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Abstract

The continuously increasing cost of the US healthcare system has received significant attention.
Central to the ideas aimed at curbing this trend is the use of technology, in the form of the man-
date to implement electronic health records (EHRs). EHRs consist of patient information such as
demographics, medications, laboratory test results, diagnosis codes and procedures. Mining EHRs
could lead to improvement in patient healthcare management as EHRs contain detailed informa-
tion related to disease prognosis for large patient populations. In this manuscript, we provide a
structured and comprehensive overview of data mining techniques for modeling EHR data. We
first provide a detailed understanding of the major application areas to which EHR mining has
been applied and then discuss the nature of EHR data and its accompanying challenges. Next,
we describe major approaches used for EHR mining, the metrics associated with EHRs, and the
various study designs. With this foundation, we then provide a systematic and methodological
organization of existing data mining techniques used to model EHRs and discuss ideas for future re-
search. We conclude with a case study of patients diagnosed with Type 2 diabetes mellitus (T2DM).
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1 Introduction

The continuously increasing cost of the US healthcare system has received significant attention. Cen-
tral to the ideas aimed at curbing this trend are a mandate from the Health Information Technology for
Economic and Clinical Health (HITECH) Act to implement electronic health records (EHRs) and the
ongoing transition from the current fee-for-service payment model to a new model based on population
health management. Under this new model, primary care providers are responsible for managing entire
patient populations with their payments tied to care quality. They are now incentivized to improve
their efficiency by reducing wasteful treatments and laboratory tests.

One way to fulfill these goals is through unprecedentedly detailed disease prognosis and risk models.
The enabling technology for this and other aspects of improved population health management lies in
electronic health records which contain a wide range of patient information, including demographics,
medications, laboratory test results, diagnosis codes and procedures, thereby capturing a more com-
plete view of the medical state of a patient.

Thus, EHRs hold the promise of improving clinical quality while reducing healthcare costs. EHR
data could serve as a foundation to create a learning health system: to rapidly develop new evidence,



translate the evidence into knowledge and apply the resultant knowledge to medical practice and health
policy. EHRs have the potential to provide useful information to evaluate condition-specific clinical
process metrics and outcomes, facilitate clinical decision support, enhance team-based population care
outside the traditional face-to-face clinical encounter, and provide feedback on specific patient popu-
lations at the point of care. Multiple studies have observed that EHRs have reduced clinical errors
[1-5], improved chronic illness care [6-10] and improved the completeness, accuracy and timeliness of
case reporting to public health. EHRs provide unprecedented opportunities to identify genetic variants
that influence susceptibility to common, complex diseases across geographies [11]. EHR-public health
data exchange can provide superior public health surveillance information on chronic conditions such
as asthma [12-15] and T2DM [10, 16-19]. It can also help in comparing risks to community factors
such as economic disparity [20-22].

To better appreciate the opportunities associated with EHRs, we need to take a look at the tradi-
tional vehicle of clinical innovation, the Randomized Clinical Trials (RCTs) [23] which have hitherto
been the gold standard for evaluating medical practices and treatments. RCT’s are controlled studies
that select patients for a study based on well-defined criteria and procedures such as random assignment
of patients to the case and control groups. This randomization reduces bias in the patient subgroups
by balancing known and unknown factors. Although RCTs have been in existence for many years,
they suffer from some well-known limitations: without an EHR system from which to pull patient
information they often have small sample size [24-30], confounding factors [31, 32], unaccounted for
comorbidities[33], and short duration[34]. Although analyses based on EHR data will not replace ran-
domized trials, they can help overcome some of these limitations and generate important health care
insights. For example, with the help of EHRs, patient cohorts with minimal bias can be selected for
RCTs and clinically significant findings from EHRs can be explicitly verified from RCTs. As a result,
instead of being a substitute, EHRs are complementary to RCTs.

In the past, EHRs have been successfully used for various applications such as biomarker dis-
covery, patient medical trajectories, measuring the efficacy of intervention, adverse event detection,
pharmacovigilance, patient monitoring, sub-population analysis and measuring the effects of medical
guidelines. For such applications, various techniques such as probabilistic graphical models, unsuper-
vised clustering, classification approaches, and association rule mining have been widely used. In this
manuscript, we provide a structured and comprehensive overview of the application of data mining
techniques for EHRs as well as directions for future research.

Several articles, surveys and books have been written on EHRs [35]. Jensen et al. [36] discussed
different types of EHR data including health records, radiological images and clinical texts. They
presented how this data can be used for applications such as pharmacovigilance and subpopulation
analysis. They also discussed limitations associated with EHRs such as patient privacy, patient consent
and interoperability across institutions and countries. Murdoch et al. [37] discussed the application of
big data to healthcare highlighting the various opportunities and limitations of using EHRs to improve
the quality and efficiency of health care delivery. Hripscak et al. [38] presented various challenges
associated with EHRs such as completeness, accuracy, complexity and bias. They also discussed how
phenotyping can be used to overcome the aforementioned limitations. Correvita et al. [39] described
various opportunities associated with EHRs such as the availability of larger samples, well defined
variables and comparisons of results across institutions and geographical borders. They also discussed
some limitations associated with EHRs such as the limited number of patient cohorts for important
studies, complicated patient rights, consent management and semantic inter-operatbility. Fabricio [40]
considered various challenges associated with EHRs in biomedicine, including the storage, transfer and
security of patient information. Ross et al [41] analyzed EHRs in context of big data. They briefly



discussed certain application areas of EHRs such as pharmacovigilance, phenotyping and NLP. They
also examined clinical decision support models, privacy and security associated with EHRs. Reddy
and Agarwal [42] provided a comprehensive overview of different aspects of healthcare data analytics.
In their book, they explored areas such as biomedical image analysis, sensor data analysis, biomedi-
cal signal analysis, genomic data analysis, clinical text mining and social media analysis. They also
reviewed advanced topics such as clinical prediction models, visual analytics, clinico-genomic data in-
tegration, healthcare analytics for pervasive health, fraud detection and mobile imaging for biomedical
applications.

Overview Following a description of application areas in Section 2, we describe EHR data in
Section 3 and its associated challenges in Section 4. Given the unique nature of EHR data, these
challenges have been addressed in data mining only to a very limited extent. In Section 5, we introduce
techniques developed in other fields, most notably epidemiology and biostatistic, that address many of
these challenges, although much more remains to be done. Section 6 introduced metrics that are used
to measure the outcome of a treatment or study, while Section 7 describes study designs, which are the
cornerstone of EHR data mining. A study design provides guidance on how the disparate collection
of data tables comprising EHR data can be meaningfully organized, for example, how time can be
handled, whether causation can be established and which metrics can be estimated. In Section 8, we
turn our attention back to data mining and its contribution to the field of EHR mining. We provide
a comprehensive overview of how data mining methods have been applied to mine EHR data. Finally,
in Section 9, we discuss our findings and we conclude this survey with a case study that successfully
answers complex clinical questions and serves as an illustration of how study design, data challenges
and data mining methods interact.

2 Application Areas

While the fundamental question in medicine is to decide on the treatment that is most appropriate
and effective for a particular patient, scientific inquiries into a disease typically start with the most
basic epidemiological questions: How many patients at a particular time are affected by this condition?
How many new cases do we discover each year? What are the symptoms of the disease? What is the
natural history of the disease, i.e. what are the precursors and consequences of this condition?

Once we understand these fundamentals, we can try answering more advanced questions. To this
end, we may need to assemble a cohort (group) of patients, some of whom are extremely likely to
have the diseases (cases) and other who most likely do not (controls). This can be achieved through
phenotyping algorithms, either hand-crafted or machine learned that characterize the disease in terms
of patient characteristics observable from the EHR data. This problem is referred to as cohort identi-
fication.

For the cohort we could collect relevant known or potential predictors and build predictive models.
These models predict the risk of disease, e.g. probability of developing the condition in 5 years (risk
prediction) or investigate which predictors are relevant (biomarker discovery, risk factor discovery) in
developing the outcome. Accurate knowledge of risk factors can help guide preventive efforts or focus
interventions.

Interventions are often drug therapies or surgeries, but can also include recommendations for life
style changes and/or patient education. Choosing the optimal treatment for a patient requires us to
be able to estimate the effect of the possible interventions. Specialized data mining methods such as
uplift modeling or statistical techniques in combination with causal analysis can be used to quantify



the effects of interventions.

Once the effect of a treatment has been proven in practice, this knowledge can be codified into and
disseminated as clinical practice guidelines. Fuvidence-based clinical practice guidelines are considered a
cornerstone of modern medicine, and they give guidance on the “optimal” treatment under a particular
set of conditions based on epidemiological evidence. Guidelines are traditionally expert-crafted. The
increasing role of computerized clinical decision support allows for more accurate but complex guide-
lines, suggesting that data mining technologies will play a more significant role in guideline construction.

While interventions typically help patients, occasionally they can lead to unforeseen events that
adversely affect patient health such as surgical site infection or the unexpected reaction of multiple
drugs. Predictive modeling has been used to both detect and to predict such adverse events.

In the following sections, we describe each of these applications in more details and discuss the role
data mining has played thus far.

2.1 Understanding the Natural History of Disease

Analyzing and exploring disease statistics are often the first foray into a new disease or epidemiolog-
ical study. These are aimed at answering questions such as the following: Is the condition or disease
serious? Are large numbers of patients involved? What are the societal implications of the disease?
Has the disease been studied before? These questions often prompt further investigation with rigorous
study designs. Most of the time, the focus is on the prevalence of the disease, comorbidity analysis, or
the incidence of the disease (patient medical trajectories).

Comorbidity analysis is the process of exploring and analyzing relationships between frequently
co-occurring diseases. For example, patients suffering from type 2 diabetes mellitus (T2DM) often
also suffer from hypertension, hyperlipidemia and impaired fasting glucose (IFG). Some diseases oc-
cur in clusters and it is desirable to treat them simultaneously. Further, analyzing the comorbidities
and discovering the relationships among them, can lead to the modification of existing comorbidity
scores (such as Charlson index) or to the development of novel ones. In the past, researchers have
used comorbidity analysis for observing how alcohol usage is associated with depression, anxiety and
personality disorders [43]. Doshi-Velez et al. used patient stratification techniques to observe comor-
bidities in patients suffering from autism spectrum disorders [44]. Wright et al. [45] employed the
Apriori framework to detect associations between clinical concepts (laboratories test results, medica-
tions) and problem lists. Cao et al. [46] used a statistical framework to detect an association between
diseases such as 'myasthenia gravis ’and ’cushingoid facies’. Similarly Holmes et al. [47] studied the
comorbidities for rare diseases such as Kaposi sarcoma, toxoplasmosis, and Kawasaki disease. Using
the association rule mining framework, Shin et al. [48] explored the comorbidities associated with hy-
pertension such as non-insulin dependent diabetes mellitus, cerebral infection and chronic renal failure.
Dasgupta et al. [49] analyzed disease drug relations by using advanced network clusters. They hypothe-
sized that studying drugs in isolation can provide a different perspective on how two drugs can interact.

The medical state of a patient can be represented using laboratories test results, diagnosis codes
or medication information, while the progression of a patient’s medical state over time is known as
the patient’s medical trajectory. Examples of such trajectories are the progression of the patient from
a healthy state through conditions like hypertension, hyperlipidemia, impaired fasting glucose (IFG),
type 2 diabetes mellitus and eventually towards diabetes complications (e.g. amputation, severe paral-
ysis or death). Often, multiple trajectories lead to the same outcome. For example, consider an



outcome such as mortality. In this case, a patient might die due to kidney complications, cardio-
vascular complications or peripheral complications. Even though the outcome is the same, the paths
leading there are different. Research studies have observed that such varying trajectories can have
significantly different associated risks for the same outcome. Examining such varying trajectories can
lead to the development of tailored treatments, the discovery of biomarkers or the development of novel
risk estimation indices.

Jensen et al. [50] have explored temporal disease progression patterns in data from an electronic
health record registry which covers the entire population of Denmark. Using this cohort, they identi-
fied 1171 significant trajectories. These significant trajectories were then clustered using key diagnosis
codes such as chronic obstructive pulmonary disease (COPD) and gout. Their findings demonstrate
how these trajectories have predictive potential and might be the basis for predicting the next proba-
ble step in disease progression. Their findings also elaborate the association and causality of certain
diseases. They further demonstrated how the population-wide disease trajectory approach uncovers
diagnosis linkages which might conflict with research based on the past epidemiological studies. Teno
et al. [51] examined differences in the pattern of functional decline among persons dying of cancer
and other leading non cancer causes of death. They observed how patients with cancer experienced an
increased rate of functional impairment beginning as late as 5 months prior to death. Murtagh et al.
[52] analyzed how patients diagnosed with diseases have increased morbidity and an increased risk of
death from cardiovascular disease. They also demonstrated how this exploration might lead to better
patient management, thereby providing optimal care for patients in the terminal phase of their disease.

2.2 Cohort Identification

Cohort identification is the identification of patient groups satisfying the required criteria. This iden-
tification is performed using EHR attributes such as laboratories test results, vitals, medications and
ICD-9 diagnosis codes. Traditionally, cohort identification was carried out through chart reviews.
However the scale enabled by EHRs render manual chart review impractical. Instead, electronic phe-
notyping algorithms are applied with manual spot-checking. Cohort identification has been widely
used in various clinical research studies and biomedical applications. This process is often the plat-
form for carrying out future studies in areas such as pharmacovigilance, predicting complications, and
quantifying the effect of interventions.

Cohort identification usually employs supervised learning techniques, where the gold standard is
defined using expert clinical knowledge. Such identification, using ICD-9 codes and narrative data,
has been used to develop automated models to identify patients with cancer [53], rheumatoid arthritis
[54], pneumonia [54], critical care [55] and asthma [56]. Kandula et al. [57] developed a bootstrapping
learning method that, starting with an initial classification based on ICD-9 codes, iteratively improves
cohort accuracy through training on relevant structured data. Their proposed method does not re-
quire prior information about the true class of the patients. They used their method to identify T2DM
and hyperlipidemia patient cohorts from a database of 800,000 patients. Rasmussen et al. [58] dis-
cussed phenotype design patterns based on existing phenotype algorithm definitions from the eMERGE
network. They believed it would help researchers in working with EHR data for algorithm development.

A phenotype is defined as a biochemical or physical trait of an organism, such as a disease, physical
characteristic, or blood type, based on genetic information and environmental influences. Examples
of phenotypes in EHRs are clinical conditions, characteristics or sets of clinical features that can be
determined solely from the EHR data and do not require a chart review or interpretation by a clinician.



Such techniques are useful for identifying patients or populations with a given characteristic or
condition of interest from EHRs using data that are routinely collected in EHRs or ancillary data
sources such as disease registries or claims data. Phenotyping queries used for cohort identification
can be replicated at multiple sites in a consistent fashion in order to ensure that populations identified
from different healthcare organizations have similar features. Phenotypic definitions can also be used
for direct identification of cohorts based on population characteristics, risk factors, and complications,
allowing decision-makers to identify and target patients for screening tests and interventions that have
been demonstrated to be effective in similar populations.

Castelli et al. [59] used phenotyping to analyze the relationship between coronary heart disease
(CHD) prevalence and fasting lipid levels. They observed how inverse HDL cholesterol-CHD asso-
ciation was not appreciably diminished when adjusted for levels of low density lipoprotein (LDL)
cholesterol and triglyceride. Newton et al. [60] worked on validating EMR-derived phenotypes and
made the following observations: multisite validation improves phenotype algorithm accuracy, algo-
rithm development and validation work best as an iterative process, validation by content experts or
structured chart review can provide accurate results and patient movement in and out of the health
plan (transience) can result in incomplete or fragmented data. Overby et al. [61] worked on developing
a collaborative approach for an electronic health record (EHR) phenotyping algorithm for drug-induced
liver injury (DILI) and demonstrated the portability of their algorithm across multiple institutions.
They also observed that the performance of their algorithm for identifying DILI was comparable with
other computerized approaches used to identify adverse drug events.

