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Abstract

This manuscript is a contribution on the modeling of H.263 traffic in multipoint videoconference sessions over IP Networks. Our study

includes analysis and modeling assessment of extensive data gathered during realistic videoconference sessions between commercial

H.263-compliant terminal clients (with different videoconference software packages installed). All terminal clients were communicating

through a Multipoint Control Unit (software or hardware MCU) at ‘switched presence’ mode and for comparative purposes the same typical

videoconference content (a person speaking, with mild movement and occasional zoom/span) was used. The analysis of the H.263 data at the

frame level suggests that the traffic from the different terminals to the MCU can be represented by a stationary stochastic process with an

AutoCorrelation Function (ACF) rapidly decaying to zero and a Gamma formed marginal frame-size Probability Distribution Function

(PDF). An accurate analysis of the H.263 traffic from all terminals (with the same visual content and different videoconference software used)

shows indicative differences in the ACF and PDF of different terminals’ traffic and insights that no generic traffic model can be applied for all

cases. Aiming at a realistic, reusable and simple H.263 traffic model, conservative enough for queueing analysis and network estimation, this

study discusses methods for calculating the appropriate model parameters from the observed traffic data and proposes a new technique for

unconventional fitting of the PDF. The presented modeling and queueing results indicate the suitability of the proposed models for H.263

traffic modeling in IP networks.

q 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Videoconference traffic modeling has been extensively

studied in literature and as a result a wide range of methods

(linear and non-linear) can be found. Successful traffic

modeling can provide valuable insights about the resulting

network load and enables a theoretical assessment of the

network performance. However, the variation of the

videoconference session parameters (number of partici-

pants, video bit rate, frame rate) and visual contents as well

as the differences in the implementations of the video
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coding algorithms turn accurate video traffic modeling into

a complex procedure.

The results of earlier studies as [2,3,16,19,21], concern-

ing variable bit-rate video streams in ATM networks,

indicate that the histogram of the vbr video frame sizes

exhibits an asymmetric and of Gamma form shape and that

the autocorrelation function decays quickly (approximately

exponentially) to zero. An important body of knowledge in

vbr traffic modeling is the approach in [13] where the

DAR(1) [9] model is introduced. In this study, the authors

noted that AR models of at least order two are required for a

satisfactory modelling of the examined H.261 encoded

traffic patterns. However, in the same study, the authors

observed that a simple DAR(1) model, based on a discrete-

time, discrete state Markov Chain performs better—with

respect to queueing—than a simple AR(2) model. In the

same study, the parameters of the DAR(1) model were

matched to the frame-size sequence histogram (fitted to a

Gamma probability distribution function by the method of
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1 Although newer versions of the H.263 codec exist, namely, H.263C,

H.264 they are not yet widely used and most videoconference clients do not

support them.
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moments) and the exponential autocorrelation decay rate

(derived from the AR(2) model). Several other models have

been proposed for vbr video traffic modeling such as the

GBAR(1) [5] and the SCENIC model [6]. The GBAR

model could be a solution for H.263 traffic modeling, as it

was especially designed for videoconference and its

performance with respect to queueing was found to be

similar to DAR(1). On the contrary, SCENIC is oriented to

full motion video and not to a typical videoconference

content with no abrupt scene changes.

Newer studies of vbr video traffic modeling reinforce the

general conclusions obtained by the above earlier studies,

by evaluating and extending the existing models and also

proposing new methods for successful and accurate

modeling. Of particular importance for our work, is the

approach in [23] where a continuous version of DAR(1)

model was proposed, named C-DAR(1). The C-DAR(1)

model combines an approach utilizing a discrete-time

Markov chain with a continuous-time Markov chain. The

C-DAR(1) model is suitable for theoretical analysis using

the fluid flow method [27]. Furthermore, in [20], a ‘stuffing’

method was used for grouping frames into variable frame

periods. In this study, the use of movies, like Starwars, as

visual content, led to frames generation with an approximate

Gamma PDF (more complex when a target rate was

imposed) and an ACF quickly decaying to zero. In [10],

H.263Ccoded vbr video traffic in ATM networks was

studied and the authors proposed a new model called

DAR(M) which is a compound DAR(1) model. The

DAR(M) model analyses the number of cells in each type

of macroblock (MB) of a frame separately (I-coded,

P-coded and N-coded). The final model is the mean of the

DAR(1) models for each type of MB. For the purpose of

PDF modeling and correlation coefficients estimation (in the

same study), the authors used the typical methods of

DAR(1). A scene-based MPEG traffic modeling was

proposed in [17]. In this study, the authors used a simple

scene detection algorithm that models scene changes by a

state transition matrix and the number of GOPs of a scene by

a geometric distribution. A shifting level process was

applied in [18] to capture the Long Range Behavior of vbr

video traffic. In this study, the authors proposed a compound

ACF consisting of an exponential function, in the small lag,

and a hyperbolic function in the large lag region. Long range

dependence, however, is an issue of no interest here as

videoconference traffic has been found to be only asympto-

tically self-similar [7], at a time scale not affecting

queueing. This fact makes the short-range dependent

method of DAR(1) and extensions of it appropriate for

H.263 traffic modeling. Furthermore, a study of measure-

ment and simulation of videoconference traffic (H.261 and

H.263) in [4] indicated the influence of the session

parameters (codec, quality, frame rate, maximum band-

width) on the generated traffic pattern. Again, the PDF of

H.263 traffic (at the frame level) was found to be of Gamma

form and the ACF was decaying quickly to zero. A normal
mixture distribution for vbr video traffic was proposed in

[11] instead of the Gamma–Pareto distribution that was

claimed to perform better than the simple Gamma and

lognormal distributions (although it is rather complex).

