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Abstract: In this paper, we propose a greedy sparse recovery algorithm for target localization with RF sensor networks.

The target spatial domain is discretized by grid pixels. When the network area consists only of several targets, the target

localization is a sparsity-seeking problem such that the Compressed Sensing (CS) framework can be applied. We cast

the target localization as a CS problem and solve it by the proposed sparse recovery algorithm, named the Residual

Minimization Pursuit (RMP). The experimental studies are presented to demonstrate that the RMP offers an attractive

alternative to OMP for sparse signal recovery, in addition, it is more favorable than non-CS based methods for target

localization.
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1 INTRODUCTION

Device-free passive localization (DFL) in wireless sensor

networks (WSN) is a cost-effective technique for inferring

the locations of targets [1]. Compared with active localiza-

tion techniques such as global positioning system (GPS),

radio frequency identification (RFID) and real-time loca-

tion system (RTLS), the DFL does not require the targets

to carry devices. A number of possible sensor technolo-

gies including optical cameras, thermal cameras, passive

infrared, acoustic, vibration and ultrasound, could be used

for the purposes of DFL. Radio frequency (RF) signal-

s can travel through opaque obstructions without privacy

concerns, such as nonmetal walls, trees, and smoke while

optical or infrared sensors cannot. Using received signal

strength (RSS) measurements in RF based DFL is prefer-

able to many WSN applications.

Recently, Wilson and Patwari developed a new technolo-

gy for DFL, referred to radio tomographic imaging (RTI)

[2, 3]. The scene of interest is imaged from attenuation

caused by targets present in wireless network area. RTI

obtains current images of the locations of targets. RTI ex-

plores a linear model which relates the attenuation field to

signal strength measurements. The least-squares solution

for the linear formulation is an ill-posed inverse problem

by nature. However, RTI does not indicate the actual loca-

tions of targets due to lack of contrast needed to accurately

distinguish the locations. It does not make use of the sparse

nature of location finding problem. Hence we propose a

new approach by exploiting the sparse recovery power of
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Compressed Sensing (CS).

CS is an emerging technique that provides a framework for

sparse recovery [4, 5], which indicates that sparse or com-

pressible signals can be recovered from far fewer samples.

CS was originally proposed in the signal processing com-

munity [4, 5], and has been applied to WSN applications

in [6, 7]. The sparse nature of the location finding prob-

lem makes the theory of CS desirable for target localiza-

tion in RF sensor networks. Inspired by success of [6, 7],

we cast the RTI formulation as a sparse recovery problem

and present an efficient algorithm. The proposed algorith-

m is called Residual Minimization Pursuit (RMP). In our

method, as opposed to least-squares type methods used in

[2, 3], we directly determine where the targets located in

the network area.

The rest of the paper is organized as follows. The prob-

lem formulation and the proposed approach are presented

in section 2. After that, section 3 details the experimental

results on simulated data and real data. Finally, we con-

clude this paper in section 4.

Notation
We introduce the notation used in this paper:

• xt: the algorithms described in this paper are iterative

and the reconstructed signal x in current iteration t is

denoted as xt. The same convention is used for other

vectors and matrices.

• I , AI : index set I , the matrix AI denotes the sub-

matrix of A containing only those columns of A with

indexes in I . The same convention is used for vectors.

• [1, n]\I: the complement of set I in set {1, 2, · · · , n}.

• supp(x): the support set of a vector x, i.e. the index
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Figure 1: A twelve RF nodes wireless sensor network.

Each wireless RF node communicates with the others.

set corresponding to the nonzeros of x, supp(x) =
{i : xi �= 0}.

• |x|, ‖x‖p, xT : the absolute value, �p norm and trans-

pose of a vector x, respectively.

• A†: the Moore-Penrose pseudoinverse of matrix A ∈
R

m×n. A† = AT (AAT )−1 for m ≤ n; A† =
(ATA)−1AT for m ≥ n.