Pathak et al. [62] identified various challenge associated with phenotyping EHRs including develop-
ing approaches for high-throughput extraction and representation of phenotypes, building techniques
for storing, integrating, and querying phenotype data and advancing phenotypic-driven analysis to
derive phenotype-genotype associations. Schram et al. [63] worked on an extensive phenotyping study
that focuses on the etiology of type 2 diabetes (T2DM), its associated complications, and its emerging
comorbidities. Their study uses state-of-the-art imaging techniques and extensive biobanking to deter-
mine health status in a population-based cohort of several thousand individuals that is enriched with
T2DM individuals. Boland et al. [64] introduced a new concept called verotype by integrating genetics
along with EHRs for patient identification. They believed verotypes would be useful for personalized
medical treatment regiments. Gotz et al. [65] combined data mining and visualization techniques to
retrieve patient cohorts that satisfy complex clinical events. They achieved this by integrating visual
queries, on-demand analytics and interactive visualization. Their system also provided an interactive
visual environment for the exploration and analysis of temporal medical event data.

Wang et al. [66] worked on segmenting patient cohorts by incorporating prior knowledge from do-
main experts. They hypothesized that such domain knowledge is very important as it reflects crucial
medical insights which are validated by extensive clinical studies. They then used these cohorts for
developing group-specific risk prediction models. Peissig et al [67] developed a technique to identify
subjects with age-related cataracts and the associated cataract attributes using only information ami-
able in the EHR. They demonstrated that a multi-modal approach which includes the use of EHRs
along with clinical notes increases the predictive performance. Pathak et al. [68] proposed semantic
web technologies for extracting phenotyping data from EHRs. They discussed how such techniques
would allow federated querying, reasoning, and efficient information retrieval across multiple sources of
clinical data and information. More recently, Ho et al. [69-71] proposed tensor factorization methods
to derive phenotypes. Schulam et al. [72] proposed the Probabiliistic Subtyping Model (PSM) to iden-
tify subgroups based on clustering individual clinical severity markers. Their method uses hierarchical



clustering to account for variability arising due to noise and irregular sampling methods. Hu et al. [73]
proposed a vector space model to represent patient utilization profiles, and apply clustering techniques
to identify utilization groups within a given population. Their technique can be used to identify high
utilization users from low utilization users thereby leading to detection of anomalous patient profiles.

2.3 Risk Prediction/Biomarker Discovery

Risk prediction is the problem of constructing predictive models to assess the patient’s risk and pro-
gression from a patient’s current medical state to a medical state associated with potentially advanced
medical complications. Such analysis is often performed to identify high risk individuals, thereby
facilitating the design and planning of one’s treatment plan [74-76]. Such analysis might lead to
improvement in a patient’s health, thereby preventing the patient from progressing to advanced com-
plications. In some cases, predicting the patient’s risk of progression is secondary to understanding
the underlying risk factors. Risk models can provide information about the importance of risk factors.

With the availability of EHRs, models can be developed for assessing the patient’s risk for multiple
diseases. Such models also have the capability to capture effects arising due to demographic attributes
such as age, gender, race, ethnicity and social status. Further due to the interoperability associated
with EHRs, models can also be developed using data across geographies thereby incorporating the
genetic makeup of the patients.

Data mining techniques such as logistic regression, Poisson regression and survival modeling tech-
niques such as Cox proportional hazards regression are often used to analyze the patient risks for a
complication of interest. Greenland et al. [77] analyzed how risk assessment associated with coronary
heart disease might be improved by additional tests such as coronary artery calcium scoring (CACS).
Knaus et al. [78] refined the APACHE (Acute Physiology, Age, Chronic Health Evaluation) methodol-
ogy in order to more accurately predict hospital mortality risk for critically ill patients in ICUs. They
also analyzed the relationship between the patient’s likelihood of surviving to hospital discharge and
the following variables: major medical and surgical disease categories, acute physiologic abnormalities,
preexisting functional limitations, major comorbidities, and treatment location immediately prior to
ICU admission.

Sarkar et al. [79] presented a methodology for developing an improved feature selection technique
that will help in accurate prediction of outcomes after hematopoietic stem cell transplantation (HSCT)
for patients with acute myelogenous leukaemia (AML). They also observed how their selected features
were similar to those obtained by traditional statistical techniques. Letham et al. [80] used Bayesian
model and Markov chain Monte Carlo sampling to develop interpretable predictive models using EHRs
data. Ebadollahi et al [81] worked on developing a decision support tool for near-term prognostic in-
sight to help clinicians better assess the impact of their decisions. They used inter-patient similarity to
project patient data into the future to provide insights about the query patient. Feldman and Chawla
[82] presented ADMIT (Admission Duration Model for Infant Treatment) model, which yields person-
alized length of stay estimates for an infant, utilizing data available from time of admission to the ICU.
Their algorithm utilizes an augmentation of the Adaptive Boost algorithm, known as the LogitBoost.
Ngufor et al. [83] developed an efficient and accurate algorithm that could estimate the risk of multiple
outcomes simultaneously such as perioperative bleeding, intraoperative RBC transfusion, ICU care,
and ICU length of stay. Byrd et al. [84] constructed a system to automatically identify heart failure
diagnostic criteria. Kamkar et al. [85] used Tree Lasso for feature selection along with state of the
art classification problems for identifying stable risk factors for many healthcare problems. Tran et
al. [86] worked on development of auto-extracted standard features from complex medical records, in



a disease and task agnostic measure. They demonstrated how their auto-extracted features achieve
better discriminative power for prediction hospital readmission.

Lakshmanan et al. [87] an approach for mining clinical care pathways correlated with patient out-
comes that involves a combination of clustering, process mining and frequent pattern mining. Wang et
al. [88] proposed a probabilistic disease progression model that continuously learns from discrete-time
observations with non-equal intervals. Their model is also capable of learning full progression trajec-
tory. They demonstrated the applicability of their model on diseases such as T2DM, cardiovascular
and psychological complications. Vijayakrishnan et al. [89] analyzed EHRs for earlier identification
of disease states such as heart failure (HF). They developed a novel text and data analytic tool for
analyzing longitudinal EHRs of over 50,0000 primary care patients. Vellanki et al. [90] used Bayesian
Nonparametric factor analysis along with clustering techniques to identity biomarkers for children diag-
nosed with autism spectrum disorder (ASD). They demonstrated that by using bayesian nonparametric
framework, once can discoed learning patterns more efficiently as compared to the parametric methods.

Risk prediction also provides the opportunity to identify significant indicators of a biological state
or condition. In simple terms, a biomarker is defined as a set of measurable quantities that can serve as
an indicator of a patient’s health. For example, abnormal hemoglobin A1C is a biomarker for T2DM
and hyperlipidemia is a biomarker for being at risk of cardio-vascular complications. Similarly, there
are certain biomarkers, which are common across many diseases. For example, age is by far the most
common biomarker. It indicates that as a person ages, his or her risk to acquire certain diseases (e.g
T2DM, cardio-vascular complications and kidney complications) increases. EHRs provide a platform
to identify, analyze and explore biomarkers for different diseases.

Biomarkers offer a succinct summary of the patient’s state with respect to a medical condition.
Rather than having to analyze the thousands of variables present in an EHR, it can be sufficient to
focus on relatively few biomarkers to paint a reasonably accurate picture of the patient’s overall health.
Over the years, biomarkers have found numerous applications. They can be used in rule-based systems
to identify cohorts for a clinical trial or to enhance existing risk indices (e.g. Framingham risk scores
). Data mining techniques have been extensively used to discover biomarkers. Schrom et al. used
association rule mining along with propensity score matching to investigate how statin can lead to
overt diabetes in certain subpopulations [91]. Supervised techniques, such as survival association rule
mining [92], have been used to discover biomarkers for T2DM. An example found by the technique is
the combination of (hyperlipidemia, triglycerides and fibrates), which indicates high relative risk for
T2DM. Harpaz et al. [93] used statistical techniques to identify a chemical biomarker rasburicase, that
results in adverse events related to pancreatitis.

2.4 Predicting the next complication: What and When

Future complications arising due to patient’s current medical condition can be classified into two cat-
egories, i.e., short term and long term complications. This becomes more relevant as patients follow
multiple health trajectories, often leading to life threatening conditions including mortality [94, 95].
For clinical purposes, predicting the next complication is a challenging problem. For example, pre-
dicting the onset of neonatal sepsis, rehospitalization or the next complication for a patient diagnosed
with T2DM.

The availability of large patient cohorts across longer observation periods provide an opportunity
to build clinical decision support models that can be used to predict complications across multiple



observation periods. Such models would be quite useful for assessing the risk caused by diseases such
as T2DM, where it takes around 5-10 years for a patient to progress from one state of complication to
another potentially advanced complication. Clinical decision support systems informed by such models
will lead to improved patient care, thereby improving overall health care. Such analysis can lead to
the development of personalized and tailored interventions. It also can lead to refinement of medical
guidelines by considering the short and long term impact.

Generalized linear regression and survival modeling techniques such as Cox proportional hazards
regression are often used for the development of such models. Yadav et al. [96] used Cox proportional
hazards regression to estimate the risk of potentially advanced complications such as Peripheral Vas-
cular Disease (PVD), Cerebral Vascular Disease (CVD), Ischemic Heart Disease (IHD) and Congestive
Heart Failure (CHF), often associated with T2DM. They first developed a diabetes complication in-
dex which summarizes a patient’s health in terms of post-diabetic complications into a single score.
Through the use of this score, they track a patient’s health and show that distinct trajectories in
diabetes can be identified thereby demonstrating the need and laying the foundation for future clinical
EBP guidelines that take trajectories into account. Zhao et al. [97] proposed a novel method which
combines PubMed knowledge and EHRs to develop a weighted Bayesian Network Inference (BNI)
model for pancreatic cancer prediction. Their model was further used to compute probabilities for var-
ious risk factors or complications associated with pancreatic cancer prediction. Considerable research
has been performed to predict future complications associated with lung cancer [98], cardiac arrest
[99], bariatric surgery [100], carotid endarterectomy [101], acute cough [102], breast reconstruction
[103], pulmonary resection [104-107], knee replacement [108], lumbar decompression [109], orthopedic
surgery [110], hysteroscopic surgery [111] and febrile neutropenic cancer [112].

Lui and Hauskrecht [113-116] modeled the irregularly sampled clinical time series by using multiple
Gaussian process sequences in the lower level of our hierarchical framework and capture the transitions
between Gaussian processes by utilizing the linear dynamical system. They used their technique for
exploring complications associated with complete blood count (CBC) panel data for post-surgical
cardiac patients during hospitalization. Panahiazar et al. [117] used EHRs for inferring an individual
patient’s response to Heart Failure therapy. To carry out the aforementioned objective, they used
patient-specific information from the EHR, including medical comorbidities, laboratory measurements,
ejection fraction, vital status and demographics to identify similar patients.

2.5 Quantifying the effect of Intervention

Life-style modifications such as smoking cessation, low-calorie food consumption and medication pre-
scriptions are common examples of medical interventions. Such interventions are usually advised when
the patient has a high probability of progressing to high-risk complications (e.g. mortality). The ability
to quantify the effect of interventions can lead to development of sophisticated and tailored medical
treatments.

The longitudinal aspect of EHRs provides an opportunity to analyze the effects of intervention
for longer period of time across larger cohorts. It also provides clinicians with a platform to analyze
whether the interventions have any accompanying adverse effects. Moreover, EHRs provide a platform
to analyze whether interventions vary across cohorts based on gender, age, ethnic make-up, socio-
economic status, etc.

Data mining techniques such as association rule mining have been used to measure the effect of
interventions. Statin is an example of a commonly prescribed medication for patients diagnosed with
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hypercholesterolemia. Schrom et al. [91] used association rule mining along with propensity score
matching to identify how the use of statin leads to overt diabetes in certain sub-populations. The
sub-population consisted of patients diagnosed with hypercholesterolemia. They demonstrated their
technique on a real diabetes data set by examining the relationship between statin use and diabetes,
and identified novel risk factors. Campbell [118] analyzed a variety of tests and measures that are
useful in documenting and quantifying the outcomes of intervention for persons with cerebral palsy.
Proschaska et al. [119] analyzed the effects of risky behaviors such as smoking, alcohol abuse, physical
inactivity, and poor diet on human health. Ronsmans and Campbell [120] presented the evidence
of the effect of health interventions on mortality reduction from hypertensive diseases in pregnancy.
Law et al. [121] analyzed how statins reduce serum concentrations of low density lipoprotein (LDL)
cholesterol and the incidence of ischemic heart disease (IHD) events and stroke, according to drug,
dose, and duration of treatment.

2.6 Constructing Evidence Based Guidelines

Clinical guidelines are systematically developed descriptive tools or standardized specifications for care
to assist practitioner and patient decisions about appropriate health care for specific clinical circum-
stances [122]. Evidence based guidelines (EBG) try to guide decision making by identifying best clinical
practices, that are meant to improve the quality of patient care [123]. They help clinicians make sound
decisions by presenting up to date information about best practices for treating patients in a particular
medical state including expected outcomes and recommended follow up interval. For example, EBG
guidelines for diabetes consist of rules such as symptom identification checks (e.g. diagnosis of T2DM
when fasting plasma glucose is greater than 7), lifestyle modification recommendations (e.g. cessation
of smoking), medication order (e.g. prescription of metformin), etc. These guidelines are often re-
garded as the cornerstone of modern healthcare management.

Designing effective EBGs requires a large enough sample of the target population with long follow-
up duration to study the outcome. Since EHRs often satisfies these criteria, they can be very useful in
evaluating medical guidelines. Data mining techniques such as association rule mining, sequential rule
mining and regression approaches can be used to develop and test existing guidelines[124],[125]. EBG’s
have been developed for diseases treated in the emergency department [126], medication therapy for
upper respiratory tract infection [127], ear, nose, diabetes mellitus type 2 (T2DM) [128], prosthodontics
[129], etc. Guidelines might vary across geographies due to differences in population genetics, life-style
and socio-economic status. For example, different sets of guidelines have been developed for T2DM
by Finland [130] and Singapore[131]). Pivovarov et al. [132] analyzed the potential overuse of certain
clinical guidelines. In particular they looked at hemoglobin Alc testing across 119 000 patients and
15 years of hospital records. They also examined the patterns before Alc was included in American
Diabetes Association guidelines. Their study demonstrated over utilization of Alc and attributed this
to lack of care coordination and point of care tests followed by confirmatory laboratory tests.

2.7 Adverse Event Detection

Adverse event detection refers to the problem of detecting any untoward medical occurrence caused
by mismanagement of patient health. Such medical errors might arise due to accidental surgical prac-
tices, drug reactions or the use of outdated medical guidelines. Examples of such events are detecting
patients with high risk for narcotic dosing error, assessing the disagreement between the medication
order and medication delivery and identifying fatal events in ICU [133]. Identification of such events
are not only important to the patient (medical health), but also to the healthcare provider (in terms
of cost reduction). Moreover, analysis of such events might lead to the review of antiquated guidelines,
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withdrawal of certain drugs (those causing adverse events) from the market, etc. We categorize the
research associated with adverse events into two major areas i.e. pharmacovigilance and patient mon-
itoring.

