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Abstract— Device-free motion tracking with radio tomographic
networks using received signal strength (RSS) measurements
has attracted considerable research efforts. Since the motion
scene to be reconstructed can often be assumed sparse, i.e., it
consists only of several targets, the Compressed Sensing (CS)
framework can be applied. We cast the motion tracking as a CS
problem and employ an efficient algorithm, Orthogonal Matching
Pursuit (OMP), for sparse recovery. Furthermore, we exploit
a feedback structure which leads to a substantial reduction of
the amount of measurements. The feedback structure utilizes
the prior knowledge (locations of targets) in time sequence to
predict next frame support. Compared with the least-square type
methods, the proposed motion tracking based on feedback sparse
recovery can directly determine where the targets are located
in the network area and reduce the amount of measurements
required for reliable tracking. Experimental results show its
favorable performance.

I. INTRODUCTION

Device-free locating and tracking (DFLT) in wireless sensor
networks (WSN) is a cost-effective practice for target1 track-
ing. Compared with active localization systems like global po-
sitioning system (GPS), radio frequency identification (RFID)
and real-time location system (RTLS), DFLT doesn’t depend
on tags or devices that were attached to the targets being
tracked and also needs no cooperation with the systems [1].
A number of possible sensor technologies such as optical
cameras, thermal cameras, passive infrared, acoustic, vibration
and ultrasoud, could be used for the purposes of DFLT. In this
paper, we concentrate on radio frequency (RF) using received
signal strength (RSS-DFLT) measurements. RF signals can
travel through opaque obstructions without privacy concerns
such as nonmetal walls, trees, and smoke while optical or
infrared sensors cannot. RSS-DFLT is widely used in practical
applications due to low deployment cost.

Recently, Wilson and Patwari developed a new technol-
ogy for RSS-DFLT, referred to radio tomographic imaging
(RTI) [2], [3]. RTI has many potential applications such as
passive intrusion detection, emergency, security, surveillance
and monitoring systems. For RTI applications, the scene of
interest is imaged from attenuation caused by targets within

1In this paper, “target” generally refers to either human or objects of interest
that are to be tracked.

wireless networks area. RTI obtains current images of the
location of targets. RTI explores a linear model which relates
the attenuation field to signal strength measurements. The
least-square solution for the linear formulation is an ill-posed
inverse problem by nature. Regularization methods are applied
to alleviate the singularity problem [4]. However, RTI does
not indicate the actual location of targets. It can’t directly
work on motion tracking due to the lack of contrast needed
to accurately distinguish the location of a moving target. RTI
as an intermediate role, the Kalman filter is applied to track
the location of a moving target with the maximum of the RTI
image as the initial location [5]. It doesn’t make use of the
sparse nature of location finding from motion problem. Hence
we propose a novel motion tracking approach by exploiting
the sparse recovery power of Compressed Sensing (CS).

CS is an emerging technique that provides a framework for
sparse recovery [6], [7], which indicates that sparse or com-
pressible signals can be recovered from far fewer samples. CS
was originally proposed in the signal processing community
[6], [7]. The sparse nature of the location finding problem
makes the theory of CS desirable for motion tracking in RF
sensor networks. We cast the RTI formulation as a CS problem
and employ an efficient algorithm, Orthogonal Matching Pur-
suit (OMP) [8], for sparse recovery. In our method, as opposed
to the least-square type methods used in [3], [5], we directly
determine where the targets are located in the network area.
Furthermore, we exploit a feedback structure which leads to
a substantial reduction of the amount of measurements. The
feedback structure utilizes the prior knowledge (locations of
targets) in time sequence to predict the support2 of next frame.

The rest of the paper is organized as follows. The linear
formulation of RTI is reviewed in section II. After that, section
III details the proposed approach. Experimental results on real-
data are reported in section IV. We conclude this paper in
section V.

