
An EDA-Friendly Protection Scheme against
Side-Channel Attacks

Ali Galip Bayrak∗, Nikola Velickovic∗, Francesco Regazzoni†, David Novo∗, Philip Brisk‡ and Paolo Ienne∗

∗ School of Computer and Communication Sciences
Ecole Polytechnique Fédérale de Lausanne (EPFL)

CH-1015 Lausanne, Switzerland
{aligalip.bayrak, nikola.velickovic,

david.novobruna, paolo.ienne}@epfl.ch

† ALaRI - University of Lugano
CH-6900 Lugano, Switzerland

regazzoni@alari.ch

‡ University of California, Riverside
339 Engineering II, CA 92521, USA

philip@cs.ucr.edu

Abstract—This paper introduces a generic and automated
methodology to protect hardware designs from side-channel
attacks in a manner that is fully compatible with commercial
standard cell design flows. The paper describes a tool that
artificially adds jitter to the clocks of the sequential elements
of a cryptographic unit, which increases the non-determinism of
signal timing, thereby making the physical device more difficult
to attack. Timing constraints are then specified to commercial
EDA tools, which restore the circuit functionality and efficiency
while preserving the introduced randomness. The protection
scheme is applied to an AES-128 hardware implementation that
is synthesized using both ASIC and FPGA design flows.

I. INTRODUCTION

Security is an important design objective in modern tech-
nology. A variety of products, ranging from small embed-
ded devices to mobile and desktop processors now integrate
embedded cryptographic cores. An important weakness of
these devices, which this paper addresses, is fragility against
side-channel attacks, which focus on the physical imple-
mentation of the cryptographic core, rather than attacking
the cryptographic algorithm itself. Side-channel attacks may
exploit physical information leaked by the device, including
power consumption [13], timing [12], EM radiation [7] or
acoustics [21], allowing the attacker to recover the secret infor-
mation stored on the device. Fig. 1, for example, conceptually
illustrates a power-based side-channel attack [13] based on
correlating real-time power measurements with the processed
data and the secret key.

Both software and hardware countermeasures for side-
channel attacks have been proposed in recent years. Software
countermeasures [1], [6], [22] are limited by the fragility of
the underlying hardware, and cannot offer as much protection
as hardware countermeasures; however, hardware counter-
measures can be costly in terms of area, energy, and per-
formance [23], [24], [25], and may require non-traditional
EDA toolchains and/or full-custom implementations for proper
realization [23], [25].

To address these concerns, this paper introduces a new
hardware countermeasure for protection against side-channel

978-3-9815370-0-0/DATE13/ c©2013 EDAA

Key

Cryptographic
processing

Plaintext
a32.. 17e.. 890.. e41.. 31a.. fa0..

(e.g., power consumption)Physical Device

Ciphertext

Leakage

Fig. 1. Cryptographic algorithms are designed to be robust against mathe-
matical attacks that exploit relations between the plaintext and ciphertext to
recover the secret key. A side-channel attack, in contrast, attempts to exploit
relations between physical information, such as power consumption, that the
device inadvertently leaks during operation.

attacks, which incurs modest area and energy overhead, main-
tains full compatibility with existing commercial standard-cell
design flows, is not tied to a specific CMOS technology node,
is cryptographic algorithm agnostic, and can be introduced
automatically, thereby simplifying the task of the hardware
designer. The countermeasure randomizes the timing of circuit
signals, which, in turn, randomizes the side-channel informa-
tion that is leaked, such as power consumption, as shown in
Fig. 2.

The countermeasure uses randomly-generated jittered clocks
to increase the uncertainty of the signal arrival times at
sequential elements in the circuit. The hardware generates M
such random clocks in two steps:

1) It generates N phase-shifted clocks (of the same fre-
quency) by inserting a δ time delay between two con-
secutive ones; and

2) It uses M clock multiplexers, each of which selects a
different shifted clock per cycle.

This uncertainty is translated to commercial EDA tools as a
new set of constraints. The tools can resolve problems related
to the clock uncertainty, which has been introduced artificially,
such as setup/hold time violations and glitches.

This method increases non-determinism of a circuit op-
eration, which is a general approach taken by side-channel
countermeasures. For example, power-based side-channel at-
tacks try to establish a relationship between instantaneous

CLKref

CLK0

CLKN-1

CLK2

CLK1

...