2 METHOD

2.1 Problem Formulation
Consider a RF sensor network, as illustrated in Figure 1,

the RF signal is affected by the presence of the targets near

the wireless links. We can infer the locations of attenuating

targets from pairwise RSS measurements which caused by

shadowing correlations between links. As shown in Figure

2, the network area is divided into grid pixels x ∈ R
n. The

amount of radio power attenuation describes each pixel’s

value. The attenuation of unique two-way links (the com-

munication between any pair of distinguishable nodes.) can

be denoted as y ∈ R
m. This can be formulated as a linear

model, take the form of

y = Ax + n. (1)

The link shadowing is a linear combination of the values in

pixels, plus noise n. y ∈ R
m is the difference of RSS mea-

surements that the instantaneous RSS value vector subtract-

s the average background RSS value vector. A ∈ R
m×n is

the weight matrix of the model parameter x. Each row of

the weight matrix on the link i can be expressed a weight-

ed sum of the losses in each pixel. The weight matrix A
for link shadowing can be described by an ellipsoid with

foci at each pair of nodes locations [2, 3], as shown in Fig-

ure 3. d is the link distance between the nodes, dij(1) and

dij(2) are the distance from pixel j to the two nodes for

link i. If a pixel falls inside the ellipse, it is weighted and

normalized by square root of the link distance, otherwise,

the weight is set to zero. The elliptical width parameter λ
is a tradeoff between modeling error and tracking perfor-

mance. For the most accurate localization, we set to 0.01

in our experiments.

0

× × × × × × × ×× × × × ×

× × × × × × × ×× × × × ×

× × × × × × × ×× × × × ×

× × × × × × × ×× × × × ×

× × × × × × × ×× × × × ×

× × × × × × × ×× × × × ×

× × × × × × × ×× × × × ×

× × × × × × × ×× × × × ×

× × × × × × × ×× × × × ×

× × × × × × × ×× × × × ×

× × × × × × × ×× × × × ×

× × × × × × × ×× × × × ×

× × × × × × × ×× × × × ×

3 6 9 12 15 18

0
3

6
9

1
2

1
5

1
8

      Sensor node

     Pixel

     Tree

    Link

   Target

×

X coordinate (feet)

Y
 c

o
o
rd

in
a
te

(f
e
e
t)

Figure 2: The network geometry with one target locating at

(6, 12). The tracked area is divided in to 13× 13 pixels.

2.2 The Proposed Algorithm
When positioning targets from RSS measurements, it is an

inverse problem from (1) to get the pixels attenuation x. x
can determine where the targets are located in the network

area. Generally, it formulates the inverse problem in the

least-squares error sense [2, 3],

xLS = argmin ||Ax− y||22. (2)

Regularization methods were introduced into the linear

model to alleviate the singularity problem and make the

inverse problem stable [2, 3]. All least-squares solutions

minimize the noise energy, and the results are very smooth.

It must have a contrast step to estimate the locations of tar-

gets. Thus RTI does not indicate the actual locations of

targets. We cast the inverse problem (1) as a compressed

sensing problem motivated by the sparse nature of location

finding problem. Sparse recovery algorithms for CS prob-

lem have two major classes, greedy algorithms and �1 norm

minimization. �1 norm minimization algorithms (e.g. Basis

Pursuit [8]) are not feasible solutions due to high compu-

tational complexity and instability rises in measurements

noise. In this paper, we consider the greedy algorithms for

target localization. Greedy sparse recovery algorithms, e.g.

orthogonal matching pursuit (OMP) [9], iterate between 2

main steps:

1. Support detection: the algorithms detect the support

set of the signal x, i.e. select atoms of measurement

matrix A which have been used to generate y in other

words, determine active atoms in sparse representa-

tion of a signal x. In some literatures, this step also is

called basis selection or atom selection.

2. Signal estimation: update the signal using the least-

squares solution on the detected support set.

Recently, Yang et al. proposed a new sparse recovery algo-

rithm, referred to orthogonal pruning pursuit (OPP) [10].

