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ABSTRACT. Multispectral geospatial image sets retain the scene’s spatial and
spectral information. To jointly use both of them for analysis purposes, we pro-
pose to extend the concept of wavelet packets, by introducing a new integrated
multispectral entropy function. Each spectral band is individually decomposed
by the wavelet packets transform, and then the entropy term is jointly guided
by information from all bands, simultaneously. Finally, the wavelet packets
coefficients undergo a dimension reduction process. We present examples of
this theory applied to hyperspectral satellite imagery.

1. INTRODUCTION

In geosciences, remote sensing is understood as collecting data about objects
without coming in direct contact with them. Typically, the setting for remote sens-
ing is the Earth’s surface and atmosphere and the concept is often associated with
gathering information dealing with various aspects of the classification and detec-
tion problems associated with both man-made and natural issues. Remote sensing
technology is phenomenally varied and it includes many different modalities. In this
paper we focus on multi- and hyperspectral remote sensing imagery. Multispectral
imaging is nowadays successfully used to detect, classify, and quantify objects and
materials in a wide range of subjects, ranging from geophysics to biomedicine. The
multispectral image sets contain both spatial and spectral information of the scene.
This leads to a multitude of novel and effective methods to make use of spatial and
spectral components in a joint fashion. For an example of spatial-spectral fusion
in hyperspectral satellite imagery we refer the interested reader, e.g., to [5] and
references therein.

The purpose of this paper is to provide a very different point of view on the
spatial-spectral fusion problem, that is inspired by recent developments at the
intersection of harmonic analysis and wavelet theory with machine learning and
nonlinear dimension reduction. Novel dimension reduction techniques help us to
overcome the ever increasing complexity of hyperspectral data, due to the presence
of multiple spectral bands, as well as improving pixel resolution of the imagery.
Principal component analysis (PCA) has been widely used in this regard, and the
few significant principal components are typically used to induce a linear trans-
formation maximizing the captured variance within the dimension reduced data.
If the data set lies on a linear manifold, then PCA optimally recovers this sim-
ple manifold structure. In recent years, however, arguments have been raised that
indicate that data acquired from natural sources typically does not reside on a lin-
ear manifold. This led to replacement of PCA with more sophisticated methods.
These include, among others, diffusion maps [14], multiscale approaches [13, 27],
and nonlinear dimension reduction [4, 6, 37, 38, 42]. Wavelet dimension reduction
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of hyperspectral image data has also been applied, see, e.g., [1]. Wavelets and
PCA were jointly used in [29], which motivated the present work. Further refer-
ences to the applications of wavelets in multi- and hyperspectral imagery include
[8, 30, 35, 39, 40, 41, 45] and references therein. Despite its shortcomings, we do
note that PCA’s simplicity and robustness to noise are behind its widespread use
and, thus, provide a good argument to incorporate PCA as a subroutine in more
comprehensive analysis schemes.

Wavelet methods and the underlying multiscale decompositions received sig-
nificant attention from both mathematics and applied sciences. Because of the
adaptability of the multiresolution scheme, it has proven to be well-suited for the
analysis of spatial characteristics, such as those typically observed in remote sensing
imagery, see, e.g., [2, 24, 31]. The associated Discrete Wavelet Transform (DWT)
is an iterative scheme that splits the signal into approximation and detail coeffi-
cients. Each level is computed by passing through only the previous approximation
coefficients. The Wavelet Packets Transform (WPT), on the other hand, further
decomposes both the approximation and the detail parts [16]. Contrary to the
DWT, this yields a full wavelet tree decomposition that offers more flexibility. The
best basis algorithm of Coifman and Wickerhauser finds the optimal subtree for re-
construction, i.e., the best coefficient set with respect to a chosen entropy measure.