Q

Q

Dδ

...

C
o
m

b
in

a
to

ri
a
l
C

ir
cu

it

C
o
m

b
in

a
to

ri
a
l

ci
rc

u
it

U
n

p
ro

te
c
te

d
 c

ir
c
u

it

1

2

M

... ...

Clock generation
Clock

randomiz.

Tref

REF:

OURS:
Tprot

Δ

...

δ

2δ

(N-1)δ

Dδ

Dδ

... P
ro

te
c
te

d
 c

ir
c
u

it

RCLK0

RCLK1

RCLKM-1

Tref

Reg

R
e
g

R
e
g

R
e
g

QD

Δ Tref

D1

DM-1

D0 Q0

Q1

QM-1

Q
Q= Qi

Fig. 2. Illustration of the countermeasure introduced in this paper. Sequential circuit elements are driven by clocks with randomly generated delays, which
randomizes the timing of the signals. The tool generates N different clock signals (CLK [0..(N−1)]) from a reference clock, with a delay of δ introduced
between pair of clock signals, yielding delays as large as ∆ = (N − 1)δ. To compensate, the clock period is increased from τref to τprot = τref + ∆. Next,
M random clocks, RCLK [0..(M−1)] are generated using clock multiplexers, each of which selects one of the shifted clocks and updates its selection every
clock cycle. These M random clocks are each sent to M sequential element groups, each of which contains at least one flip-flop, which varies the signal
arrival time. Sections II and III describe methods to avoid violations and glitches caused by this randomization.

power consumption and the inputs (i.e., plaintext); the non-
determinism introduced by our method increases the difficulty
of uncovering such a relationship, as the instantaneous power
consumption becomes randomized.

This paper makes the following contributions:
1) The protection scheme can be applied to any hardware

implementation using any standard-cell design flow.
Protection is applied at the RTL level, and does not re-
quire lower-level considerations, such as non-traditional
standard cell libraries.

2) The design flow is fully automated, and can therefore be
used by hardware designers who are not security experts.

3) The amount of protection depends on user-specified
parameters N , M , and δ; hardware designers can trade-
off security against other metrics such as performance
and area, according to the design needs, by varying
the parameter values accordingly. Past countermeasures
have large constant overheads, rendering them infeasible
under resource constraints.

II. CLOCK RANDOMIZATION

Randomized clock generation is a two-step process. The
first step is to generate N phase-shifted clocks, as shown in
Fig. 2. The second step introduces M clock multiplexers to
generate M random clocks which control the flip-flops in the
circuit.

A. Shifted clock generation

Let CLK 0 be the regular (nonshifted) clock in the circuit.
Given CLK i, a shifted clock CLK i+1 is generated by intro-
ducing a delay element, which adds a delay of δ to CLK i,
0 ≤ i < N − 1; the delay elements are comprised of buffers
and inverters. Commercial synthesis tools such as Synopsys

Design Compiler can easily generate such delay units by
specifying path delay constraints, such as ‘set_min_path
δ -from delay_in[i] -to delay_out[i]”, where
delay_in[i] and delay_out[i] are CLK i and
CLK i+1, respectively. After inserting the delay elements that
meet the constraints, we then set the “dont_touch” attribute
to this circuit to prevent the synthesis tools from optimizing
away the delay elements later, as they are computationally
redundant.

Our scheme does not require all N delay elements to have
the same constant delay δ in order for the countermeasure
to work. This makes the design more viable than other
countermeasures that are based on strict timing requirements
(e.g., those using complementary gates) that are difficult to
satisfy in practice.

B. Random clock generation

The shifted clocks described in the preceding section are
used to generate the random clocks described here. A separate
clock multiplexing unit generates a random clock using the
shifted clocks, CLK 0..(N−1), and a log2N bit random value,
RND . Section II-C provides details on random number gen-
eration.

To prevent glitches at the multiplexer output, the select
signal, SEL, is updated once per cycle during the safe clock
switching zone, as shown in Fig. 4. During this period, all of
the clock signals are low, and multiplexing among all zeroes
guarantees safe and correct switching between clocks. The
random input value, RND , is stored in a register clocked by
the inverse of the final shifted clock, CLKN−1, and provides
the output of the register as the select signal.