Towards the modelling of videoconference traffic encoded

by the ViC Intra-H261 encoder, the author in [26] proposed

a DAR(p) model using the Weibull instead of the Gamma

density for the fit of the sample histogram.

Relevant recent studies are also [14] and [15]. In [14], the

authors proposed a new marginal matching technique that

produces a generalized model better than the GBAR and

other DAR models. An AR-based analysis is performed in

[15] for the modeling of MPEG video at GOP layer in ATM

packet switching networks. GOP-based models proposed

were tested with movies (like Star Wars) and seemed to

perform satisfactorily.

Today, a large number of videoconference platforms

exist, the majority of them over IP-based networking

infrastructures and using practical implementations of the

H.263 standard [8] for video coding. H.2631 is extensively

used because of its suitability for transmission over low

bandwidth pipes (ADSL, ISDN) and its low processing

demands (applicable to hand-held devices). In comparison

to the previous implementation of ITU, H.261, it is

generally confirmed and experimentally proved [4] that

the H.263 encoder is intended to be used on links with

smaller capacity (less than 64 Kbps) and thus produces

frames which are in the average shorter than the frames

generated by H.261 applications. Moreover, concerning the

H.263 video codec, there are several problems of interoper-

ability, due to the existence of different coding ‘flavors’.

There are H.263 draft, H.263 final and H.263C implemen-

tations. This being the case, it is of great importance to know

whether the models established in literature (for H.261,

H.263 and vbr video traffic modeling) are appropriate for

traffic modeling of the various implementations of the

H.263 coding algorithm. It is a point of question whether all

the existing H.263 versions generate similar traffic so that a

common model could be applied. If not, new or alternative

models should be proposed for each case. Moreover,

videoconference, as a service for entertaining (video chat),

educational (virtual classrooms) and communicating

(through voice or sign language) purposes, is now held

through Multipoint Control Units (software or hardware)

that employ a centralized management for better quality of

the sessions. In such a case, the traffic from the clients to the

MCU is highly influenced by the parameters of the possible

scenarios-modes of the MCU (codec used, number of

participants, video bit rate, frame rate). Most of these factors

(as will be commented upon later) change the statistical
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characteristics of the generated traffic (an issue also studied

in [4] and [20]).

Moreover, besides a few studies whose subject of

research was videoconference traffic, all other studies

(concerning vbr and MPEG video traffic modeling) use

movies as the video source of their experiments (like Star

Wars) that exhibit abrupt scene changes. However, the

traffic pattern generated by differential coding algorithms

(like those used by H.261 and H.263) depends strongly on

the variation of the visual information. For videoconference,

visual information does not contain abrupt scene changes, as

videoconference coding algorithms were designed for a

typical ‘head and shoulders’ content.

Due to the above context, the research reported in this

paper undertook measurements of the IP traffic generated

during videoconference ‘talking heads’ sessions (at

‘switched presence’2 mode) between four (4) commercial

H.263-compliant clients that were using a different

videoconference software package. At ‘switched presence’

mode, the MCU sends to all terminals the output from one

participant, designated as ‘currently active’. Thus, the

videoconference traffic from the MCU to the terminals is

not complex and not of particular interest (compared to

‘continuous presence’ where the MCU combines the signal

from all terminals and sends back the output to all the

participants). The experiments covered cases with both

hardware and software MCU. The video source content was

created realistically (a person speaking with mild movement

and no abrupt scene changes). For the purpose of the

statistical comparison of the different terminals’ video

traffic, the same produced content was used in all cases.

It has to be stressed that our traffic modeling approach, in

this paper, focuses on queueing studies on the network

performance. Thus, particular attention is paid on properties

such as the long-term trends in the autocorrelation function

and the tail3 behavior of the frame size distribution (features

not thoroughly examined in previous studies).

More analytically, the model proposed in this paper

satisfies the following requirements (according to the

recommendations towards a good traffic model that were

proposed in [26]):
(a)
2 ‘

H.26

gene
3 A

traffi

fittin
Realistic: our model represents real-time encoded traffic

sources as the traces were collected on-line during

experiments with widely used commercial videocon-

ference applications.
(b)
 Reusable: the term implies that the model must be as

applicable as possible in any environment and must

cover a wide range of experimental conditions.
Continuous presence’ mode has been extensively studied in [1] for

1 video traffic. However, the focus of our study is the H.263 traffic

rated by terminal clients and not by the MCU.

s will be commented upon later, what matters in videoconference

c modeling is the tail dominance of the model and not necessarily its

g accuracy.
Our model is reusable as it covers a variety of

experimental parameters: different videoconference

applications, low and high motion head and shoulders

content, different session parameters. Moreover, reusa-

bility demands that the coded traffic from the source

must be as completely and as faithfully represented by

the model as possible so that it can be applicable in any

IP environment (LAN or WAN). Towards this direction

two solutions can be directly applied: off-line encoding

(as performed in [20]) or on-line encoding without

bottlenecks (as in [26]). The former method does not

provide realistic models (does not meet requirement (a))

while the latter demands that the experiments are

conducted in an uncongested environment (like a

backbone LAN environment). This will assure that no

packet losses exist during the trace collection process

and that the traffic model will always represent the best

quality of the encoded video. The current study adopted

the second method to meet both the (a) and (b)

requirements. Taking into consideration the above, it

is stressed that, in the current study, there was no point

in investigating a WAN (or Internet-based) environ-

ment. It is evident that the proposed model is applicable

in any IP environment as it represents source-faithful

videoconference traffic encoded during UDP communi-

cation of IP terminals.
(c)
 Parsimonious and computationally efficient: we focus

on the proper selection parameters of the simple and

well established Markovian model DAR(1) and not on

complex and compound models.In addition to the

above, we believe that a good model has also to meet

the following requirement:
(d)
 Conservative (requirement not examined in previous

studies): the model must be conservative as regards its

application on performance evaluation in queueing

studies. In detail, the resulting model should provide a

conservative (but also closely accurate if possible)

traffic characterization during queueing studies (i.e.

