.1 API released in January, 
2010 which can be found at http://jung.sourceforge.net.

Simple path-finding
A pathway is an ordered list of distinct proteins in V such that each 
consecutive pair is found in E21.

Given an undirected sparse graph G = (V, E, w) and a pair of nodes 
{(p

i
, p

j
) | (p

i
, p

j
) ∊ V} corresponding to the starting and ending 

proteins respectively, we wish to find a simple path from p
i
 to p

j
 

which will be a segment of a pathway.

With the graph constructed, which is the PIN of the S. cerevisiae 
organism based on the data supplied, we queried the graph with 
a pair of proteins (p

i
, p

j
) ∊ V which are respectively the starting 

protein and ending proteins of the path of interest. We are interested 
in having a simple path corresponding to the signal transduction 
path from the starting protein to the ending protein returned by the 
search algorithm.

The search is done using a Depth First Search (DFS) algorithm. The 
start protein becomes the root node for the algorithm and exam-
ines all the outgoing nodes to it, expands the first child node of the 
apparent tree and progressively continues the search until the target 
node (the ending protein) is found. If the DFS algorithm however 
encounters a node that has no children, it backtracks to the previous 
node to continue exploring the children nodes.

Protein mapping to functional annotation
In order to understand and make meaning of the pathway segments 
that are obtained from the PIN, we compared the proteins to their 
functional annotation. Mapping proteins in known signaling path-
ways and PINs to their functional annotations has an important 
function. The proteins in an organism may have similar biologi-
cal functions such that one protein effectively replaces another in 
a pathway, then such proteins should share the same set of gene 
annotation terms. The Gene Ontology annotation, which is a func-
tional annotation scheme, provides this basis for the identification 
of functional description of proteins and their interactions with 
other proteins and other molecules.

In this work, we used the Gene Ontology (GO) annotations to 
interpret the pathway segments that have been identified from the 
protein-protein interaction network constructed for the S. cerevisiae 
organism.

Results
To validate the protein-protein interaction data that we used in this 
work, we applied the method that was described in section II-B 
to first filter the data. As was described the filtration of the data 
was done by integrating the gene expression measurement of the 
regulated Yeast Cell-cycle in order to obtain a dataset that is an 
intersection of both datasets.

This step was taken based on the hypothesis that there is a high 
correlation between the expression levels of truly interacting 
proteins13–16,22 and also using the gene expression measurement 
as a source of biological information23–25 for the computational 
inference.

Using the protein-protein interaction data comprising 22,650 inter-
actions between 2554 unique proteins and the gene expression 
levels of 800 genes, we applied the computational approach based 
on Bayesian probability described earlier. Further in the valida-
tion process, the application of the Bayesian probabilistic model 
on the data to estimate the posterior probability of an interaction 
existing between two proteins given the biological evidence pro-
duced the weight estimate for the interactions. With the estimation 
of the interaction weight and the rejection of interaction weights 
below the threshold obtained from the mean expression level 
measurements, we obtained a dataset containing 306 protein- 
protein binary interactions. This dataset was used in constructing 
the PIN of the S. cerevisiae organism.

The 306 protein-pairs represented the proteins that had expression 
profile measurement, which corresponds to the intersection set of 
the two datasets. With reference to the protein-protein interaction 
data and the gene expression level measurement, this is a mere 
0.013% and 0.382% of the original dataset respectively.

We applied the method described in section 2.7 to identify pathway 
segments in the constructed PIN for S. cerevisiae. Given a graph 
G = (V, E), a pathway has been described as an ordered list of dis-
tinct proteins in V such that each consecutive pair is found in E21. 
With a starting protein and an ending protein of interest, a simple 
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path between these two corresponds to a pathway. Due to the size 
limitation of the expression measurement dataset used and the 
effective reduction in the overall number of proteins used to con-
struct the graph, we were only able to identify pathway segments. 
A pathway segment is a chain of interacting proteins which is a part 

of a larger pathway. Some of the resulting pathways identified with 
this technique are presented in Table 1 and Table 2. These tables 
elucidate the protein description, the GO function and GO process 
of the proteins involved in the pathway segments as obtained from 
the AmiGO website http://www.geneontologyproject.org/go.

Table 1. Pathway segment YMR163C - YOR326W - YCL063W - YER150W.