To jointly use spatial and spectral information in multispectral image sets, we
propose an extension of the classical entropy measure within the concept of wavelet
packets. The wavelet characteristics efficiently capture spatial correlations, and
thus, by using an extended entropy term, we are also able to utilize the spectral
information at the same time. We decompose each spectral band separately by
using the WPT. Spatial information can be transferred from one band into the
wavelet decomposition of another by using a new joint entropy function. Hence,
spectral and spatial components are intertwined in the wavelet packets coefficients.
The joint entropy preserves correlations between frequency bands in the wavelet
domain. Wavelet coefficients are thresholded to remove noise and artifacts. The
best joint subtree is determined by minimizing the joint entropy over all wavelet
coeflicients and across all spectral bands. Each node of the joint subtree is now a
coefficient vector whose entries refer to different spectral bands. Next, PCA is used
in the wavelet domain to reduce the data dimension. Pseudo-spectral images are
reconstructed by applying the inverse WPT. We verify that this proposed scheme
for fusion of spectral and spatial information significantly improves the output of
classification schemes in multispectral satellite imaging, by applying it to AVIRIS,
ROSIS, and HYDICE data.

The outline of the paper is as follows. In Section 2 we introduce wavelet packets
with the underlying WPT and we specify the concept of the joint entropy for
multispectral image sets. We apply our proposed wavelet packets scheme to analyze
hyperspectral satellite images in Section 3. Conclusions are given in Section 4.

2. FROM WAVELETS TO WAVELET PACKETS

Wavelet packets were introduced by Coifman, Meyer, and Wickerhauser in the
early nineties [16, 12]. The underlying transform is a descendant of the Discrete
Wavelet Transform, but it provides an enormous flexibility, which stems from the
redundancy associated with analyzing the complete impulse response tree. To ex-
ploit this flexibility, appropriate entropy functions need to be designed and proper
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filters must be selected. As such, we start this Section with a description of the
basics of biorthogonal multiresolution analyses, and then proceed to explain the
construction of the resulting wavelet packets scheme with joint entropy and dimen-
sion reduction.

2.1. Biorthogonal wavelets. Let M denote an expansive dilation matriz, under-
stood, for example, as an integer matrix whose eigenvalues are greater than one in
modulus. We refer the interested reader to [10] for other ways in which expansive
dilations can be defined. Given such M and f: R¢ — C, let

Finlx) =m?f(Mz — k), forjeZkeZ

denote a wavelet system, with m := | det(M)|. A collection 1) ... (™) of Ly(R%)-
functions is called a wavelet Riesz basis if {1/)5’;) 2 j€Z, keZt u=1...,n}isa
Riesz basis for Ly(R?). Mallat and Meyer proposed the concept of multiresolution
analysis, building the foundation of fast wavelet algorithms: an increasing sequence
of closed subspaces (V). in Lo(R%) is called a multiresolution analysis if the
following hold:

(M-1): f € V;if and only if f(M~7.) € Vg, for all j € Z,

(M-2): (J,¢z Vj is dense in Ly(R%),

(M-3): mjeZ V; = {0},

(M-4): there is a function ¢ € Vj, called the generator, whose integer shifts

constitute a Riesz basis for Vj.

Let (V;);c; and (Vj)jez be two multiresolution analyses with compactly sup-
ported generators ¢ and @, respectively. In addition, we assume that their integer
shifts are biorthogonal to each other, i.e., for all k, k' € Z%, we require that

(1) (p(- = k), 8(- = k') = O -

Moreover, let us assume that {wj%) ckeZt p=1...,n} and {1;](‘;3 t ko€
7%, p=1...,n} constitute Riesz bases for spaces W; and Wj, respectively, such
that

2 Vin=V;eW,, Via=V,eW, and <1/J](P;?71;](“k)/> = 0,3 Ok k' Oy -

‘We note here that~W0 and WO are algebraic complements and not necessarily
orthogonal to Vj and Vj, respectively, but are assumed to be related by the following
relationship:

(3) Wi LV;, W, LV

According to the theory of shift invariant spaces, the number of wavelets is de-
termined as n = m — 1, cf., [44]. Condition (M-3) and the relations (2) yield
decompositions of the signal space up to level j. Indeed, we have

Jj—1 Jj—1 Jj—1 Jj—1
Vi=Vio @Wy= @ Wy and  Vi=Vie P Wy= H Wy,

i'=jo jl=—0c0 J'=Jo Jl=—o00
where jg < 0 is some fixed integer. For simplicity, suppose that f is contained in
V. Then, there exists the expansion,