more pronounced buffer occupancies, hence more

probable overflows and longer queueing delays).
The rest of the paper is structured as follows: Section 2

discusses the videoconferencing platform employed for

experimentation, describes the scenarios of the experiments

and presents some basic statistical information of the

measured data. Section 3 proposes methods for the

modeling of the generated traffic for all cases and presents

a full C-DAR(1) scheme for H.263 traffic modeling. Finally,

Section 4 culminates with conclusions and pointers to

further research.
2. Description of the videoconference experiments

The experiments of the present study were realized on

two different platforms (see Fig. 1(a) and 1(b)). The two



Fig. 1. Testbed topologies in an uncongested LAN environment. JP, JoinPhone Lite; VL, Video Link Pro; NM, NetMeeting; CU, CuSeeMe.
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platforms consisted of personal computers running

H.263-compliant videoconference software packages and

an MCU, all networked over an uncongested IP-based LAN

environment (100 Mbps). Four different videoconference

software packages were used: MS NetMeeting 3.0 (NM),

VideoLink Pro 3.0 (VL), CuSeeMe Pro 4.0 (CU) and

JoinPhone Lite (JP) and two different MCUs: CISCO IP/VC

3510 unit (Hardware) and WhitePine Meeting Point Server

(Software). All the experiments were held at the ‘switched’

presence mode where QCIF4 H.263 videos are sent by all

terminals to the MCU and a QCIF video is returned back

(that of the ‘currently active’ user).

The current study examined four different factors which

influence the traffic patterns generated by the terminals.

These factors are presented along with the way they are

tested:
†

4

form
H.263 implementation: use of different videoconference

software package for each terminal
†
 Quality of the encoded video: use of different target video

bit rate in the MCU configuration
†
 Target frame rate: use of target frame rate in the MCU

configuration—it is noted that a target frame rate was

configured only for the CISCO MCU as Meeting Point

did not pose any restriction on it. This is a basic reason of

the use of both MCUs
†
 Motion of the videoconference content: use of two visual

contents, a high-motion and a low-motion content.

The study focuses on how the above factors influence (or

not) the first order statistics of the terminal-generated H.263

traffic. The answer, as supported by the consistent evidence

from the experiments results, will be discussed below.

Under the needs of the above context, three experiments

were designed, two with a software MCU and different
We chose the QCIF format because this is the most commonly used

at in commercial videoconference applications.
session quality and one with a hardware MCU. All the

software packages of the terminals were configured with the

same video parameters for all the experiments (H.263—

High Quality—QCIF). The terminals did not pose any

restriction on the peak frame rate, except from JoinPhone

Lite that was configured at a peak rate of 16 frames/s. A

summary of the relevant quantities for each experiment is

shown in Table 1. It is pointed that JoinPhone Lite could not

join the session of the hardware MCU, due to the restriction

on its peak frame rate. Thus, NM was used instead for

experiment 3 with a different visual content (VC-L).

‘VC-H’ and ‘VC-L’ stand for video content with high

motion and video content with low motion correspondingly.

Both video contents are typical ‘head and shoulders’ videos

with different motion. The two different video sources were

used as the input of NM in experiment 3 to test the influence

of the video content motion on the H.263 traffic pattern.

In each case, the IP packets exchanged between the

terminals and the MCU were captured by traffic monitoring

software (Ethereal). The collected data were further post-

processed at the frame level by tracing a common packet

timestamp. The produced sequences were used for further

analysis.

It is important to note, here, that the analysis of previous

studies at the GOP or MB level has been examined and

found to provide only a typical smoothing in the sample

data. We believe that the analysis of videoconference traffic

at the frame level offers a realistic view of the traffic and is

better for queueing studies.

Some first conclusions, as supported by the experiments’

results (Table 1), arise concerning the influence of the four

factors reported earlier. These are the following:
†
 There are some first clear indications of the statistical

differences of the respective traffic patterns (although the

same video settings and visual content have been used).

It is already obvious that the four terminals utilize a

different implementation of the H.263 video codec.
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†

5

CU
6

wil
The quality of the videoconference session (different

MCU video bit rate used)—as clearly indicated in

experiments 1 (300/300 Kbps) and 2 (100/100 Kbps)—

influence the first order characteristics of all terminals

besides JP (obviously due to the existence of a peak

frame rate in its own configuration).
†
 The target frame rate factor is of no great importance for

the traffic pattern (a small irregularity exists in the frame

sizes histogram, as will be commented upon later). Most

terminals are not influenced by the MCU target frame

rate except from the terminal NM. In detail, NM tends to

send frames at a higher rate (30 frames/s) when no

target frame is set (experiments 1 and 2), while it sends

at a lower frame rate (15 frames/s) in the case of

experiment 3.
†
 The motion of the video content seems to influence the

variance of the traffic pattern, a fact that implies a larger

periodicity (lower complexity) in the traffic pattern

(as remarked in experiment 3 by the comparison of the

variance of NM with VC-H and NM with VC-L). This

leads to the conclusion that the variance is a measure of

the amount of motion of the videoconference content.

