
Off-the-Record Instant Messaging for Group Conversation

Jiang Bian, Remzi Seker, Umit Topaloglu
Department of Computer Science, University of Arkansas at Little Rock, Arkansas, U.S.A.

{jbian, rxseker}@ualr.edu, umtopaloglu@gmail.com

Abstract

Instant Messaging (IM) is becoming an integral part of
social as well as business life. The main concern with IM
systems is that the information being transmitted is easily
accessible. Although some protection could be achieved
with the use of a secure tunneling (i.e. VPN etc.), they do
not provide end-to-end secrecy. Off-the-record (OTR) is a
protocol which enables IM users to have private conversa-
tions over the open and insecure public Internet. However,
the OTR protocol currently does not support multi-user chat
rooms. There is a need for such a product that provides
users an opportunity to meet in an IM-based, virtual, and
encrypted chat room. This project implements an extension
of the two-party OTR protocol, named Group OTR–GOTR.
GOTR enables users to have a free and secure multi-user
communication environment with no proprietary software
requirement. The case study describes a proof of concept
plug-in of GOTR developed for the GAIM, as well as the
plug-in implementation details. Such a product is believed
to be beneficial to small businesses to keep their privacy and
their competitiveness.

1. Introduction

Current trend in message exchange systems around the
world is Instant Messaging (IM). IM systems are becom-
ing available even on cellular phones, pagers, and it is ex-
pected that more mobile devices will support at least one
IM technology and these technologies will be employed for
business solutions. Given the status quo of measures im-
plemented for privacy maintenance or intellectual property,
there is still much room for improvement.

Users seem to prefer IM systems because they are not
as intrusive as phone calls, yet are more interactive than
e-mails. Some of the popular IM systems include: Mi-
crosoft’s MSN (or Windows) Messenger (MSN) [2], Ameri-
can Online Instant Messaging (AIM) [10], Google Talk [5],
etc. and these systems are changing the way people com-
municate with friends, family, and business partners. On

the other hand, confidentiality has not been addressed in the
IM environment. Most IM protocols were implemented on
the top of the existing public Internet service, where there
is no guarantee for the secrecy of transmitted messages. A
message exchanged between users sitting next to each other
may still need travel a path through several routers. Fur-
thermore, if there is no proper encryption and/or authenti-
cation in place, messages are almost open to any eavesdrop-
ping, account hijacking, man-in-the-middle, denial of ser-
vice, and similar types of attacks that is potentially harmful
for most of the current distributed network applications.

The message packages in IM systems need to traverse
through the public Internet regardless of the model and
structure utilized. In general, these messages are not en-
crypted and an eavesdropper could easily stand on one
router between the IM users, sniff their communication and
access the messages’ contents. Eavesdropping is consid-
erably easier on a LAN network, since the packages are
broadcast and every node could reach the distributed packet
unless the LAN network is switch based. For the switch
based network, an eavesdropper could still sniff the traffic
from the line that connects the switch to the router. Encryp-
tion can be utilized for protecting the content of IM mes-
sages. Nonetheless, the problem still remains unresolved as
to how one would distribute the keys securely, as well as,
how the identity of a user can be verified.

Nevertheless, utilizing only confidentiality and authen-
tication are not good enough to provide an off-the-record
environment which includes deniability property. In 2004’s
Workshop on Privacy in the Electronic Society (WPES),
Borisov, N., et. al. proposed the OTR protocol [1] which
aims to provide deniability. However, it had several secu-
rity flaws as pointed out by Raimondo, et al [11], which
have been fixed in a later version. The OTR protocol has
two distinguishable security properties: perfect forward se-
crecy and deniability. These features will be discussed in
Section 2.

The OTR protocol provides a perfect secure conversation
environment for two-party. The protection of communica-
tions is critical, especially for private companies, while un-
veiling the company secrets may harm their competitive ad-



vantages and result in capital loss. Therefore, our intention
is to address this need by utilizing the original two-party
OTR protocol to create a guarded and assured multi-user
IM ambiance.