(4) f= Z (f,%0,k) ¥0,k-

kezd
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Since Vp =V}, @ @j_:ljo W, the biorthogonality relations (3) yield

-1 m—-1
(5) f Z fa Sojo, Lo,k + Z Z Z f’ w(/t) (,u)
kezZs Jj=jo p=1 kezd

The fast wavelet transform enables us to switch between the two representations
(4) and (5) by computing the coefficients of one from the other. We shall now
illustrate this fact, after some necessary preparations. According to (M-1) and
(M-4), the collection,

{gpj,k ke Zd} ,

is a Riesz basis for V. Since the spaces V; are increasing, ¢ is contained in V.
Thus, there exists a sequence (ak)cza € f2(Z?%) such that ¢ satisfies the refinement

equation,
Z a, p(Mz — k).
kEZ

For simplicity, we assume that the sequence (G,I(CO))kezd has only finitely many
nonzero entries. This implies that

1 —2mik-
GES DU

keza

is a trigonometric polynomial, called the symbol of ¢. The biorthogonality relation
(1) is equivalent to

(6) Z a® (€ + V)W =1, forall e ]Rd,

yEl M

where I'js is a complete set of representatives of M~ TZ4/Z% with 0 € Ty, cf. [17].
Since {15 : k € 7} and {(pl k- k € 74} are Riesz bases for V; and Vl, respectively,
the inclusions Wy € V; and W C V; provide that there exist sequences (a ,(c“ )) rezd €

l5(Z4) and (b,(c )) cza € Eg(Zd) such that

P (z Z ay ' p(Mx —k) and P (z) = Z b(”) p(Mz — k).

kezd kezd

Again, we assume that both sequences, (a,&“ ))k 70 and (b;g” )) yezq have only finitely

many entries. Let a(*) and b*) denote their symbols, respectively. The geometrical
conditions (1), (3) with the complement property (2) imply

(7) > a(E+NIE+T) =0pp, pr=0,...,m—1,

yel M

see [17] for details. Note that (7) includes the duality relations (6).
Given the coefficients of f in Vj, i.e.,

HO(O)(k) = <f’ ¢O,k> ) ke Zda

the fast wavelet transform allows us to efficiently compute the coefficients of the
decomposition (5), i.e.,

HOM) = (f.8j0) and  HP (k)= (3%, kez,
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for 1 < pu<m-—1, jo <j < —1. The inverse transform allows us to derive the
coefficients in (4) from the coefficients in (5), cf. Algorithm 1. Similar redundant
wavelet systems have been studied, e.g., in [22, 36].

(a) Decomposition:
Input: H(()O)
for j=-1,-2,...,j0 do

for y=0,....m—1do

(w) ._ (0)
H = (bW« HY)) Ly

end
end
Output: H\” and H"), for p=1,...,m 1, j=—1,...,jo with

HO (k) = (£, 500),  HP (k) = (f,9%))

(b) Reconstruction:
Input: H\ and H", p=1,...;m—1,j=-1,-2,...,jo
for j = jg,...,—1 do

m—1
HY =" s (HM 1)
pn=0
end
Output: Héo)

Algorithm 1: The fast wavelet transform. The terms a(*) and b(*) are iden-

tified with their coefficient sequence, so that the convolution makes sense, and

the symbols | and 1p; denote down- and up-sampling, i.e., (a)peze =
Apr-1k, ke ]\4Zd7

0, otherwise.

(anrr)peze and (ag)peza Tv=

2.2. Wavelet Packets. The DWT is based on splitting each approximation space
V42 into an approximation Vi i at lower scale and a detail space W,,1, which
itself has the natural decomposition,

Wit = @ 1% i)l’ where W(’ b= span{w(_s_1 Lk ez

Wavelet packets allow us to further split the spaces Wj(i)l, as needed. Indeed, for

u=1....m—1and v =0,...,m — 1, we define the wavelet packets system to be:
(8) uw Z a('/) ](i)l,k and ¢(u,u;j)( )= Z b(y)wj(i)l -
kezZd kezZd