Generally, it is noted that the terminal VL sends video at

a higher bit rate than the terminals CU and NM while the

slowest of all is the terminal JP (apparently because of the

frame rate restriction in its own configuration). Regarding

frame sizes, NM5 and JP produce smaller frames than VL

and CU. It may also be observed that the values of the bit

rate achieved are in all cases much lower than the respective

maximum specifications of the MCU settings, reflecting the

fact that the content of the videoconference did not exhibit

dramatic scene changes, frequent zooms or other such

effects. The next section will analyze the H.263 traffic of

each terminal separately, proposing a corresponding traffic

model and commenting more thoroughly upon the influence

of the above factors.
3. Analysis of the video data sequences

The analysis of the H.263 traffic from all terminals to the

MCU, for both experiments, confirms the general body of

knowledge that literature has formed concerning videocon-

ference traffic. In brief, the sequence of the frame sizes from

a terminal can be represented as a stationary stochastic

process, with an autocorrelation function quickly decaying

to zero and a marginal frame-size distribution of approxi-

mately Gamma form. All frame-size distributions are

Gamma-like (with a heavier tail6) and very asymmetrical

(this can be seen in other studies of H.263 traffic too [4,20]).
From now on, we will refer to the terminals JP, VL, CU, NM as JP, VL,

and NM correspondingly.

Tail behavior is a matter of great importance that affects queueing and

l be examined thoroughly during analysis.
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These general characteristics remain invariant for all the

experiments.

In checking for stationarity, each frame sequence

corresponding to a terminal was split in a moderate number

of windows (ten) and then the empirical density function for

the frame size was calculated from the sample in each

window. These windows were found to be very much alike,

property suggesting that the sequence is stationary. This is

in accordance with the study in [1] where stationarity was

found to apply for H.261 traffic. Thus, there is no point in

further analyzing towards this point.
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Fig. 2. Autocorrelation Graphs and fitted mo
3.1. Autocorrelation function analysis

As can be seen in the graphs of the ACF fitted models

(see Fig. 2(a), (c), (e), (g), (i) and (j)), the ACF of H.263

traffic seems to decay quickly (almost exponentially). The

strong correlations in the ACFs of JP and NM (Fig. 2(a), (g),

(i) and (j)) (implying periodicities in the traffic pattern) are

attributed to the similarities (temporal redundancy) that

exist between sequential video frames. The comparison of

the experimental results showed that the ACF of H.263

traffic is not strongly influenced by the parameters of
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7 Although literature reports that AR(2) [13] or even of higher order

AR(p) models [24] produce a better match than AR(1) models, AR(1)

seems to perform well for H.263 traffic (as will be commented upon later).
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the videoconference session (quality and frame rate).

Nevertheless, the ACF is different for each terminal, a fact

obviously caused by the different implementations of the

H.263 codec.

To be more specific, the ACFs of VL and CU (Fig. 2(c)

and (e)) have an almost similar behavior, a fact that

indicates the statistical resemblance of the two traffic

patterns (implying similarities in the implementation of the

H.263 codec of the two videoconference software

packages). A strong periodicity every 160 lags can be

seen in the ACF of JP (Fig. 2(a)), maybe suggesting that

during the session, JP is periodically sending Intra frames at

regular intervals. Even stronger correlations appear in the

ACF of NM (Fig. 2(g), (i) and (j)).

The low-motion video content, ‘VC-L’, used in exper-

iment 3 for NM, caused a larger periodicity in the ACF (see

Fig. 2(j) compared to Fig. 2(i)). The results of the ACF

analysis (graphs and fitted models) will be presented for

each software terminal in experiment 1, for NM (VC-H and

VC-L) in experiment 3 and numerical values of the fitted

models will be given for all experiments.

To find the most accurate fitting model for the ACF of

H.263 traffic, three different methods, reported in literature

were used. The first two were proposed for modeling H.261
terminals traffic in multipoint videoconference at ‘continu-

ous presence’ [1]. The third one is an AR-based approach

proposed in [12] that estimates the parameters and

eigenmodes of AR models of arbitrary order. In our study

the particular method was used to estimate the parameters of

the correlation coefficients of the AR(1) and AR(2) models7.

More analytically, the methods used are the following:
1.
 A weighted sum of two geometric terms [1]

rk Z wlk
1 C ð1 KwÞlk

2; with jl2j! jl1j!1 (1)
2.
 A geometrically dumped sinusoid [25] of the form:

rk Z
lk cosðqk CjÞ

cos j
(2)
3.
 AR(1) and AR(2) models:

ARð1Þ : Xn Z w Ca1XnK1 CC (3)

ARð2Þ : xn Z w Ca1XnK1 Ca2XnK2 CC (4)
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Methods (1) and (2) were tested with a least squares fit to

the autocorrelation samples for the first 500 lags. Method 3

returns least squares estimates of the intercept vector w, of

the coefficient matrices a1, a2 and of the noise covariance

matrix C. All models were compared against the samples

over a wider range of lags (up to 5000) to verify that they are

capable of capturing the long-term trends of the ACF decay.