For this scheme to work, two conditions must be satisfied:
1) The clock period must be long enough to provide a safe

High-Level
Description

(VHDL/Verilog)

clock
renaming

random
clock

generation
code

Code
Modification

Modified
High-Level
Description

Logic
Synthesis

timing
constraints

Synthesized
Circuit

Place &
Route

Protected
IC

Layout

Fig. 3. Automatic design flow that introduces a protected hardware implementation. A random clock generator is introduced to the RTL circuit (Section II),
which replace the original clock signals. The jitter information (∆) is converted to a set of timing constraints, which are handled by a commercial EDA
toolflow, which generates the protected IC layout. Logic simulation for verification proceeds as normal and is not shown here.

RCLKi
...

MUX

RND

Reg

SEL

CLK0

CLKN-1

CLK2

CLK1

... ...

Safe Clock Switching Zone

Fig. 4. The shifted clocks, CLK 0..(N−1), and a log2N -bit random number,
RND , generate a random clock, RCLKi . There are M of these components,
each having individual RND but sharing the same CLK 0..(N−1). To
suppress glitches the multiplexer select signal, SEL, is updated once per
cycle during the safe clock switching zone when all clocks are low.

switching zone, i.e., the output of RCLK i should be
ready before the rising edge of CLK 0.

2) The select signal should be updated after the last clock,
CLKN−1, falls; in other words, the path delay from the
last shifted clock to the select input of the multiplexer,
shown in red in Fig. 4, should be longer than the delay
of the wires that drive the multiplexer’s inputs.

After generating the random clocks, the set of flip-flops of
the original circuit are partitioned into M mutually exclusive
and collectively exhaustive sets; a separate clock is now driven
to each set. The sets were chosen randomly in our experiments,
and each set was chosen to have an equal number of flip-flops.

C. Random number generation

Random numbers can be read as pre-stored constant values,
or generated at runtime using Pseudo- or True-Random Num-
ber Generators (PRNGs and TRNGs respectively). PRNGs
are easy to implement at a low cost in terms of area and
performance, but exhibit deterministic behavior that an at-
tacker could exploit. TRNGs, in contrast, are based on non-
deterministic physical phenomena. For the experiments, we
implemented a TRNG based on jitter [11]: a system clock
samples a high-frequency clock generated by ring oscillators.
The designer must select appropriate random generator in this
manner; a thorough analysis of random number generation in
hardware is beyond the scope of this paper.

III. DESIGN FLOW

Fig. 3 shows the fully automatic design flow that introduces
our hardware protection mechanism into an RTL description
of a circuit. Given parameter values M , N , and δ, our script
generates an HDL description of the random clock generation
circuit (Section II) and integrates it into the hardware design.
The script then randomly partitions the flip-flops and registers
in the design, and updates the RTL so that each partition is
driven by a different random clock (Section II-B).

To prevent timing violations, new timing constraints, which
depend on the random clocks and the total jitter, ∆ = (N−1)δ,
are generated and propagated to the EDA tools. We model
random clocks, RCLK0..(M−1), as separate clocks of the
circuit with the same frequency and offset, each having an
uncertainty of ∆; in Synopsys Design Compiler, we would
use the create_clock and set_clock_uncertainty
commands. This approach enables commercial EDA tools to
produce an optimized circuit layout that respects our timing
constraints while ensuring correct functionality of the ran-
dom clocks. The toolflow automatically generates a protected
implementation of the input circuit, which was originally
unprotected.

The user must appropriately select values for parameters N ,
M , and δ. In principle, this is a design space exploration prob-
lem, wherein the user can trade-off the amount of protection
against area overhead, performance, and energy consumption.
We provide a detailed example in the following section.

IV. EXPERIMENTAL RESULTS

This section applies the countermeasure described previ-
ously to the AES-128 algorithm targeting both an FPGA and
an ASIC design flow. Our results show how area, performance,
and security scale as an empirical function of parameters M ,
N , and δ.