Pharmacovigilance deals with monitoring and detecting the adverse effects of medications/drugs.
Such adverse drug reactions can prove fatal to patients and can also have a significant impact on
healthcare management. Although drugs are tested for any potential adverse effects before they are
released for widespread use, often test cohorts are small with short observation periods. Several agencies
conduct research on detecting ADRs: FDA with its adverse event reporting system, the European
Medicines Agency, and the World Health Organization, which maintains an international adverse
reaction database. Despite this effort, all these agencies suffer from underreporting and biased analyses
of adverse drug reactions. EHRs provide a new platform to improve and complement drug safety
surveillance strategies. Extensive research on ADRs has been performed in the context of cardiovascular
complications, pancreatic complications [93, 134] and allergies [135]. Supervised techniques, such as
disproportionality analysis, logistic regression, Bayesian inference and NLP techniques have frequently
been used to discover ADRs [136, 137]. Besides EHR data, some research has also used weblogs
to identify ADRs [138]. Similarly, research has been conducted using statistical analysis to identify
certain medications which lead to adverse effects [137-139]. Bobo et al. [140] designed an algorithm to
identify new or prevalent users of antidepressant medications via population-based drugs-pescription
records and confirmed that prescription records can be used to identify prevalent or incident users
of antidepressants. Pathak et al. [141, 142] used Semantic Web and Linked Data technologies for
identifying potential drug-drug interaction (DDI) information from publicly available resources, and
determining if such interactions were observed using real patient data. Specificially, they analyzed
widely prescribed cardiovascular drugs: Warfarin, Clopidogrel and Simvastatin. Sathyanarayana et
al. [143] proposed a data driven framework to predict the effectiveness of medication on a patient
diagnosed with T2DM. Their aim was to evaluate the effectiveness of Metformin. Decisions trees and
random forests were used for their analysis.

Patient Monitoring Surveillance is the continuous monitoring of patients by using diverse infor-
mation such as biochemical markers (e.g. glucose, hemoglobin A1C, and blood urea nitrogen), voice
analysis, physiological variables (e.g. heart rate, breathing rate, heart rate variability, and sleeping al-
terations) and behavioral data (e.g. stress related hormones and activity recognition). Round the clock
monitoring helps clinicians explore and understand the causal factors responsible for adverse events.
Such surveillance helps analyze large patient cohorts with limited clinical support, patient health
management during critical times (depressive and maniac episodes), etc. Surveillance techniques are
frequently used for patients admitted to the ICU. Nachimuthu et al. [144] used them to identify fluctu-
ations in glucose levels while Rose et al. [145] used them for patients admitted for hemodialysis. Such
techniques can lead to a reduction in overall health care costs, access barriers [146, 147], unnecessary
hospital admissions, frequency of primary care visits and improvement in illness prevention and care
co-ordination [148].

3 Nature of EHR Data

One motivation behind the federal mandate for EHRs was to document patients’ state of health over
time and the therapeutic interventions to which these patients were subjected. EHRs store this in-
formation in structured (databases), semi-structured (flow sheets) and unstructured formats (clinical
notes). The format of the information greatly affects the ease of access and quality of the data, and
thus has substantial impact on the downstream data mining.
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3.1 Structured Data

From the viewpoint of healthcare analytics, retrieving structured data is the most straightforward.
Structured data is stored in database tables with a fixed schema designed by the EHR vendor. The
most commonly used information, such as demographic information (e.g. birth date, race, ethnic-
ity), encounters (e.g. admission and discharge data), diagnosis codes (historic and current), procedure
codes, laboratory results, medications, allergies, social information (e.g. tobacco usage) and some vital
signs (blood pressure, pulse, weight, height) are all stored in structured tables. This kind of informa-
tion is common across providers and not specific to any clinical specialty. Thus the use and format
of this information is well handled by the EHR vendors. This allows such information to be stored in
structured data tables with apriori defined layouts (schema). Fixed schemas enable high performance
(rapid access to data) and standardization: the schemas for these tables are very similar if not identical
across installations by the same EHR vendor, requiring very little (if any) site-specific knowledge from
users. This quasi-standardization of fields also greatly helps information retrieval for analytic purposes.

Storing all information in EHRs as structured elements, however, is impractical: it would require
anticipation of all possible data elements (e.g. metrics whose usefulness we do not yet appreciate) and
would result in a level of complexity that would render the EHR system unusable. However, there is a
need for storing information that does not readily fit into the admittedly rigid schema of the structured
tables. For example, clinicians often write notes about patient’s symptoms based on their previous
experiences, which is hard to standardize apriori.

3.2 Unstructured Data

Among the three formats, clinical notes (unstructured data) offer maximal flexibility. Clinical notes
mostly store narrative data (free text). Many types of clinical notes are in existence, and the type
of note (e.g. radiology report, surgical note, discharge notes) is the only limiting factor on the type
and breadth of information the note in question can store. Information regarding a patient’s medical
history (diseases as well as interventions), familial history of diseases, environmental exposures and
lifestyle data all reside in clinical notes. Natural language processing (NLP) tools and techniques have
been widely used to extract knowledge from EHR data.

Clinical notes such as admission, treatment and discharge summaries store valuable medical in-
formation about the patient, but these clinical notes are very subjective to the doctor or the nurse
writing them, and lack a common structure or framework. These clinical notes an also have gram-
matical errors, short phrases, abbreviations, local dialects and misspelled words. Considerable data
processing needs to be conducted on these clinical notes such as spelling correction, word sense disam-
biguation, contextual feature detection, extraction of ICD codes from clinical text, and adverse events
surveillance. This makes deriving structured information about patient phenotypes from clinical notes
a computationally challenging task that requires the most sophisticated NLP tools and techniques.
In the past, work has been done to analyze the effect of time constraints on routine clinical tasks
such as review of ambulatory EHR clinical notes [149], creation of clinical sense inventory of clinical
abbreviations and acronyms [150] and development of tailored NLP methods to extract information
from operative notes [151].
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3.3 Flowsheets

In between the two extremes (structured tables and unstructured clinical notes) lies the (semi-structured)
flow sheet format [152]. This format is most reminiscent of resource description files (RDF), consisting

of name, value and time stamp triplets. Typically, the “name” field stores the name of the measure

and the “value” field contains the actual measurements: e.g. the name is “arterial blood pressure”

and the value is 145 Hgmm. This format is more flexible than the structured tables, since the user can

define new metric through the name field; the set of metrics is not restricted to those anticipated by

the EHR vendor. Flow sheets are similar to structured data in the sense that the value field is either

a quantitative measure (e.g. blood pressure) or typically a restricted set of values. For instance, the

American Society of Anesthesiologists (ASA) physical status takes values of “healthy”, “mild systemic

disease”, “severe systemic disease”, “severe life-threatening systemic disease”, or “moribund”.

Flow sheets offer expandability to EHR systems and thus have found numerous uses, becoming
the only or most convenient data repository for many applications. Possibly the most important use
for flow sheets is that they provide detailed information about specialty care. For example, informa-
tion related to a patient’s asthma care plans can be stored in flow sheets or they may store various
diabetes-related non-standard (or not-yet-standard) metrics for a diabetes clinic. In addition, they
may provide additional details regarding how a particular measure was obtained (blood pressure taken
while the patient was lying flat) and can also be used to store automated sensor data (e.g. pulse and
blood oxygen levels every few minutes in an intensive care unit). Further, flow sheets can be used to
pull together related measurements such as quality indicators.

4 Data-Related Challenges

EHR data as a research platform poses numerous challenges including data integration across multiple
provider sites each with its own best practice and across multiple sources such as clinical, claims and
high-dimensional data. In the remainder of this section, we examine a number of data related chal-
lenges, all of which are, at least in part, a consequence of missing data. We provide an overview of
those challenges here, and more details in the rest of this section.

The single most important challenge, the one that arguably impacts data mining methodologies at
the most, is missing data. EHR data can be missing for a wide variety of reasons. First, as we have
discussed earlier, it is study designs that transform raw EHR data into a design matrix, a matrix that
is amenable to the application of data mining techniques. Each study design defines a study period, a
time period during which the patient is under observation. Events that take place outside the study
period are unobservable and data that is unobservable because it falls outside the study period is
referred to as censoring.

Even during the study period, patients’ health state is not always observable. The US health-care
system allows patients to seek medical care from multiple providers who are not required to exchange
health information. Fragmentation refers to the situation when a patient’s trajectory is only partially
observable during the study period, because the patient sought care at a different provider who did not
share data with those conducting the study. Naturally, all diagnoses, tests and treatments received at
the other provider are unobservable. This is known as fragmentation.

Missing data can still arise when the patient receives unfragmented care from a single provider,
simply because the patient receives care intermittently. During every patient care encounter, providers
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focus on a limited set of ailments, and hence update only a small fraction of the patient’s record. The
irregular nature of the visits and the small fraction of the record that gets updated during any visit
leave a large portion of the record unobserved for extended periods of time unobserved or in other
words, missing. We refer to this as irregular data.

Even during a single encounter, not all information about the patient gets recorded. EHRs are no-
toriously lacking in terms of documenting socio-economic data, environmental exposures and lifestyle
descriptors. Unobserved descriptors and lack of knowledge about disease processes can lead to biases
and confounding. It is not only ”soft” socio-economomic and lifetime data that could be missing;
”hard” medical facts, such as diagnosis codes, could also be missing. Indeed, the recording of diagnosis
codes is often dictated by reimbursement rules.

In the following subsections, we will discuss these various issues in details.

4.1 Censored Data

By censored data, we refer to data for which information about a patient’s medical state is observed
only during a certain period of time or conversely, when potentially interesting events fall outside the
observation period and are hence unobservable. In case of left censored data, patients experienced
events of interest prior to the start of the study; in case of right censoring, potentially interesting
events are unobservable because they happened to the patient after the study concluded. In case of
interval censored data, information is only available of the data being within a certain limit. Studies
can be either left, right or interval censored. Censoring can lead to loss of crucial information about
the patient’s health. For example, for the right censored patient, there is neither an easy way to deter-
mine whether the patient is alive or dead nor to measure the efficacy of the treatment the patient was
undergoing. Examples of datasets with censoring are T2DM [153], dementia [154], nepropathy [155]
and mortality [155].

Survival modeling techniques analyze data where the outcome variable is the time until the occur-
rence of an event of interest are frequently used to model censored data. Example of such techniques
are nonparametric estimation methods such as Kaplan Meier curve [156], bayesian non-parametric
methods [156] which involves prior belief about the shape of the survival function, semi paramet-
ric proportional hazards regression with fixed covariates or time dependent covariates [157], additive
hazards regression model and parametric regression models using weibull distribution or log logistic
distribution [158].

4.2 Fragmentation

Fragmentation is a lack of data sharing across providers. Fragmentation typically occurs when patients
visit multiple healthcare providers seeking specialty care, expert advice or second opinions. In such
scenarios, all healthcare provider involved only have partial information about the patient’s medical
history. Integrating data across multiple healthcare providers has several limitations. These challenges
arise as different EHR systems such as General Electic (GE) or Epic, require a common language to
transfer information into HL-7 (common protocol), which cannot capture all nuances. Even when mul-
tiple sites use the same EHR, their treatment policies may differ, flowsheets may differ and thus their
definitions of nuanced concepts may differ. For example, fasting and random glucose measurements
are not distinguished by lab codes and different sites can apply different methods to distinguish the two.

15



4.3 Irregular Time Series Data

Beside our inability to make observations before the study period starts or after it concludes, the most
striking characteristic of the EHRs data is the irregularity of the patient visits. While recommended
frequency of visits may exist, few patients actually follow these recommendations. For example, as
per the ADA guideline A1C test must be performed at least two times a year for individuals who are
meeting treatment targets and have stable glycemic control. On the contrary, an A1C test must be
performed quarterly for individuals whose therapy has changed or who are not meeting glycemic targets.

Further, Information such as vitals is collected at every visit, certain laboratories tests are ordered
annually, and other tests are performed only as needed. For example, as per the ADA guidelines, a
laboratory test to measure Hemoglobin A1C in blood is recommended every six to twelve months,
but a bacterial panel is ordered only when needed. This difference in the frequency of collection of
medical information leads to irregular longitudinal data. This difference in information being captured
from roughly every year to every few hours, leads to the problem of multiple temporal scales. Care
must be taken to compare the trajectories of different health indicators, as they might have varying
temporal scales. This irregular time gap between visits can be further complicated as patients often
have different diseases with accompaning complications.

Analyzing regular time series is a well-studied problem in data mining, but application of these
techniques to EHR-type irregular time series is very challenging.

4.4 Other Sources of Missing Data

Diagnosis codes might also be missing due to intentional omission as diagnosis codes, especially billing
codes, are related to reimbursement. Different problems, comorbidities or complications have different
reimbursement rates: depending upon the complications, the same procedure may have different costs
and thus result in increased or decreased reimbursements. Due to these financial constraints, only
some of the problems related to the primary cause of the visit, are used to generate billing codes (ICD
codes are used to represent these problems in billing records). This leads to biases in ICD-9 codes, as
the billing codes might not be a true representation of the actual medical state of the patient.

Diagnosis codes can also be missing due to changes in disease definitions and updates to the ICD-9
codes. For example, pre-diabetes did not have a corresponding ICD-9 code until 2000. The introduc-
tion of new and the periodic updates to existing ICD codes leads to further complications such as lack
of a clear mapping from the old revision to the new and subsequently, to inconsistent research findings.

Another largely unobservable source of missing information lies in patient conformance with pre-
scriptions and other physician advice, such as lifestyle change recommendations. The orders table in an
EHR indicates that the physician prescribed a medication, but in most cases we do not know whether
the patient actually took the medication. This situation is referred to as Intent to Treat. In the case
of the lifestyle change, we may not even have documentation that the patient received this advice.

A unique aspect of missing data in clinical analytics is that whether the data is missing or not
can be predictive. When a physician orders a test, he usually suspects that the patient may suffer
from the corresponding condition. Conversely, by not ordering certain tests, the clinician suggests
that corresponding medical conditions are absent. For example, no bacterial panel being ordered likely
indicates that the patient is not suffering from any infection.
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4.5 Consequences of Missing Data

Treating patients who need acute medical attention without a complete medical history can result in
medical errors and redundant tests being performed. Incomplete patient history can delay the patient’s
treatment and inflate the cost of the treatment.

4.6 Biases and Confounding Effects

Studies performed using EHRs often have biases and confounding effects [159, 160]. Biases might
arise due to multiple reasons. For example, in a cohort study, there might be significant differences in
baseline characteristics (age, gender, race, ethnicity) between the cases and the controls [161-164]. In
such cases, any observed difference between the groups after a follow-up period might be due to the
difference in baseline characteristics and not due to the exposure. Therefore in such cases, analyzing
the real effect of exposure might be difficult.

Such bias can be overcome by finding the right control group. One possible way is to randomly
select subjects from a pool of patients such that the pool does not comprise of patients diagnosed with
the outcome [165]. In other approaches, controls can be drawn from neighborhood of the cases as
such controls would be very similar in terms of socio-economic status and lifestyle choices [166, 167].
Similarly, when genetic factors are the main focus of study, controls could often be chosen from family
and relatives as they share similar genetic make-up [165].

Confounding is another issue which might undermine the internal validity of any study [168, 169].
Such situation arises when a variable (i.e. confounder) is associated with the exposure and affects the
outcome, but the confounder variable is not an intermediate link in the chain of causation between
exposure and outcome [170-172]. For example, studies have often reported a high degree of associ-
ation between risk of myocardial infarction and oral contraceptives. However, it was later observed
that this association was spurious because of the high proportion of tobacco users among users of birth
control pills. Therefore tobacco consumption confounded the relation between oral contraceptives and
myocardial infarction.

Multiple ways to overcome confounding effects have been proposed. The simplest strategy is to
restrict or exclude subjects which might lead to confounding effects [169]. For example, if there are few
subjects who consume tobacco, then it would help to remove these subjects from the study. Similarly,
pairwise matching [169] and stratification [173] are also techniques used to avoid confounders. How-
ever, the techniques used until now are mostly used to avoid confounding arise due to single variable
effects. To handle multiple confounding variables, multivariate modeling techniques can be used [174].
For example, survival modeling techniques such as Cox proportional hazards regression can be used
to model time to death. Such methods might control simultaneously for age, blood pressure, smoking
history and other risk factors.