OPP derives a heuristic criterion from preserving a mini-

mum residual by pruning a redundant basis successively. It
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Figure 3: Elliptical weight model, the weighted pixels for

a single link in a RF sensor network are darkened in an

ellipse with foci at each node location.

can be seen that the support detection strategy minimizes

the increase of the residual norm at each iteration. OPP

shrinks the support set I by pruning a basis Aj , the crite-

rion is given by

argmin
j

(x̂j)
2

||Aj ||22
. (3)

where x̂ is the least-squares solution on support set I (i.e.

x̂ = A†Iy). Aj is the column of corresponding index j.

Motivated by OPP, we present a dual criterion, which is

given by

argmax
j

({A†r}j)2
||Aj ||22

, r = y −Axt−1. (4)

where A† = AT (AAT )−1 is the Moore-Penrose pseudoin-

verse of the measurement matrix A. t denotes the iteration

index. r is the residual signal. We assume the columns of

the measurement matrix A are scaled to unit L2 norm for

convenience (i.e. ||Aj ||2 = 1). We present a new algo-

rithm, termed as residual minimization pursuit (RMP). The

detailed description (given in Algorithm 1) of the proposed

algorithm is presented as follows

Step 1: Initialization:
Initialize the residual signal r0 = y,

initialize the support set I0 = ∅,

and set the iteration counter t = 1.

Step 2: Support detection:
Find the index j that maximize the magnitude of

A†rt−1,

and augment the support set It = It−1 ∪ {j}.

Step 3: Signal estimation:
Estimate the signal:

xIt = A†Ity,

x[1,n]\It = 0,

rt = y −Axt.

Step 4: Halting:
Increment t and return to Step 2 if t < k (k is the true

underlying sparsity level of signal x), otherwise the

Algorithm 1 Residual Minimization Pursuit

Input: Measurement matrix A, measurements y, sparsity level k
Output: The reconstructed signal x

1: Initialization:
2: t = 1 //iteration number

3: r0 = y //initial residual

4: I0 = ∅ //initial support set

5: for t = 1 : k do
6: It = It−1∪{ index of the largest entry of |A†rt−1| }
7: xIt = A†Ity
8: x[1,n]\It = 0
9: rt = y −Axt

10: end for
11: return x

algorithm is terminated. The recovered signal x has

nonzero entries in support set It and the correspond-

ing support vector lies in xIt .

Remarks:
1. OMP uses the correlation between the residual signal

and the atoms of the measurement matrix A to select

one active atom at each iteration. The support detec-

tion strategy is correlation maximization while RMP

is residual minimization.

2. RMP is identical to OMP when the measurement ma-

trix A has orthonormal rows (that is (AAT ) is the i-

dentity matrix). RMP is the dual formulation of OPP

by maximizing decrease of the residual norm.

3. RMP and OMP forward select one active nonzero en-

try at a time (i.e. k iterations), while OPP backward

deselects one inactive zero entry at a time (i.e. n−k it-

erations). RMP and OMP clearly converge in far few-

er iterations than OPP (k 
 n− k).

3 EXPERIMENTAL RESULTS

To assess the performance of the proposed approach, we

conduct experiments on computer simulations and real RTI

dataset.

3.1 Computer Simulations
We assess the sparse recovery performance in terms of

phase transitions [11, 12]. Let ρ = k/m be a normalized

measure of the sparsity and let δ = m/n be a normalized

measure of problem indeterminacy. We obtain a two di-

mensional phase space (δ, ρ) ∈ [0, 1]2 measuring the sparse

recovery performance. The phase space is divided into t-

wo regions by a curve. The lower right region indicates

the success of sparse recovery. The curve dubbed as phase

transition curve. Detailed definition of the phase transition

curve is described in [11, 12]. A higher phase transition

curve indicates better sparse recovery performance. The

problem suit (A, x) is nearly similar to [11, 13]. Let A be a

random matrix with i.i.d. Gaussian entries and each colum-

n be normalized with unit norm. We fixed n = 400, sam-

pled 16 different linearly spaced sparsity ρ ∈ [0.05, 0.5]
and indeterminacies δ ∈ [0.05, 0.5]. We take 100 times
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Figure 4: Recovery rates of OPP, OMP and RMP for 4

different indeterminacies (m/n, labeled) and sparse vector

distributed Gaussian.
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Figure 5: Phase transitions of OMP and RMP for sparse

vector distributed Gaussian.