A. FPGA Experiments

1) Experimental Setup: We used the Side-channel Attack
Standard Evaluation BOard (SASEBO) G-II board [20]
connected to an oscilloscope with a 4 GHz sampling fre-
quency and 600 MHz bandwidth, using a passive probe, to
measure power consumption. The SASEBO board included

!"

!#!$"

!#%"

!#%$"

!#&"

!#&$"

!#'"

!#'$"

!#("

%" &" (")" %*" '&"

!"
##
$%
&'

"(
)

*)+(,-.$#)"/)#&(0"-)1%"1234)

+,&"

+,("

+,)"

+,%*"

-./01234235"

(a) Correlation as a function of M and N .

!"

!#!$"

!#%"

!#%$"

!#&"

!#&$"

!#'"

!#'$"

!#("

%" &" (")" %*" '&" *("

!"
##
$%
&'

"(
)

*)+,&-.,/,)"01$2)3$24$$()5%"5617)
+-89::)(17)

+,&"

+,("

+,)"

+,%*"

+,'&"

+,*("

-./01234235"

(b) Correlation as a function of ∆ and N .

Fig. 5. Security experiments for AES-128 hardware implementation on a Xilinx Virtex-5 FPGA. Correlation represents the result of a correlation-based
power attack; lower correlation values correspond to stronger security. Scaling factor on the x-axis of Fig. b (i.e., 0.33 ns) corresponds to the minimum delay
of a single buffer.

0	

100	

200	

300	

400	

500	

600	

700	

800	

900	

1000	

1	 2	 4	 8	 16	 32	 64	

Ar
ea
	 (N

um
be

r	 o
f	 s
lic
e	
LU

Ts
)	

Δ	 (maximum	 offset	 between	 clocks)	
(x0.33	 ns)	

N=2	

N=4	

N=8	

N=16	

N=32	

N=64	

Unprotected	

(a) Area as a function of ∆ and N .

(ns)	

0	

5	

10	

15	

20	

25	

30	

1	 2	 4	 8	 16	 32	 64	

M
in
	 cl
oc
k	
pe

rio
d	

Δ	 (maximum	 offset	 between	 clocks)	
(x0.33	 ns)	

N=2	

N=4	

N=8	

N=16	

N=32	

N=64	

Unprotected	

(b) Minimum clock period as a function of ∆ and N .

Fig. 6. Area and performance experiments on a Xilinx Virtex-5 FPGA. The area overhead of the protected hardware implementation is quite modest; the
effect on clock period is more pronounced and depends quite significantly on ∆ (maximum offset between clocks). Scaling factor on the x-axis (i.e., 0.33 ns)
corresponds to the minimum delay of a single buffer.

two Xilinx FPGAs: a Virtex-5 (XC5VLX30) and a Spartan-
3A (XC3S400A-4FTG256); we used the standard Xilinx ISE
toolflow in our experiments.

We varied the values of M , N , and ∆ using this set-up
and obtained 100, 000 power traces for each experiment. Each
trace was obtained by running the circuit with a randomly
generated input value and saving the instantaneous power
consumption during execution of AES. After collecting the
traces, we applied a correlation-based power analysis attack [3]
in each experiment. We attacked the output of the S-Box op-
eration and used the Hamming-Distance as the power model.
To identify relevant points of power traces during each clock
cycle, we applied the maximum extraction and integration
compression methods [14], and reported the result of the more
successful method for each experiment.

2) Results: Fig. 5(a) plots correlation (a proxy for security)
as a function of M and N , with δ being held as a constant.
Although the best overall results are obtained for M=8, the
correlation observed for all values of M > 1 are comparable.

For M = 1, integration and power trace alignment result in
stronger attacks; however, increasing M render these tech-
niques ineffective. Increasing N tends to reduce correlation,
although the overall reduction yields diminishing returns,
especially as N jumps from 8 to 16.

In the other experiments, we set M = 8 and vary N
and ∆; as we will discuss later, ∆ determines the area and
performance cost of a circuit.

Fig. 5(b) shows that increasing ∆ leads to observably lower
correlations; similarly, increasing N up to 16 tends to reduce
correlations, but increasing N to 32 or 64 has no discernable
effect. The number of traces required to mount a successful
attack increases by a factor of k2 when there is a k× decrease
in correlation [14]. Using this formula, setting N = ∆ =
16 increases the number of traces by almost a factor of 70×
compared to the unprotected implementation. Increasing ∆ to
64 would increase this factor by more than 300×.