The aforementioned challenges described in this section are unique to EHRs. We believe that
substantial literature exists and the readers might be aware of the commonly associated data challenges
such as noise, high dimensionality, sparseness, non-linear relationships, dependencies between various
variables and wide variation in the data types. For detailed description related to missing data, please
refer to our technical report yadav et al.
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5 Approaches

In the previous section, we outlined a number of challenges that the EHR data poses for analysis.
Addressing some of these, e.g. fragmentation, is a policy question and is not under the control of the
investigator or the analyst. However, others, most notably censoring, the irregular temporal nature of
the data, and bias and confounding, can be and have been addressed through various approaches. In
this section, we provide an overview of these approaches.

5.1 Handling Censored Data

Censoring occurs when a patient’s trajectory is only partially observable. For example, suppose a
study is conducted to measure the impact of a diabetes related drug on mortality rate. In such a
study, let us assume that the individual withdrew from the study after following the study course
for limited duration. In such a scenario, information about patient’s vital statistics is only available
until the patient was censored. Such data is common in domains such as healthcare and actuarial work.

Survival analysis is an area of statistics that deals with censored data, such as death in biological
organisms or failure in mechanical systems. These approaches usually aim to answer questions such
as the following: what is the proportion of a population that will survive past a certain time? How
do particular circumstances or characteristics increase or decrease the probability of survival? These
techniques can be divided into three major categories: non-parametric, semi-parametric and paramet-
ric.

Non-parametric techniques do not rely on assumptions about the shape or parameters of the dis-
tribution of time to event. Examples of such techniques include Kaplan-Meier estimators [156] and
Nelson- Aalen estimators [175]. Rihal et al. [176] used Kaplan-Meir estimators for incidence and
prognostic implications of acute renal failure in patients undergoing percutaneous coronary interven-
tion (PCI). Dormandy et al.[177] used Kaplan-Meier estimates in their analysis of patients who were
diagnosed with T2DM and were at high risk of data and non-fatal myocardial infarction and stroke.
Rossing et al. [178] used Nelson-Aalen estimators for analyzing the predictors of mortality in insulin
dependent diabetes. et al. Similarly Ekinci et al. [179] used it for exploring salt intake and mortality
in patients with type 2 diabetes.

Parametric techniques often rely on assumptions about the shape or parameters of the distribution
of time to event. Examples of such technique are the accelerated failure time model. Accelerated
failure time models (AFT models) [180] are an alternative to the commonly used proportional hazards
models. Whereas a proportional hazards model assumes that the effect of a covariate is to multiply
the hazard by some constant, an AFT model assumes that the effect of a covariate is to accelerate
or decelerate the life course of a disease by some constant. Babuin et al. [181] determined whether
troponin elevations predict in-hospital, short-term, and long-term mortality in medical intensive care
unit patients independent of the severity of the underlying disease as measured by the APACHE prog-
nostic system. Wilson et al. used [182] used AFT models to predict cardiovascular risk by using
predictors such as age, sex, cholesterol, high-density lipoprotein cholesterol, diabetes mellitus (DM),
systolic blood pressure, smoking status, and body mass index (BMI).

Semi-parametric techniques have both parametric and nonparametric components. An example of
such a technique is the proportional hazards model. Proportional hazards models relate the time that
passes before some event occurs to one or more covariates that may be associated with that quantity
of time. In such models, the unique effect of a unit increase in a covariate is multiplicative with respect
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to the hazard rate. Yadav et al. [96] used proportional hazards model for risk assessment of comorbid
conditions in T2DM. They identified how risks vary across trajectories for the same outcome. The tra-
jectories were defined by using diagnosis codes such as hypertension, hyperlipidemia and T2DM with
time to death being modeled as the outcome of interest. Martingale residuals were used to compute the
risks. Vinzamury and Reddy [183] extended proportional hazards regression with novel regularization
functions to capture correlation and grouping of features effectively. They proposed novel regulariza-
tion frameworks to handle correlation and sparsity present in EHR data. Further, they demonstrated
the applicability of their technique by identifying clinically relevant variables related to heart failure
readmission.

5.2 Handling Irregular Time Series Data

Data stored in EHRs is usually collected through longitudinal study. In such studies, the subject
outcomes, treatments or exposures are collected at multiple follow-up times, usually at irregular inter-
vals. For example, patients diagnosed with T2DM might be followed over time and annual measures
such as Hemoglobin Alc and GFR are collected to characterize the disease burden and health status,
respectively. As these repeated measures are correlated within the subject, they require sophisticated
analysis techniques. In what follows, we describe techniques that are widely used to handle these
repeated measurements. In particular, we cover marginal and conditional models, respectively.

Marginal models are also known as the population averaged model as they make inferences about
population averages. In such models, the target of inference is usually the population and these models
are used to describe the effect of covariates on the average response. They are also used to contrast the
means in sub-populations that share common covariate values. For example, consider a cohort of pre-
diabetic patients with elevated cholesterol levels. In this cohort, if we are interested in estimating the
progression of patients to full-blown T2DM, we would probably want to use the population-averaged
coefficients. Generalized Estimating equations (GEE’s) are mostly used for parameter estimation in
marginal models. This approach is computationally straightforward and with care can handle miss-
ing data, even when the covariance has been misspecified. Generalized estimating equations (GEEs)
are used to estimate the parameters of a generalized linear model with a possible unknown correlation
between outcomes. Parameter estimates from the GEEs are consistent even when the covariance struc-
ture is misspecified. They are commonly used in large epidemiological studies, especially multi-site
cohort studies because they can handle many types of unmeasured dependence between outcomes.

Hernan et al. [184] used marginal models to analyze the causal effect of zidovudine on the survival
of human immunodeficiency virus-positive men participating in the Multicenter AIDS Cohort Study.
They used a marginal structural Cox model to control further for time-dependent confounding due
to CD4 count and other time-dependent covariates and observed a mortality ratio of 0.7. Yu et al.
used [185] marginal models to estimate the effect of medication adherence on health outcomes among
patients with T2DM. Nandi et al. [186] used them to estimate the direct effect of adverse childhood
social conditions on onset of heart disease, diabetes and stroke. King et al. [187] have also discussed
the use of marginal models for T2DM related research.

Conditional models [188] are also known as the locally averaged models as they usually make in-
ferences about individual subjects. The estimates are based on averaging or smoothing done by the
model, but more locally, are based on sources of dependence in estimating model parameters. For ex-
ample, consider once again the aforementioned cohort of pre-diabetic patients with elevated cholesterol
levels. In this cohort, if we are interested in estimating the effect of statin across every individual, we
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would use conditional models.

Yamaoka et al. [189] used conditional models to evaluate the efficacy of lifestyle education for pre-
venting type 2 diabetes in individuals at high risk. They observed that lifestyle education intervention
reduced glucose by 0.84 mmol/] as compared to the control group. Mezuk et al. [190] examined the
bi-directional prospective relationships between depression and T2DM using a random effects model.
Nouwen [191] examined the association of diabetes and the onset of depression by reviewing the liter-
ature and conducting a meta-analysis of longitudinal studies on this topic. The conclusion was that
people with type 2 diabetes have a 24% increased risk of developing depression.

5.3 Handling Confounding via the Pseudo-outcome Model

In this section, we describe the pseudo-outcome model, which lies at the heart of handling confound-
ing. A confounding variable is an extraneous variable in a statistical model that correlates (directly or
inversely) with both the dependent variable and the independent variable. To handle confounding we
discuss techniques such as propensity scoring and inverse probability weighing.

Statistical matching techniques such as propensity score matching (PSM) [192] attempt to estimate
the effect of a treatment or other intervention by accounting for the covariates that predict receiving
the treatment. They aim to reduce the bias caused by confounding variables. PSM creates a group
by employing the predicted probability of group membership which is usually obtained from logistic
regression. The key advantage of PSM is that by using a linear combination of covariates for a sin-
gle score, it balances treatment and control groups on a large number of covariates without losing a
large number of observations. One disadvantage of PSM is that it only accounts for observed (and
observable) covariates. Factors that affect assignment to treatment and outcome but that cannot be
observed cannot be accounted for in the matching procedure. Another issue is that PSM requires large
samples, with substantial similarities in terms of subjects between treatment and control groups.

Tao et al. [193] used PSM for determining that the costs attributed to type-1 diabetes are dispro-
portionately higher than would be expected given the number of type 1 patients compared with type
2 patients. Austin et al. [194] provided a systematic review of the use of propensity score matching
in the cardiovascular surgery literature. Polkinghorne et al. [195] used PSM to analyze the inception
and intervention rate of native arteriovenous fistula (AVF). Yasunaga et al. [196] investigated postop-
erative outcomes after laparoscopic or open distal gastrectomy in Japan One-to-one propensity score
matching was performed to compare in-hospital mortality, postoperative complication rates, length of
stay, total costs, and 30-day readmission rates between the 2 groups. Short et al. [197] used PSM
techniques to examine the effect of beta blockers in the management of chronic obstructive pulmonary
disease (COPD), assessing their effect on mortality, hospital admissions, and exacerbations of COPD.
They described the additive benefits of beta blockers in reducing oral corticosteroid use and hospital
admissions due to respiratory disease. Beta blockers had no deleterious impact on lung function for any
treatment step when given in conjunction with either a long acting agonist or antimuscarinic agent.
Kuss et al. [198] used PSM to analyze off and on-pump coronary artery bypass grafting techniques.
Their review and analysis of propensity score analyses finds off-pump surgery superior to on-pump
surgery in all of the assessed short-term outcomes. This advantage was statistically significant and
clinically relevant for most outcomes, especially for mortality.

Inverse probability weighting [199] is a statistical technique for calculating statistics standardized to

a population different from that in which the data was collected. Instead of adjusting for the propensity
score, we could use it to weight the participants. However, there may be prohibitive factors barring
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researchers from directly sampling from the target population such as cost, time, or ethical concerns.
Robinson et al [? ] used inverse probability weighting for examining whether lower serum levels of
serum 25-hydroxyvitamin are associated with increased risk of developing type 2 diabetes. They used
inverse probability weighting to make the study population representative of the WHI population as a
whole.

6 Metrics

Quantifying the outcome is the primary interest in many research studies. The outcome is often quan-
tified using various metrics such as incidence rate, prevalence, relative risk and odds ratio [200-203].
Incidence rate [201] indicates the number of new cases of disease in a population at risk over a pre-
defined interval of time. Prevalence indicates the number of existing cases of disease in a population
under observation. For example, in a given population of 100,000 persons, there are 980 patients who
were diagnosed with tuberculosis within a year and there were 10 patients diagnosed with tuberculosis
at a particular point in time. In this scenario, the incidence rate of tuberculosis within a year would
be 10/100000 whereas the prevalence rate would be 980/100000.

Relative risk [201] is defined as the frequency of outcome in the exposed group as compared to the
frequency of outcome in the unexposed group. For example, consider a cohort of pre-diabetic patients.
The cohort is divided into two groups (control and treatment) of 1000 patients each. The treatment
group is prescribed statin and the control group is not. The cohort is then followed for 5 years. After
5 years, it was observed that 200 patients in the treatment group progressed to diabetes whereas 100
patients in the control group progressed to diabetes. From this information, the relative risk of diabetes
is 2.0: patients within cases are twice as likely to progress to diabetes as controls. Relative risk is 1.0
when the frequency of outcome is same in both the groups. Relative risk greater than 1.0 indicates
increased risk of outcome, while less than 1.0 indicates decreased risk (protective effect of exposure).

Odds ratio [202] indicates the odds of exposure/outcome among the case group divided by the odds
of the exposure/outcome among controls. For the example above, the odds in the case group will be
0.25 whereas the odds in the control would be 0.10. The odds ratio would then be 25. Similarly, odds
ratio can also be defined for cross-sectional, cohort and randomized controlled studies. In the following
section, we describe various study designs and metrics which are widely used in respective study designs.

7 Study Design

Study design is the formulation of a hypothesis in medical and clinical research. The aim of a clini-
cal/medical study is to assess the safety, efficacy, and action of a drug or device. They help to examine
community, group or national level trends. They are also used to evaluate the effects of multiple
exposures and to establish the chronological relationship between exposure and outcome. With the
availability of EHR data, a wide variety of clinical studies can be carried out. Clinical studies are
categorized based on the underlying design [204]. These study-designs can be primarily classified into
two major groups i.e. experimental and observational. Figure 1 succinctly captures this information.

In an experimental study design, the researcher intervenes to change the course of the disease

and then observes the resultant outcome. Randomized Clinical Trials (RCT’s) are examples of exper-
imental study designs. A specific example would be a study where surgery patients with T2DM were
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Figure 1: A simple caption

randomized to receive supplemental insulin at bedtime for blood glucose (treatment) or no supplemen-
tal insulin (case). As intervention in EHRs is not possible, we will not discuss these study designs in
great detail.

By observational [205], we refer to study designs where the researchers do not intervene. In
such studies, the investigators observe subjects and measure variables of interest without assigning
treatments to the subjects. The treatment that each subject receives is beyond the control of the
investigator. For example, consider a study that investigates the effect of smoking(exposure) on lung
capacity (outcome). A cohort of young men aged 18-25 are recruited. Some subjects in this cohort
smoke tobacco (exposed group) and some do not (exposed/comparison group). The investigator has
no ability to influence the exposure since the subjects smoking behavior is uninfluenced by the inves-
tigator. This cohort is then followed for a number of years to analyze the effect of smoking on lung
capacity by comparing the exposed group with the unexposed group [206, 207]. Observational studies
can be further categorized as analytical (if there is a comparison group (i.e. case and control)) or
descriptive (no comparison group).

Analytical studies are mostly used to test hypotheses by selection and comparison of groups. They
also aim to identify risk and protective factors for diseases as well as causative associations between
exposures and outcomes. Analytical studies [201] can be further divided into three major groups based
on the temporal direction in the study. Studies which start with an outcome and look back in time for
exposure are known as retrospective studies. If the study begins with an exposure and concludes
with an outcome, we refer to them as cohort studies [208-211]. It involves following subjects over
time to analyze the effect of exposure. If we only consider a single point in time, where the outcome
and the exposure are both present at that time, we refer to the study as cross-sectional [201] . Such
studies mostly involve the selection of a sample of the population, irrespective of the outcome and the
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exposure. Alternatively, these studies might represent a snap-shot of the underlying patient population.

Descriptive study designs mostly deal with the frequency and the distribution of risk factors in
populations and enable us to assess the extent of a disease of interest. These study designs are usually
used to build hypotheses, thereby building the framework for future clinical research.

In the following section, we will discuss the aforementioned study-designs along with clinically rel-
evant examples. We will also discuss how certain studies might incorporate biases and confounding
factors.

7.1 Retrospective Studies

Retrospective studies are study designs which look backwards, i.e., the study groups are defined using
an outcome and the study looks back in time to analyze the exposure status of a subject. They are
often used to identify risk factors that may contribute to a medical condition by comparing subjects
who have that condition/disease with patients who do not have the condition/disease but are otherwise
similar [212-216].

These study designs are very useful in the investigation of diseases that have a long latency period,
such as cancer and diabetes as cohort studies (discussed next) involve many years of follow-up before
the outcome becomes apparent. Since such studies have treatment and control identified right at the
beginning of the study, they are very efficient in terms of time and effort.

However, when the exposure rate is low these study designs are inefficient as researchers would
have to examine many cases and controls to find one patient who had exposure. For example using a
case-control study design to investigate the effect of pancreatic cancer (exposure) on T2DM (outcome)
would be impractical because the exposure is very rare. When the exposure rate is low, cohort studies
should be the default standard. Moreover, choosing a control group and obtaining exposure history
might greatly affect a study’s vulnerability to bias. Improper selection of the control group can also
bias the results of the study and therefore researchers should provide clear eligibility criteria for the
outcome being studied, such as age, gender, racial makeup and ethnicity. These studies often come
under the realm of temporal supervised learning techniques.

In risk prediction, case control study designs are widely used due to their ability to expose the
association between risk factors (exposure) and outcome. Consider for example a cohort of diabetic
patients (case) and non-diabetic patients (control). We track these patients backwards in time for a
fixed number of years (i.e. baseline) to explore the exposure. At baseline, we investigate whether the
patients in the case and the controls were obese (exposure). Using the patients’ baseline characteristics
as exposures we can determine the patients’ odds of progressing to T2DM if the patient is obese. Since
we followed the patients from outcome to exposure, we can estimate the odds ratio i.e. the proportion
of individuals exposed in each of the case and the control group.