Then, the subspaces,

W = span{yly” ke 2zl and W = span{dyy" P« k e 24,
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satisfy
m—1 N m—1 N
W = W and W = @ T,
v=0 v=0
Thus, the collections,
m—1m—1 ) m—1m—1 " )
U Ul kezyy  and | U@ kezh,
pn=1 v=0 p=1 v=0

are biorthogonal Riesz bases for W;_; and WjJrh respectively, cf. [11]. Next, we can
split the spaces W;” ) and Wj(“ ) analogously, and, after k iterations, we derive a

sequence of subspaces Wj(’“’”"”’“) and W;““'"’”k) such that

m—1 m—1
(H1seesbie) @ (B1sesBht1) T (1) @ T (Bt bkt1)
Wj+1 = VVJ- and Wj+1 = Wj .
Hik41=0 Hr41=0

This splitting trick is completely based on the relations (7), cf. [11]. If we keep
the number of splits of the detail spaces bounded, for instance, by fixing k over all
scales, then we can again derive a Riesz basis [11].

As described above, the concepts of wavelet packets and its associated transform
are a direct generalization of the DWT. When decomposing approximation and
detail spaces simultaneously down to scale jg, we obtain a full wavelet tree. Let
T denote the collection of those subtrees of a full wavelet tree, whose nodes have
either m or zero descendants, see Figure 2. Thus, each node represents a basis of a
particular subspace, and each subtree represents a different basis of the entire Vj.

Our next step is to modify the wavelet coefficients in order to reduce noise
and unwanted artifacts. This step will ensure the stability of minimization of the
entropy functional and hence will impact the selection of the best basis. For this
purpose, we shall shrink the wavelet coeflicients associated with each node. A large
variety of shrinkage strategies has been proposed in the literature. Here, we recall
a few common shrinkage rules, see also Figure 1. Soft- and hard-shrinkage,

0s(z,a) = (x — sign(z) ) 1{jz>a} and on(z,a) = r1{z>a},
respectively, are most prominent in wavelet schemes [9, 19], but many other tech-
niques have proven useful, and a common theoretical foundation is given in [23].
While soft-shrinkage still modifies large x, hard-shrinkage retains large coefficients,
but introduces a discontinuity. The (nonnegative) garotte-shrinkage rule,
2
@
Qg((E,OZ) = (1[,’ - ?)1{\x\>a}a

is continuous, and large coefficients are left almost unaltered. It has been success-
fully applied to image denoising in [25]. Bruce and Gao proposed firm-shrinkage,

o Bl = a)
0r.p(x, @) = xlyjg)>p) + Slgn(x)g_al{aﬂxlw}a B >0,

in [26] as a piecewise linear method.
After shrinking the wavelet coefficients associated to each node, we aim to find

the optimal subtree with respect to some entropy F (or cost function) of the wavelet
packets decomposition, that is defined as a nonnegative map

E:T =R



WAVELET PACKETS FOR TIME-FREQUENCY ANALYSIS OF MULTISPECTRAL IMAGERY7

8 8 - 8 N
- _/"‘
¢ ° e 6 § y
."",
4 4 o 4 4 .
Py "."" 2 e 2 P o
,o‘" o
% 2 a 6 s % 2 ) 3 s % 2 2 6 ) 2 1 6 8

(0,60) (0,0,1) (0,0,2) (0,0,3)

(b) wavelet tree Tpwr

Q)

(0,2,0) (0,£1) (0,2,2) (0,2,3) (0,,0) (0,3,1) (0,3,2) (0,3,3)

(c) possible wavelet packets subtree T'

FIGURE 2. The minimization of the entropy term determines the
subtree T' that is chosen for reconstruction. From left to right, the
four child nodes correspond to a(®, ¢, a(?), and a®).