Because of the differential characteristics between the
two-party conversation environments and the multi-user
chatting systems, we are facing a set of unique challenges in
designing a security schema. The increased size of conver-
sation members increases the complexity of key exchanging
processes and requires more computational resources for
both encryption and decryption routines. Likewise, the syn-
chronization of the shared keys is another hurdle. Similar
to the clock problem in distributed operating systems (i.e.,
a universal clock system is unobtainable), it is hardly pos-
sible to generate and maintain an all-inclusive key among
multiple IM users. We will revisit these problems as well as
implementation details in Section 3. Conclusion and future
work are given in Section 4 and 5, respectively.

2. Off-the-Record (OTR) Instant Messaging
System

Security in distributed applications is usually supported
by five typical security services defined by the Interna-
tional Organization for Standardization (ISO). Those are
access control/authorization, identification/authentication,
confidentiality, integrity, and non-repudiation [4]. How-
ever, for an off-the-record IM system, some security fea-
tures need to be reconsidered, particularly, non-repudiation.
In order to enable IM users to talk off-the-record, deniabil-
ity (repudiation) is needed. In other words, a user should be
able to deny what s/he has said in a past conversation. Most
of the secure IM products address only part of the required
security services. Often, message integrity, forward secrecy,
and deniability are missing. However, the OTR protocol
addresses these widely omitted concerns within the IM do-
main.

2.1. Basic concepts behind the OTR

The OTR protocol contains four basic cryptographic
primitives:

Perfect forward secrecy: [6] Confidentiality is intro-
duced by using short-lived encryption/decryption key(s).
The basic idea is that both parties should forget the used
keys after they process the old messages1. It is computa-
tionally infeasible to guess the used keys from the current
key or the long-term keys. The OTR mechanism guaran-
tees that even if an eavesdropper has the current key and
can compute the shared secret being used at the moment,

1an old message is a message for which the encryption-transmission-
decryption cycle is completed

the compromised current key is useless to decrypt and read
previous messages, since each key is used to secure exactly
one message.

Digital signatures and non-repudiation: Digital signa-
tures are used as long-term keys to address the lack of au-
thentication mechanism in the conventional Diffie-Hellman
protocol. However, directly attaching the signature to every
IM message leads to another problem. It enforces the non-
repudiation that a signature can be verified by a third-party
without the cooperation of the owners, which conflicts with
the deniability property of the OTR protocol. The solution
is to use a Message Authentication Code (MAC) on each
message instead of user’s digital signature. Therefore, the
digital signatures authenticate the keys only rather than the
entire messages. The authenticated keys can still provide
the identification service, because only the person who has
the right key can read the cipher texts.

Message Authentication Code (MAC) and deniabil-
ity: Deniability is the ability to deny the content of conver-
sations and it is addressed in the OTR by the use of MAC
codes. A MAC is basically a code generated by a one-way
cryptographic hash function with a secret MAC key shared
by conversation members. Alice uses the shared key com-
pute a MAC of her message, and sends it along with her
message over a secure transmission channel; Bob verifies
the integrity and authenticity of the message by computing
the MAC on the received message by using the same agreed
MAC key and comparing the MAC he computed with the
MAC sent by Alice [1]. Deniability is provided by using
these MACs for IM: Carol, a third party, cannot prove that
the message was sent by Alice, since she does not know
the private MAC key. And, even Bob cannot make a proof
to the public that the message is really from Alice. Both of
them know the same MAC key, and so it could be a message
forged by Bob himself.

Malleable encryption and forgeability: Forgeability is
a little stronger than repudiation. Once a key expires, the
associated MAC key is revealed. This mechanism enhances
the ability of Alice to deny the content of the conversa-
tion, because the message could have been forged by any-
one, since everyone knows the MAC key. Moreover, the
OTR protocol uses a malleable encryption scheme (i.e. any
change made to a cipher text will cause a meaningful change
in the right position in the plaintext). Technically, the mal-
leable encryption is not a ”deniable encryption” algorithm,
but its deniability refers to the inability of an third-party to
prove the authenticity of a conversation.