7.2 Cohort Studies

Cohort studies are also known as incidence, longitudinal, forward-looking, follow-up, concurrent or
prospective studies [217]. In such studies we compare the experience of a group exposed to some
intervention with another group not exposed to the same intervention. The underlying characteristic
of such studies is that they track people forward in time from exposure to outcome [218-220]. As an
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illustration, consider a group of patients, some diagnosed with obesity at a particular point in time.
Our interest is to investigate the relationship between obesity and diabetes. This population contains
patients with exposure (i.e. obese patients), outcome (diabetes) and both (obese diabetic patients).
We then exclude all diabetic patients and only retain patients without diabetes; this is our study
cohort. Some of patients in the cohort have the exposure (obese) and others do not. We follow the
cohort forward in time and observe how many patients convert to diabetes (cases) and how many re-
main non-diabetic (controls) both among the exposed and among the unexposed patients. This design
ensures that exposure precedes outcome thus it allows us to estimate incident rates and the relative
risk (or odds) of incident diabetes.

Cohort studies are considered to be the best study designs for ascertaining both the incidence and
natural history of a disorder as the temporal sequence between the cause and the outcome is usually
clear [169]. They are also useful in analyzing multiple outcomes that might arise after a single exposure.
For example, smoking (i.e. exposure) might lead to multiple outcomes such as stroke, oral cancer and
heart disease. They are often utilized to explore rare disease phenomenon. For example, to investigate
the effects of ionizing radiation in the workplace, subjects might be selected from factories or hospitals
thereby avoiding the ethical issues arising due to exposure assignment.

However, such study designs come with certain caveats. Firstly, selection bias is inherent in such
cohort studies [221]. For example, in a cohort study analyzing effects of smoking on T2DM, those
who smoke would differ in other important ways (lifestyle) from those who do not smoke. In order
to validate the effect of exposure (i.e. smoking), both the (case and controls) must be similar in all
respects except for the absence/presence of exposure and the outcomes. Secondly, loss of subjects due
to censoring can be a difficulty, even when the study is short, but particularly with longitudinal studies
that continue for decades. For example, progression from T2DM to associated complications such as
PVD and IHD takes around 5 to 10 years, and subjects may drop out over this long period.

In risk prediction, cohort study designs are widely used due to their ability to expose the association
between risk factors (exposure) and outcome. Consider for example a cohort of pre-diabetic patients,
many of whom have different conditions diabetes (e.g. obesity, high cholesterol, high blood pressure)
comorbid with T2DM at baseline. We follow this cohort for a number of years. Some of the patients
progress to overt diabetes (case) and others remain non-diabetic until the end of the study (control).
Some patients are lost to follow-up before the end of the study (censored). Now, we can consider the
patients’ baseline characteristics (e.g. obesity, high cholesterol or high blood pressure) as exposures
and determine which of these exposures increase (or decrease) the patients’ risk of developing diabetes
significantly. Beside risk prediction, this application also relates to biomarker (risk factor) discovery.

Cohort design can also be valuable for subpopulation mining. In the above example, we can ex-
amine the effect of simultaneously being obese, having high cholesterol and high blood pressure at
baseline on incident diabetes. The set of conditions (obesity, high cholesterol and high blood pressure)
define a subpopulation which we can consider as an exposure. Thus the cohort design can be used for
subpopulation mining.

7.3 Cross-Section Studies

Cross-sectional studies fall under the category of analytical studies, which are characterized by seeking
a comparison between cases and controls by collecting data at one specific point in time - that is the
cross-sectional data [222]. Such study designs differ from retrospective and cohort studies in that they
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aim to make inferences based on data that is collected only once rather than collected multiple times
[223].

Cross sectional studies are frequently used to analyze the presence or absence of a disease and
outcome at a particular point of time across the case and the control group. They are mostly used to
investigate the association between the risk factor and the outcome [224-226]. Due to this, metrics such
as prevalence are widely used in these study designs [222]. For example, researchers might measure
and compare the cholesterol levels of two age groups - over 40 and under 40 for joggers, and compare
these to cholesterol levels among non-joggers in the same age groups. Researchers might even create
subgroups for gender. Thus cross-sectional study designs allow researchers to compare many different
variables simultaneously.

Some patients in the population at the time of the study will have the exposure, some will have
the outcome and others will have both [227]. Since it is a single point in time, the temporal rela-
tionship between exposure and outcome cannot be determined. From the proportions of patients with
exposure, outcome and both, we can estimate the relative odds of outcome given exposure. We can
also estimate the prevalence of outcome but not the incidence rate of outcome. To illustrate, in our
last example, we cannot know for sure if our joggers had low cholesterol levels before taking up their
exercise regimes, or if the behavior of daily jogging helped reduce cholesterol levels that had previously
been high. Similarly, we would not compare past or future cholesterol levels for both the groups, for
these would fall outside the frame. We would look only at cholesterol levels at one point in time.

In risk prediction, cross-sectional study designs are widely used due to their ability to expose the
association between risk factors (exposure) and outcome using data at a single point in time. Consider
our old cohort of prediabetic patients, many of whom have different conditions (e.g. obesity, high
cholesterol, high blood pressure) at baseline. Some of the patients might have obesity (case) while
others are healthy (control). Now, we can compare the groups for other outcomes of interest (e.g. high
cholesterol or high blood pressure) with respect to our exposure (obesity).

7.4 Descriptive Studies

Descriptive studies are designed to describe the existing distribution of variables, without regard to
causal or other hypotheses [169, 200]. In such studies, apart from age and gender, other characteristics
such as race, occupation and recreational activities are often described [228-234]. Descriptive studies
are often classified into multiple categories based on whether they deal with individuals or populations.
For example, studies reporting an unusual disease or association or surveillance studies over a commu-
nity are examples of descriptive studies based on individuals. Examples of descriptive studies based
on populations can be correlational studies looking for associations between exposures and outcomes.
Correlational studies often lead to hypotheses for more advanced study designs. These studies often
come under the realm of non-temporal unsupervised learning techniques. The defining characteristic
is that there are no cases or controls as compared to cohort, cross-sectional and case-control studies
and hence no comparisons.

Descriptive studies are often useful for analyzing the medical state of population and health-care
planning [235-238]. For example, such study designs are widely used to investigate the tobacco con-

sumption within a population, age group, gender or socio-economic class.

Such study designs do not provide us with the platform to carry out temporal reasoning and causal
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research. Since there are no comparison groups, no inference can be derived from the cases and the
controls.

In comorbidity analysis, descriptive study designs are widely used due to their ability to expose
the distribution of diseases within any population of interest. For example, consider our cohort of pre-
diabetic patients, many of whom have different conditions (e.g. obesity, high cholesterol, high blood
pressure) at baseline. Using such study designs, we can estimate the prevalence of these comorbid
conditions. Further such analysis can lead to future estimation of sequential patterns in which such
diseases occur.

8 Methodology

The discipline of EHR data mining stands at the intersection of epidemiology, biostatistics and general
data mining. From epidemiology and biostatistics, we have borrowed study design, the methodology
that allows us to organize our EHR data into a matrix that is amenable to the application of data min-
ing algorithms that can correctly answer meaningful clinical questions. We have also borrowed basic
approaches to address the challenges that EHR data posed including censoring, analysis of irregular
time series data and methodologies for causal inference!. In this section, we focus on the contributions
of general data mining.

Traditionally, data mining techniques are broadly categorized as supervised or unsupervised: su-
pervised methods take an outcome into account, while unsupervised methods simply learn from the
structure of the data. The hallmark of EHR data is its temporal nature, suggesting that data mining
techniques be further categorized based on their ability to take time into account. We call a data
mining algorithm and its resulting model time-aware, if its output depends on time; and we call it
time-agnostic, if it builds a model that does not take time into account.

Although EHR data is inherently temporal, time is not always of relevance. The clinical question
we aim to answer may be temporal if time is of relevance (i.e. time is part of the question) or it may
be atemporal (not temporal) if time is not part of the question. Atemporal questions are naturally
answered by time-agnostic data mining techniques. On the other hand, temporal questions can be
either answered by time-aware models or if the question can be transformed into a simpler atemporal
question, it can also be solved using time-agnostic models. For example, predicting the risk of 30-day
mortality after surgery is a temporal question (time is part of the question) but it can be solved using
time-aware models (e.g. Cox model) or time-agnostic models (e.g. logistic regression).

The study design dictates whether a question can be temporal or atemporal and it also determines
in large part whether any of the challenges posed by the EHR data can be successfully addressed.
For this reason, we describe data mining techniques that are commonly applied in the context of the
applicable study designs.

8.1 Descriptive Studies

Descriptive studies represent the broadest variety of inquires we can undertake, ranging from simple
statistics (prevalence rate, incidence rate) to descriptions of the progression of a particular diseases via

'The roots of causal inference are in computer science, but has been embraced by epidemiology and biostatistics
resulting in the development of the advanced techniques we described earlier.
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case studies. Such simple applications do not require data mining, but data mining techniques enable
more advanced applications including comorbidity analysis and trajectory mining. While descriptive
studies cover a wide range of applications, their defining characteristic is that no comparison is made
between patients (or patient groups) with and without a particular outcome. Without a particular
outcome, we cannot have outcome labels hence the problem at hand is unsupervised.

Descriptive studies are commonly utilized to answer both temporal and atemporal clinical ques-
tions. For example, estimating prevalence rates at a particular time is an atemporal clinical question,
while extracting the trajectory of a patient as sequences of diagnosis codes is naturally a temporal
clinical question. Therefore both time-aware and time-agnostic data mining techniques are applicable
to descriptive studies.

8.1.1 Atemporal Descriptive Studies

Atemporal descriptive techniques are arguably the simplest methods, typically textbook methods. A
prototypical application of this nature would be to take a cross-section of the population at a particular
time and cluster the patients based on the conditions they present. Textbook data mining techniques
have a limited ability to handle the temporal aspect of EHR data. One option is to use specialized
techniques, such as sequence mining, while another is to ”flatten” the temporal dimension of the data
through temporal abstraction, e.g. by applying features and apply non-temporal unsupervised tech-
niques.

Unsupervised techniques applied to non-temporal data have been widely used for identifying clus-
ters of patients that have similar characteristics (e.g. demographics, medications, diagnosis codes,
laboratory test results) and for finding associations between clinical concepts (e.g. medications, diag-
nosis codes and demographic attributes).

Clustering: Gotz et al. [239] used clustering techniques for identifying a cohort of patients similar
to a patient under observation. They used the cohort as a surrogate for near-term physiological assess-
ment of the target patient. Roque et al. [43] stratified patients using hierarchical clustering, where the
distance between patient records was computed using the cosine similarity of diagnosis codes. Roque
et al. further used this stratification for comorbidity analysis. Bauer-Mehren et al. [240] used medical
concepts (medication information, diagnosis codes, procedure codes) for patient stratification, where
the Jaccard index was used as the similarity measure. Along similar lines, Doshi et al. [44] investigated
the patterns of co-occurring diseases for patients diagnosed with autism spectrum disorders (ASD).
They identified multiple ASD related patterns using hierarchical clustering. They further discussed
how the aforementioned patterns can be attributed to genetic and environmental factors. Kalankesh
et al. [241] noted that representing the medical state of a patient with diagnosis codes can lead to
sparse clusters. To overcome this problem, they used Principal Component Analysis (PCA) [242] to
reduce the dimensionality, thereby making the structure more amenable for visualization and cluster-
ing. Marlin et al [243] developed a probabilistic clustering method to mitigate the effects of temporal
sparsity inherent in EHRs. They used unsupervised learning techniques for automatically uncovering
insightful patterns from physiologic time-series data.

Association Analysis: Association rule mining techniques [244] such as Apriori have also been
used on EHR data to identify associations among clinical concepts (medications, laboratory results and
problem diagnoses). Wright et al. [245] used the Apriori framework to detect transitive associations be-
tween laboratory test results and diagnosis codes and between laboratory test results and medications.
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For example, they observed some unexpected associations between hypertension and insulin. They
attributed this finding to co-occurring diseases and proposed a novel way to identify such transitive
associations. Cao et al. [46] used co-occurrence statistics to identify direct and indirect associations
among medical concepts. Holmes et al. [47] used statistical approaches to detect associations between
rare diseases. They observed that analyzing cohorts comprised of sick patients leads to identification
of significant findings. Shin et al. [48] used association rule mining to identify co-morbidities (e.g.
non-insulin dependent diabetes mellitus (NIDDM) and cerebral infarction) which are strongly associ-
ated with hypertension. Hanauer et al. [246] used statistical tests to observe common pathways for
diseases such as granuloma annulare and osteoarthritis.

As these studies often deal with information collected at one time instant or summarized until
the time of interest, causal analysis is not feasible. Further, as these study designs lack a case and a
control group, identifying causal factors leading to the outcome of interest is a challenging problem.
However associating predictors with outcomes can be carried out with ease. In order words, it is
not possible to distinguish whether the outcome of interest (i.e. condition) preceded or followed the
condition. Although the study design is inherently atemporal, longitudinal data can still be used for
research purposes. In such studies longitudinal data is often summarized or aggregated. Examples of
summarization and aggregation include computing the mean, median, averages, variance, higher order
moments and shaplets using temporal logic rules. On one hand, these aggregation techniques convey
meaningful information about temporal and seasonal trends, but on the other hand they are highly
susceptible to outliers and noise.

How to handle censored data is often an issue in such study designs. Data incorporating right
censoring cannot be used for modeling as such patient records often have no information about the
outcome variable. Therefore, there is no way to ascertain the prevalence of existing conditions with out-
come variables. However, patient records susceptible to left censoring might not be discarded because
we may have no information for some characteristics, we can still model them as unknown quantities.
Typically this would require sophisticated research techniques. Further, in clustering, the challenges
lies in the semantic differences between the groupings as patient stratification using ICD codes might
lead to biases. Such biases arise because ICD codes are often generated for billing related purposes.

8.1.2 Temporal Descriptive Studies

Time plays an important role in the clinical questions. For example, the sequence of events, timing
between events, etc. Standard textbook data mining techniques exist to solve such problems (e.g. se-
quence mining, Markov models, etc), but to achieve better results, significant improvements have been
proposed. We broadly classify the approaches that can be carried out using such techniques as those
which use time-aware techniques, e.g., sequence mining, time-lagged correlations, etc., and those which
simplify the problem and apply time-agnosic techniques e.g., temporal-abstraction (summarizing the
longitudinal data) and HMM trajectory clustering (usingHMM to simplify away time so that standard
clustering is applicable).

Sequential Rule Mining: Researchers have explored sequential association rule mining tech-
niques for identifying causal relationships between diagnosis codes. Hanauer and Ramakrishnan [247]
identified strongly associated pairs of ICD-9 codes with varying numbers of strong temporal associa-
tions ranging from 1 day to 10 years apart. They observed interesting temporal relationships between
hypothyroidism and shingles (herpes reactivation). Liao and Chen [248] proposed a sequential pattern
mining approach to mine sequences with a gap constraints. Such gaps represent the delay between
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two concepts. Hripsack et al. [249] measured lagged linear correlation between EHR variables and
healthcare process events. In their analysis, they considered five common healthcare process events:
inpatient admission, inpatient discharge, outpatient visit, emergency department visit and ambulatory
surgery and computed their correlation with several EHR variables such as laboratory values and con-
cepts extracted from clinical notes.