Monte Carlo problem instances and declare exact recovery

if ‖x − x̂‖2/‖x‖2 < 0.01. According to the observation

of [13, 14], greedy methods exhibit superior performance

for sparse vector distributed Gaussian and inferior perfor-

mance for sparse vector distributed Bernoulli. We generate

k sparse vector distributed Gaussian and Bernoulli. Figure

4 and Figure 5 present the recovery performance of OPP,

OMP and RMP for sparse vector distributed Gaussian. We

omit the phase transition curve of OPP here due to high

complexity of plot. It shows that RMP outperforms OP-

P and OMP. For sparse vector distributed Bernoulli, Fig-

ure 6 and Figure 7 show the recovery performance of OPP,

OMP and RMP. OPP performs better than RMP and OMP.

However, RMP appears more robust than OPP and OMP to

distribution underlying sparse vector.

3.2 Target Localization Application

To validate the effectiveness of the proposed method, the

experiments were conducted on a real outdoor environmen-

t using an IEEE 802.15.4 (Zigbee) protocol in the 2.4GHz

fre-quency band network. The RTI dataset [3] is available

online at http://span.ece.utah.edu/rti-data-set. A 28 nodes
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Figure 6: Recovery rates of OPP, OMP and RMP for 4

different indeterminacies (m/n, labeled) and sparse vector

distributed Bernoulli.
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Figure 7: Phase transitions of OPP, OMP and RMP for s-

parse vector distributed Bernoulli.

peer-to-peer network was deployed in a square perimeter

of 21 feet × 21 feet and each side has 8 nodes, as depicted

in Figure 2. Each node was spaced 3 feet from the neigh-

boring nodes. Two trees surround the border of the network

with approximately 1 foot diameter trunks. The difference

of RSS measurements was obtained by the instantaneous

RSS value vector subtracting the average background RSS

value vector. Each link’s measurement is an average of the

two directional links from i to j and j to i. The background

RSS value vector was measured when the network area was

vacant from targets. We create grid pixels x within the net-

work area using resolution 6× 6, 13× 13 and 27× 27. To

quantify the accuracy of localization, we employ average

error, which is defined as follow

e =
1

k

k∑

i=1

√
(xi − x̂i)2 + (yi − ŷi)2, (5)

where k is the number of targets, < xi, yi > is the actual

coordinate and < x̂i, ŷi > is the estimated location. Figure

8 - 13 present the results with two targets located at coor-

dinate (3, 15) and (15, 15) respectively. RTI results do not

indicate the actual locations of targets, However, RMP ex-
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Figure 8: RTI result using resolution 6 × 6.

hibits reliable locations. RMP can be viewed as a contrast

step to estimate the locations of targets. The average errors

are 2.12 feet, 1.68 feet and 1.45 feet using resolution 6× 6,

13 × 13 and 27 × 27 respectively. Target localization us-

ing higher resolution obtains better performance and higher

precision level.

4 CONCLUSIONS

In this paper, we propose a novel target localization algo-

rithm based on the emerging compressed sensing (CS) sig-

nal recovery paradigm for WSN applications. Motivated by

the sparse nature of location finding problem, we cast target

localization as a sparse recovery problem and solve it by the

proposed Residual Minimization Pursuit (RMP) algorithm.

We investigate the effectiveness of the proposed algorithm

on computer simulations and real localization application.

The experimental results demonstrate that RMP offers an

attractive alternative to OMP for signal recovery, and RM-

P is more favorable than non-CS based methods for target

localization.
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