The subtree T, at which E attains its minimum, allows us to select the best basis
with respect to the chosen entropy. W refer the reader to Figure 2 for a visualization

20 ) The WPT is shown in Algorithm 2.

of the subtree concept for M = ( 0 2

2.3. Joint entropy functional and dimension reduction. Before the applica-
tion of the entropy and selection of the best basis, wavelet coefficients were thresh-
olded to remove noise and artifacts. This procedure additionally enables a more
rapid entropy minimization and smooths the reconstruction [18]. The best basis
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(a) Decomposition:
Input: H#) 1y =0...,m—1
fori=1,...,—jy do
for p1,..., 441 =0,...,m—1do
(i) (b(lt¢+1) * H(#17~--,M)) IRy,

end
end
Output: HEW#) py ;i =0,....m—1,i=1,...,—jo.

(b) Best basis selection:
Input: HFoor) o0, =0,....om—1,i=1,...,—jo.
choose admissible subtree

T := arg jlpelglyE(T)

Output: 7" and H#i:hi) (H1y .-y ) € T

(c) Reconstruction:
Input: 7 and H¥0r) (uy, .. p) €T
for i = —jp,...,1 do

if (p1,...,0:,0) € T then

m—1
o) Z a(mis) % (H(M1>~~7Mi+1) Tar)
Hit+1=0
end
end

Output: H#), w=0...,m—-1
Algorithm 2: The wavelet packets transform. Let f = >, 4 H,go)apo,;~C +

S S peze HY VU IE f € Vo, then H#D =0, p=1...,m— 1.

algorithm allows us to find a set of wavelet bases that provides the most desirable
representation of the data relative to a particular cost function. Such a cost func-
tion needs to fit the particular application. Here, we are given n spectral bands, we
decompose each band by means of the WPT, and we apply wavelet thresholding.
We choose an entropy F;, i = 1,...,n, for each band, and define the joint entropy
E through the weighted ¢,-term over {E;}7,, so that the best subtree T is selected
by

9 T:= inE = i i B (T)|P,
(9) arg min argjmelg;w\ (T)]

where 0 < p < 2 and {w;}}_, represents a sequence of positive weights to be
specified. As such the subtree T provides a suitable basis which incorporates both
spatial and spectral information from the multispectral image sets.

The wavelet thresholding yields image smoothing and can be thought of as a
local linearization step. Each node of the joint subtree is now a coeflicient vector
whose entries refer to different spectral bands. The vectors of wavelet coefficients
likely do not lie on a linear manifold exactly, but may be approximated in a linear
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regime locally. To reduce the dimension of the coefficient vectors, we shall apply
PCA.

Remark 2.1. The wavelet transform and PCA are both linear transformations.
However, wavelet shrinkage introduces a nonlinearity to the approximation of the
multispectral data set, cf [34]. In principle, PCA can be replaced with any other
dimension reduction method, such as Locally Linear Embedding (LLE) [37], Hessian
LLE [20], Laplacian Eigenmaps (LE) [3, 4], or Diffusion Wavelets/Diffusion Maps
[13, 15]. However, these methods are computationally expensive and numerically
do not appear as stable as PCA.

3. HYPERSPECTRAL IMAGE SETS

Sunlight is diffusely reflected (scattered) by materials on the Earth’s surface, and
hyperspectral satellite and airborne imaging records the reflected electromagnetic
spectrum partitioned into spectral bands. The reflectivity of objects and materials
across the electromagnetic spectrum is referred to as their spectral signatures, en-
abling classification of a scene from a set of hyperspectral images. The recording
procedure of hyperspectral sensors yields a certain number of bands, pixels, and
lines, all of which depend on the sensor. Such data can be arranged into a collection
of images, each single one being associated with one spectral band.

To compare our proposed mathematical analysis approach with other methods,
we shall apply several wavelet type schemes to analyze publicly available hyperspec-
tral data sets. For simplicity, we restrict our considerations to the 2-dimensional
tensor Haar-wavelet, so that M is two times the identity matrix. We shall use the
Shannon entropy functional [43], and we select constant weights w; = 1, for all
1 =1,...,n. Garotte shrinkage is applied, setting 70% of the wavelet coefficients
to zero. The number of principal components is chosen so that 95% of the variance
in the wavelet domain is captured.