Temporal Abstraction Framework: The temporal abstraction framework has been frequently
used to extract patterns from EHR data. Patterns can be abstracted using state representations(e.g.
high, medium or low) or trend representations(e.g. increasing, decreasing, constant). Shahar et al.
[250] provided a mechanism to abstract patterns from unevenly spaced time-series. Such time-series
are common in EHR data elements such as laboratories test results and vitals. They further pro-
posed temporal logic relations to combine patterns generated from univariate time-series. Sacchi et
al. [251] extended the temporal abstraction framework to generate temporal association rules (TARs).
In TAR’s, the antecedent and the consequent both consist of temporal patterns generated using the
temporal abstraction framework. Jin et al. [252] further extended the TAR framework, to generate
rules for mining unanticipated episodes where certain event patterns unexpectedly lead to outcomes
e.g. taking two medicines together sometimes causes an adverse reaction. Batal et al. [253] used the
temporal abstraction framework to propose the Segmented Time Series Feature mining algorithm for
identifying the frequent patterns from an unevenly sampled time-series. Such modeling techniques
have their own set of challenges. Patterns generated from individual patient time series are susceptible
to noise. Further, such patterns can be of uneven temporal duration.

Dynamic Clustering: Clustering techniques have also been used to group EHR data. Ghassem-
pour et al. [254] used hidden Markov models (HMM) to cluster patient medical trajectories. In their
approach, they used both categorical variables (diagnosis codes) and continuous variables (vitals and
laboratories test results) for clustering. They first mapped each medical trajectory to an HMM and
then used KL divergence to compute the distance between two HMM'’s.

Visualization: Research has also been carried out in analytical reasoning facilitated by advanced
interactive visual interfaces. Several research has been carried out by highlighting the opportunities
and associated challenges [339], cohort analysis and exploration [340, 341], exploring comorbidities
[342, 343], exploring concepts [344], clinical decision support [345], cohort identification [346], disease
network visualization [347] and temporal frequent event sequences [348].

As there are no comparison groups present (i.e. no case and control) any exploration for causation
of disease or outcome of interest is not possible. In this aspect, they are highly reminiscent of atempo-
ral descriptive study designs. The major difference with atemporal descriptive studies being that for
atemporal descriptive studies, only prevalence rates can be computed, while for temporal descriptive
studies, prevalence as well as incidence rates can be computed. Another advantage of such studies lies
in their ability to handle censored data. All kinds of censored data such as right censored, left censored
or interval censored can be managed using such techniques. For example, patient records with certain
clinical characteristics but no information about the outcome of interest can be used for modeling
purposes. For such analysis, survival regression methods are often used. These methods mostly aim
at modeling the time to event data.

In these studies, data for every patient is often available at multiple time instances. With avail-
ability of this data, sophisticated and rigorous techniques that can model time-varying covariates and
outcomes can be efficiently utilized. However, until now not much research has been carried along
these lines. In the past, research has focused more on lagged correlations and sequential patterns. Al-
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though the aforementioned approaches are quite informative, they are also quite susceptible to biases
and confounding effects.

8.2 Cross-Sectional Design

Cross-sectional studies are carried out by collecting data at one time point. The aim of such studies
is usually to estimate the prevalence of the outcome of interest i.e. to investigate the associations
between risk factors and the outcome of interest. In such studies, data is often collected on individual
characteristics, such as exposure to risk factors, demographic attributes and information about the
outcome. In what follows, we will describe the techniques often used for such study designs along with
examples of research carried out in the past.

When a study is designed as cross-sectional, supervised non-temporal data mining techniques are
the natural modeling choices. When the study is inherently temporal and it employs a case-control or
cohort design, it can still be solved using supervised non-temporal techniques, but we incur some loss
of information. Supervised non-temporal techniques allow for having a well-defined outcome but have
no facility to extract the temporal information from the data. In other words, the studies described
in this section may be temporal in nature, but the algorithms that were used to solve them are non-
temporal. For example, a study investigating the 30-day mortality of patients following an exposure
can be modeled using supervised non-temporal techniques as long as we only consider a binary out-
come, namely, whether the patients survived for 30 days or not. If our primary interest is the time
itself, and we wish to model the length of time during which the patients actually survived we would
have to employ supervised temporal techniques. Analogously, transforming time-dependent predic-
tors to non-temporal predictors through temporal abstraction is possible, allowing for the application
of supervised non-temporal techniques to complex temporal study designs—naturally, at the cost of
losing information. Since interest in a specific outcome is very natural and there is great appeal in
simplifying these problems to become solvable through relatively simple supervised non-temporal data
mining techniques, such techniques have been applied to a broad spectrum of problems, including risk
prediction for hospitalization, re-hospitalization, diagnostic and prognostic reasoning.

Rule Based Methodologies: White et al. [138] conducted a large scale study for analyzing web
search logs for detection of adverse events related to the drug pair, paroxetine and pravastatin. They
analyzed whether the drug interaction leads to hyperglycemia. Iyer et al. [136] used NLP techniques
for mining clinical notes to identify events related to adverse drug-drug associations. They believed
that EHRs contain rich information in the unstructured notes. Haerian et al. [137] hypothesized that
adverse events might be caused by the patient’s underlying medical condition. Along similar lines,
Vilar et al. [134] used disproportionality based techniques to analyze adverse drug events related to
pancreatitis, Li et al.[255] used penalized logistic regression to analyze associations between ADRs
and Epstein et al. [135] used NLP techniques to analyze medication and food allergies. Supervised
non-temporal methodologies have been frequently used in the form of rule-based techniques for cohort
identification. Phenotyping algorithms for diseases such as celiac disease, neuropsychiatric disorders,
drug-induced liver injury, and T2DM [256-258] have been widely explored. Supervised pattern mining
approaches using the temporal abstraction framework have been used for predicting Heparin Induced
Thrombocytopenia (HIT) [253]. Batal and Hauskrecht [259] used such methodologies to generate
minimal predictive rules for Heparin Platelet Factor 4 antibody (HPF4) test orders. They further
extended their approach by introducing the minimal predictive patterns (MPP) framework wherein
they directly mine a set of highly discriminative patterns [260]. Those patterns were later used for
classification related tasks.
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Bayesian Networks: Bayesian Networks have also been used to model EHRs for diagnostic rea-
soning (constructing the medical state of the patient using laboratory test results), prognostic reasoning
(prediction about the future), and discovering functional static interactions between the outcome and
the predictors [261]. Zhao et al. [97] integrated knowledge from Pubmed along with EHR data to
develop a weighted bayesian network for pancreatic cancer prediction. They also discussed how their
approach can be used to detect clinically irrelevant variables for disease prediction. Sverchkov et al.
[262] compared clinical datasets by capturing the clinical relationships between the individual datasets
by using the Bayesian networks. The multivariate probability distributions were then used to compare
the clinical datasets.

Numerous issues and challenges arise when we analyze EHR data using such study designs. The
foremost issue is causality. It is limited by the nature of such study designs, as information is usually
collected at one time point and hence, it gives no indication of the sequence of events: whether
exposure occurred before, after or during the onset of the disease outcome. Inferring causation with
this caveat might lead to erroneous findings and thus it is impossible to infer causality. By virtue of
their design, longitudinal analysis is not possible in such studies. However, techniques (as mentioned
in atemporal descriptive study designs) such as the temporal abstraction framework or qualitative
abstraction techniques such as by computing the mean, median, mode, variance or slope are widely
used to employ time-agnostic strategies. The substantial difference go atemporal descriptive study
designs is the availability of comparison groups in these studies. They provide a platform amenable
for applications such as adverse event detection, and cohort identification. In terms of censoring, right
censored data poses substantial challenges, as no information about the outcome is present. However,
left censored and interval censored data can be handled by such techniques to a great extent.

8.3 Cohort and Retrospective Study Design

Cohort and Retrospective studies compare patients groups with different exposures over time and
record their outcomes. They differ in the direction in which time is observed: in cohort studies pa-
tients are followed from exposure to outcome and in retrospective studies, patients are followed from
outcome to exposures. While this difference has far-reaching consequences on the required sample
sizes, exposure rates and the metrics we can estimate, once the design matrix has been constructed,
the same data mining methods apply to both of these study designs. Hence we consider these two
designs together.

What is common across these study designs is that they are best suited to answer temporal ques-
tions; if time is not of interest, a cross-sectional study would suffice. As it is typical with temporal
questions, we can use either time-aware models or we can simplify the question such that it can be
answered using time-agnostic models. In the following paragraphs, we provide examples of both.

Time-Agnostic Models for Cohort and Retrospective Studies

Time Agnostic Regression: Supervised time-agnostic models are commonly employed when
time-to-event can be removed from the clinical question. For example, time-to-rehospitalization can
be simplifed to the binary outcome of 30-day rehospitlaization (yes/no) of 30-day-rehospitalization
(yes/no) which does not include time. Applications of supervised time-agnostic modeling include
predicting the onset of neonatal sepsis [263], potentially preventable events [264], 30 day hospital
readmissions [265, 266], post-hospitalization VTE risk [267], [268], T2DM risk forecasting [269], atrial
fibrillation [270], 5 year long life expectancy risk calculation [271], risk of depression using diagnosis
codes [272], survival of heart-lung transplant patients [273], breast cancer survivability [274], 30 day
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mortality in patients suffering with cardio-vascular diseases, risk of retinopathy in patients suffering
from type 1 diabetes mellitus (T1DM) [275], mortality in patients suffering from acute kidney injury
[276], mortality prediction in ICU [277] and risk of dementia [278]. For these analyses, almost all
flavors of common predictive modeling techniques ( decision trees [269, 274] , [279], ensemble tech-
niques (e.g. bagging, boosting, random forests) [263, 265, 267], [270], nave Bayes [267, 270, 274], linear
regression, support vector machines[269] and logistic regression [265, 268, 269, 272, 280] have been
used. These techniques have also been used for identification of regional differences in breast can-
cer survival rates despite guidelines [281], comparison of cancer survival rates across continents [282],
comparison of cancer and survival patients over time, exploring relationships between hospital surgi-
cal volumes and 5 year relationship of stomach cancers [283], comparing dosage volumes of warfarin
in European-American and African-American [284], postpartum depression rates in Asian-American
subgroups (Indian, Chinese, Filipino, Japanese, Korean, Vietnamese) [285], analyzing the effect of
different ethnicities on different levels of susceptibility to diabetes related complications and studying
the detrimental effect of fibrates on women as compared to men in a population presenting with high
cholesterol levels.

Ghalwash et al. [286] proposed data-driven predictive models to find a suitable duration of the
hemoadsorption (HA) therapy control and observed that their method applies the therapy in non-
continuous fashion, which results in substantial monetary savings. Sun et al. [287] worked on predict-
ing the risk and timing of deterioration in hypertension control by analyzing the transition points at
which hypertension is brought into as well as pushed out of control. Wang et al. [288] developed a
dynamic Poisson autoregressive model with exogenous input variables for flu forecasting where in they
allowed the autoregressive model to change over time. Panahiazar et al. [289] built a heart failure
risk prediction model using several machine learning techniques where in they included multiple co-
morbidities which lead to improvement in prognostic predictive accuracy. Wang et al. [290] proposed
Multilinear sparse logistic regression to handle data in the form of multi-dimensional arrays. They
used their methods to predict the onset risk of patients with Alzheimer’s risk and heart failure.

Such techniques also have their own share of caveats. Causal analysis is not possible as time-to-
event data is often ruled out and there is no way to ascertain the relationship between diseases and the
outcome of interest. The inherent design of such techniques rules out longitudinal analysis. Temporal
abstraction is also employed to summarize time. As comparison groups are available in such study
designs they are well-suited for applications such as risk prediction. Further, handling right censored
is not possible but handling left censored data and interval censored data is plausible.

Time-Aware Models for Cohort and Case/Control Studies

Supervised time-aware models are utilized when the clinical question cannot be simplified or if the
simplification to time-agnostic modeling comes at a significant loss of information. Such question focus
on the time-to-event itself (clearly cannot be simplified), sequences of events or when time-to-event
carries additional information about the outcome. Continuing with the example of 30-day rehospital-
ization, by simplifying the outcome to binary yes/no, we lose information since we ignore whether the
patient was re-hospitalized in (say) 7 days vs 20 days. The former case is clearly more severe.

Many of the temporal clinical questions are related to right censoring. Survival modeling, which
was specifically developed for this purpose, is the quintessential technique for this study design. Sur-
vival modeling is a suite of techniques with various specializations that share a common characteristic
of being able to handle time and censoring.
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Survival Modeling: Wells et al. [291] hypothesized that patients diagnosed with T2DM have an
increased risk of mortality. They used Cox proportional hazards regression with time to death as the
outcome. They also observed that certain interaction terms involving medications and age were signif-
icant indicators. Vinzamury and Reddy [292] extended Cox proportional hazards regression with novel
regularization functions to capture correlation and grouping of features effectively. They proposed
novel regularization frameworks to handle the correlation and sparsity present in EHR data. They
demonstrated the applicability of their technique by identifying clinically relevant variables related
to heart failure readmission. Vinzamury et al. [183] proposed a novel active learning based survival
model wherein continuous feedback from a domain expert can be utilized to refine the model. Survival
modeling techniques on time-to-event data have been explored widely in the past. Cox regression
[175, 293] is one of the most commonly used survival regression models. Its formulation, namely its
semi-parametric nature, with the mild assumption of the proportionality of hazards, makes it ideal for
many practical applications in fields such as economics [294], healthcare [295-297] and recommendation
systems [298].

Cox models, as most other regression techniques, are susceptible to overfitting. Standard regular-
ization techniques, developed for other regression methods, have been applied to Cox models, as well.
Lasso [299] and elastic-net regularized Cox models [300] have been developed, and have been further
extended by regularizing them with convex combinations of L1 and L2 penalties [301]. We are not
aware of regularization for time-dependent covariate Cox models [302], which would be a straightfor-
ward extension.

Reddy et al. [183] proposed an active learning based survival model which uses a novel model
discriminative gradient based sampling scheme and observed better sampling rates as compared to
other sampling strategies. They also proposed correlation based regularizers with Cox regression to
handle correlated and grouped features which are commonly seen in many practical problems [292].
Similarly Gopakumar et al. proposed a stabilized sparse Cox model of time-to-events using clinical
structures inherent in Electronic Medical Records. They estimated the feature graph derived from two
types of EMR structures: the temporal structure of the disease and intervention recurrences, and the
hierarchical structure of medical knowledge and practices [303]. To handle the high-dimensionality of
high-throughput genomic data, Kuang et al. [304] extended Cox models by proposing network-based
Cox regression model called Net-Cox and applied Net-Cox for a large-scale survival analysis across
multiple ovarian cancer datasets.

Support vector machine [305] models have also been extended to handle censored data [306-310].
In such techniques, often the task is converted into a ranking problem via the concordance index. This
in turn is efficiently solved using convex optimization techniques. Along similar lines, Khosla et al.
[311] proposed a margin based censored regression algorithm which combines margin-based classifiers
with censored regression algorithms to achieve a better concordance index. They used their technique
to identify potential novel risk markers for cardiac problems.

Research has also been carried out on extending decision trees to handle censored data [312]. Ish-
waran et al. [313] proposed Random Survival Forests for analyzing right censored survival data. They
analyzed splitting rules for growing survival trees, introduced a new measure of mortality and applied
it for patients diagnosed with coronary artery disease. Neural nets have also been adapted to handle
censored data with varying results [314, 315]. Techniques such as reverse survival [316] have also been
explored in the past wherein they go further back in time.

Dynamic Bayes Networks: While survival models are by far the predominant type of mod-
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els, other methods that can incorporate temporal information also exist. Dynamic Bayesian networks
(DBN) have been used to model temporal relationships among EHR variables [317]. Nachimuthu et
al. [144] used DBN’s to model temporal relationships between insulin and glucose homeostasis. The
modeling was further used to predict the future glucose levels of a patient admitted in an ICU. They
also discussed the reasons for using first-order Markov models to model the temporal relationships.
Sandri et al. [318] used DBNs with multiple order dependencies to impose restrictions on the causal
structure, while modeling organ failure in patients admitted to an ICU. In their model, each time-
stamp represented a day. They further imposed several constraints such as that no patient discharges
were recorded on the second day and that all patients were either deceased or considered discharged
on their seventh day. Such constraints were imposed to reduce complexity of the model. Along similar
lines, Rose et al. [145] used DBN'’s to assist physicians in monitoring the weight of patients suffering
from chronic renal failure, Gatti et al. [319] used it to model heart failure and Peelen et al. [320]
used hierarchical DBN’s for modeling organ failure. Expectation-Maximization was used to learn con-
ditional probabilities in these DBN’s.