Fig. 6(a) shows FPGA area (slices) as a function of total
delay (∆). Compared to other hardware countermeasures, the

(um2)	

0	

10000	

20000	

30000	

40000	

50000	

60000	

70000	

80000	

90000	

100000	

1	 2	 4	 8	 16	 32	 64	

Ar
ea

	

Δ	 (maximum	 offset	 between	 clocks)	
(x0.03ns)	

N=2	

N=4	

N=8	

N=16	

N=32	

N=64	

Unprotected	

(a) Area as a function of ∆ and N .

(ns)	

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

1	 2	 4	 8	 16	 32	 64	

M
in
	 cl
oc
k	
pe

rio
d	

Δ	 (maximum	 offset	 between	 clocks)	
(x0.03ns)	

N=2	

N=4	

N=8	

N=16	

N=32	

N=64	

Unprotected	

(b) Minimum clock period as a function of ∆ and N .

Fig. 7. Area and performance experiments for the AES-128 implementation using STM 65nm CMOS standard cells. Compared to the FPGA, the area scales
faster, while the clock period scales slower, as a function of ∆ (maximum offset between clocks). The reason is the characteristics of buffers in 65nm CMOS
technology, relative to other standard cells. The delay elements are required to generate shifted clocks and to prevent timing violations. Scaling factor on the
x-axis (i.e., 0.03 ns) corresponds to the minimum delay of a single buffer.

area overhead of our proposed scheme is quite low (see
Table I); the largest area overhead for the most secure system
we evaluated was 15%.

Fig. 6(b) shows minimum clock period as a function of
maximum offset between clocks (∆). Here, the clock period
increases dramatically as ∆ increases, resulting in a slowdown
of 7× for the design point having the strongest security. For
a more conservative data point, N = ∆ = 16, the slowdown
is 2.3× instead, with significant protection achieved.

Lastly, we measured the power consumption of protected
and unprotected version of the AES-128 circuit running on the
FPGA. The unprotected circuit consumes 297 mW, while the
protected circuits consume as much as 360 mW, an overhead
of 20% in the worst case.

B. ASIC experiments
1) Experimental setup: Our ASIC experiments used a

65nm STM CMOS standard cell library. We used Synopsys
Design Compiler for synthesis, Cadence Encounter for place-
ment and routing, Mentor Graphics Modelsim for simulations,
and Synopsys Nanosim for power estimation. Area results
are reported after placement and routing, performance results
are obtained after simulations (considering post-place-and-
route critical path delays), and power results are reported by
Nanosim after running the same set of random inputs on each
implementation.

2) Results: Fig. 7 shows area and clock period as a function
of ∆. Compared to the FPGA implementation, the area scales
faster, while the clock period scales slower. This is due to
the characteristics of the buffers used in CMOS technology:
relative to other gates, they have a small delay and a large
area. Buffers are used to generate the shifted clocks and are
also inserted by the EDA tools along register-to-register paths
to fix hold-time violations that may be caused by the clock
uncertainty that is inherent to our protection mechanism.

The power overhead is also more pronounced for ASIC
technology compared to the FPGA: the unprotected imple-

mentation consumes 10.2 mW, while the most aggressively
protected implementation consumes 17.5 mW; a moderately
protected implementation, N = ∆ = 16, consumes 12 mW.

C. Discussion

Our results have demonstrated that clock period overhead
(performance) is the primary factor that limits the effectiveness
of our proposed countermeasure; the impact on area and power
consumption is far less compared to other hardware counter-
measures, as shown in Table I. Historically, power analysis at-
tacks have focused on low-cost embedded devices which run at
low speeds [14], such as smart cards, and the negative impact
on clock period is not expected to be a significant impediment
to widespread adoption of this countermeasure. Moreover,
faster devices which have greater performance requirements
can still benefit from more conservative applications of our
countermeasure that limit the values of parameters N and ∆.

Our results indicate that our countermeasure can be applied
to both ASIC and FPGA design flows, which establishes
portability. We did not apply a security analysis to the ASIC
design flow due to constraints on time and computational
resources available to us: the number of traces required to
attack the ASIC design would be on the order of hundreds of
thousands [14], and detailed power simulation at the SPICE-
level would take years to complete, even if parallelized across
multiple machines.