Numerical values for the results appear in Table 2, while the

graphs of the fitted models are compared to the sample

ACFs in Fig. 2. The most dominant model for all cases is the

Compound Exponential Fit as it is able of capturing

the long-term trends of the ACF better than the other

models (see Fig. 2(b), (d), (f) and (h)). The dumped sinusoid

(of similar behavior as in [1]) did not fit well (decayed much

faster than the sample ACF) and thus is not depicted. Only

in case of NM, where very strong correlations exist, it

produced a satisfying fit (see Fig. 2(g), (i) and (j)). AR(1)

performed satisfactorily for VL and CU where AR(2) failed

to fit (see Fig. 2(c) and (e)). On the contrary, AR(2) was

better in cases of JP and and NM where AR(1) failed

(see Fig. 2(a) and (g)). It is insighted that AR(1) performs

well in traffic patterns with no strong correlations (such as

ACFs of VL and CU) while AR(2) is better for cases where

periodicities exist (ACFs of JP and NM).

Taking into account that the long-term decay rate is the

most important factor for queueing, it is evident that a

proper model for fitting the autocorrelation function of

H.263 traffic is the Compound Exponential Fit. In fact, what

matters is the autocorrelation coefficient l1 in (1) as it tends

to capture the long-term behavior of the ACF. The retention

of this model is further verified by previous studies [1,13]

for videoconference traffic where values of l1 were found to

be near 0.98 (see Table 2 for numerical values of l1). This

being the case, a further study towards new or more

complex models is of no point.

3.2. Probability distribution function analysis

Now, we may proceed to the analysis of the PDF of the

traffic patterns’ frame sizes which is one of the main points

of the current study. In actuality, all the density distributions

seem to fit a Gamma-like shape with a heavy tail and

asymmetry. This is less obvious in the case of NM whose

PDF is bell-shaped (see Fig. 5(d), (e), (f)) (fact confirmed by

a previous study of H.261 traffic of the terminal NM [1]). On

the contrary, the PDFs of JP, VL and CU are strongly

asymmetrical (see for example Figs. 3(g), 6(g) and 7(h)) in

all cases. This irregularity makes it difficult to find a good

distribution that fits reasonably well. Several distributions

have been proposed for fitting the PDF of videoconference

traffic, other simple (e.g. Gamma, Log-normal, Weibull)

and other more complex (e.g. compound normal distri-

bution). However, the one established and mostly used in

video traffic modeling is the Gamma density function. This

being the case, in this study, we focused on the proper

selection of the parameters of the Gamma density and not on
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finding new complex, heuristic solutions that would

probably not meet the requirements (b) and (c) reported in

Section 1.

On the basis of using a single distribution to fit the

empirical data, we have to note that the complex nature of

the sample PDF can never be perfectly ‘captured’ by a

distribution generating frame sizes according to a declared

mean and standard deviation, and therefore, none of the

fitting attempts (including the Gamma density), as good as

they might be, can achieve perfect accuracy. However, there

is a basic requirement that the model should meet in order to

be suitable for further analysis (with respect to queueing).

The model must be tail dominant (feature included in the

requirement (d)): that means that the probabilities values of

the model around the PDF tail must be lager or

approximately equal to the corresponding values of the

sample. The distribution tail, by containing the probabilities

of events corresponding to large frames, thus high bit rates,

is a critical aspect to capture in a queueing model.

Neglecting, it may cause wrong calculations in buffer

overflow estimations.

On the above basis, the Gamma density function will be

used to fit the empirical PDFs.

f ðxÞ Z
1

GðpÞ

1

m

x

m

� �pK1

eKðx=mÞ;m; pO0; xR0

where

GðpÞ Z

ðN

0
upK1eKudu (5)

To calculate the p and m parameters of the Gamma

density, three previously applied methods and a class of new

methods were evaluated. The older ones were used for

modeling H.261 traffic from NM terminals to the MCU in

[1] while the new methods are based on a class of methods

of moments estimators for the Gamma density, presented

recently in [22]. More explicitly, the first three methods are

the following:

1. MOM (Methods of moments). When the mean, m, and

the variance, v, of the data sample are known, the method of

moments produces estimates for the shape and scale

parameters of the Gamma distribution:

p Z
m2

v
and m Z

v

m

2. LVMAX. The LVMAX method relates the histo-

gram’s peak to the location at which the Gamma density

achieves its maximum and to the value of this maximum.

The values of the shape and scale parameters are derived

from:

p Z 2px�2f �2 C1 and m Z
1

2px�f �2

where f* is the unique maximum of the histogram density

at x*.
3. C-LVMAX. The third method is an application of the

LVMAX method to the self-convolution of the histogram.

In this method:

p Z
2px�2f �2 C1

2
and m Z

1

2px�f �2

As will be commented upon later, the above three

methods were tried and, except the conventional MOM

method, were not tail dominant in most cases.

4. KZk. The class of methods of moments estimators

studied in [22] is a new body of knowledge in statistical

science and (to the best knowledge of these authors) has

never been tested for videoconference traffic modeling. The

members of this family are very easy to compute, relative to

the maximum likelihood estimation or its commonly used

approximation. More specifically, this method is a class of

moment estimators (a vector qk of values for p and m):

qk Z ðpk;mkÞ
T with mk Z

m

pk

; kR0

If xZ(x1, x2,.,xn} is the vector of the data sample

(frame sizes) and the vector xk Z fxk
1; x

k
2;.; xk

ng then the

values for the p and m parameters of the Gamma function are

easily calculated as follows:

pk Z
mmk

kK1Sðxk; xÞ
; kO0

pk Z
m

Sðln x; xÞ
; k Z 0

where m is the mean of x, mk the mean of xk and S(a,b) the

covariance of the vectors a and b. The flexibility of this

method is evident as for various values of k (kR0) new

values for the shape and scale parameters are computed and

as a result a different fitting method is tested. From now on,

in the current study, this method will be referred to as KZ
‘value of k’ (for example KZ0, 2, 3). As will be proved

later, this method has been tried as an unconventional fitting

method (although sufficiently simple) due to its ability to

capture conservatively (asymptotically tight though) the tail

region of the PDF (meeting in this way the requirement of

tail dominance (d)).