2.2. Security Weakness in OTR

Mario Di Raimondo, et al. [11] pointed out three major
security flaws after they examined the OTR protocol:

1. An authentication failure



2. A key refreshment flaw, and

3. Unreliable support of the deniability

First of all, the OTR protocol inherits a possible ”identity
misbinding” attack originally discovered by Diffie et al. [3].
Suppose, an attacker, Eve, stands between two communica-
tors, Bob and Alice, and if she attacks properly, Eve could
make Alice think she is talking to Bob but actually she is
talking to Eve. For a real life example, Eve, can use this au-
thentication flaw to mislead a customer, Alice, and a bank,
Bob. A simple solution is to include identity information
in the digital signature, which will invalidate the deniability
property.

Second, the revealing of an ephemeral private key could
cause an impersonation attack. A talented attacker could
use this information to produce a valid session key as long
as the long-lived key is not revoked. This possibility de-
feats the goal of a well-designed key protocol, where the
only way for an attacker to impersonate into a conversa-
tion is the disclosure of the long-term private key rather
than a piece of information used in a short session. There-
fore, Mario Di Raimondo, et al. [11] suggest doing full key
refreshment periodically, which ensures that the revealing
of an ephemeral private key will not affect the next fully-
refreshed conversation.

Furthermore, the improper mechanism of revealing
MAC keys weakens the secrecy of encryption keys. Since
the MAC keys are generated as a one-way hash over the en-
cryption key, the attacker can use this knowledge to mount a
”dictionary attack”, although such an attack is computation-
ally too expensive. Moreover, the choice of using stream ci-
pher may also cause troubles, especially, when one is trying
to manage the encryption counters to avoid reuse of counter
values.

Consequently, Mario Di Raimondo, et al. [11] suggested
three alternate Authentication Key Exchange (AKE) algo-
rithms, SIGMA [8], SKEME [7], and HMQV [9].

The critic of OTR by Mario Di Raimondo, et al. [11]
resulted in the second version of the OTR protocol, where,

1. The OTR team fixed the identity-misbinding flaw by
adding an additional identification message at the be-
ginning of the conversation session.

2. No longer revealing of the users’ public keys to passive
eavesdroppers.

3. Additionally, support for fragmenting OTR messages
was implemented, since most of public IM protocols
have a limitation on message size.

2.3. Lack of Chat Room Support

Chat room systems are often utilized to increase business
efficiency. Many small businesses use chat room (and/or

IM) systems for business meetings, some even for customer
service, etc. Utilizing such technologies cuts down the oper-
ation costs and enables employees to multi-task when nec-
essary. Also, many Open-Source Software (OSS) project
groups use IMs and chat rooms to conduct developer meet-
ings. Most OSS developers are volunteers around the world
and most of such projects rely on donations and so there is
virtually no funded physical meeting opportunity. Despite
all the advantages they have, there is no privacy protection
built-in most contemporary chat room systems. It would
be a great benefit to extend the OTR protocol to support a
secure chat room facility.

A secure chat room via the existing IM infrastructures
would bear virtually no cost on the participants. An IM-
based secure chat room will also avoid the need for a VPN
or a dedicating local server and the challenges that come
with having such systems and their management. Hence,
we extended the two-party OTR protocol to support multi-
party conversations, named GOTR, and we implemented a
GAIM plug-in for the proof of our concept. The implemen-
tation currently provides a secure chat room system over the
MSN protocol.

3. Methodology and Implementation

3.1. Initial Design

The main concept of our implementation is to create a
virtual server, which is a chat member literally acting as a
server. The server, which could be any one of the partic-
ipants, will perform key exchanges with every others the
same way as if s/he would for a regular peer-to-peer OTR
conversation. Therefore, the virtual server shares a secret
with each member, respectively. In another words, every
one other than the virtual server itself establishes a private
channel, each having its own shared secret, with the host.
The server is responsible for relaying and routing all the IM
messages. This implies that the virtual server needs to pro-
cess and deliver all the messages from any one member to
every one else in the same chat room session, as shown in
Figure 1.

For example, assume we have three members in a GOTR
chat room: Alice, Bob and Carol; and Alice is the virtual
server (Figure 1). After the key-exchange processes con-
clude, we should have:

• Bob and Alice have a shared secret SSAlice−Bob.