Protein Gene Protein Information Gene Ontology Function Gene Ontology Process

YMR163C Inp2  
Peroxisome-specific receptor 
important for peroxisome 
inheritance; co-fractionates 
with peroxisome membranes 
and co-localizes with 
peroxisomes in vivo; 
physically interacts with the 
myosin V motor Myo2p; INP2 
is not an essential gene29

Myosin binding  
Interacting selectively and 
non-covalently with any part of 
a myosin complex; myosins are 
any of a superfamily of molecular 
motor proteins that bind to actin 
and use the energy of ATP 
hydrolysis to generate force and 
movement along actin filaments. 
[GO:0017022]

Peroxisome inheritance  
The acquisition of peroxisomes 
by daughter cells from the 
mother cell after replication. 
In Saccharomyces cerevisiae, 
the number of peroxisomes 
cells is fairly constant; a subset 
of the organelles are targeted 
and segregated to the bud 
in a highly ordered, vectorial 
process. Efficient segregation 
of peroxisomes from mother 
to bud is dependent on the 
actin cytoskeleton, and active 
movement of peroxisomes 
along actin filaments is driven 
by the class V myosin motor 
protein, Myo2p. [GO:0045033]

YOR326W MYO2, 
CDC66

 
Type V myosin motor 
involved in actin-based 
transport of cargos; required 
for the polarized delivery 
of secretory vesicles, the 
vacuole, late Golgi elements, 
peroxisomes, and the mitotic 
spindle; MYO2 has a paralog, 
MYO4, that arose from the 
whole genome duplication30

Actin filament binding 
Interacting selectively and non-
covalently with an actin filament, 
also known as F-actin, a helical 
filamentous polymer of globular 
G-actin subunits. [GO:0051015]

Cell division 
The process resulting in 
the physical partitioning 
and separation of a cell into 
daughter cells. Source: GOC:
go_curators 

Comment 
Note that this term differs from 
‘cytokinesis ; GO:0000910’ 
in that cytokinesis does not 
include nuclear division. 
[GO:0051301]

YCL063W VAC17, 
YCL062W

 
Phosphoprotein involved 
in vacuole inheritance; 
degraded in late M phase 
of the cell cycle; acts as a 
vacuole-specific receptor for 
myosin Myo2p31,32

Protein anchor  
Interacting selectively and 
non-covalently with both a 
protein or protein complex and a 
membrane, in order to maintain 
the localization of the protein 
at a specific location on the 
membrane. [GO: 0043495]

No Information Available

YER150W SPI1 GPI-anchored cell wall 
protein involved in weak acid 
resistance; basal expression 
requires Msn2p/Msn4p; 
expression is induced under 
conditions of stress and 
during the diauxic shift; SPI1 
has a paralog, SED1, that 
arose from the whole genome 
duplication33

Molecular_function  
Elemental activities, such as 
catalysis or binding, describing 
the actions of a gene product at 
the molecular level. A given gene 
product may exhibit one or more 
molecular functions. 
[GO: 0003674]

Response to acid  
Any process that results in a 
change in state or activity of a 
cell or an organism (in terms of 
movement, secretion, enzyme 
production, gene expression, 
etc.) as a result of an acid 
stimulus. The acid may be in 
gaseous, liquid or solid form. 
[GO: 0001101] 
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Table 2. Pathway segment YIL026C - YIL126W - YDL003W - YJL074C.

Protein Gene Protein Information Gene Ontology Function Gene Ontology Process

YIL026C IRR1, 
SCC3

Subunit of the cohesin complex; 
which is required for sister 
chromatid cohesion during 
mitosis and meiosis and 
interacts with centromeres and 
chromosome arms; relocalizes 
to the cytosol in response to 
hypoxia; essential for viability34,35.

Chromatin Binding  
Interacting selectively and 
non-covalently with chromatin, 
the network of fibers of DNA, 
protein, and sometimes RNA, 
that make up the chromosomes 
of the eukaryotic nucleus during 
interphase. [GO: 0003682]

fungal-type cell wall organization  
A process that is carried out at the 
cellular level which results in the 
assembly, arrangement of constituent 
parts, or disassembly of the fungal-
type cell wall. [GO: 0031505]

YIL126W STH1p, 
NPS1

ATPase component of the RSC 
chromatin remodeling complex; 
required for expression of early 
meiotic genes; essential helicase-
related protein homologous to 
Snf2p36,37.

DNA-dependent ATPase 
activity  
Catalysis of the reaction: ATP + 
H2O = ADP + phosphate; this 
reaction requires the presence 
of single- or double-stranded 
DNA, and it drives another 
reaction. [GO: 0008094]

ATP-dependent chromatin 
remodeling  
Dynamic structural changes to 
eukaryotic chromatin that require 
energy from the hydrolysis of 
ATP, ranging from local changes 
necessary for transcriptional 
regulation to global changes 
necessary for chromosome 
segregation, mediated by ATP-
dependent chromatin-remodelling 
factors. [GO: 0043044]

YDL003W MCD1 Essential alpha-kleisin subunit 
of the cohesin complex; 
required for sister chromatid 
cohesion in mitosis and meiosis; 
apoptosis induces cleavage 
and translocation of a C-terminal 
fragment to mitochondria; 
expression peaks in S phase38,39.