II. LINEAR FORMULATION

Given a RF sensor network, as illustrated in Fig. 1, the
RF signal is affected by the presence of the targets near the

2the index set of the nonzero entries of x, which indicates the locations of
targets.
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Fig. 1. A twelve RF nodes wireless sensor network. Each wireless RF node
communicates with the others.
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Fig. 2. The network geometry with one target locating at (6, 12). The tracked
area is divided in to 13 × 13 pixels.

wireless links. We can infer the location of attenuating targets
from pairwise received signal strength (RSS) measurements
which caused by shadowing correlations between links. As
shown in Fig. 2, the network area is partitioned off into
a grid of pixels x ∈ R

n. The amount of radio power
attenuation describes each pixel’s value. The attenuation of
unique two-way links (the communication between any pair
of distinguishable nodes.) can be denoted as y ∈ R

m. This
can be formulated as a linear model, give the form of

y = Ax + n. (1)

The link shadowing is a linear combination of the values
in pixels, plus noise n. y ∈ R

m is the RSS measurements
described in next subsection . A ∈ R

m×n is the weight matrix
of the model parameters x. Each row of the transfer matrix A
on the link i can be expressed a weighted sum of the losses
in each pixel.

A. RSS measurements

When wireless nodes communicate, the received signal
strength (RSS) yi(t) of a particular link i at time t is denoted

as

yi(t) = Pi − Li − Si(t) − Fi(t) − vi(t), (2)

where

• Pi is the transmitted power in dB,
• Li is the static loss in dB due to antenna patterns,

distance, and device inconsistencies,
• Si(t) is the shadowing loss in dB caused by the targets

which attenuate the signal,
• Fi(t) is the fading loss in dB due to constructive and de-

structive interference of narrow-band signals in multipath
communication,

• vi(t) is the measurement noise.

The shadowing loss Si(t) for each link can be expressed
approximately as a sum of attenuation that causes in each
pixel, as shown in Fig. 3. The mathematical form is given by

Si(t) =
n∑

j=1

Aijxj(t), (3)

where xj(t) is the attenuation in pixel j at time t, Aij is the
weight for pixel j for link i, the definition is presented in next
subsection.

We take the difference RSS measurements for RF tracking
problem, since all static losses can be removed over time. The
difference in RSS �yi from time ta to tb is given by

�yi = yi(tb) − yi(ta) (4)

= Si(tb) − Si(ta) + Fi(tb) − Fi(ta) (5)

+ vi(tb) − vi(ta), (6)

where can be rewritten as

�yi =
n∑

j=1

Aij�xj + ni, (7)

where the noise ni is the sum of fading and measurement
noise

ni = Fi(tb) − Fi(ta) + vi(tb) − vi(ta), (8)

and

�xj = xj(tb) − xj(ta), (9)

is the difference in attenuation at pixel j from time ta to tb.
Then we get the all link difference RSS measurements, the
matrix form is described as follows

�y = A�x + n. (10)

To simplify the notation, x and y are used in place of �x and
�y, respectively. Finally, we get the linear formulation (1).

The RSS measurements discussed above are based on
shadowing model [2], [3]. Experiments have to calibrate by
taking RSS while the network is vacant from moving targets
and obtain the difference RSS measurements (10). Variance
based RSS measurements are reliable for multipath channel
model and heavily obstructed area situations [5].
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Fig. 3. Elliptical weight model, the weighted pixels for a single link in a RF
sensor network are darkened in an ellipse with foci at each node location.
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Fig. 4. Diagram of feedback structure.

B. Elliptical weight model

Weight matrix A for link shadowing can be described by
an ellipsoid with foci at each pair of nodes locations [9], [2],
[3], [5], as shown in Fig. 3. The weight is defined by

Aij = d−1/2 ×
{

1, if dij(1) + dij(2) ≤ d + λ,
0, otherwise.