V. RELATED WORK

Security is an important design parameter, but does not
come for free. Protected logic styles, such as Sensed Am-
plified Based Logic (SABL) [23], Wave Dynamic Differential
Logic (WDDL) [24] and Masked Dual-Rail Precharge Logic
(MDPL) [17], [18] are very popular hardware countermea-
sures; however, they have significant area and energy over-
head, as shown in Table I, making them not so practical
for protecting embedded devices. Furthermore, some of these
countermeasures have security weaknesses; e.g., MDPL and

TABLE I
EXISTING COUNTERMEASURES.

Ratio (protected/standard)

Countermeasure Area Clk Period Energy SDF†/Tech.‡

WDDL [24] (ASIC) 3.38 2.13 3.5 4 /4
MDPL [18], [10] (ASIC) 4–5 2 17.43 [19] 4 /4
iMDPL [17], [10] (ASIC) 18–19 3.33 - 4 / 4
SABL [23] (ASIC) >2 <2 4.5 8 / –

This work(∗) (FPGA) 1.10 2.27 1.15 4/8
This work(∗) (ASIC) 1.25 1.64 1.18 4/8
(†) Whether standard cell design flow is applicable.
(‡) Whether it needs to be revised across different technologies.
(∗) For N = ∆ = 16.

iMDPL have shown to be vulnerable against power analysis
attacks due to the early propagation effect [17] and routing
imbalances between complementary mask trees [15].

Another common protection method is power trace mis-
alignment, such as using a randomized clock [2], [8], [27],
inserting random delays [4] and using multiple clock do-
mains [9]. Randomized clock countermeasures use a single
system clock which switches at random discrete time in-
stants. Since these countermeasures do not change the overall
power consumption behavior of the circuit, but only misaligns
the power consumption traces, alignment preprocessing tech-
niques such as elastic alignment [26] and rapid alignment
method (RAM) [16] could be used to defeat such counter-
measures. The random delay insertion method proposed by
Bucci et al. [4] uses random number of delay buffers after each
memory element on the data path. Since this countermeasure
uses single system clock for all memory elements, the power
consumption caused by the memory elements at the clock
switches, which usually dominates the overall consumption,
is aligned and could be exploited by the attacker. Gürkaynak
et al. [9] proposed globally-asynchronous locally-synchronous
implementation of AES composed of three blocks each having
a local clock and a synchronization interface between them.
The design is not generic; it is AES-specific and the blocks
are hardwired.

Our design also uses the idea of power trace misalignment;
however, since each element (or groups of elements), whether
sequential or combinational, consumes power independently at
random moments, the total power consumption of the circuit is
randomized, and the overall circuit is robust against alignment
techniques [5], [14], [16], [26] even if the attacker knows the
amount of delays.

VI. CONCLUSIONS

This paper introduces a new hardware countermeasure to
protect digital hardware implementations of cryptographic
algorithms against side-channel attacks. The technique is fully
automated and is compatible with commercial FPGA and
standard cell ASIC design flows. We explored the design space
of our technique to empirically derive the tradeoffs involved
between protection (security), performance, area overhead, and
energy consumption; these overheads are shown to be much
smaller than competing countermeasures. Another benefit of

our countermeasure is that it appears to be robust against
process variations, which are expected to become increasingly-
pronounced as CMOS technology scales.

REFERENCES

[1] M.-L. Akkar and C. Giraud, “An implementation of DES and AES,
secure against some attacks,” in CHES ’01, 2001, pp. 309–318.

[2] K. H. Boey, Y. Lu, M. O’Neill, and R. Woods, “Random clock against
differential power analysis,” in APCCAS ’10, 2010, pp. 756–759.

[3] E. Brier, C. Clavier, and F. Olivier, “Correlation power analysis with a
leakage model,” in CHES ’04, 2004, pp. 16–29.

[4] M. Bucci, R. Luzzi, M. Guglielmo, and A. Trifiletti, “A countermeasure
against differential power analysis based on random delay insertion,” in
ISCAS ’05, 2005, pp. 3547–3550.