Chromatin binding  
Interacting selectively and 
non-covalently with chromatin, 
the network of fibers of DNA, 
protein, and sometimes RNA, 
that make up the chromosomes 
of the eukaryotic nucleus during 
interphase. [GO: 0003682]

Establishment of mitotic sister 
chromatid cohesion  
The process in which the sister 
chromatids of a replicated 
chromosome become joined along 
the entire length of the chromosome 
during S phase during a mitotic cell 
cycle. [GO:0034087]

YJL074C SMC3 Subunit of the multiprotein 
cohesin complex required for 
sister chromatid cohesion in 
mitotic cells; also required, 
with Rec8p, for cohesion and 
recombination during meiosis; 
phylogenetically conserved SMC 
chromosomal ATPase family 
member40.

ATPase activity  
Definition 
Catalysis of the reaction: ATP + 
H2O = ADP + phosphate + 
2 H+. May or may not be 
coupled to another reaction. 
[GO: 0016887]

Meiotic sister chromatid cohesion  
The cell cycle process in which 
sister chromatids of a replicated 
chromosome are joined along the 
entire length of the chromosome 
during meiosis. [GO: 0051177]

Discussion
Table 1 and Table 2 present some of the pathway segments identi-
fied using the computational approach proposed in this paper. The 
understanding of the paths is facilitated by using Gene Ontology 
associations to understand the biological processes the proteins 
are involved in. A signaling pathway is characterized by a starting 
protein that is a receptor at the membrane and ends with a transcrip-
tion factor.

From Table 1 we identified a pathway segment {YMR163C- 
YOR326W- YCL063W- YER150W} along with the genes coding 
for each of the proteins using GO annotation.

The pathway segment starts with the protein YMR163C, identified 
to be a receptor important for peroxisome inheritance. Signaling 

pathways are often characterized by an activator at the membrane of 
the cell binding to a receptor to initiate the chain of signal transduc-
tion. These peroxisomes are organelles that metabolize fatty acids 
and are numerous in the S. cerevisiae organism. By blocking per-
oxisome transport through point mutants in the MYO2p gene that 
binds to it, the levels of MYO2p gene expression increased26. The 
implication of this is that signal is transmitted to the mother cell to 
stop further peroxisome transfer by lowering INP2 gene expression. 
The next protein, YOR326W, in the pathway segment is coded for 
by the MYO2p gene whose level of expression is modified in the 
activation of signal that is relayed to alter the level of the INP2 gene 
that codes for the YMR163C receptor protein. The next protein in 
the chain, YCL063W, coded for by the gene VAC17 has been iden-
tified to be a vacuole-specific receptor for myosin MYO2P and is 
involved in vacuole inheritance, a molecular anchoring function. 
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The last protein in the pathway segment, YER150W, coded for 
by the gene SPI1 contributes to transcriptional regulation induced 
under conditions of stress during the diauxic shift27.

It is observed that this pathway which signals the start of the proc-
ess of meiosis suddenly breaks off to a gene (SPI1) that participates 
in catalysis at the molecular level. This is not abnormal as these are 
pathway segments and not the full transduction pathway activated 
by the receptor protein.

In a similar approach, 28 used protein-protein interaction data and 
expression data to model pathways. They ranked candidate signal-
ing pathways of interacting proteins using expression data based 
on the rationale that proteins in the same signaling network must 
simultaneously exist with the activation of the pathway; the genes 
coding for these proteins must also under the same environmental 
factors required for the signaling network and about the same time, 
be transcribed.

Their approach to predicting pathways included specifying the 
starting protein, a membrane protein, and an ending protein of inter-
est, such as a DNA-binding protein, based on a prior knowledge of 
genetic relationship between them. In their findings, the pathways 
that the algorithm identified were not complete pathways owing to 
incomplete maps.

21 also applied a computational approach that is similar to our own 
by assigning scores to protein-protein interaction data, creating a 
PPI network from the data and mining signaling pathways from the 
network. The parameters for the search on the network included a 
starting protein and an ending protein as well as the length of the 
pathway segment. Although their approach involved training the 
algorithm using association rules mining from known pathways, 
they were only able to mine pathway segments too.

The incompleteness of pathways mined from using computational 
techniques on protein-protein interaction data can be attributed 
to false negative interactions that were not detected by the high 
throughput experiments that generated the data.