After extensive testing, we concluded that among the

class of the fourth method only the KZ0 and 3 models are

suitable (with respect to queueing behavior) for H.263

traffic. Especially, the KZ3 model has the advantage of

capturing conservatively the PDF tail, a fact that makes it

suitable for further queueing analysis. Given these con-

clusions, modeling analysis and evaluation will be presented

for the following five methods: MOM, LVMAX,

C-LVMAX, KZ0 and 3. The numerical results (p and m

values) from the application of the above parameters-

matching methods in the data appear in Table 3.

The modeling evaluation of the above methods has been

performed from the point of queueing. As a consequence,

we thoroughly examined fits of cumulative distributions



Table 3

Gamma parameters for the various fitting methods applied to the terminals’ data

LVMAX C-LVMAX KZ0 KZ3

p m p m p m p m p

Exp 1

JP 1.69 421.51 5.56 83.09 2.36 223.98 2.67 267.29 0.74 961.15

NM 6.66 107.33 13.71 66.19 7.94 102.78 5.44 131.52 8.46 84.58

VL 3.12 987 7.69 250.21 4.32 623.82 4.02 765.75 2.03 1521.8

CU 1.5 1091.4 2.53 444.62 1.5 970.59 1.98 828.29 1.04 1580.5

Exp 2

JP 1.66 430.39 6.24 76.47 2.44 214.69 2.67 267.87 0.66 1082.5

NM 6.73 38.1 21.74 13.41 12.96 21.43 7.51 34.12 2.43 105.59

VL 1.55 958.02 4.79 182.78 2.8 473.35 2.19 677.14 1.04 1418.2

CU 1.22 1529.1 2.24 500.3 1.05 1523.3 1.53 1216.3 1.01 1846.9

Exp 3

NM (VC-H) 14.62 96.27 24.34 66.5 15.23 94.36 12.87 109.37 16.92 83.15

NM (VC-L) 28.7 51.56 61.41 25.94 40.34 38.41 25.4 58.27 32.52 45.51

VL 3.11 952.27 8.73 219.92 4.47 606.52 4.04 734.07 2.02 1468.1

CU 1.17 1589.9 3.14 394.37 1.27 1174.2 1.68 1107.5 0.84 2213.7
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and dominance in the tail region. This was done as follows:

the sample and the model quantiles were plotted to test

fitting accuracy (Cumulative Q–Q plot). The sample

quantiles derive from the PDF (cumulative distribution) of

the sample and the model quantiles from the incomplete

Gamma function finc(x/m,p) of the corresponding model

where:

fincðx; pÞ Z
1

GðpÞ

ðx

0
eK1tpK1dt (6)

and G(p) derives from (5).

The Q–Q plots of the above method refer to cumulative

distributions (probabilities of not exceeding a threshold).

Thus, the tail behavior for the fit is indicated by the

neighborhood of quantiles around 1. If the model’s quantiles

are lower than the sample quantiles in that neighborhood,

the model is considered to be conservative (with respect to

queueing). For more detail around that neighborhood, the

complementary PDF is plotted together with the comp-

lementary Gamma function in the large frames region (tail).

This method gives valuable indications about the tail

behavior of each model (tendency of the model to move

to ‘high bandwidth’ states) and a measure of their

conservativeness concerning queueing.

In the following paragraphs, PDF modeling will be

performed applying the above methods. Modeling results,

commented for each case separately, lead to conclusions

about the proposed models.
3.2.1. PDF analysis of terminal JoinPhone lite

The probability distribution functions of the traffic

generated by JP were found to be strongly asymmetrical,

see Fig. 3(g) and (h). Both the traffic patterns of JP in

experiments 1 and 2 were statistically identical reflecting
the fact that there was no influence of the videoconference

session parameters on the generated traffic pattern.

The Q–Q plots of experiments 1 and 2 (results are

depicted only for experiment 1) showed that the MOM and

KZ0 models performed better with respect to the require-

ment of tail dominance (see Fig. 3(a) and (d)) than the

LVMAX and C-LVMAX models (Fig. 3(b) and (c)). More

analytically, the MOM and KZ0 methods did not manage to

follow closely the histogram in all quantiles (especially in

the first ones and more notable in the case of MOM).