3.1. Indian Pines, Pavia University, Salinas, Salinas-A. For the quantitative
evaluation of our proposed method, we have chosen 4 data sets with publicly avail-
able ground truth. The first collection of hyperspectral images is Indian Pines from
the AVIRIS sensor with 200 bands, and 145 pixels by 145 lines. The Pavia Univer-
sity collection consists of 103 spectral bands, and 610 pixels by 610 lines and was
gathered by the ROSIS sensor. Both data sets were analyzed in [7, 21]. The third
data set is Salinas collected by the AVIRIS sensor with 202 bands, and 217 pixels by
512 lines. Salinas-A is a subscene of Salinas with 86 x 83 pixel images per spectral
band. All 4 data sets include ground truth, see Figure 3, and are available as Matlab
files at http://www.ehu.es/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes.

We shall use several wavelet type schemes to preprocess the data sets and then
apply the Spectral Angle Mapper (SAM) [28, 32, 33] to derive the final classification.
For SAM analysis, we label randomly selected 20% of each classes’ pixels. We only
count the number of correctly classified pixels, hence, prioritizing the minimization
of false-negatives and ignoring false-positives. Indeed, the percentage of correctly
classified pixels for the Indian Pines and Pavia University data sets appears con-
sistently higher than in [7, 21]. We do note however that such direct comparisons
are rather delicate and may also depend on selected wavelet approaches, pre- and
post-processing, as well as other factors.
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FIGURE 3. 4 hyperspectral data sets with associated ground truth:
Indian Pines, Pavia University, Salinas, and Salinas-A.

The results of our analysis are shown in Table 1. First, SAM was applied directly
to the raw data. In another experiment we applied PCA and then SAM. Next,
the DWT was used, with and without shrinkage and PCA. The standard WPT
for each spectral band separately with separate entropy terms was also used. The
WPT with joint entropy term appears to yield better classification results. It seems
that PCA improves the classification results more than shrinkage. To us, the latter

seemed a bit counterintuitive because small wavelet coefficients are considered of

less importance so that they would interfere with the classification scheme. So,
we can claim that PCA is an even more important contributor. In summary, the
WPT with joint entropy and the choice p = 1, combined with shrinkage and PCA,
appears to provide the best results among the tested methods in our numerical

experiments, cf. Table 1.

% correct
Method Indian Pines | Pavia U. | Salinas | Salinas-A
raw data 62 % 60 % 59 % 58 %
PCA 65 % 69 % 64 % 66 %
DWT 71 % 67 % 69 % 70 %
DWT+shrinkage+PCA 81 % 76 % 79% 78 %
WPT (sep) 70 % 65% | 66% | 68%
WPT(sep)+shrinkage+PCA 79 % 75 % 80 % 7%
WPT(p = 2) 74 % 2% | 1% | 73%
WPT(p = 2)+shrinkage+ PCA | 84 % S1% | 84% | 86%
WPT(p = 1) 73 % 5% | 2% | 1%

TABLE 1. Comparison of different methods for 4 data sets. Raw
data - unprocessed, WPT(sep) - entropy is used separately for each
band, WPT(p = i) - joint entropy is used with p =i, i = 1,2. The
wavelet packets transform combined with shrinkage and principal
component analysis consistently outperforms the other methods.

Since wavelet packets with joint entropy, shrinkage, and PCA outperform the
other methods, we list the detailed results for this particular experiment for each
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class in each data set, in order to provide further insight into the performance of
our proposed scheme. Tables 2, 3, 4, and 5 show the number of correctly classified
samples per class and the rate of success.

Class #Samples | # correct | % correct

Alfalfa 46 33 72 %
Corn-notill 1428 1313 92 %
Corn-mintill 830 689 83 %
Corn 237 178 75 %
Grass-pasture 483 386 80 %
Grass-trees 730 628 86 %
Grass-pasture-mowed 28 20 71 %
Hay-windrowed 478 425 89 %
Oats 20 19 95 %
Soybean-notill 972 894 92 %
Soybean-mintill 2455 2136 87 %
Soybean-clean 593 498 84 %
Wheat 205 162 79 %
Woods 1265 1151 91 %
Buildings-Grass-Trees-Drives 386 317 82 %
Stone-Steel-Towers 93 86 92 %
Total 10249 8935 87 %

TABLE 2. AVIRIS sensor, Indian Pines Scene, WPT+shrinkage+PCA.