Furthermore, a number of computational techniques that have been 
applied to cleaning the noise in the protein-protein interaction data 
used often entails eliminating some data presumed to be noise from 
the dataset. The proteins removed in this manner could be important 
proteins that would then be missing in the modeled PIN. Our own 
approach involved filtering the protein-protein interaction data with 
the gene expression measurement data such that only the proteins 
with expression level measurement were used in the construction of 

the protein interaction network. This resulted in a reduction of the 
22,650 pair-wise interactions by the gene expression measurement 
for just 800 proteins to 306 pair-wise interactions. This reduction in 
the size of the data used to construct the protein interaction network 
was a constraint on the number of pathways identified using this 
approach.

Conclusion
In this paper, we proposed a simple computational approach to 
identify signaling pathways in PINs by first estimating true inter-
actions within protein-protein interaction data obtained from high 
throughput experimental techniques which are susceptible to gen-
erating high rates of false positive and false negative interactions. 
We proposed a technique using Bayesian Probability to estimate the 
probability of true interactions between two proteins and assigned 
weights to the pair wise interaction based on this. Using the vali-
dated protein-protein interaction data, we constructed a PIN of 
the S. cerevisiae organism from where simple paths between two 
proteins of interest were mined. Using the Gene Ontology annota-
tion to understand the biological process taking place within the 
pathway, we were able to identify a pathway which signals the start 
of the process of meiosis, albeit broken off for want of more data.

Knowledge of signaling pathways are generally useful in designing 
biological interventions on an organism aimed at producing specific 
desired outcomes such as new drugs design and disease prevention 
and control.

Data availability
F1000Research: Dataset 1. Yeast Expression Data, 10.5256/
f1000research.7591.d11032541

F1000Research: Dataset 2. Protein-protein interaction data, 
10.5256/f1000research.7591.d11032642

Author contributions
AUM conceived the study and supervised it. TAO carried out the 
study. Both authors interpreted the results and were involved in the 
revision of the final draft manuscript and agreed to the content.

Competing interests
No competing interests were disclosed.

Grant information
The author(s) declared that no grants were involved in supporting 
this work.

Page 9 of 13

F1000Research 2015, 4(ISCB Comm J):1522 Last updated: 25 DEC 2016

http://dx.doi.org/10.5256/f1000research.7591.d110325
http://dx.doi.org/10.5256/f1000research.7591.d110325
http://dx.doi.org/10.5256/f1000research.7591.d110326


References

1. Kone BC: Protein-protein interactions controlling nitric oxide synthases. Acta 
Physiol Scand. 2000; 168(1): 27–31. 
PubMed Abstract | Publisher Full Text 

2. Wang Jh: Protein recognition by cell surface receptors: physiological 
receptors versus virus interactions. Trends Biochem Sci. 2002; 27(3): 122–126. 
PubMed Abstract | Publisher Full Text 

3. Jeong H, Mason SP, Barabási AL, et al.: Lethality and centrality in protein 
networks: The most highly connected proteins in the cell are the most 
important for its survival. Nature. 2001; 411(6833): 41–42. 
PubMed Abstract | Publisher Full Text 

4. Eisenberg D, Marcotte EM, Xenarios I, et al.: Protein function in the post-genomic 
era. Nature. 2000; 405(6788): 823–826. 
PubMed Abstract | Publisher Full Text 

5. Koyama FC, Chakrabarti D, Garcia CR: Molecular machinery of signal 
transduction and cell cycle regulation in Plasmodium. Mol Biochem Parasitol. 
2009; 165(1): 1–7. 
PubMed Abstract | Publisher Full Text | Free Full Text 

6. Legrain P, Wojcik J, Gauthier JM: Protein--protein interaction maps: a lead 
towards cellular functions. Trends Genet. 2001; 17(6): 346–352. 
PubMed Abstract | Publisher Full Text 

7. Deng M, Mehta S, Sun F, et al.: Inferring domain-domain interactions from 
protein-protein interactions. Genome Res. 2002; 12(10): 1540–1548. 
PubMed Abstract | Publisher Full Text | Free Full Text 

8. von Mering C, Krause R, Snel B, et al.: Comparative assessment of large-scale 
data sets of protein-protein interactions. Nature. 2002; 417(6887): 399–403. 
PubMed Abstract | Publisher Full Text 

9. Deane CM, Salwiński Ł, Xenarios I, et al.: Protein interactions: two methods 
for assessment of the reliability of high throughput observations. Mol Cell 
Proteomics. 2002; 1(5): 349–356. 
PubMed Abstract | Publisher Full Text 

10. Berggård T, Linse S, James P: Methods for the detection and analysis of 
protein-protein interactions. Proteomics. 2007; 7(16): 2833–2842. 
PubMed Abstract | Publisher Full Text 