However, this phenomenon is not critical with respect to

queueing as what is important is the conservativeness of the

model at the higher rate states (large frame sizes). The

model KZ3, although being conservative in the large

frames region (tail), declines considerably in the small

frames region (Fig. 3(e)). The complementary density plot

of Fig. 3(f) indicates the tail behavior of the MOM, KZ0

and 3 model. Finally, the PDFs and the Gamma models for

MOM and KZ0 are depicted in Fig. 3(g) and (h) for

experiments 1 and 2 correspondingly (as reported pre-

viously, terminal JP did not join the videoconference

session of the experiment 3).
3.2.2. PDF analysis of terminal NetMeeting

The frame size histograms of NM were found to be

symmetrical enough compared to the other terminals. In

experiment 1, the absence of a target frame rate caused a

greater than usual irregularity in the small frames region as

shown in Fig. 4(h) and (i). In a lower video bit rate session

(experiment 2), the frame size histogram consisted mostly

of the small frames contribution and as a consequence, the

PDF was more narrow and tall (see Fig. 5(d)). More

explicitly, in experiment 1, the models MOM, C-LVMAX,

KZ0 and 3 were found to be the most dominant

(see Fig. 4(a)–(e)). The MOM, C-LVMAX and KZ0
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models were the most conservative whereas the KZ3 model

fitted accurately the PDF tail as shown by the Complemen-

tary density plot in Fig. 4(f) and (g). The same analysis in

experiment 2 for NM showed that C-LVMAX performed

better than KZ0 while KZ3 did not perform well (see

Fig. 5(a)–(c)). The analysis of the experiment 3 led to

similar conclusions with the experiment 1. The MOM,

C-LVMAX and KZ3 models were found to be the most

dominant for both cases of visual content used (VC-H and

VC-L). The PDF with the most dominant models are plotted

for experiments 2 and 3 in Fig. 5(d)–(f).
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It is evident by the above results that the MCU session

parameters (frame rate, video bit rate) and the motion of the

visual content, although they change the shape of the PDF,

do not influence dramatically the performance of the

theoretical models.
3.2.3. PDF analysis of terminal video link pro

The analysis of the frame-size histograms for all the VL

experiments reflected clearly the non-influence of the

session parameters (frame rate, video quality). In all cases,

the PDFs of VL exhibit a similar asymmetrical bell-like
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shape (see Fig. 6(g), (i) and (j)). Thus, the modeling results

will be presented for the first experiment and PDFs will be

given only for experiments 2 and 3 with the fit of the

most dominant models. Q–q plots in Fig. 6(a)–(e) prove that

the most conservative and tail dominant models are

again the MOM, KZ0 and 3 (see Fig. 6(h) for the fitted

PDF plot). The LVMAX and C-LVMAX was, as in the

case of JoinPhone Lite, non-conservative. Although

the MOM and KZ0 models seem to perform better, KZ3

model is more tail dominant as depicted in Fig. 6(e)

and (f). Fig. 6(g), (i) and (j) reflect the statistical

resemblance of the traffic patterns generated by VL in all

the experiments.
3.2.4. PDF analysis of terminal CuSeeMe Pro

The similar analysis for CU proved that the traffic

patterns of the terminals VL and CU have statistical

similarities. The modeling results are the same for both

facts implying that a similar implementation of H.263

was applied in their software applications. The con-

clusions for the H.263 traffic of CU are the same for all

experiments and thus full results will be presented again

for the experiment 1. The Fig. 7(a)–(f) reflect the fact

that MOM, KZ0 and 3 models are the most dominant.

Finally, the Fig. 7(g)–(j) depict the PDF plots with the

most dominant models.
3.3. Queueing analysis via the C-DAR(1) model

and the fluid-flow method

The C-DAR(1) model that was proposed and used

analytically in [23] can be directly applied for full modeling

and analytic treatment of H.263 traffic in multipoint

videoconference sessions over IP networks. This model is

defined as a continuous-time discrete-state Markov chain

with a transition rate matrix Q of the form:

Q Z f ðP K IÞ (7)

where

f Z ln r
rK1

T , PZrIC ð1KrÞA from DAR(1) [13], T is the

frame rate of the H.263 traffic, I is the identity matrix, r is

the autocorrelation decay rate and A is a rank-one stochastic

matrix with all rows equal to the probabilities resulting from

the negative binomial density of the form:

yZf ðx=r;PÞZ rCxK1
x

� �
Pxð1KPÞx; xZ0;1;.;rO0;

0!P!1 corresponding to the Gamma fit for the frame size

distribution. The parameters r and P of the negative

binomial density are calculated by the parameters of the

correspondent Gamma density with p and m parameters as

follows:

r Z
pm

mK1
and P Z

1

m
:
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Fig. 5. Frame size histograms-Gamma models, Q–Q plots and complementary probability functions for terminal NM (experiments 2 and 3).
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The value of the autocorrelation decay rate r should be

chosen equal to the parameter l1 of the model used to fit the

ACF (1) (see Table 2) and the elements for the rows of A

should be determined through the Gamma fit produced by

the PDF models.

Following the approach in [23], the C-DAR(1) model—

as a continuous-time Markov chain model—is suitable for

theoretical analysis using the fluid flow method [27–29].

This method is analyzed as follows: consider a single server

queueing system fed by videoconference traffic r(t)R0 as a

Markov modulated rate process according to the C-DAR(1)
model with a finite number of N states and transition rate

matrix Q (from the C-DAR(1) model (7)). More explicitly,

in each state iZ1,.,N, we correspond a video rate ri. If p is

the corresponding steady state probability vector, then the

mean input rate �r is calculated as follows:

�rZ
PN

iZ1 piri. Let RZdiag{r1,.,rN} and C the constant

server capacity. When r(t)OC, the input traffic cannot be

served entirely and its excess part is stored into a buffer in

order to be served later. Let {X(t),tR0} the stochastic

process that represents the buffer occupancy. It is noted

that the traffic intensity of the system is equal to �r=C.
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Define the steady state PDF Fi(x) as the joint probability that

the buffer occupancy is less than or equal to x, when in the i

state of the source model. Let: F(x)Z[F1(x),

F2(x),.,FN(x)]T.