(11)

where d is the link distance between the nodes, dij(1) and
dij(2) are the distance from pixel j to the two nodes for link
i, and λ is the width of the ellipse. If a pixel falls inside the
ellipse, it is weighted and normalized by square root of the
link distance, otherwise, the weight is set to zero. The elliptical
width parameter λ is a tradeoff between modeling error and
tracking performance. For the most accurate tracking, we set
λ to 0.1 in our experiments.

III. FEEDBACK SPARSE RECOVERY

When tracking targets from RSS measurements, it is an
inverse problem from (1) to get the pixels attenuation x. x
can determine how many targets are in the network area and
where they are located. Generally, it formulates the inverse
problem in the least-square error sense [2], [3], [5], [9]

xLS = arg min
x

‖Ax − y‖2
2. (12)

Regularization methods were introduced into the linear model
to alleviate the singularity problem and make the inverse
problem stable [3], [4]. All the least-square solutions minimize
the noise energy, and the results are very smooth. It must have
a contrast step to estimate the location of targets. RTI does not
indicate the actual location of targets, and is an intermediate
step for motion tracking [5]. The solution used in [5] adopted
the Kalman filter to track a moving target with the maximum
of least-square solution as the initial location.

We cast the inverse problem (1) as a compressed sensing
problem motivated by the sparse nature of location finding
from motion problem. Sparse recovery algorithms for CS
problems have two major groups, greedy algorithms and �1

norm minimization. �1 norm minimization algorithms (e.g.
Basis Pursuit [10]) are not feasible solutions for motion
tracking due to high computational complexity and unstable
rises in measurements noise.

In this paper, we employ the Orthogonal Matching Pursuit
(OMP) [8] and a feedback structure for tracking moving
targets. As seen form Fig. 6, there are consecutive frames
of RSS measurements. The estimated locations by previous
frame xt−1 is highly correlated to the current frame xt.
The support set of xt−1 is denoted as Tt−1. We utilize the
RSS measurements that cross previous locations (indicated by
Tt−1) centered 5 × 5, 9 × 9 or 17 × 17 blocks to predict the
Tt.

Based on the feedback structure, the OMP based tracking
algorithm is presented as follow:

• Step 1: Initialization:
the residual r0 = y, the detected support T0 = ∅, and the
iteration counter t = 1.

• Step 2: Support detection:
Find the index j that maximize the magnitude of AT rt−1,
augment the support Tt = Tt−1 ∪ {j} and At =
[At−1 aj ].

• Step 3: Residual update:
x̂t = (A+

t )y
rt = y − Atx̂t.

• Step 4: Halting:
If the t agrees with the number of targets, the current
frame is completed. Predict the support Tt+1 of the next
frame, equip the next frame’s RSS measurements y and
corresponding A and process the next frame. Otherwise
go to Step 2.

To avoid confusions, A0 denotes an empty matrix, aj denotes
the j-th column of matrix A and A+ = (AT A)−1AT is the
Moore-Penrose pseudoinverse of matrix A. Fig. 6 presents the

205



0 3 6 9 12 15 18 21
0

3

6

9

12

15

18

21

X coordinate (feet)

Y
 c

oo
rd

in
at

e 
(f

ee
t)

(a) Estimated trajectory using resolution 6×6
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(b) Estimated trajectory using resolution 13×13
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(c) Estimated trajectory using resolution 27×27

Fig. 5. The tracking trajectory with one target walked at constant velocity
around the following square loop path: (3,6) to (3,15) to (18,15) to (18, 6)
and back to (3,6). The megenta circle is the pixel, the black square is the
location estimated by OMP, the green diamond is the location estimated by
the Kalman filter method [5] and the megenta rectangle is the real moving
trajectory.
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(a) Estimated trajectory using resolution 6×6

0 3 6 9 12 15 18 21
0

3

6

9

12

15

18

21

X coordinate (feet)

Y
 c

oo
rd

in
at

e 
(f

ee
t)

(b) Estimated trajectory using resolution 13×13
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(c) Estimated trajectory using resolution 27×27

Fig. 6. The tracking trajectory with one target walked at constant velocity
around the following square loop path: (3,6) to (3,15) to (18,15) to (18, 6) and
back to (3,6). The megenta circle is the pixel, the black square is the location
estimated by feedback structure, and the megenta rectangle is the real moving
trajectory.
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detailed description of feedback sparse recovery for motion
tracking.