11. Walhout AJ, Vidal M: High-throughput yeast two-hybrid assays for large-scale 
protein interaction mapping. Methods. 2001; 24(3): 297–306. 
PubMed Abstract | Publisher Full Text 

12. Spellman PT, Sherlock G, Zhang MQ, et al.: Comprehensive identification of cell 
cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray 
hybridization. Mol Biol Cell. 1998; 9(12): 3273–3297. 
PubMed Abstract | Publisher Full Text | Free Full Text 

13. Ge H, Liu Z, Church GM, et al.: Correlation between transcriptome and 
interactome mapping data from Saccharomyces cerevisiae. Nat Genet. 2001; 
29(4): 482–488. 
PubMed Abstract | Publisher Full Text 

14. Grigoriev A: A relationship between gene expression and protein interactions 
on the proteome scale: analysis of the bacteriophage T7 and the yeast 
Saccharomyces cerevisiae. Nucleic Acids Res. 2001; 29(17): 3513–9. 
PubMed Abstract | Publisher Full Text | Free Full Text 

15. Kemmeren P, van Berkum NL, Vilo J, et al.: Protein interaction verification and 
functional annotation by integrated analysis of genome-scale data. Mol Cell. 
2002; 9(5): 1133–1143. 
PubMed Abstract | Publisher Full Text 

16. Jansen R, Greenbaum D, Gerstein M: Relating whole-genome expression data 
with protein-protein interactions. Genome Res. 2002; 12(1): 37–46. 
PubMed Abstract | Publisher Full Text | Free Full Text 

17. Sharan R, Suthram S, Kelley RM, et al.: Conserved patterns of protein 
interaction in multiple species. Proc Natl Acad Sci U S A. 2005; 102(6): 
1974–1979. 
PubMed Abstract | Publisher Full Text | Free Full Text 

18. Oyelade J, Ewejobi I, Brors B, et al.: Computational identification of 
signalling pathways in Plasmodium falciparum. Infect Genet Evol. 2011; 11(4): 
755–764. 
PubMed Abstract | Publisher Full Text 

19. Wilkinson DJ: Bayesian methods in bioinformatics and computational systems 
biology. Brief Bioinform. 2007; 8(2): 109–16. 
PubMed Abstract | Publisher Full Text 

20. Thomas S: Likelihood functions. Indira Gandhi Institute of Development Research 
(IGIDR), Bombay. 2008. 
Reference Source

21. Bebek G, Yang J: PathFinder: mining signal transduction pathway segments 
from protein-protein interaction networks. BMC Bioinformatics. 2007; 8: 335. 
PubMed Abstract | Publisher Full Text | Free Full Text 

22. Tornow S, Mewes HW: Functional modules by relating protein interaction 
networks and gene expression. Nucleic Acids Res. 2003; 31(21): 6283–6289. 
PubMed Abstract | Publisher Full Text | Free Full Text 

23. Hanisch D, Zien A, Zimmer R, et al.: Co-clustering of biological networks and 
gene expression data. Bioinformatics. 2002; 18(Suppl 1): S145–S154. 
PubMed Abstract | Publisher Full Text 

24. Ideker T, Ozier O, Schwikowski B, et al.: Discovering regulatory and signalling 
circuits in molecular interaction networks. Bioinformatics. 2002; 18(Suppl 1): 
S233–S240. 
PubMed Abstract | Publisher Full Text 

25. Zien A, Kuffner R, Zimmer R, et al.: Analysis of gene expression data with 
pathway scores. Proc Int Conf Intell Syst Mol Biol. 2000; 8: 407–417. 
PubMed Abstract 

26. Fagarasanu A, Mast FD, Knoblach B, et al.: Myosin-driven peroxisome 
partitioning in S. cerevisiae. J Cell Biol.. 2009; 186(4): 541–554. 
PubMed Abstract | Publisher Full Text | Free Full Text 

27. Galdieri L, Mehrotra S, Yu S, et al.: Transcriptional regulation in yeast during 
diauxic shift and stationary phase. OMICS. 2010; 14(6): 629–38. 
PubMed Abstract | Publisher Full Text | Free Full Text 

28. Steffen M, Petti A, Aach J, et al.: Automated modelling of signal transduction 
networks. BMC Bioinformatics. 2002; 3: 34. 
PubMed Abstract | Publisher Full Text | Free Full Text 

29. Fagarasanu A, Fagarasanu M, Eitzen GA, et al.: The peroxisomal membrane 
protein Inp2p is the peroxisome-specific receptor for the myosin V motor 
Myo2p of Saccharomyces cerevisiae. Dev Cell. 2006; 10(5): 587–600. 
PubMed Abstract | Publisher Full Text 