• Carol and Alice have a shared secret SSAlice−Carol.

Problem: Bob and Carol have no shared secret. How
can they communicate?

Bob cannot send his GOTR encrypted messages directly
to Carol, and even if he could, Carol would not be able to



Figure 1. A GOTR chat room example where
one of the users acts as the virtual server

read them since the two do not have a common secret. It
is true that they could start their own OTR session and talk
to one another without Alice knowing. But either way will
defeat the purpose of a chat room. (i.e. every one in the
same chat room should have the same screen of conversa-
tions.) However, both Bob and Carol, each have a shared
secret with the Virtual Server, Alice. Therefore Bob can
send the OTR messages to Alice first and then Alice de-
crypts Bob’s messages by using SSAlice−Bob, re-encrypts
them with SSAlice−Carol and relays the messages to Carol.
Now Carol has no problem to decipher Bob’s messages.

3.2. Design and Implementation Details

Design Problem 1:
It is important for us to know the real receiver of a mes-

sage, because there is no point to waste computing power
on processing a message encrypted with an unknown key,
which, when decrypted, will produce a meaningless mes-
sage. However, when a message is relayed by our virtual
server, the MSN protocol is not really helpful to identify
the end receiver of each message. In our design, a user only
has the capability to decrypt the IMs that have been encoded
with the secret key s/he shares with the virtual server, which
is a subset of messages arrive from the virtual server. All
other messages should be discarded. Since only the senders
explicitly know the messages are encrypted with which key
and for whom, we need the sender to attach an identifier of
the receiver at the beginning of each message.

Let us revisit the previous example where we had a
GOTR chat room including three users. Again, suppose

that Alice is the virtual server. After the key exchange stage
concludes, Bob and Alice share a secret SSAlice−Bob while
Carol and Alice have a shared secret, SSAlice−Carol.

Example 1:
Alice, the virtual server, sends a message to Bob,which is

encrypted with SSAlice−Bob and formatted in the following
manner:

Alice->Bob:
?RECV?Bob@hotmail.com?ENDRECV?
+ <Encrypted Message>

When Carol receives this message, she checks the re-
ceiver tag (i.e. prefix of the encrypted messages) first and
find out that the message is not hers (i.e. she can not decrypt
it and read it), she simply discards this message. Mean-
while, Bob receives an exactly same message and notices
that it is a message for him, he will route this message to
the OTR encryption/decryption routine (using the OTR li-
brary) and decode that encrypted message using the secret
shared between him and Alice (SSAlice−Bob).

Example 2:
Bob says something in the chat room, but Carol could

not read it, since the two do not have a shared key. Hence,
Bob has to send his message first to the virtual server, Alice.
The message may look like:

?RECV?Alice@hotmail.com?ENDRECV?
+ <Encrypted Message from Bob>

When Alice receives the message, she decrypts it
with the key she shared with Bob (SSAlice−Bob), writes
the message to her screen, then encrypts it again with
SSAlice−Carol and sends to Carol as:

?RECV?Carol@hotmail.com?ENDRECV?
+ <Encrypted Message from Alice>

Now, on Carol’s side, she will receive both messages en-
crypted with different keys, one from Bob and another one
from Alice. She will simply dismiss the first one, because
she does not know the right key(i.e. the first message is en-
crypted with a key only known between Alice and Bob); but
process the second one and display the decoded message.

There remains another issue to be addressed:
Design Problem 2:
The virtual server is basically a router which is respon-

sible for reformatting and transferring all the messages. It
is hardly possible to know the real sender without any ad-
ditional effort. If the previous example is revisited: when
Carol gets the message from Alice, the virtual server, al-
though she could decipher the message, she would not know
who said that, which could be either Alice or Bob. This
is because the messages do not contain any source infor-
mation. Conceivably, Carol will assume the message was
started by Alice, since it is Alice that Carol received the



message from. However it originated from Bob. There is
no such support mechanism for message tracking” or ”tran-
sitive authentication” in either the MSN protocol or GAIM
project. The proposed solution is to add another tag after the
receiver tag to indicate the real sender like what we did to
classify the receiver. In accordance with the previous exam-
ple, now all the messages will appear to be in the following
format:

Part One: Message from Bob to Alice

Bob->Alice:
?RECV?Alice@hotmail.com?ENDRECV?
+ ?SEND?Bob@hotmail.com?ENDSEND?
+ <Encrypted Message>

Part Two: Retransfered message from Alice to Carol

Alice->Carol:
?RECV?Carol@hotmail.com?ENDRECV?
+ ?SEND?Bob@hotmail.com?ENDSEND?
+ <Encrypted Message>

At this point, the messages include all the necessary tags
to identify both the real sender and the receiver.