Then from [27–29] we have:

dFðxÞ

dx
D Z FðxÞQ (8)

where DZR-CI.

Given the infinite buffer assumption, we determine a

buffer threshold B and define the buffer overflow probability
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Fig. 6. Frame size histograms-Gamma models, Q–Q plots and
as follows:

Poverflow Z 1 KFðBÞ1 (9)

where 1Z(1,.,1)T. From (8) and the boundary conditions

for the infinite buffer size approach in [27–29], we can

determine the vector F. In detail, the following relation holds:

FðxÞ Z
XN

iZ1

aie
zixfi (10)

where the coefficients ai must be calculated from the

boundary conditions and z and f are correspondingly,
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8 Experiments with lower traffic intensities (equal to 0.8 and 0.7) were

held and similar modeling results were remarked.
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the eigenvalue and the left eigenvector of the matrix QDK1.

Given the infinite buffer assumption, the solution of (10) is

given as follows:

FðxÞ Z p C
X
i2So

aie
zixfi (11)

where

So afjjrjOCg; zi!0 and z1 Z 0

Using the above methodology (with the assumption of

finite buffer), the authors in [23], proved experimentally

(comparing the analytical model versus trace-driven simu-

lation) that the C-DAR(1) model provides accurate queueing

results (mean cell loss rate, mean queue length) and,

therefore, is suitable for theoretical analysis of videoconfer-

ence traffic. In their analysis, they used the Gamma density

with parameters derived from the MOM method and an

autocorrelation decay rate chosen equal to 0.9846. Taking

into consideration the above, it is evident that our modeling

approach with the Gamma density parameters calculated

from the MOM, KZ0 or 3 models and ACF decay rate values

chosen close and higher than 0.98 (see Table 2—l1 values)
will lead to conservative (asymptotically tight though)

queueing results.

To prove our above claims we present experimental

queueing results comparing the complementary distribution

of the buffer overflow given by the C-DAR(1) Markov chain

as derived from the calculation of (9) and (11) for any value

of buffer threshold B (versus the one given by a discrete-

event simulation [30] using the actual traces (trace-driven

simulation [31]). For the modelling case of experiment 1—

trace of terminal JP, the complementary buffer size densities

from the results of the fluid flow method for all the examined

PDF models (MOM, LVMAX, C-LVMAX, KZ0 and 3) and

the corresponding sample (derived from the trace-driven

simulation) are plotted together (see Fig. 8). The probabilities

values are always assigned at the logarithmic scale. The

traffic intensity was chosen equal to 0.98, the autocorrelation

decay rate equal to 0.9972 (from Table 2—Exp 1—l1

value—JP) and the number of states of the Markov chain N

equal to 10. A similar experiment was conducted for the trace
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Fig. 7. Frame size histograms-Gamma models, Q–Q plots and complementary probability functions for terminal CU.

9 It is obvious that a less conservative or shorter range (e.g. first 50 lags)

choice of the ACF decay rate r would lead to more optimistic queueing

results.
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of terminal CuSeeMe in experiment 3 with traffic intensity

equal to 0.9, NZ10 and l1Z0.9782 (from Table 2—Exp 3—

l1 value—CU).

From the consistent evidence of the results of Fig. 8, it is

clear that our claims are confirmed. It is clearly indicated that

the tail dominance of a model is a critical aspect with respect

to its performance in queueing experiments. Both Fig. 8(a)

and (b) show that the models LVMAX and C-LVMAX were

optimistic in their buffer overflow estimations while the

MOM, KZ0 and 3 provided approximately tight or
conservative estimations9. Concerning the Fig. 8(a) and

(b), we have to notice that the slower decay of the analytically

tractable models is physical as with the fluid-flow method the

discreteness of the buffer occupancy is neglected. From the

above, it becomes clear that the modeling evaluation with

cumulative and complementary Q–Q plots provide valuable
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information for the queueing performance of a model. For

instance, it is clear that the tail-dominance conclusions of

Fig. 3(f) for terminal JP in experiment 1 reflect the results

presented in Fig. 8(a).
4. Conclusions

This manuscript is a modeling assessment of H.263-

encoded traffic in multipoint videoconference sessions over

IP Networks. The modeling results showed that H.263

terminal traffic was stationary and seemed to possess a

rapidly decaying autocorrelation function and a Gamma-

formed marginal distribution. Realistic experiments with

terminals using a different implementation of the H.263

codec that joined sessions with different parameters (frame

rate, video bit rate) were held. The extensive analysis of the

video traffic from the terminals to the MCU indicated that

although the experiment parameters influence the traffic

pattern, generic, though unconvential, models can capture

conservatively their statistical trends. Although the corre-

lations of H.263 traffic were found to be more complex than

a simple geometric term, a careful choice of the decay rate

allows the construction of a conservative approximation for

queueing analysis. The modeling of the frame sizes

distribution indicated that from the queueing point of view

three models MOM, KZ0 and 3 can be applied for all cases.

Especially, the KZ3 model was found to meet the

requirement of tail-dominance in most cases and as a result

is a good solution for the conservative application of the

DAR(1) and C-DAR(1) models in queueing studies. It

becomes clear that a network administrator could chose

among the given models depending on the strictness of the

admission control algorithm or traffic policy needed.

Further study will include queueing and simulation study

of the discussed models in new experiments with various

combinations of scenarios, visual content and H.263

implementations. The study of the traffic produced by the

MCU in ‘continuous presence’ (H.263-encoded) is also a

subject of future research.
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