30. Mortimer RK, Contopoulou CR, King JS: Genetic and physical maps of 
Saccharomyces cerevisiae, Edition 11. Yeast. 1992; 8(10): 817–902. 
PubMed Abstract | Publisher Full Text 

31. Tang F, Kauffman EJ, Novak JL, et al.: Regulated degradation of a class V myosin 
receptor directs movement of the yeast vacuole. Nature. 2003; 422(6927): 
87–92. 
PubMed Abstract | Publisher Full Text 

32. Ishikawa K, Catlett NL, Novak JL, et al.: Identification of an organelle-specific 
myosin V receptor. J Cell Biol. 2003; 160(6): 887–97. 
PubMed Abstract | Publisher Full Text | Free Full Text 

33. Puig S, Pérez-Ortín JE: Stress response and expression patterns in wine 
fermentations of yeast genes induced at the diauxic shift. Yeast. 2000; 16(2): 
139–48. 
PubMed Abstract | Publisher Full Text 

34. Kurlandzka A, Rytka J, Rózalska B, et al.: Saccharomyces cerevisiae IRR1 
protein is indirectly involved in colony formation. Yeast. 1999; 15(1): 23–33. 
PubMed Abstract | Publisher Full Text 

35. Tóth A, Ciosk R, Uhlmann F, et al.: Yeast cohesin complex requires a conserved 
protein, Eco1p(Ctf7), to establish cohesion between sister chromatids during 
DNA replication. Genes Dev. 1999; 13(3): 320–33. 
PubMed Abstract | Publisher Full Text | Free Full Text 

36. Laurent BC, Yang X, Carlson M: An essential Saccharomyces cerevisiae gene 
homologous to SNF2 encodes a helicase-related protein in a new family. Mol 
Cell Biol. 1992; 12(4): 1893–902. 
PubMed Abstract | Publisher Full Text | Free Full Text 

37. Tsuchiya E, Uno M, Kiguchi A, et al.: The Saccharomyces cerevisiae NPS1 gene, 
a novel CDC gene which encodes a 160 kDa nuclear protein involved in G2 
phase control. EMBO J. 1992; 11(11): 4017–26. 
PubMed Abstract | Free Full Text 

38. Guacci V, Koshland D, Strunnikov A: A direct link between sister chromatid 
cohesion and chromosome condensation revealed through the analysis of 
MCD1 in S. cerevisiae. Cell. 1997; 91(1): 47–57. 
PubMed Abstract | Publisher Full Text | Free Full Text 

39. Heo SJ, Tatebayashi K, Kato J, et al.: The RHC21 gene of budding yeast, a 
homologue of the fission yeast rad21+ gene, is essential for chromosome 
segregation. Mol Gen Genet. 1998; 257(2): 149–56. 
PubMed Abstract | Publisher Full Text 

40. Michealis C, Ciosk R, Nasmyth K: Cohesins: chromosomal proteins that prevent 
premature separation of sister chromatids. Cell. 1997; 91(1): 35–45. 
PubMed Abstract | Publisher Full Text 

41. Makolo AU, Olagunju TA: Dataset 1 in: Computational identification of signaling 
pathways in protein interaction networks. F1000Research. 2015. 
Data Source

42. Makolo AU, Olagunju TA: Dataset 2 in: Computational identification of signaling 
pathways in protein interaction networks. F1000Research. 2015. 
Data Source