Design Problem 3:
In the MSN IM protocol, every one in a chat room has

the same privilege, which means there is no special power
for one to be the ”owner” of the chat room established via
the MSN IM server. Every one in the chat room can invite
another buddy without restriction. Such scenario causes the
GOTR protocol a serious problem. For example, assume a
new user has been invited to the GOTR session, in order to
keep the chat room protected, the new user should first do a
key-exchange with the virtual server and build up the private
connection like every one else. But neither the MSN pro-
tocol nor the GAIM implementation supports the ability to
tell the ”owner” of a chat room, which would be our virtual
server. Since we would like to offer participants a degree of
security via OTR, there is a work around to the aforemen-
tioned problem in the following way: Each member of the
chat room keeps some additional information and they are
recorded in a file named otr.chatinfo located in the .gaim
folder, which is used by GAIM to keep configuration files.
This file is designed to have the following format:

?AC?[account name] ?CID?[chat_id]
?HOST?[host name] ?STAT?[security level]

• AC: indicates the owner of the current account.

• CID: chat id is used by GAIM to identify different
chat rooms.

• HOST: the user assigned to be the virtual server.

• STAT: indicates the security level used by OTR li-
brary; the security level can be:

– 0 indicates no private conversation.

– 1 indicates the private session is over.

– 2 indicates this session is private.

Implementation Assumptions:
It is assumed that, the user who initiates the private con-

versation, would be the virtual server. For example, Alice
starts a private conversation, and she is the virtual server. So
her otr.chatinfo would look like:

?AC?Alice@hotmail.com ?CID?1
?HOST?Alice@hotmail.com ?STAT?2

For all other users, when a private conversation is re-
quested by the virtual server (e.g. Alice). The in-
vited user will write the following information to his/her
otr.chatinfo file:

?AC?Bob@hotmail.com ?CID?2
?HOST?Alice@hotmail.com ?STAT?0

Notice that the conversation’s security status is initially
0 (not private). After the users finish the first key exchange
and establish the private communication channel, the secu-
rity status will be changed to 2 (private level) accordingly;

?AC?Bob@hotmail.com ?CID?2
?HOST?Alice@hotmail.com ?STAT?2

Now, we are confident to say that Alice, Bob and Carol
are talking privately under our GOTR system.

3.3. Evaluation of the GOTR protocol

There is always performance concerns when a security
solution is implemented. One question would be how many
users a GOTR chat room session could hold. Obviously,
having more users in a chatroom means more network traf-
fic and longer processing time which eventually will cause
noticeable lag. In addition, a GOTR chatroom session uses
a virtual server which routes all the messages, which in-
creases the number of network packets transmitted during a
conversation. We have not performed any sophisticated test
such as comparing transit time of each message, counting
how many extra packets are caused by a GOTR chatroom
etc., but we performed several user experience tests. We
have tested our GAIM plug-in with up to ten users in a sin-
gle chat room and there was no noticeable delay. Theoret-
ically, the limitation of the number of a chat room session,
is the maximum number of users which a MSN server can
handle in a chat room session. We will perform more de-
tailed tests in our next version of GOTR.



4. Conclusion

There is a need for secure chat room environments that
utilize the existing IM infrastructure. We provided an ap-
proach to extend OTR to provide secure chat room support
via IM. The proposed approach is useful in addressing the
needs of individuals (e.g. small businesses where confiden-
tiality of information is crucial) to have off-the-record and
secure meetings at virtually no cost. As a proof of concept,
a plug-in for GAIM was developed. Although the current
implementation only supports chat rooms via the MSN IM
network, the idea can be easily extended to other IM proto-
cols such as Yahoo IM, AOL IM, etc.