In the realm of supervised temporal pattern mining, research has extended the temporal abstraction
framework by mining recent temporal patterns for monitoring and event detection problems in patients
suffering from diabetes [260]. Sengupta et al. [321] used similar techniques for detecting sequential
rules associated with the early identification of brain tumors. Simon et. al. [92] proposed survival
association rule mining (SARM) techniques which uses survival modeling techniques to incorporate
the effects of dosage and other confounders such as age and gender.

These techniques are by far the most successful in terms of overcoming EHRs related challenges.
Right, left and interval based censoring can be easily handled by employing techniques such as Cox
proportional hazards regression and accelerated failure models.

The biggest claim of such techniques is their ability to handle causation. As these techniques have
comparison groups (i.e. case and control) and can handle time-to-event data, causal analysis can be
performed with ease. Further, causation by adjusting for measured confounders can also be analyzed
by using marginal structural models and structured nested models. However the literature of such
techniques in computer science is very sparse. One area, where more work should be done is to handle
unmeasured confounders for the disease of interest. Similarly more research needs to be focused in
areas where the effects of confounders need to be adjusted for time-to-event data.
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Table 1 provides a succinct representation of the major work done using EHRs. The rows corre-
spond to the major application areas, which we broadly discussed in Section 2. The columns represent
the methodologies categorized into groups, which we presented in section 8. Building on this under-
standing, we will explore, discuss and present novel insights about how data mining techniques have
been utilized for EHRs. In particular, we analyze why certain areas of EHRs are widely popular, why
others are virtually unexplored, and try to identify areas that appear ripe for new research.

A quick glance at Table 1 reveals that substantially more work has been carried out in supervised
settings as compared to the unsupervised setting. This difference is not accidental, but rather stems
from the nature of research in the medical domain, as research in medical sciences has hitherto been
driven by pre-defined outcomes. Corroborating this fact, every randomized clinical trial initially has a
well-defined clinical question. Conversely, research in unsupervised domains often leads to the discov-
ery of redundant, widely known facts. The high dimensionality and associated heterogeneity of EHR
data lead to increased complexity thereby very large amounts of data is required to discover meaningful
relationships through unsupervised techniques.

Another observation from Table 1 is that risk assessment has been widely explored in the health
care industry. In risk analyses, the goal is to compute the probability of a patient’s progression to
an outcome (e.g. diabetes) of interest. The major reason for this focus is the ease with which such
analyses can be performed, as a plethora of data mining tools and techniques exist. Furthermore,
the literature using such analyses is rich, providing researchers with opportunities to compare their
findings. Moreover risk analysis is simply the most natural and immediately impactful application.

We also observe that there are certain areas that are sparsely filled. We attribute this emptiness
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to the fact that performing research in areas such as comorbidity analysis and adverse event detection
in unsupervised settings is possible but is unlikely to have significant findings. Further, conducting
research in certain areas is infeasible. For example, if we are measuring the efficacy of interventions,
then the very nature of the research being carried out is supervised. Also, if we are comparing two
populations for specific hypothesis, the task becomes supervised in nature.

We identified a couple of reasons that research does not utilize the temporality associated with
EHR data. First, the duration of EHR data available with healthcare providers rarely exceeds couple
of years. Diseases such as T2DM take around 5-10 years for patients to progress from one state to a
state of advanced complication. With such a limited duration of data available, this progression cannot
be studied effectively. Secondly, censoring and irregular EHR data limits the application of several
techniques to EHR data as such techniques often require sophisticated and rigorous study designs.

We hope that in future more advanced techniques can be developed which can model the complex-
ity of EHR in its entirety. Robust phenotyping algorithms which can handle missing and fragmented
data must be researched. The biases present in the EHR data, if any should be resolved, as they might
lead to inconsistent findings. Sub-populations to be compared should have almost identical distribu-
tions for all covariates. Techniques that can handle temporal covariates and correlation between EHR
data elements (e.g. laboratories test results, vitals) should be researched. We hope that our analysis
provides novel insights into the way data mining research has been carried out using EHRs, thereby
helping data mining to leverage its potential.

Techniques employed in mining EHRs can be borrowed from multiple sources. In this context we
focus on the sources and their offerings in the context of EHR data. Epidemiology is the science that
studies the patterns, causes, and effects of health and disease conditions in defined populations. It is
the cornerstone of public health, and informs policy decisions and evidence-based practice by identify-
ing risk factors for disease and targets for preventive healthcare. It encapsulates areas such as disease
investigation, transmission and surveillance using case-control, cohort based and cross-sectional study
designs. Data mining an interdisciplinary subfield of computer science, is the computational process of
discovering patterns in large data sets (”big data”) involving methods at the intersection of artificial
intelligence, machine learning, statistics, and database systems. It provides the platform to identify
complex biomarkers in populations which might be highly predictive for risk estimation. Survival
analysis, a branch of statistics is generally defined as a set of methods for analyzing data where the
outcome variable is the time until the occurrence of an event of interest. The event can be death,
occurrence of a disease, etc.

Using state-of-the-art techniques from epidemiology, computer science and survival analysis can
lead to discover novel methodologies. For instance, sub-population mining is one such field where all
three fields can be used in an interwoven fashion. Sub-population analysis consists of techniques that
compare sub-populations for notable differences. Such sub-populations can be selected based on diag-
nosis codes, demographic attributes, medications, and vitals. One use of such analysis is the ability to
compare sub-populations for progression to advanced complications, when both sub-populations have
similar medical conditions at baseline. Such comparisons can help in evaluating the effectiveness of
interventions across subpopulations thereby leading to better healthcare management policies. It can
also help clinicians tailor treatment to specific groups or sub-populations. EHRs, with their increased
sample sizes, provide an opportunity to analyze subpopulations systematically. Epidemiological studies
can be used to infer the correct study-designs, data mining for identification of sub-population cohorts,
and survival analysis for modeling the outcome variables in individual subpopulations.
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More recently, research has also been carried out by taking the privacy of the patients into account
as due to privacy concerns and legal ramifications hospitals are often reluctant to divulge raw medical
records [333-335]. Mathwe and Obradovic [333] [3337 | worked on distributed prediction models while
taking privacy of the patient into account. Divanis et al. [336, 337] discussed how private and sensitive
patient data must be protected to address primary concerns. In their work they summarized various
patient privacy approaches used for dissemination of patient data. They presented a survey of 45
privacy algorithms along with their advantages and disadvantages. Hoens et al. [338] developed rec-
ommendation system for identifying suitable physicians while taking the patient privacy into account.
They discussed frameworks where in patients submit ratings in a protected form without revealing any
information about their data.

Constructing meaningful features have also been explored in the context of healthcare informatics
[349-352]. Luo et al. [350] proposed Scalable orthogonal regression to select low redundancy features.
They also extended their technique by incorporating prior expertise knowledge. Sun et al. [349] pro-
posed feature generation techniques for multi-dimensional temporal patient data, and adopt a localized
supervised metric learning approach to arrive at a semantically sound similarity measure for retrieving
patients represented in the multi-dimensional feature space.

Mining healthcare data is an emerging field. Healthcare informatics has a promising potential as
it involves diseases such as T2DM and sepsis, for which better management practices still need to be
discovered. This potential can be realized by using knowledge from diverse fields such as Epidemiology,
survival analysis and data mining in an interwoven fashion. Intermixing of knowledge and techniques
from varying fields has the potential for spurring development by producing more meaningful results.
This can lead to the development of tailored and personalized treatments.

In this survey, we have discussed different applications for healthcare data and have attempted
to provide an overview of the relevant literature for these applications. We also described the kind
of data encapsulated in EHRs and the unique challenges associated with it. We then described the
three major approaches used in handling EHRs namely censored data, irregular time series data and
handling confounding via the pseudo outcome model. Using concepts borrowed from epidemiology
we then presented the various study-designs and a comprehensive overview of the literature related
to those study designs. Lastly, we presented our views on the current state of the art in healthcare
informatics and envisioned what needs to be done in the future to realize the true potential associated
with EHR data. We firmly believe that the unique nature of the data can contribute to the next epoch
in data mining.

9 Case Study: Data Mining for Type-II Diabetes Melitus

Type 2 Diabetes Mellitus (T2DM) is a chronic condition, characterized by chronically elevated blood
sugar levels. T2DM affects approximately 12% of Americans age 20 or older and is the seventh leading
cause of death in the United States [353]. T2DM, unless managed effectively, leads to complications
in almost every body system, including blindness, kidney disease, and various cardio-vascular com-
plications such as peripheral vascular disease (PVD), Ischemic heart diseases (IHD), cardio vascular
disease (CVD), and congestive heart failure (CHF). Effective preventive and management techniques
through life style changes and therapeutic interventions exist, hence timely identification of patients
at particularly high risk of developing T2DM or its complications are of paramount importance.
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T2DM is part of the metabolic syndrome, a constellation of conditions related to metabolism. Be-
side T2DM, the metabolic syndrome contains the above complications of the diabetes, as well as a
number of conditions comoribid to diabetes: high blood pressure (hypertension; HTN), high cholesterol
(hyperlipidemia; HL), atherosclerosis (plaque build-up in the blood vessels) and abdominal obesity.

In what follows, we will show-case how data mining can be applied towards numerous applications
in the context of T2DM and the metabolic syndrome in general. In these studies, we will describe the
entire data mining process starting from raw EHR data all the way to obtaining meaningful knowledge.
Specifically, we highlight some issues related to the construction of the study cohort, the synthesis of
raw EHR data tables into more meaningful data elements through phenotyping, the transformation
and summarization of EHR and phenotype data into a design matrix amenable to data mining through
various study designs and finally we will highlight how data mining can utilize the large population
samples to extract novel knowledge from the data. Most of the studies we describe in this section has
actually been carried out to completion, either by us or by other researchers, but some of them are
hypothetical, simply illustrating the possibilities that data mining enables.

For our discussion, we assume a typical EHR data set comprised of tables corresponding to demo-
graphics, encounters, diagnoses, laboratory results, vital signs and medication prescriptions.

Demographic Attributes This consists of patient attributes such as age, gender, race, ethnicity,
socio-econmic status and tobacco consumption status. These attributes mostly remain static
throughout the study period.

Encounters This contains information related to every patient visit (encounter) to the healthcare
provider. Encounters are often classified as outpatient, inpatient or emergency. For every en-
counter, information such as encounter type, admission date, discharge date and discharge status
is stored.

Diagnoses This consists of information related to newly diagnosed or existing diseases. For every
diagnoses code, information such as the onset date and the date of cure (if applicable) is stored.
Examples of diagnosis codes present in our dataset include codes of Type 1 and Type 2 DM, and
their accompanied complications such as ischemic heart disease (IHD), cerebrovascular disease
(CVD), chronic kidney disease (CKD), congestive heart failure (CHF'), peripheral vascular disease
(PVD), Diabetic Foot, and Ophthalmic complications.

Vitals This consists of information related to vitals, which are collected for every encounter. Infor-
mation such as systolic blood pressure (SBP), diastolic blood pressure (DBP), pulse, and body
mass index (BMI). Vitals are gathered once for every outpatient visit, but might be collected
frequently (every few hours or minutes) for inpatient visits, depending upon the patient medical
state.

Laboratories test results For every encounter, we also store information related with various lab-
oratories tests carried on the patient. For every entry we store information when the laboratory
test result was ordered and entered into the EHR system. Examples of laboratory tests re-
lated with T2DM are hemoglobin Alc, low-density lipoprotein cholesterol (LDL), high-density
lipoprotein cholesterol (HDL), triglycerides, etc.

Prescriptions For every encounter, prescription information is also stored in the EHR. Examples
of prescription are life-style modification advises and medications. For medications, informa-
tion such as dosage, route, strength, prescription start date, prescription end date are usually
collected.
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Cohort construction.

While some clinical questions concern the entire population, most questions need to be limited to
a subset of patients. For example, to determine the prevalence of T2DM, we can consider the entire
population, but to understand the effect of nursing guidelines [354] we may focus on patients who
were hospitalized and thus exposed to these guidelines. Accidentally including patients who were not
exposed would underestimate the efficacy of the guidelines.

Cohorts are defined using inclusion and exclusion criteria governing which patients must or must
not be included into the study cohort. The goal of cohort construction is to define inclusion and exclu-
sion criteria such that the resultant cohort allows to estimate the quantities of interest without bias. In
the above example, including patients without exposure could bias the estimate of the guideline efficacy.

The bias that the criteria may introduce can be obvious or subtle. When estimating the preva-
lence of diabetes as a ratio of diabetic patients among all patients at a provider, accidentally including
patients who had died earlier introduces a negative bias (we underestimate the prevalence). On the
contrary, if we were to estimate the effect of statin on mortality, we may require that patients had been
taking statin for at least half a year to ensure that statin took effect. This introduces immortality bias
[355], since we excluded all patients who may have died in the first half year of statin exposure and
possible overestimate the beneficial effect of statin use.

In studying the effect of risk factors in diabetes, a more subtle kind of bias can aries from including
patients who have a different mechanism of diabetes. For example one can reasonably argue that
T2DM, formerly known as late onset diabetes, has a different mechanism in children than in adults; or
investigators routinely exclude patients with gestational diabetes, a transient form of diabetes during
pregnancy, for the possibility that it may have a different disease mechanism.

For these reasons, our study, we exclude children, do not include gestational diabetes and do not
require a minimal set exposure time when we measure mortality.

Phenotyping. The first step in the analysis is to accurately define the clinical conditions of interest,
in other words to define the disease phenotypes of interest. We illustrate this process through the
example of type-1I diabetes mellitus, but all other conditions should be defined analogously.

The most obvious way to identify patients with T2DM is to use diagnosis codes. There are multi-
ple ICD-9 codes associated with T2DM depending on its severity (controled/uncontroled) and possible
complications. Predefined groups of codes, such as the Clinical Classification Software [356], corre-
sponding to diseases exist, and can be used to identify patients regardless of disease severity and
complications. Identifying patients based on diagnosis codes is imperfect. A recent large multi-site
study has shown that T2DM phenotype defined solely by diagnosis codes can only achieve 86.6% pre-
cision and 96.9% recall [357].

Another important goal for phenotyping is to harmonize disease definitions across time. The clin-
ical criterion for diabetes has changed [358] thus the same diagnosis code (of T2DM) referred to a
slightly different condition in the early 1990s than today. Beside the changing criterion, the laboratory
tests for establishing diabetes are changing, improving. Today, the primary test for measuring blood
sugar levels is hemoglobin alc, while a mere decade earlier is was primarily fasting plasma glucose, a
laboratory test with substantially higher variability. Therefore, for a longitudinal study, we have to
cope with the difficulty that the same condition may have to be defined using different synonymous
laboratory tests of varying accuracy.

39



Finally, phenotyping algorithms can help overcome challenges posed by missing data. For exam-
ple, we may not have the opportunity to see the laboratory test results that established T2DM for a
particular patient, either due to (left) censoring or to fragmentation, but the presence of a diagnosis
code or T2DM medications can provide reliable indications of diabetes.

Phenotyping algorithms thus combine evidence from multiple data sources, diagnosis codes, lab-
oratory results and medications, to achieve the accuracy required by the study. Phenotyping algo-
rithms can be hand-crafted or machine learned and examples of T2DM phenotyping algorithms include
[357, 359, 360].

It is also worth pointing out that even the most straightforward condition, mortality, is typically
not directly available from EHR. If a patient died in the hospital, his discharge status will contain
this information; however, if he died outside the hospital, his death information may not be readily
available from the EHR. If mortality is of interest, researchers need to ascertain the patients’ vitality
status by consulting the state’s population center, the state death registry or the national death registry.