Page 10 of 13

F1000Research 2015, 4(ISCB Comm J):1522 Last updated: 25 DEC 2016

http://www.ncbi.nlm.nih.gov/pubmed/10691776
http://dx.doi.org/10.1046/j.1365-201x.2000.00629.x
http://www.ncbi.nlm.nih.gov/pubmed/11893508
http://dx.doi.org/10.1016/S0968-0004(01)02038-2
http://www.ncbi.nlm.nih.gov/pubmed/11333967
http://dx.doi.org/10.1038/35075138
http://www.ncbi.nlm.nih.gov/pubmed/10866208
http://dx.doi.org/10.1038/35015694
http://www.ncbi.nlm.nih.gov/pubmed/19393157
http://dx.doi.org/10.1016/j.molbiopara.2009.01.003
http://www.ncbi.nlm.nih.gov/pmc/articles/2699398
http://www.ncbi.nlm.nih.gov/pubmed/11377797
http://dx.doi.org/10.1016/S0168-9525(01)02323-X
http://www.ncbi.nlm.nih.gov/pubmed/12368246
http://dx.doi.org/10.1101/gr.153002
http://www.ncbi.nlm.nih.gov/pmc/articles/187530
http://www.ncbi.nlm.nih.gov/pubmed/12000970
http://dx.doi.org/10.1038/nature750
http://www.ncbi.nlm.nih.gov/pubmed/12118076
http://dx.doi.org/10.1074/mcp.M100037-MCP200
http://www.ncbi.nlm.nih.gov/pubmed/17640003
http://dx.doi.org/10.1002/pmic.200700131
http://www.ncbi.nlm.nih.gov/pubmed/11403578
http://dx.doi.org/10.1006/meth.2001.1190
http://www.ncbi.nlm.nih.gov/pubmed/9843569
http://dx.doi.org/10.1091/mbc.9.12.3273
http://www.ncbi.nlm.nih.gov/pmc/articles/25624
http://www.ncbi.nlm.nih.gov/pubmed/11694880
http://dx.doi.org/10.1038/ng776
http://www.ncbi.nlm.nih.gov/pubmed/11522820
http://dx.doi.org/10.1093/nar/29.17.3513
http://www.ncbi.nlm.nih.gov/pmc/articles/55876
http://www.ncbi.nlm.nih.gov/pubmed/12049748
http://dx.doi.org/10.1016/S1097-2765(02)00531-2
http://www.ncbi.nlm.nih.gov/pubmed/11779829
http://dx.doi.org/10.1101/gr.205602
http://www.ncbi.nlm.nih.gov/pmc/articles/155252
http://www.ncbi.nlm.nih.gov/pubmed/15687504
http://dx.doi.org/10.1073/pnas.0409522102
http://www.ncbi.nlm.nih.gov/pmc/articles/548573
http://www.ncbi.nlm.nih.gov/pubmed/21112415
http://dx.doi.org/10.1016/j.meegid.2010.11.006
http://www.ncbi.nlm.nih.gov/pubmed/17430978
http://dx.doi.org/10.1093/bib/bbm007
http://www.igidr.ac.in/susant/TEACHING/ETRICS1/p03.pdf
http://www.ncbi.nlm.nih.gov/pubmed/17854489
http://dx.doi.org/10.1186/1471-2105-8-335
http://www.ncbi.nlm.nih.gov/pmc/articles/2100073
http://www.ncbi.nlm.nih.gov/pubmed/14576317
http://dx.doi.org/10.1093/nar/gkg838
http://www.ncbi.nlm.nih.gov/pmc/articles/275479
http://www.ncbi.nlm.nih.gov/pubmed/12169542
http://dx.doi.org/10.1093/bioinformatics/18.suppl_1.S145
http://www.ncbi.nlm.nih.gov/pubmed/12169552
http://dx.doi.org/10.1093/bioinformatics/18.suppl_1.S233
http://www.ncbi.nlm.nih.gov/pubmed/10977101
http://www.ncbi.nlm.nih.gov/pubmed/19687257
http://dx.doi.org/10.1083/jcb.200904050
http://www.ncbi.nlm.nih.gov/pmc/articles/2733749
http://www.ncbi.nlm.nih.gov/pubmed/20863251
http://dx.doi.org/10.1089/omi.2010.0069
http://www.ncbi.nlm.nih.gov/pmc/articles/3133784
http://www.ncbi.nlm.nih.gov/pubmed/12413400
http://dx.doi.org/10.1186/1471-2105-3-34
http://www.ncbi.nlm.nih.gov/pmc/articles/137599
http://www.ncbi.nlm.nih.gov/pubmed/16678774
http://dx.doi.org/10.1016/j.devcel.2006.04.012
http://www.ncbi.nlm.nih.gov/pubmed/1413997
http://dx.doi.org/10.1002/yea.320081002
http://www.ncbi.nlm.nih.gov/pubmed/12594460
http://dx.doi.org/10.1038/nature01453
http://www.ncbi.nlm.nih.gov/pubmed/12642614
http://dx.doi.org/10.1083/jcb.200210139
http://www.ncbi.nlm.nih.gov/pmc/articles/2173761
http://www.ncbi.nlm.nih.gov/pubmed/10641036
http://dx.doi.org/10.1002/(SICI)1097-0061(20000130)16:2<139::AID-YEA512>3.0.CO;2-J
http://www.ncbi.nlm.nih.gov/pubmed/10028182
http://dx.doi.org/10.1002/(SICI)1097-0061(19990115)15:1<23::AID-YEA337>3.0.CO;2-E
http://www.ncbi.nlm.nih.gov/pubmed/9990856
http://dx.doi.org/10.1101/gad.13.3.320
http://www.ncbi.nlm.nih.gov/pmc/articles/316435
http://www.ncbi.nlm.nih.gov/pubmed/1549132
http://dx.doi.org/10.1128/MCB.12.4.1893
http://www.ncbi.nlm.nih.gov/pmc/articles/369633
http://www.ncbi.nlm.nih.gov/pubmed/1396591
http://www.ncbi.nlm.nih.gov/pmc/articles/556912
http://www.ncbi.nlm.nih.gov/pubmed/9335334
http://dx.doi.org/10.1016/S0092-8674(01)80008-8
http://www.ncbi.nlm.nih.gov/pmc/articles/2670185
http://www.ncbi.nlm.nih.gov/pubmed/9491073
http://dx.doi.org/10.1007/s004380050634
http://www.ncbi.nlm.nih.gov/pubmed/9335333
http://dx.doi.org/10.1016/S0092-8674(01)80007-6
http://dx.doi.org/10.5256/f1000research.7591.d110325
http://dx.doi.org/10.5256/f1000research.7591.d110326