Class #Samples | # correct | % correct
Asphalt 6631 5437 82 %
Meadows 18649 16971 91 %

Gravel 2099 1847 88 %

Trees 3064 2482 81 %

Painted metal sheets 1345 1036 77T %
Bare Soil 5029 4224 84 %
Bitumen 1330 1237 93 %

Self-Blocking Bricks 3682 3166 86 %
Shadows 947 572 60 %

Total 42776 36072 84 %

TABLE 3. ROSIS sensor, Pavia University Scene, WPT+shrinkage+PCA.

3.2. Copperas Cove data set. In the preceding section, we have validated the
performance of our proposed wavelet packets transform with joint entropy for p = 1
combined with shrinkage and PCA. To add additional dimension to our experimen-
tal comparisons, we also analyze the HYDICE sensor imagery data set, a collection
of 210 spectral bands, each 307 pixels by 307 lines, taken over Copperas Cove,
TX. It is publicly available at http://www.agc.army.mil/hypercube/. As before,
we shall use garotte shrinkage with setting 70% of the wavelet coefficients to zero
and we retain 12 principal components capturing more than 95% of the variance of
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Class #Samples | # correct | % correct
Brocoli-green-weeds-1 2009 1804 90 %
Brocoli-green-weeds-2 3726 3316 89 %
Fallow 1976 1817 92 %
Fallow-rough-plow 1394 1255 90 %
Fallow-smooth 2678 2276 85 %
Stubble 3959 3682 93 %

Celery 3579 3436 96 %

Grapes-untrained 11271 10657 95 %
Soil-vinyard-develop 6203 5521 89 %
Corn-senesced-green-weeds 3278 2917 95 %
Lettuce-romaine-4wk 1068 897 84 %
Lettuce-romaine-5wk 1927 1657 86 %
Lettuce-romaine-6wk 916 669 73 %
Lettuce-romaine-7wk 1070 973 91 %
Vinyard-untrained 7268 6796 94 %
Vinyard-vertical-trellis 1807 1554 86 %
Total 54129 49257 91 %

TABLE 4. AVIRIS sensor, Salinas Scene, WPT+shrinkage+PCA.

Class #Samples | # correct | % correct
Brocoli-green-weeds-1 391 325 83 %
Corn-senesced-green-weeds 1343 1289 96 %
Lettuce-romaine-4wk 616 567 92 %
Lettuce-romaine-5wk 1525 1434 94 %
Lettuce-romaine-6wk 674 593 88 %
Lettuce-romaine-7wk 799 727 91 %
Total 5348 4935 92 %

TABLE 5. AVIRIS sensor, Salinas-A Scene, WPT+shrinkage+PCA.

the remaining coefficients. Since the associated ground truth is confidential data,
we only show our classification in Figure 4 that appear to recover the different
classes within the scene reasonably well.

4. CONCLUSIONS

We have proposed a new method to analyze multi- and hyperspectral image
sets, that takes advantage of jointly analyzing the spatial and spectral content of
the available data. The new concept of joint entropy within wavelet packets en-
ables us to fuse spatial and spectral information encoded in the wavelet coefficients.
Shrinkage is applied to reduce noise and artifacts. PCA is used in the wavelet do-
main to reduce the dimension of the data. Our scheme performed well in numerical
experiments on several hyperspectral satellite image sets. Nevertheless, more ex-
tensive experiments and more elaborate analysis are required to better understand
the joint entropy, the choice of the entropy parameter p, the shrinkage parameter
a, and the weights {w;}7 ;. It may also be advantageous to use redundant wavelet
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FIGURE 4. (first row) RGB image of the Urban scene, inverse
transformed first principal component, and classes of our vector
angle classification scheme after WPT(p = 1)+shrinkage+PCA
was used. (below) 12 detected classes shown separately.
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systems, such as tight or bi-frames, offering more flexibility and better noise re-
duction. Finally, finding ways to take advantage of directly nonlinear dimension
reduction methods, such as LLE or Laplacian Elgenmaps, is of great interest. We
plan to address these topics in future research.
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