[5] C. Clavier, J.-S. Coron, and N. Dabbous, “Differential power analysis
in the presence of hardware countermeasures,” in CHES ’00, 2000, pp.
252–263.

[6] J.-S. Coron and L. Goubin, “On Boolean and arithmetic masking against
differential power analysis,” in CHES ’00, vol. 1965, 2000, pp. 231–237.

[7] K. Gandolfi, C. Mourtel, and F. Olivier, “Electromagnetic analysis:
Concrete results,” in CHES ’01, May 2001, pp. 251–261.

[8] T. Güneysu and A. Moradi, “Generic side-channel countermeasures for
reconfigurable devices,” in CHES ’11, 2011, pp. 33–48.

[9] F. Gürkaynak, S. Oetiker, H. Kaeslin, N. Felber, and W. Fichtner,
“Improving DPA security by using globally-asynchronous locally-
synchronous systems,” in ESSCIRC ’05, 2005, pp. 407–410.

[10] M. Kirschbaum and T. Popp, “Evaluation of a DPA-resistant prototype
chip,” in ACSAC ’09, 2009, pp. 43–50.

[11] C. Klein, O. Cret, and A. Suciu, “Design and implementation of a high
quality TRNG in FPGA,” in ICCP ’08, 2008, pp. 311–314.

[12] P. Kocher, “Timing attacks on implementations of Diffie-Hellman, RSA,
DSS and other systems,” in CRYPTO ’96, 1996, pp. 104–113.

[13] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in CRYPTO
’99, 1999, pp. 398–412.

[14] S. Mangard, E. Oswald, and T. Popp, Power Analysis Attacks - Revealing
the Secrets of Smart Cards. Springer, 2007.

[15] A. Moradi, M. Kirschbaum, T. Eisenbarth, and C. Paar, “Masked dual-
rail precharge logic encounters state-of-the-art power analysis methods,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 20, no. 9, pp. 1578–1589, 2012.

[16] R. A. Muijrers, J. G. Woudenberg, and L. Batina, “RAM: Rapid
Alignment Method,” in CARDIS ’11, 2011, pp. 266–282.

[17] T. Popp, M. Kirschbaum, T. Zefferer, and S. Mangard, “Evaluation of the
masked logic style MDPL on a prototype chip,” CHES ’07, pp. 81–94,
2007.

[18] T. Popp and S. Mangard, “Masked dual-rail pre-charge logic: DPA-
resistance without routing constraints,” CHES ’05, pp. 172–186, 2005.

[19] ——, “Implementation aspects of the DPA-resistant logic style MDPL,”
in ISCAS ’06, 2006, pp. 2913–2916.

[20] http://staff.aist.go.jp/akashi.satoh/SASEBO/pdf/SASEBO-GII Spec
Ver1.01 English.pdf, November 2009, Side-channel Attack Standard
Evaluation BOard SASEBO-GII Specification.

[21] A. Shamir and E. Tromer, “Acoustic cryptanalysis: On nosy people and
noisy machines,” http://www.cs.tau.ac.il/∼tromer/acoustic/, 2004.

[22] S. Tillich, C. Herbst, and S. Mangard, “Protecting AES software
implementations on 32-bit processors against power analysis,” in ACNS
’07, 2007, pp. 141–157.

[23] K. Tiri, M. Akmal, and I. Verbauwhede, “A dynamic and differential
CMOS logic with signal independent power consumption to withstand
differential power analysis on smart cards,” in ESSCIRC ’02, 2002, pp.
403–406.

[24] K. Tiri and I. Verbauwhede, “A logic level design methodology for a
secure DPA resistant ASIC or FPGA implementation,” in DATE ’04,
2004, pp. 246–251.

[25] Z. Toprak and Y. Leblebici, “Low-power current mode logic for im-
proved DPA-resistance in embedded systems,” in ISCAS ’05, 2005, pp.
1059–1062.

[26] J. G. van Woudenberg, M. F. Witteman, and B. Bakker, “Improving
differential power analysis by elastic alignment,” in CT-RSA ’11, 2011,
pp. 104–119.

[27] Y. Zafar, J. Park, and D. Har, “Random clocking induced DPA attack
immunity in FPGAs,” in ICIT ’10, 2010, pp. 1068–1070.