IV. EXPERIMENTAL RESULTS

To validate the effectiveness of the proposed method, the
experiments were conducted on a real outdoor environment
using an IEEE 802.15.4 (Zigbee) protocol in the 2.4GHz
frequency band network. The dataset is obtained from [3]
http://span.ece.utah.edu/rti-data-set. A 28-nodes peer-to-peer
network was deployed in a square perimeter of 21 feet × 21
feet, and each side has 8 nodes, as depicted in Fig. 2. Each
node was spaced 3 feet from the neighboring nodes. Two trees
surround the border of the network with approximately 1 foot
diameter trunks.

RSS measurements of each link are taken at time t = tb as
described in section II. Each link’s measurement is an average
of the two directional links from i to j and j to i. During the
calibration period, the network area is vacant from moving
targets. The signal strength from each link was windowed with
the same time-stamp and averaged over the entire windowed
samples. After calibration, all instantaneous measurements are
taken as the difference from the calibration measurements, as
described in (10).

To demonstrate the effect of resolution on tracking accuracy,
the network area is partitioned off into 3 different resolutions,
6 × 6, 13 × 13 and 27 × 27. The experiment spanned a
14 seconds’ period from 11:29:58 to 11:30:11. One target
walked at constant velocity around the following square loop
path: (3,6) to (3,15) to (18,15) to (18, 6) and back to (3,6)
in network area. Fig. 5 (a)-(c) show the estimated trajectory
using different resolutions. Sparse recovery with OMP is more
reliable than the Kalman filter method used in [5] as indicated
in Fig. 5. The Kalman filter method used in [5] is unstable for
motion tracking due to the initialization with the maximum of
least-square solution, especially for the higher resolution. The
results with different resolutions achieve similar performance
in terms of average error. However, higher resolution achieves
higher precision level.

We have discussed a direct method for target tracking
using sparse recovery. In addition, CS theory provides a novel
framework to recover sparse signal with fewer measurements
[6], [7]. This motivates us to utilize compressed measurements
for motion tracking by feedback information. It is unreliable
due to singularity in least-square solutions used in [3], [5].
The weight matrix A can be viewed as a form of overcomplete
dictionary [11]. We project the original space to a much lower
dimensional space to compress measurements. Specifically,
we utilize the RSS measurements that cross previous frame
locations centered 5 × 5, 9 × 9 and 17 × 17 blocks for
resolution 6 × 6, 13 × 13 and 27 × 27 respectively to predict
the support of next frame. To make stable, we randomly select
RSS measurements and corresponding rows of weight matrix
A apart from feedback structure. The estimated trajectories
using feedback sparse recovery are presented in Fig. 6. It
is reliable for tracking, however, with only 120 RSS mea-
surements. Taking fewer RSS measurements consumes less

communication resource and energy. It is appealing in wireless
sensor networks applications.

V. CONCLUSION

In this paper, we propose a feedback structure for applying
the emerging compressed sensing (CS) into motion tracking
in RF sensor networks. Motivated by the sparse nature of
location finding from motion problem, we cast the motion
tracking as a CS problem and employ an efficient algorithm,
Orthogonal Matching Pursuit (OMP), for sparse recovery.
Furthermore, we exploit a feedback structure which leads to
a substantial reduction of the amount of measurements. The
feedback structure utilizes the prior knowledge (locations of
targets) in time sequence to predict the next frame support.
We demonstrate that the proposed approach achieves favorable
results on real data.
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