Study Design
The phenotyping algorithms can be used to augment the raw EHR data with data elements that
synthesize information from disparate sources and harmonize disease definition across time. The ap-
plication of phenotyping algorithms to the raw EHR data (and possibly other auxiliary data) results
in longitudinal data indicating whether a phenotype is confirmed, can be ruled out or cannot be es-
tablished for a patient at each point in time when the patient was under observation.

For data mining algorithms to be applicable to EHR data, these tables and the phenotyping data
need to be integrated and possibly summarized over time into a single design matrix. The way the
design matrix is constructed is dictated by the study design, and in return, the study design constrains
the applicable data mining approaches and techniques and can limit or enable certain kinds of knowl-
edge to be extracted. For this reason, we organize the remainder of this section based on study design,
presenting examples using descriptive, cross-sectional and cohort studies briefly showing how the study
design drives the creation of the design matrix and how it allows the extraction of novel knowledge.

9.1 Descriptive Analysis

Descriptive studies typically represent the first forays into exploring a condition, but can also provide
useful epidemiological information about diseases and thus about population health, trends in popu-
lation health, thereby driving policy decisions. The Center for Disease Control and Prevention (CDC)
conducts numerous descriptive analyses, annually reporting the prevalence, incidence rate and trends
in diseases that represent major health care concerns, having raised attention to the growing obesity
epidemic and the subsequent increase in T2DM incidence rates.

Determining prevalence and incident rates in a population of patients appears deceivingly simple,
however, care must be taken with EHR data. To measure the prevalence of diabetes, we take a cross-
section of the target population at a particular point in time. Prevalence is the ratio of patients who
has T2DM among all patients in that target population. Phenotyping algorithms can help overcome
EHR issues related to determining whether a patient has T2DM or not, but estimating the size of the
target population can remain problematic. The biggest problem is selection bias. Healthy patients who
require care infrequently, may not have visited the provider during the time period of the cross-section
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and thus we may not know whether they are still part of the target population or not—they may have
moved out of the catchment area of the provider. Whether a patient is part of the target population
may be difficult to determine for the frail and the elderly, because vitality status is not necessarily
available from the EHR directly.

Computing incidence rates, which are the number newly diagnosed patients during a time period
divided by all patients eligible for the study during that time period, is further complicated by the need
of determining whether a condition is new or pre-existent. Phenotyping algorithms can help mitigate
this problem, but we can still only estimate the number of incident T2DM events rather than count
them.

9.2 Comorbidity Analysis through Cross-Sectional Design

Comorbidity analysis is the process of exploring and analyzing relationships between frequently co-
occurring diseases. For example, patients diagnosed with T2DM have often accompanied diseases such
as hypertension, hyperlipidemia and impaired fasting glucose (IFG). In the aforementioned example,
T2DM is an referred as the index disease and hypertension, hyperlipidemia and IFG are collectively
known as co-occurring diseases. T2DM in conjunction with hypertension and hyperlipidemia are known
as multiple chronic conditions (MCC). MCC’s are an issue of growing significance in T2DM as they
are highly prevalent and might increase disease burden and costs. Exploring and analyzing such MCC
clusters will lead to development of tailored medical interventions.

The fundamental epidemiological metrics we computed above give a concise description of the
health of the population and influences policy decisions, but applying data mining to it can extract
deeper knowledge. In the face of an aging US population and the rapidly growing concern of multiple
chronic conditions, comorbidity analysis can help describe diabetic populations in terms of comor-
bidities related to the metabolic syndrome, interactions among these comorbidites and estimate the
prevalence and incidence rates in subpopulations defined by these chronic conditions.

The goal of this study is to identify frequently co-occurring diseases and define sub-populations
based on these co-occurring diseases. Further we estimate the risk of mortality associated with each
subpopulation. As this is a cross-sectional study design, we define exposure and outcome at one
time point. In this study, the exposure characterized by the set of comorbidities and the outcome is
defined by mortality. Using this nomenclature, we estimate the prevalence of mortality within each
sub-population. We also compare analyze how the risk varies across sub-populations.

We applied frequent pattern mining to identify frequently co-occuring comorbidities and identified
patient subpopulations who are diagnosed with these comorbidities (and possibly others). In each
subpopulation we measure how many patients succumb to death (adjusted for age and gender) and use
the Poisson test to identify subpopulations wherein the prevalence of mortality is significantly higher
(or lower) than in the general population. To estimate the risk, we use Cox proportional hazards
regression along with martingale residuals.

As an illustration, in the figure below we consider T2DM along with two other comorbid diseases
i.e. hypertension and hyperlipidemia. We analyze the risk associated with mortality for these comorbid
diseases. As observed, risk for mortality associated with hypertension and hyperlipidemia is 1.13. It
indicates that the patients diagnosed with hypertension and hyperlipidemia are 13% more prone to
mortality as compared to patients with no disease. Similarly we also observe how risk increases when
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a patient is diagnosed with multiple diseases. The study identified a number of subpopulations with
significantly elevated prevalence of diabetes. With increasing number of comorbid conditions typically,
the prevalence of mortality increases, unless the combination in questions carries a particularly high
risk of mortality. The increase in risk appears non-additive, suggesting interaction among the condi-
tions under study. This is not surprising given that these conditions collectively are indicative of the
patients’ metabolic health.

Risk prediction for events of interest is usually performed using data mining techniques such as
predictive modeling. Primarily, predictive modeling has two goals i.e. estimating the risk or identifying
the underlying risk factors. For example, risk can be estimated for events such as mortality, CVD, IHD
and PVD. For such estimation age, gender, race and ethnicity are the usual predictors. Data mining
in EHRs also enables subpopulation mining, which helps to to build clinical decision support systems
for individualized or personalized medicine. As we have already discussed that in in a cross-sectional
study, we can estimate the prevalence of a disease in a population (or in well-defined subpopulations)
and we can identify conditions (comorbidities) that frequently co-occur with the disease of interest.
Co-occurrence is the weakest form of association; it does not even guarantee that ”exposure”, the
development of a comorbid condition, precedes the index condition (T2DM). In a cohort study, a
patient cohort is defined along with their exposures, the cohort is then followed recording outcomes
of interest. This design ascertains that the exposure precedes the outcome and it also suggests that
the outcome is an incident (not pre-existing) condition. Through cohort studies, we identify exposures
that are predictive of the outcome, an application of data mining know as biomarker discovery, and
predict the risk of the outcome (risk estimation). In this subsection, we would be exploring various risk
estimation models such as framingham score, estimating T2DM risk in subpopulations and developing
risk trajectories over time using cohort study designs.

9.2.1 Framingham Score

Let us start our discussion of cohort studies towards risk estimation with the venerable Framingham
Diabetes Score [361] The Framingham Diabetes Score is a clinical tool for assessing patients’ risk of
developing diabetes based on a small number of risk factors: fasting blood sugar, high cholesterol, high
blood pressure, medication for high blood pressure, familial history of diabetes, and obesity. For each
risk factor the patient presents with, he receives a predetermined number of points. The points are
tallied up and whether preventive intervention is required and the aggressiveness of the intervention is
determined based on the tallied score.

In this study they estimated the 7-year risk of T2DM in middle-aged participants who had an oral
glucose tolerance test at baseline. As this is a cohort study design, patients are selected based on
whether they did not acquire T2DM at baseline and are usually followed for a couple of years to ana-
lyze the outcome. Patients who used oral hypoglycemic medications or insulin, or who had a baseline
fasting plasma glucose level greater than 126 mg/dL or a baseline post-OGTT plasma glucose level
greater than 200 mg/dL were categorized as having diabetes and thus were not included in the study.
Patients were followed up from baseline for an average follow-up of 7 years. Such study designs helps
in analyzing the incidence rate of T2DM.

New cases of diabetes were identified using the examination visit date as a date of diagnosis;
otherwise follow-up was censored at the last follow-up (examination 6 or 7) for patients remaining
nondiabetic. They used logistic regression models to predict incident diabetes and estimated the odds
ratio and 95% confidence intervals to estimate relative risk. Cox proportional hazards models was also
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used to account for censoring. The significant predictors identified from Cox and logistic models were
similar.

They observed how parental diabetes, obesity, and metabolic syndrome traits effectively predict
T2DM risk in a middle-aged white population sample. They observed how information beyond per-
sonal awareness of diabetes risk factors is important to determine risk of T2DM. They presented how
parental history of diabetes and obesity remained significant predictors, along with hypertension, low
levels of high-density lipoprotein cholesterol, elevated triglyceride levels, and impaired fasting glucose
findings. Given the importance of identifying patients at high risk of diabetes, many risk scores have
been proposed [362], but the Framingham score is the one with widest acceptance in clinical practice.

9.2.2 Diabetes Risk Prediction in Subpopulations

Clinical acceptance of the Framingham Diabetes Score is in large part due to its effectiveness (it has
been validated empirically and formally [361] ) and its ease of application. Its ease of application stems
in large part from its approach of fitting a single model with few variables to an entire cohort, assuming
homogeneity of effect across the population. In Section 9.2, we have shown through comorbidity anal-
ysis, that the comorbidities in diabetes interact. In the current study, we repeat the previous analysis
using cohort study so that we can estimate diabetes risk through incident rates.

The cohort study design was applied in this study. Similarly to the cross-sectional design, a cross
section was taken at a particular point in time, called the baseline. Demographic information (age,
gender) and social history (smoking status) were determined at baseline and same comorbidities as
before were ascertained retrospectively over 5 years. Patients were followed forward until 2014 and
the study endpoint (outcome) was incident T2DM. Patients less than 18 years of age and patients
presenting with T2DM at baseline were excluded. The latter condition ensures that all diabetes events
during the follow-up period are incident (new) T2DM diagnoses.

The analysis itself mirrors that of the comorbidity analysis described earlier. Survival association
rule mining [363] was applied to discover subpopulations adjusted for age, gender and follow-up time
and subpopulations with increased risk of developing diabetes (i.e. incidence rate) were identified.
Confounding from age and gender were handled through survival regression, which is an integral part
of survival association rule mining. Unlike results from the cross-sectional design, results from this
study allow us to claim that certain combinations of comorbidities are associated with higher risk of
developing diabetes.

9.2.3 Quantifying the Effect of Statin

We have so far utilized data mining to identify subpopulations with significantly elevated prevalence
and incidence rate of diabetes. Subpopulation mining is not limited to mining outcomes, it can also
be used to discover important differences in the effects of interventions.

Recent changes in guidelines for preventing cardio-vascular mortality are expected to substantially
increase the utilization of statins, a class of cholesterol lowering agent. Statins have been previously
proven to reduce the risk of cardio-vascular mortality, but have been shown to increase the risk of
diabetes by 9% in patients with normal blood sugar levels. Controversy surrounds the effect of statins
in patients with prediabetes, a condition defined by slightly elevated sugar levels that do not reach
diabetic levels [364] Most studies have found statin to have no effect on progression to overt diabetes,
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some found it to be beneficial [365] and some found it to be detrimental [366].

We hypothesize that prediabetes is heterogeneous: in some subpopulation, the effect of statin is
beneficial, in others it is detrimental and thus the combined effect depends on the composition of the
population. In this section, we describe a study [367] that investigated the effect of statin in various
subpopulations. A unique strength of this study is its importance in ascertaining subpopulations where
the effect of statin is detrimental. We illustrate this process by using rigorous data mining techniques.

As this is a cohort study design, patients were selected at baseline and were followed for a couple of
years to analyze the outcome. Patients were divided into treatment and control on the basis of whether
they received statin or not. The groups were then followed for 5 years to estimate the incidence of
T2DM. Such study designs help to examine the relationship between statin use and diabetes thereby
helping to identify risk and novel protective factors.

We illustrate this process by using Association rule mining (ARM) framework in conjunction with
propensity score matching techniques. Primarily, ARM was used to identify subpopulations where the
effect of statins differ among subpopulations. Statistically appealing techniques such as propensity
score matching was used to handle subtle biases and confounding arising due to attributes such as age
and gender. Such techniques aim at eliminating the likelihood of bias and errors.

They discovered how statins substantially increase the risk of diabetes by 13% - 41% among vari-
ous subpopulations. They discovered several interesting associations such as patients diagnosed with
hyperlipidemia, a prescription for a non-statin anti-hyperlipidemia medication, and either obesity or
treated and controlled hypertension, also receiving statins tends to lower their risk of developing di-
abetes. Identification of such rules are also interesting as they are easily interpretable and could be
quickly incorporated into clinical practice using computer based decision support tools.

9.2.4 Trajectory Mining for Diabetes Complications

Analogous to our last study, the focus of this study is also on T2DM. Multiple studies have indi-
cated that T2DM is often associated with several complications. Primarily, we consider seven major
complications associated with diabetes: obesity (OB), ischemic heart disease (IHD), cardiovascular dis-
ease (CVD), peripheral vascular disease (PVD), cerebrovascular disease (CVD), chronic kidney disease
(CKD), congestive heart failure (CHF), diabetic foot and ophthalmic conditions. These complications
were identified by several research studies which dominate the literature. These complications usually
stem from mismanagement of patient’s health.

The aim of this case study is to analyze the risk associated with diabetes induced complications
and to ascertain whether the risk changes over time. Risk can be concisely described as the probability
of a subject diagnosed with T2DM progressing to a T2DM induced complication. Such analysis is
also amenable for development of novel EBP (Evidence Based Guidelines) guidelines as existing EBP
guidelines neither consider the patient’s trajectory nor the patient’s sequence of events that lead up to
the patient’s current conditions.

In what follows, we will illustrate how patient’s risk of progressing to advanced complications de-
pends on their present conditions. Specifically, we highlight how such analysis becomes more relevant
in a heterogeneous disease such as T2DM, where in complications affect majorly all body organs. This
case study provides a logical sequence from the computation of a risk score to analyzing trajectories
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over time. It provided a snapshot of first foray into exploring T2DM associated complications over time.

As this is a cohort study design, patients diagnosed with T2DM at baseline (exposure) were fol-
lowed for a couple of years to analyze the outcome (patient’s progression to advanced complications).
Patients were selected at baseline, if they satisfied the following two conditions: if they had type 1 or
type 2 DM at baseline as identified by the billing transactions and two Alc results at least 6 months
apart after baseline. Patients were then followed until a maximum period of 5 years or censoring
or mortality (whichever occurs first) to estimate the incidence of T2DM accompanied complications.
These constraints ensured that sufficient clinical information was available about the patient.

They first summarize the patient’s condition pertinent to diabetes mellitus Type-2 (T2DM) into
a single score using a complication index. For every complication, a Cox proportional hazards model
where in demographics, laboratories test results,vitals and remaining complications are treated as the
independent variables and the complication of interest as the dependent variable. Each of the individ-
ual regression models (one for each complication) provided an estimate of the coefficients, which can be
interpreted as the relative risk of developing the complication of interest. These individual regression
models enable the computation of Diabetes Mellitus Complication Index (DMCI) index which can be
thought of as approximately 7 times the relative risk a patient faces in developing a complication.
DMCI can be considered as a snapshot of patient’s risk. Trajectories per complication were built by
averaging the risk of patients who were diagnosed with the complication of interest. Trajectories were
created using appealing statistical approaches such as spline regression and lowness estimators.

They illustrated how certain subpopulations have different risk at baseline and how certain sub-
populations have substantial increase of risk in the follow up years. They also presented how different
complications have varying risks of developing additional complications. For example, patients diag-
nosed with diabetic foot have an elevated risk of developing secondary complications. They mentioned
that these patient subpopulations differ not only in their risk but also in the temporal behavior of their
risk. Lastly they observed how when patients are stratified within the same subpopulation by their
baseline risk, they exhibit different trajectories. Their findings lay stress on how timely analysis can
help to prevent or delay the onset of accompanied complications thereby mitigating the effect of such
complications on patient’s health. However, the archives heel is that the research was carried out using
only one dataset. Nomnetheless the findings were insightful and can be validated across institutions
using interoperable nature of EHR data.
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