Some additional network traffic as an overhead intro-
duced by the proposed approach is considered to be prefer-
able to dealing with the complicated issue of group key-
exchanging protocols. Therefore, having some extra net-
work packets (IM packets are relatively small in size) will
not hinder the performance as much as a complex group key
management protocol would. Actually, the performance is
not an issue for the participants except for the one acting as
the virtual server. But, as we mentioned, the result of the
initial test shows that the virtual server can handle a room
of up to ten users with no problem.

5. Future Work

There are three issues we will address in the next
versions of the GOTR project. The first issue is dealing
with a new user joining an already existing chatroom. The
second issue is failure of the virtual server and the third
issue is knowing whether the virtual server has altered
contents of messages it has been forwarding.

The ideal solution for the first issue would be the ded-
icated server automatically responding to any changes of
the status caused by a new comer. When a new user, say
Eve, joins the private chat room and breaks the security
(i.e. because Eve doesnot have any shared secret with any
other member in that chat room), the virtual server, Alice,
should react accordingly. Alice could restart the whole key-
exchange process pair-wisely, which is the same process as
a full key refreshment, but this time including the new mem-
ber, Eve. Or, as mentioned in Design Problem 3, the server
could individually do the key exchange with the new user,
which will fitly keep the privacy of the whole chat room. As
for the second issue, if there is a failure of the virtual server
and it is unresponsive, some one else in that chat room
should pick up the responsibility, restart the whole GOTR
conversation by initiating a full key refreshment. The par-
ticipants can be alerted to do so via utilizing a timer. The
final issue to be address is to make sure the virtual server
doesnot change the content of IMs it forwards. We think

the integrity of the messages can be assured by maintaining
MD5 (any one-way hash table should be applicable) values
of the original plain-text messages on each user’s computer
and verifying them periodically.

6. Acknowledgment

This work was funded in part, by grants from the Na-
tional Science Foundation (CNS- 0619069) and Acxiom
Corporation (# 281539).

References

[1] N. Borisov, I. Goldberg, and E. Brewer. Off-the-record com-
munication, or, why not to use pgp. In WPES ’04: Proceed-
ings of the 2004 ACM workshop on Privacy in the electronic
society, pages 77–84, New York, NY, USA, 2004. ACM
Press.

[2] M. Corp. Windows Live Messenger.
http://get.live.com/messenger/features, 2006.

[3] W. Diffie, P. C. V. Oorschot, and M. J. Wiener. Authentica-
tion and authenticated key exchanges. Des. Codes Cryptog-
raphy, 2(2):107–125, 1992.

[4] I. O. for Standardization. Information Processing System-
sOpen Systems InterconnectionBasic Reference ModelPart
2: Security Architecture. Number ISO 7498-2. 1988.

[5] Google. A Google approach to instant communications.
http://www.google.com/talk/, 2007.

[6] D. P. Jablon. Strong password-only authenticated key ex-
change. Computer Communication Review, 26(5):5–26,
1996.

[7] H. Krawczyk. Skeme: a versatile secure key exchange
mechanism for internet. sndss, 00:114, 1996.

[8] H. Krawczyk. Sigma: The ’sign-and-mac’ approach to au-
thenticated diffie-hellman and its use in the ike-protocols. In
D. Boneh, editor, CRYPTO, volume 2729 of Lecture Notes
in Computer Science, pages 400–425. Springer, 2003.

[9] H. Krawczyk. Hmqv: A high-performance secure diffie-
hellman protocol. In V. Shoup, editor, CRYPTO, volume
3621 of Lecture Notes in Computer Science, pages 546–566.
Springer, 2005.

[10] A. Online. American Online, AIM.
http://aimexpress.aol.com/, 2006.

[11] M. D. Raimondo, R. Gennaro, and H. Krawczyk. Secure
off-the-record messaging. In WPES ’05: Proceedings of the
2005 ACM workshop on Privacy in the electronic society,
pages 81–89, New York, NY, USA, 2005. ACM Press.