F1000Research

Open Peer Review

  Current Referee Status:

Version 1

 27 January 2016Referee Report

doi:10.5256/f1000research.8174.r11808

 Lynn Fink
Diamantina Institute, University of Queensland, Brisbane, Australia

This paper describes a computational method for extracting information from a large variety of inherently
noisy biological data describing protein-protein interactions and purports to be able to discover signalling
pathways, or at least segments of signalling pathways.

Not being an expert on Bayesian modeling, I can't comment directly on the method although it seems to
be predicated on well-supported hypotheses and aims to be conservative in the interests of decreasing
noise and increasing biological validity. Significantly, the pathway segments suggested by the model are
annotated with existing functional information from Gene Ontology annotations. The authors claim to
validate their results by correlating the proposed interactions with existing gene expression relying on the
hypothesis that highly co-expressed genes are true interactors. It should also be noted that this study was
performed on , a highly studied model organism for which the authors had access to 8S. cerevisiae
different types of high-throughput methods aimed at inferring protein-protein interactions (PPIs).

I've personally always struggled with the validity of using computational methods to amalgamate
high-throughput PPI data for the purposes of pathway discovery. PPI networks are dynamic and I'm not
convinced that we can measure them completely (in every condition, cell type, tissue type, etc.) or that we
can always assume that PPIs observed in one cell, organism, or condition can be extrapolated to others
so any attempt we make to catalog PPIs is necessarily vastly incomplete. Furthermore, given the wealth
of data necessary to attempt applying a computational method I wonder how generally applicable these
methods can be. For example, this paper relied on data from 8 different methods - how often can we
expect to have that much information about a cell or organism of interest?

Is it appropriate to validate computationally-derived PPIs with gene expression data? Would it not be
more appropriate to perform an assay that directly or indirectly interrogates the actual interaction between
proteins?

I also wonder how circular the logic behind these computational methods is. The authors used data from
SGD, a well-known public resource, in order to generate PPI networks and then bootstrapped these
networks by using GO, another well-known public resource. I would be surprised if GO annotation was
performed without knowledge from SGD so can we believe that the networks derived in this paper are
based on solely on the Bayesian model? Or are we just re-discovering information we partially already
knew?

And if we believe the signalling pathway segments reported here are newly and independently
discovered, how widely applicable is the proposed method? Can we use it for other organisms or for
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And if we believe the signalling pathway segments reported here are newly and independently
discovered, how widely applicable is the proposed method? Can we use it for other organisms or for
yeast under changed conditions, for example? How much PPI data do we need before a computational
method is more efficient and informative than well-designed biochemical experiments? Were the two
reported pathway segments the only ones that could be inferred from 22,650 interactions between 2554
proteins (roughly half of the entire proteome)? Is there anything exciting (and new) to be found if the
model is allowed to be less conservative?

What contribution to biology do the authors expect from this method?

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however I have significant reservations, as outlined
above.

 No competing interests were disclosed.Competing Interests:

 18 January 2016Referee Report

doi:10.5256/f1000research.8174.r11809

 Winston Hide
Sheffield Institute of Translational Neuroscience, University of Sheffield, Sheffield, USA

This work is appropriately  applied in principle with adequate application of methods. According to the
criteria: "work has been well designed, executed and discussed" it has not quite yet been adequately
designed would benefit from a more synthetic discussion that explores the results in context of existing
work.

Of concern is that the aim of the project appears to be to improve the delivery of signal over noise in PINs.
But there is no means to judge if there has been an improvement - no tests, validation or comparison over
a start state. Instead there is provision of results that show some interactions that are already known -
which is promising - but no ability to judge if this is an improvement over just the use of protein-protein
interaction data, or just the use of gene expression data.

There could be some more reference to existing work - reference and comparison with that which is
current in the field (see examples of refs below).
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